
Phased Array System Toolbox™

Reference

R2016a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Phased Array System Toolbox™ Reference
© COPYRIGHT 2011–2016 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails
to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

www.mathworks.com
www.mathworks.com/sales_and_services
www.mathworks.com/matlabcentral
www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

April 2011 Online only Revised for version 1.0 (Release 2011a)
September 2011 Online only Revised for Version 1.1 (R2011b)
March 2012 Online only Revised for Version 1.2 (R2012a)
September 2012 Online only Revised for Version 1.3 (R2012b)
March 2013 Online only Revised for Version 2.0 (R2013a)
September 2013 Online only Revised for Version 2.1 (R2013b)
March 2014 Online only Revised for Version 2.2 (R2014a)
October 2014 Online only Revised for Version 2.3 (R2014b)
March 2015 Online only Revised for Version 3.0 (R2015a)
September 2015 Online only Revised for Version 3.1 (R2015b)
March 2016 Online only Revised for Version 3.2 (R2016a)

v

Contents

Alphabetical List
1

Functions-Alphabetical List
2

Blocks — Alphabetical List
3

App Reference
4

1

Alphabetical List

1 Alphabetical List

1-2

matlab.System class
Package: matlab

Base class for System objects

Description

matlab.System is the base class for System objects. In your class definition file, you
must subclass your object from this base class (or from another class that derives from
this base class). Subclassing allows you to use the implementation and service methods
provided by this base class to build your object. Type this syntax as the first line of
your class definition file to directly inherit from the matlab.System base class, where
ObjectName is the name of your object:

classdef ObjectName < matlab.System

Note: You must set Access = protected for each matlab.System method you use in
your code.

Methods

getDiscreteStateImpl Discrete state property values
getNumInputsImpl Number of inputs to step method
getNumOutputsImpl Number of outputs from step method
infoImpl Information about System object
isInactivePropertyImpl Inactive property status
isInputSizeLockedImpl Locked input size status
loadObjectImpl Load System object from MAT file
processTunedPropertiesImpl Action when tunable properties change
releaseImpl Release resources
resetImpl Reset System object states
saveObjectImpl Save System object in MAT file

 matlab.System class

1-3

setProperties Set property values using name-value pairs
setupImpl Initialize System object
stepImpl System output and state update equations
validateInputsImpl Validate inputs to step method
validatePropertiesImpl Validate property values

Attributes

In addition to the attributes available for MATLAB® objects, you can apply the following
attributes to any property of a custom System object™.

Nontunable After an object is locked (after step or setup has been
called), use Nontunable to prevent a user from changing
that property value. By default, all properties are tunable.
The Nontunable attribute is useful to lock a property that
has side effects when changed. This attribute is also useful
for locking a property value assumed to be constant during
processing. You should always specify properties that affect
the number of input or output ports as Nontunable.

Logical Use Logical to limit the property value to a logical, scalar
value. Any scalar value that can be converted to a logical is
also valid, such as 0 or 1.

PositiveInteger Use PositiveInteger to limit the property value to a
positive integer value.

DiscreteState Use DiscreteState to mark a property so it will display its
state value when you use the getDiscreteState method.

To learn more about attributes, see “Property Attributes” in the MATLAB Object-
Oriented Programming documentation.

Examples
Create a Basic System Object

Create a simple System object, AddOne, which subclasses from matlab.System. You
place this code into a MATLAB file, AddOne.m.

1 Alphabetical List

1-4

classdef AddOne < matlab.System

% ADDONE Compute an output value that increments the input by one

 methods (Access = protected)

 % stepImpl method is called by the step method.

 function y = stepImpl(~,x)

 y = x + 1;

 end

 end

end

Use this object by creating an instance of AddOne, providing an input, and using the
step method.

hAdder = AddOne;

x = 1;

y = step(hAdder,x)

Assign the Nontunable attribute to the InitialValue property, which you define in
your class definition file.

properties (Nontunable)

 InitialValue

end

See Also
matlab.system.StringSet | matlab.system.mixin.FiniteSource

How To
• “Object-Oriented Programming”
• Class Attributes
• Property Attributes
• “Method Attributes”
• “Define Basic System Objects”
• “Define Property Attributes”

 getDiscreteStateImpl

1-5

getDiscreteStateImpl
Class: matlab.System
Package: matlab

Discrete state property values

Syntax
s = getDiscreteStateImpl(obj)

Description
s = getDiscreteStateImpl(obj) returns a struct s of state values. The field
names of the struct are the object’s DiscreteState property names. To restrict or
change the values returned by getDiscreteState method, you can override this
getDiscreteStateImpl method.

getDiscreteStatesImpl is called by the getDiscreteState method, which is called
by the setup method.

Note: You must set Access = protected for this method.

You cannot modify any properties in this method.

Input Arguments

obj

System object handle

Output Arguments

s

State values, returned as a struct

1 Alphabetical List

1-6

Examples

Get Discrete State Values

Use the getDiscreteStateImpl method in your class definition file to get the discrete
states of the object.

methods (Access = protected)

 function s = getDiscreteStateImpl(obj)

 end

end

See Also
setupImpl

How To
• “Define Property Attributes”

 getNumInputsImpl

1-7

getNumInputsImpl

Class: matlab.System
Package: matlab

Number of inputs to step method

Syntax

num = getNumInputsImpl(obj)

Description

num = getNumInputsImpl(obj) returns the number of inputs num expected by
the step method. The System object input argument is not included in the count. For
example, if your step method syntax is step(h_obj,x1,x2,x3), getNumInputs
returns 3.

If your step method has a variable number of inputs (uses varargin), implement the
getNumInputsImpl method in your class definition file.

If the number of inputs expected by the step method is fixed (does not use varargin),
the default getNumInputsImpl determines the required number of inputs directly from
the step method. In this case, you do not need to include getNumInputsImpl in your
class definition file.

getNumInputsImpl is called by the getNumInputs method and by the setup method if
the number of inputs has not been determined already.

Note: You must set Access = protected for this method.

You cannot modify any properties in this method.

If you set the return argument, num, from an object property, that object property must
have the Nontunable attribute.

1 Alphabetical List

1-8

Input Arguments

obj

System object

Output Arguments

num

Number of inputs expected by the step method for the specified object, returned as an
integer.

Default: 1

Examples

Set Number of Inputs

Specify the number of inputs (2, in this case) expected by the step method.

methods (Access = protected)

 function num = getNumInputsImpl(~)

 num = 2;

 end

end

Set Number of Inputs to Zero

Specify that the step method does not accept any inputs.

methods (Access = protected)

 function num = getNumInputsImpl(~)

 num = 0;

 end

end

See Also
setupImpl | stepImpl | getNumOutputsImpl

 getNumInputsImpl

1-9

How To
• “Change Number of Step Inputs or Outputs”

1 Alphabetical List

1-10

getNumOutputsImpl

Class: matlab.System
Package: matlab

Number of outputs from step method

Syntax

num = getNumOutputsImpl (obj)

Description

num = getNumOutputsImpl (obj) returns the number of outputs from the step
method.

If your step method has a variable number of outputs (uses varargout), implement
the getNumOutputsImpl method in your class definition file to determine the number
of outputs. Use nargout in the stepImpl method to assign the expected number of
outputs.

If the number of outputs expected by the step method is fixed (does not use varargout),
the object determines the required number of outputs from the step method. In this
case, you do not need to implement the getNumOutputsImpl method.

getNumOutputsImpl is called by the getNumOutputs method, if the number of outputs
has not been determined already.

Note: You must set Access = protected for this method.

You cannot modify any properties in this method.

If you set the return argument, num, from an object property, that object property must
have the Nontunable attribute.

 getNumOutputsImpl

1-11

Input Arguments

obj

System object

Output Arguments

num

Number of outputs from the step method for the specified object, returned as an integer.

Examples

Set Number of Outputs

Specify the number of outputs (2, in this case) returned from the step method.

methods (Access = protected)

 function num = getNumOutputsImpl(~)

 num = 2;

 end

end

Set Number of Outputs to Zero

Specify that the step method does not return any outputs.

methods (Access = protected)

 function num = getNumOutputsImpl(~)

 num = 0;

 end

end

Use nargout for Variable Number of Outputs

Use nargout in the stepImpl method when you have a variable number of outputs and
will generate code.

methods (Access = protected)

1 Alphabetical List

1-12

 function varargout = stepImpl(~,varargin)

 for i = 1:nargout

 varargout{i} = varargin{i}+1;

 end

 end

end

See Also
stepImpl | getNumInputsImpl | setupImpl

How To
• “Change Number of Step Inputs or Outputs”

 infoImpl

1-13

infoImpl
Class: matlab.System
Package: matlab

Information about System object

Syntax
s = infoImpl(obj,varargin)

Description
s = infoImpl(obj,varargin) lets you set up information to return about the current
configuration of a System object obj. This information is returned in a struct from
the info method. The default infoImpl method, which is used if you do not include
infoImpl in your class definition file, returns an empty struct.

infoImpl is called by the info method.

Note: You must set Access = protected for this method.

Input Arguments
obj

System object

varargin

Optional. Allow variable number of inputs

Examples
Specify System object Information

Define the infoImpl method to return current count information.

1 Alphabetical List

1-14

methods (Access = protected)

 function s = infoImpl(obj)

 s = struct('Count',obj.pCount);

 end

end

How To
• “Define System Object Information”

 isInactivePropertyImpl

1-15

isInactivePropertyImpl

Class: matlab.System
Package: matlab

Inactive property status

Syntax

flag = isInactivePropertyImpl(obj,prop)

Description

flag = isInactivePropertyImpl(obj,prop) specifies whether a public, non-state
property is inactive for the current object configuration. An inactive property is a property
that is not relevant to the object, given the values of other properties. Inactive properties
are not shown if you use the disp method to display object properties. If you attempt to
use public access to directly access or use get or set on an inactive property, a warning
occurs.

isInactiveProperty is called by the disp method and by the get and set methods.

Note: You must set Access = protected for this method.

Input Arguments

obj

System object handle

prop

Public, non-state property name

1 Alphabetical List

1-16

Output Arguments

flag

Inactive status Indicator of the input property prop for the current object configuration,
returned as a logical scalar value

Examples

Specify When a Property Is Inactive

Display the InitialValue property only when the UseRandomInitialValue property
value is false.

methods (Access = protected)

 function flag = isInactivePropertyImpl(obj,propertyName)

 if strcmp(propertyName,'InitialValue')

 flag = obj.UseRandomInitialValue;

 else

 flag = false;

 end

 end

end

See Also
setProperties

How To
• “Hide Inactive Properties”

 isInputSizeLockedImpl

1-17

isInputSizeLockedImpl

Class: matlab.System
Package: matlab

Locked input size status

Syntax

flag = isInputSizeLockedImpl(obj,i)

Description

flag = isInputSizeLockedImpl(obj,i) indicates whether the ith input port to
the step method has its size locked. If flag is true, the size is locked and inputs to the
System object cannot change size while the object is locked. If flag is false, the input
is variable size and is not locked, In the unlocked case, the size of inputs to the object can
change while the object is running and locked.

isInputSizeLockedImpl executes once for each input during System object
initialization.

Note: You must set Access = protected for this method.

Input Arguments

obj

System object

i

step method input port number

1 Alphabetical List

1-18

Output Arguments

flag

Flag indicating whether the size of inputs to the specified port is locked, returned as a
logical scalar value. If the value of isInputSizeLockedImpl is true, the size of the
current input to that port is compared to the first input to that port. If the sizes do not
match, an error occurs.

Default: false

Examples

Check If Input Size Is Locked

Specify in your class definition file to check whether the size of the System object input is
locked.

methods (Access = protected)

 function flag = isInputSizeLockedImpl(~,index)

 flag = true;

 end

end

 loadObjectImpl

1-19

loadObjectImpl
Class: matlab.System
Package: matlab

Load System object from MAT file

Syntax

loadObjectImpl(obj)

Description

loadObjectImpl(obj) loads a saved System object, obj, from a MAT file. Your
loadObjectImpl method should correspond to your saveObjectImpl method to ensure
that all saved properties and data are loaded.

Note: You must set Access = protected for this method.

Input Arguments

obj

System object

Examples

Load System object

Load a saved System object. In this example, the object contains a child object, protected
and private properties, and a discrete state. It also saves states if the object is locked and
calls the loadObjectImpl method from the matlab.System class.

methods (Access = protected)

1 Alphabetical List

1-20

 function loadObjectImpl(obj,s,wasLocked)

 obj.child = matlab.System.loadObject(s.child);

 obj.protectedprop = s.protectedprop;

 obj.pdependentprop = s.pdependentprop;

 if wasLocked

 obj.state = s.state;

 end

 loadObjectImpl@matlab.System(obj,s,wasLocked);

 end

end

See Also
saveObjectImpl

How To
• “Load System Object”
• “Save System Object”

 processTunedPropertiesImpl

1-21

processTunedPropertiesImpl
Class: matlab.System
Package: matlab

Action when tunable properties change

Syntax

processTunedPropertiesImpl(obj)

Description

processTunedPropertiesImpl(obj) specifies the actions to perform when one or
more tunable property values change. This method is called as part of the next call to
the step method after a tunable property value changes. A property is tunable only if its
Nontunable attribute is false, which is the default.

processTunedPropertiesImpl is called by the step method.

Note: You must set Access = protected for this method.

You cannot modify any tunable properties in this method if its System object will be used
in the Simulink® MATLAB System block.

Tips

Use this method when a tunable property affects the value of a different property.

To check if a property has changed since stepImpl was last called, use
isChangedProperty within processTunedPropertiesImpl.

In MATLAB when multiple tunable properties are changed before running the System
object, processTunedPropertiesImpl is called only once for all the changes.
isChangedProperty returns true for all the changed properties.

1 Alphabetical List

1-22

In Simulink, when a parameter is changed in a MATLAB System block dialog, the next
simulation step calls processTunedPropertiesImpl before calling stepImpl. All
tunable parameters are considered changed and processTunedPropertiesImpl
method is called for each of them. isChangedProperty returns true for all the dialog
properties.

Input Arguments

obj

System object

Examples

Specify Action When Tunable Property Changes

Use processTunedPropertiesImpl to recalculate the lookup table if the value of
either the NumNotes or MiddleC property changes before the next call to the step
method. propChange indicates if either property has changed.

methods (Access = protected)

 function processTunedPropertiesImpl(obj)

 propChange = isChangedProperty(obj,obj.NumNotes) ||...

 isChangedProperty(obj,obj.MiddleC)

 if propChange

 obj.pLookupTable = obj.MiddleC * (1+log(1:obj.NumNotes)/log(12));

 end

 end

end

See Also
validatePropertiesImpl | setProperties

How To
• “Validate Property and Input Values”
• “Define Property Attributes”

 releaseImpl

1-23

releaseImpl
Class: matlab.System
Package: matlab

Release resources

Syntax

releaseImpl(obj)

Description

releaseImpl(obj) releases any resources used by the System object, such as file
handles. This method also performs any necessary cleanup tasks. To release resources for
a System object, you must use releaseImpl instead of a destructor.

releaseImpl is called by the release method. releaseImpl is also called when the
object is deleted or cleared from memory, or when all references to the object have gone
out of scope.

Note: You must set Access = protected for this method.

Input Arguments

obj

System object

Examples

Close a File and Release Its Resources

Use the releaseImpl method to close a file opened by the System object.

1 Alphabetical List

1-24

methods (Access = protected)

 function releaseImpl(obj)

 fclose(obj.pFileID);

 end

end

How To
• “Release System Object Resources”

 resetImpl

1-25

resetImpl

Class: matlab.System
Package: matlab

Reset System object states

Syntax

resetImpl(obj)

Description

resetImpl(obj) defines the state reset equations for a System object. Typically you
reset the states to a set of initial values, which is useful for initialization at the start of
simulation.

resetImpl is called by the reset method only if the object is locked. The object
remains locked after it is reset. resetImpl is also called by the setup method, after the
setupImpl method.

Note: You must set Access = protected for this method.

You cannot modify any tunable properties in this method if its System object will be used
in the Simulink MATLAB System block.

Input Arguments

obj

System object

1 Alphabetical List

1-26

Examples

Reset Property Value

Use the reset method to reset the state of the counter stored in the pCount property to
zero.

methods (Access = protected)

 function resetImpl(obj)

 obj.pCount = 0;

 end

end

See Also
releaseImpl

How To
• “Reset Algorithm State”

 saveObjectImpl

1-27

saveObjectImpl

Class: matlab.System
Package: matlab

Save System object in MAT file

Syntax

saveObjectImpl(obj)

Description

saveObjectImpl(obj) defines the System object obj property and state values to
be saved in a MAT file when a user calls save on that object. save calls saveObject,
which then calls saveObjectImpl. To save a System object in generated code, the object
must be unlocked and it cannot contain or be a child object.

If you do not define a saveObjectImpl method for your System object class, only public
properties and properties with the DiscreteState attribute are saved.

To save any private or protected properties or state information, you must define a
saveObjectImpl in your class definition file.

End users can use load, which calls loadObjectImpl to load a System object into their
workspace.

Tip Save the state of an object only if the object is locked. When the user loads that saved
object, it loads in that locked state.

To save child object information, use the associated saveObject method within the
saveObjectImpl method.

Note: You must set Access = protected for this method.

1 Alphabetical List

1-28

Input Arguments

obj

System object

Examples

Define Property and State Values to Save

Define what is saved for the System object. Call the base class version of
saveObjectImpl to save public properties. Then, save any child System objects and any
protected and private properties. Finally, save the state if the object is locked.

methods (Access = protected)

 function s = saveObjectImpl(obj)

 s = saveObjectImpl@matlab.System(obj);

 s.child = matlab.System.saveObject(obj.child);

 s.protectedprop = obj.protectedprop;

 s.pdependentprop = obj.pdependentprop;

 if isLocked(obj)

 s.state = obj.state;

 end

 end

end

See Also
loadObjectImpl

How To
• “Save System Object”
• “Load System Object”

 setProperties

1-29

setProperties
Class: matlab.System
Package: matlab

Set property values using name-value pairs

Syntax

setProperties(obj,numargs,name1,value1,name2,value2,...)

setProperties(obj,numargs,arg1,...,argN,propvalname1,...propvalnameN)

Description

setProperties(obj,numargs,name1,value1,name2,value2,...) provides the
name-value pair inputs to the System object constructor. Use this syntax if every input
must specify both name and value.

setProperties(obj,numargs,arg1,...,argN,propvalname1,...propvalnameN)

provides the value-only inputs, which you can follow with the name-value pair inputs to
the System object during object construction. Use this syntax if you want to allow users
to specify one or more inputs by their values only.

Input Arguments

obj

System object

numargs

Number of inputs passed in by the object constructor

name1,name2,...

Name of property

1 Alphabetical List

1-30

value1,value2,...

Value of the property

arg1,...argN

Value of property (for value-only input to the object constructor)

propvalname1,...propvalnameN

Name of the value-only property

Examples

Setup Value-Only Inputs

Set up an object so users can specify value-only inputs for VProp1, VProp2, and other
property values via name-value pairs when constructing the object.

methods

 function obj = MyFile(varargin)

 setProperties(obj,nargin,varargin{:},'VProp1','VProp2');

 end

end

How To
• “Set Property Values at Construction Time”

 setupImpl

1-31

setupImpl
Class: matlab.System
Package: matlab

Initialize System object

Syntax

setupImpl(obj)

setupImpl(obj,input1,input2,...)

Description

setupImpl(obj) sets up a System object and implements one-time tasks that do not
depend on any inputs to its stepImpl method. You typically use setupImpl to set
private properties so they do not need to be calculated each time stepImpl method is
called. To acquire resources for a System object, you must use setupImpl instead of a
constructor.

setupImpl executes the first time the step method is called on an object after that
object has been created. It also executes the next time step is called after an object has
been released.

setupImpl(obj,input1,input2,...) sets up a System object using one or more
of the stepImpl input specifications. The number and order of inputs must match
the number and order of inputs defined in the stepImpl method. You pass the inputs
into setupImpl to use the specifications, such as size and data types in the one-time
calculations.

setupImpl is called by the setup method, which is done automatically as the first
subtask of the step method on an unlocked System object.

Note: You can omit this method from your class definition file if your System object does
not require any setup tasks.

You must set Access = protected for this method.

1 Alphabetical List

1-32

Do not use setupImpl to initialize or reset states. For states, use the resetImpl
method.

You cannot modify any tunable properties in this method if its System object will be used
in the Simulink MATLAB System block.

Tips

To validate properties or inputs use the validatePropertiesImpl,
validateInputsImpl, or setProperties methods. Do not include validation in
setupImpl.

Do not use the setupImpl method to set up input values.

Input Arguments

obj

System object handle

input1,input2,...

Inputs to the stepImpl method

Examples

Setup a File for Writing

This example shows how to open a file for writing using the setupImpl method in your
class definition file.

methods (Access = protected)

 function setupImpl(obj)

 obj.pFileID = fopen(obj.Filename,'wb');

 if obj.pFileID < 0

 error('Opening the file failed');

 end

 end

 setupImpl

1-33

end

Initialize Properties Based on Step Inputs

This example shows how to use setupImpl to specify that step initialize the properties
of an input. In this case, calls to the object’s step method, which include input u,
initialize the object states in a matrix of size u.

methods (Access = protected)

 function setupImpl(obj, u)

 obj.State = zeros(size(u),’like’, u);

 end

end

See Also
validatePropertiesImpl | validateInputsImpl | setProperties

How To
• “Initialize Properties and Setup One-Time Calculations”
• “Set Property Values at Construction Time”

1 Alphabetical List

1-34

stepImpl
Class: matlab.System
Package: matlab

System output and state update equations

Syntax
[output1,output2,...] = stepImpl(obj,input1,input2,...)

Description
[output1,output2,...] = stepImpl(obj,input1,input2,...) defines the
algorithm to execute when you call the step method on the specified object obj. The
step method calculates the outputs and updates the object’s state values using the
inputs, properties, and state update equations.

stepImpl is called by the step method.

Note: You must set Access = protected for this method.

Tips
The number of input arguments and output arguments must match the values returned
by the getNumInputsImpl and getNumOutputsImpl methods, respectively

Input Arguments

obj

System object handle

input1,input2,...

Inputs to the step method

 stepImpl

1-35

Output Arguments

output

Output returned from the step method.

Examples

Specify System Object Algorithm

Use the stepImpl method to increment two numbers.

methods (Access = protected)

 function [y1,y2] = stepImpl(obj,x1,x2)

 y1 = x1 + 1;

 y2 = x2 + 1;

 end

end

See Also
getNumInputsImpl | getNumInputsImpl | getNumOutputsImpl | validateInputsImpl

How To
• “Define Basic System Objects”
• “Change Number of Step Inputs or Outputs”

1 Alphabetical List

1-36

validateInputsImpl

Class: matlab.System
Package: matlab

Validate inputs to step method

Syntax

validateInputsImpl(obj,input1,input2,...)

Description

validateInputsImpl(obj,input1,input2,...) validates inputs to the step
method at the beginning of initialization. Validation includes checking data types,
complexity, cross-input validation, and validity of inputs controlled by a property value.

validateInputsImpl is called by the setup method before setupImpl.
validateInputsImpl executes only once.

Note: You must set Access = protected for this method.

You cannot modify any properties in this method. Use the
processTunedPropertiesImpl method or setupImpl method to modify properties.

Input Arguments

obj

System object handle

input1,input2,...

Inputs to the setup method

 validateInputsImpl

1-37

Examples

Validate Input Type

Validate that the input is numeric.

methods (Access = protected)

 function validateInputsImpl(~,x)

 if ~isnumeric(x)

 error('Input must be numeric');

 end

 end

end

See Also
validatePropertiesImpl | setupImpl

How To
• “Validate Property and Input Values”

1 Alphabetical List

1-38

validatePropertiesImpl
Class: matlab.System
Package: matlab

Validate property values

Syntax
validatePropertiesImpl(obj)

Description
validatePropertiesImpl(obj) validates interdependent or interrelated property
values at the beginning of object initialization, such as checking that the dependent or
related inputs are the same size.

validatePropertiesImpl is the first method called by the setup method.
validatePropertiesImpl also is called before the processTunedPropertiesImpl
method.

Note: You must set Access = protected for this method.

You cannot modify any properties in this method. Use the
processTunedPropertiesImpl method or setupImpl method to modify properties.

Tips

To check if a property has changed since stepImpl was last called, use
isChangedProperty(obj,property) within validatePropertiesImpl.

Input Arguments

obj

System object handle

 validatePropertiesImpl

1-39

Examples

Validate a Property

Validate that the useIncrement property is true and that the value of the increment
property is greater than zero.

methods (Access = protected)

 function validatePropertiesImpl(obj)

 if obj.useIncrement && obj.increment < 0

 error('The increment value must be positive');

 end

 end

end

See Also
processTunedPropertiesImpl | setupImpl | validateInputsImpl

How To
• “Validate Property and Input Values”

1 Alphabetical List

1-40

matlab.system.mixin.FiniteSource class
Package: matlab.system.mixin

Finite source mixin class

Description

matlab.system.mixin.FiniteSource is a class that defines the isDone method,
which reports the state of a finite data source, such as an audio file.

To use this method, you must subclass from this class in addition to the matlab.System
base class. Type the following syntax as the first line of your class definition file, where
ObjectName is the name of your object:

classdef ObjectName < matlab.System &...

 matlab.system.mixin.FiniteSource

Methods

isDoneImpl End-of-data flag

See Also
matlab.System

Tutorials
• “Define Finite Source Objects”

How To
• “Object-Oriented Programming”
• Class Attributes
• Property Attributes

 isDoneImpl

1-41

isDoneImpl
Class: matlab.system.mixin.FiniteSource
Package: matlab.system.mixin

End-of-data flag

Syntax

status = isDoneImpl(obj)

Description

status = isDoneImpl(obj) indicates if an end-of-data condition has occurred. The
isDone method should return false when data from a finite source has been exhausted,
typically by having read and output all data from the source. You should also define the
result of future reads from an exhausted source in the isDoneImpl method.

isDoneImpl is called by the isDone method.

Note: You must set Access = protected for this method.

Input Arguments

obj

System object handle

Output Arguments

status

Logical value, true or false, that indicates if an end-of-data condition has occurred or
not, respectively.

1 Alphabetical List

1-42

Examples

Check for End-of-Data

Set up the isDoneImpl method in your class definition file so the isDone method checks
whether the object has completed eight iterations.

methods (Access = protected)

 function bdone = isDoneImpl(obj)

 bdone = obj.NumIters==8;

 end

end

See Also
matlab.system.mixin.FiniteSource

How To
• “Define Finite Source Objects”

 matlab.system.StringSet class

1-43

matlab.system.StringSet class
Package: matlab.system

Set of valid string values

Description

matlab.system.StringSet defines a list of valid string values for a property. This
class validates the string in the property and enables tab completion for the property
value. A StringSet allows only predefined or customized strings as values for the
property.

A StringSet uses two linked properties, which you must define in the same class.
One is a public property that contains the current string value. This public property is
displayed to the user. The other property is a hidden property that contains the list of all
possible string values. This hidden property should also have the transient attribute so
its value is not saved to disk when you save the System object.

The following considerations apply when using StringSets:

• The string property that holds the current string can have any name.
• The property that holds the StringSet must use the same name as the string

property with the suffix “Set” appended to it. The string set property is an instance of
the matlab.system.StringSet class.

• Valid strings, defined in the StringSet, must be declared using a cell array. The
cell array cannot be empty nor can it have any empty strings. Valid strings must be
unique and are case-sensitive.

• The string property must be set to a valid StringSet value.

Examples

Set String Property Values

Set the string property, Flavor, and the StringSet property, FlavorSet in your class
definition file.

1 Alphabetical List

1-44

properties

 Flavor = 'Chocolate';

end

properties (Hidden,Transient)

 FlavorSet = ...

 matlab.system.StringSet({'Vanilla','Chocolate'});

end

See Also
matlab.System

How To
• “Object-Oriented Programming”
• Class Attributes
• Property Attributes
• “Limit Property Values to Finite String Set”

 phased.ADPCACanceller System object

1-45

phased.ADPCACanceller System object
Package: phased

Adaptive DPCA (ADPCA) pulse canceller

Description

The ADPCACanceller object implements an adaptive displaced phase center array pulse
canceller for a uniform linear array (ULA).

To compute the output signal of the space time pulse canceller:

1 Define and set up your ADPCA pulse canceller. See “Construction” on page 1-45.
2 Call step to execute the ADPCA algorithm according to the properties of

phased.ADPCACanceller. The behavior of step is specific to each object in the
toolbox.

Construction

H = phased.ADPCACanceller creates an adaptive displaced phase center array
(ADPCA) canceller System object, H. This object performs two-pulse ADPCA processing
on the input data.

H = phased.ADPCACanceller(Name,Value) creates an ADPCA object, H, with each
specified property Name set to the specified Value. You can specify additional name-
value pair arguments in any order as (Name1,Value1,...,NameN,ValueN). See “Properties”
on page 1-45 for the list of available property names.

Properties

SensorArray

Uniform linear array

Uniform linear array, specified as a phased.ULA System object.

1 Alphabetical List

1-46

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second, as a positive scalar.

Default: Speed of light

OperatingFrequency

System operating frequency

Specify the operating frequency of the system in hertz as a positive scalar. The default
value corresponds to 300 MHz.

Default: 3e8

PRF

Pulse repetition frequency

Specify the pulse repetition frequency (PRF) of the received signal in hertz as a scalar.

Default: 1

DirectionSource

Source of receiving mainlobe direction

Specify whether the targeting direction for the STAP processor comes from the
Direction property of this object or from an input argument in step. Values of this
property are:

'Property' The Direction property of this object specifies the
targeting direction.

'Input port' An input argument in each invocation of step specifies the
targeting direction.

Default: 'Property'

 phased.ADPCACanceller System object

1-47

Direction

Receiving mainlobe direction (degrees)

Specify the receiving mainlobe direction of the receiving sensor array as a column
vector of length 2. The direction is specified in the format of [AzimuthAngle;
ElevationAngle] (in degrees). Azimuth angle should be between –180 and 180.
Elevation angle should be between –90 and 90. This property applies when you set the
DirectionSource property to 'Property'.

Default: [0; 0]

NumPhaseShifterBits

Number of phase shifter quantization bits

The number of bits used to quantize the phase shift component of beamformer or steering
vector weights. Specify the number of bits as a non-negative integer. A value of zero
indicates that no quantization is performed.

Default: 0

DopplerSource

Source of targeting Doppler

Specify whether the targeting Doppler for the STAP processor comes from the Doppler
property of this object or from an input argument in step. Values of this property are:

'Property' The Doppler property of this object specifies the Doppler.
'Input port' An input argument in each invocation of step specifies the

Doppler.

Default: 'Property'

Doppler

Targeting Doppler frequency (Hz)

Specify the targeting Doppler of the STAP processor as a scalar. This property applies
when you set the DopplerSource property to 'Property'.

1 Alphabetical List

1-48

Default: 0

WeightsOutputPort

Output processing weights

To obtain the weights used in the STAP processor, set this property to true and use the
corresponding output argument when invoking step. If you do not want to obtain the
weights, set this property to false.

Default: false

PreDopplerOutput

Output pre-Doppler result

Set this property to true to output the processing result before applying the Doppler
filtering. Set this property to false to output the processing result after the Doppler
filtering.

Default: false

NumGuardCells

Number of guarding cells

Specify the number of guard cells used in the training as an even integer. This property
specifies the total number of cells on both sides of the cell under test.

Default: 2, indicating that there is one guard cell at both the front and back of the cell
under test

NumTrainingCells

Number of training cells

Specify the number of training cells used in the training as an even integer. Whenever
possible, the training cells are equally divided before and after the cell under test.

Default: 2, indicating that there is one training cell at both the front and back of the cell
under test

 phased.ADPCACanceller System object

1-49

Methods

clone Create ADPCA object with same property
values

getNumInputs Number of expected inputs to step method
getNumOutputs Number of outputs from step method
isLocked Locked status for input attributes and

nontunable properties
release Allow property value and input

characteristics changes
step Perform ADPCA processing on input data

Examples

Process radar data cube using ADPCA processor.

Process a radar data cube using an ADPCA processor. Weights are calculated for the
71st cell of the data cube. Set the look direction to (0,0) degrees and the Doppler shift to
12.980 kHz.

Load radar data file and compute weights

load STAPExampleData;

Hs = phased.ADPCACanceller('SensorArray',STAPEx_HArray,...

 'PRF',STAPEx_PRF,...

 'PropagationSpeed',STAPEx_PropagationSpeed,...

 'OperatingFrequency',STAPEx_OperatingFrequency,...

 'NumTrainingCells',100,...

 'WeightsOutputPort',true,...

 'DirectionSource','Input port',...

 'DopplerSource','Input port');

[y,w] = step(Hs,STAPEx_ReceivePulse,71,[0; 0],12.980e3);

Create AnglerDoppler System object and plot response

sAngeDop = phased.AngleDopplerResponse(...

 'SensorArray',Hs.SensorArray,...

 'OperatingFrequency',Hs.OperatingFrequency,...

1 Alphabetical List

1-50

 'PRF',Hs.PRF,...

 'PropagationSpeed',Hs.PropagationSpeed);

plotResponse(sAngeDop,w)

References

[1] Guerci, J. R. Space-Time Adaptive Processing for Radar. Boston: Artech House, 2003.

[2] Ward, J. “Space-Time Adaptive Processing for Airborne Radar Data Systems,”
Technical Report 1015, MIT Lincoln Laboratory, December, 1994.

 phased.ADPCACanceller System object

1-51

See Also
phased.AngleDopplerResponse | phased.DPCACanceller | phased.STAPSMIBeamformer
| phitheta2azel | uv2azel

Introduced in R2012a

1 Alphabetical List

1-52

clone
System object: phased.ADPCACanceller
Package: phased

Create ADPCA object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates an object, C, having the same property values and same states as
H. If H is locked, so is C.

 getNumInputs

1-53

getNumInputs
System object: phased.ADPCACanceller
Package: phased

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of inputs
(not counting the object itself) that you must use when calling the step method. This
value changes when you alter properties that turn inputs on or off.

1 Alphabetical List

1-54

getNumOutputs
System object: phased.ADPCACanceller
Package: phased

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value changes when you alter properties that turn outputs on or off.

 isLocked

1-55

isLocked
System object: phased.ADPCACanceller
Package: phased

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF, for the ADPCACanceller System
object.

isLocked returns a logical value that indicates whether input attributes and
nontunable properties for the object are locked. The object performs an internal
initialization the first time that you execute step. This initialization locks nontunable
properties and input specifications, such as the dimensions, complexity, and data type of
the input data. After locking, isLocked returns a true value.

1 Alphabetical List

1-56

release
System object: phased.ADPCACanceller
Package: phased

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

 step

1-57

step
System object: phased.ADPCACanceller
Package: phased

Perform ADPCA processing on input data

Syntax

Y = step(H,X,CUTIDX)

Y = step(H,X,CUTIDX,ANG)

Y = step(___ ,DOP)

[Y,W] = step(___)

Description

Y = step(H,X,CUTIDX) applies the ADPCA pulse cancellation algorithm to the input
data X. The algorithm calculates the processing weights according to the range cell
specified by CUTIDX. This syntax is available when the DirectionSource property
is 'Property' and the DopplerSource property is 'Property'. The receiving
mainlobe direction is the Direction property value. The output Y contains the
result of pulse cancellation either before or after Doppler filtering, depending on the
PreDopplerOutput property value.

Y = step(H,X,CUTIDX,ANG) uses ANG as the receiving mainlobe direction. This
syntax is available when the DirectionSource property is 'Input port' and the
DopplerSource property is 'Property'.

Y = step(___ ,DOP) uses DOP as the targeting Doppler frequency. This syntax is
available when the DopplerSource property is 'Input port'.

[Y,W] = step(___) returns the additional output, W, as the processing weights. This
syntax is available when the WeightsOutputPort property is true.

Note: The object performs an initialization the first time the step method is executed.
This initialization locks nontunable properties and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable

1 Alphabetical List

1-58

property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Input Arguments

H

Pulse canceller object.

X

Input data. X must be a 3-dimensional M-by-N-by-P numeric array whose dimensions are
(range, channels, pulses).

CUTIDX

Range cell.

ANG

Receiving mainlobe direction. ANG must be a 2-by-1 vector in the form [AzimuthAngle;
ElevationAngle], in degrees. The azimuth angle must be between –180 and 180. The
elevation angle must be between –90 and 90.

Default: Direction property of H

DOP

Targeting Doppler frequency in hertz. DOP must be a scalar.

Default: Doppler property of H

Output Arguments

Y

Result of applying pulse cancelling to the input data. The meaning and dimensions of Y
depend on the PreDopplerOutput property of H:

 step

1-59

• If PreDopplerOutput is true, Y contains the pre-Doppler data. Y is an M-by-(P–
1) matrix. Each column in Y represents the result obtained by cancelling the two
successive pulses.

• If PreDopplerOutput is false, Y contains the result of applying an FFT-based
Doppler filter to the pre-Doppler data. The targeting Doppler is the Doppler property
value. Y is a column vector of length M.

W

Processing weights the pulse canceller used to obtain the pre-Doppler data. The
dimensions of W depend on the PreDopplerOutput property of H:

• If PreDopplerOutput is true, W is a 2N-by-(P-1) matrix. The columns in W
correspond to successive pulses in X.

• If PreDopplerOutput is false, W is a column vector of length (N*P).

Examples

Plot Response of ADPCA Processor with Quantized Weights

Process a radar data cube using an ADPCA processor. Weights are calculated for the 71st
cell of the data cube. Load the data cube from STAPExampleData.mat. Quantize the
weights to 4 bits. Set the look direction to (0,0) degrees and the Doppler shift to 12.980
kHz.

load STAPExampleData;

sADPCA = phased.ADPCACanceller('SensorArray',STAPEx_HArray,...

 'PRF',STAPEx_PRF,...

 'PropagationSpeed',STAPEx_PropagationSpeed,...

 'OperatingFrequency',STAPEx_OperatingFrequency,...

 'NumTrainingCells',100,...

 'WeightsOutputPort',true,...

 'DirectionSource','Input port',...

 'DopplerSource','Input port',...

 'NumPhaseShifterBits',4);

[y,w] = step(sADPCA,STAPEx_ReceivePulse,71,[0; 0],12.980e3);

sAngDop = phased.AngleDopplerResponse(...

 'SensorArray',sADPCA.SensorArray,...

 'OperatingFrequency',sADPCA.OperatingFrequency,...

 'PRF',sADPCA.PRF,...

 'PropagationSpeed',sADPCA.PropagationSpeed);

1 Alphabetical List

1-60

plotResponse(sAngDop,w);

See Also
phitheta2azel | uv2azel

 phased.AngleDopplerResponse System object

1-61

phased.AngleDopplerResponse System object

Package: phased

Angle-Doppler response

Description

The AngleDopplerResponse object calculates the angle-Doppler response of input data.

To compute the angle-Doppler response:

1 Define and set up your angle-Doppler response calculator. See “Construction” on
page 1-61.

2 Call step to compute the angle-Doppler response of the input signal according to the
properties of phased.AngleDopplerResponse. The behavior of step is specific to
each object in the toolbox.

Construction

H = phased.AngleDopplerResponse creates an angle-Doppler response System
object, H. This object calculates the angle-Doppler response of the input data.

H = phased.AngleDopplerResponse(Name,Value) creates angle-Doppler object, H,
with each specified property Name set to the specified Value. You can specify additional
name-value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties

SensorArray

Sensor array

Sensor array specified as an array System object belonging to the phased package. A
sensor array can contain subarrays.

1 Alphabetical List

1-62

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second, as a positive scalar.

Default: Speed of light

OperatingFrequency

System operating frequency

Specify the operating frequency of the system in hertz as a positive scalar. The default
value corresponds to 300 MHz.

Default: 3e8

PRF

Pulse repetition frequency

Specify the pulse repetition frequency (PRF) in hertz of the input signal as a positive
scalar.

Default: 1

ElevationAngleSource

Source of elevation angle

Specify whether the elevation angle comes from the ElevationAngle property of this
object or from an input argument in step. Values of this property are:

'Property' The ElevationAngle property of this object specifies
the elevation angle.

'Input port' An input argument in each invocation of step
specifies the elevation angle.

 phased.AngleDopplerResponse System object

1-63

Default: 'Property'

ElevationAngle

Elevation angle

Specify the elevation angle in degrees used to calculate the angle-Doppler response as a
scalar. The angle must be between –90 and 90. This property applies when you set the
ElevationAngleSource property to 'Property'.

Default: 0

NumAngleSamples

Number of samples in angular domain

Specify the number of samples in the angular domain used to calculate the angle-Doppler
response as a positive integer. This value must be greater than 2.

Default: 256

NumDopplerSamples

Number of samples in Doppler domain

Specify the number of samples in the Doppler domain used to calculate the angle-Doppler
response as a positive integer. This value must be greater than 2.

Default: 256

Methods

clone Create angle-Doppler response object with
same property values

getNumInputs Number of expected inputs to step method
getNumOutputs Number of outputs from step method
isLocked Locked status for input attributes and

nontunable properties

1 Alphabetical List

1-64

plotResponse Plot angle-Doppler response
release Allow property value and input

characteristics changes
step Calculate angle-Doppler response

Calculate Angle-Doppler response

Calculate the angle-Doppler response of the 190th cell of a collected data cube.

Load data and construct AngleDopplerResponse System object

load STAPExampleData;

x = shiftdim(STAPEx_ReceivePulse(190,:,:));

hadresp = phased.AngleDopplerResponse(...

 'SensorArray',STAPEx_HArray,...

 'OperatingFrequency',STAPEx_OperatingFrequency,...

 'PropagationSpeed',STAPEx_PropagationSpeed,...

 'PRF',STAPEx_PRF);

Plot Angle-Doppler response

[resp,ang_grid,dop_grid] = step(hadresp,x);

contour(ang_grid,dop_grid,abs(resp))

xlabel('Angle'); ylabel('Doppler');

 phased.AngleDopplerResponse System object

1-65

Algorithms

phased.AngleDopplerResponse generates the response using a conventional
beamformer and an FFT-based Doppler filter. For further details, see [1].

References

[1] Guerci, J. R. Space-Time Adaptive Processing for Radar. Boston: Artech House, 2003.

1 Alphabetical List

1-66

See Also
phased.ADPCACanceller | phased.DPCACanceller | phased.STAPSMIBeamformer |
phitheta2azel | uv2azel

Introduced in R2012a

 clone

1-67

clone
System object: phased.AngleDopplerResponse
Package: phased

Create angle-Doppler response object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates an object, C, having the same property values and same states as
H. If H is locked, so is C.

1 Alphabetical List

1-68

getNumInputs
System object: phased.AngleDopplerResponse
Package: phased

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of inputs
(not counting the object itself) that you must use when calling the step method. This
value changes when you alter properties that turn inputs on or off.

 getNumOutputs

1-69

getNumOutputs
System object: phased.AngleDopplerResponse
Package: phased

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value changes when you alter properties that turn outputs on or off.

1 Alphabetical List

1-70

isLocked
System object: phased.AngleDopplerResponse
Package: phased

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF, for the AngleDopplerResponse
System object.

isLocked returns a logical value that indicates whether input attributes and
nontunable properties for the object are locked. The object performs an internal
initialization the first time that you execute step. This initialization locks nontunable
properties and input specifications, such as the dimensions, complexity, and data type of
the input data. After locking, isLocked returns a true value.

 plotResponse

1-71

plotResponse
System object: phased.AngleDopplerResponse
Package: phased

Plot angle-Doppler response

Syntax

plotResponse(H,X)

plotResponse(H,X,ELANG)

plotResponse(___ ,Name,Value)

hPlot = plotResponse(___)

Description

plotResponse(H,X) plots the angle-Doppler response of the data in X in decibels. This
syntax is available when the ElevationAngleSource property is 'Property'.

plotResponse(H,X,ELANG) plots the angle-Doppler response calculated
using the specified elevation angle ELANG. This syntax is available when the
ElevationAngleSource property is 'Input port'.

plotResponse(___ ,Name,Value) plots the angle-Doppler response with additional
options specified by one or more Name,Value pair arguments.

hPlot = plotResponse(___) returns the handle of the image in the figure window,
using any of the input arguments in the previous syntaxes.

Input Arguments

H

Angle-Doppler response object.

X

Input data.

1 Alphabetical List

1-72

ELANG

Elevation angle in degrees.

Default: Value of Elevation property of H

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'NormalizeDoppler'

Set this value to true to normalize the Doppler frequency. Set this value to false to plot
the angle-Doppler response without normalizing the Doppler frequency.

Default: false

'Unit'

The unit of the plot. Valid values are 'db', 'mag', and 'pow'.

Default: 'db'

Plot Angle-Doppler Response

Plot the angle-Doppler response of the 190th cell of a collected data cube.

load STAPExampleData;

x = shiftdim(STAPEx_ReceivePulse(190,:,:));

hadresp = phased.AngleDopplerResponse(...

 'SensorArray',STAPEx_HArray,...

 'OperatingFrequency',STAPEx_OperatingFrequency,...

 'PropagationSpeed',STAPEx_PropagationSpeed,...

 'PRF',STAPEx_PRF);

plotResponse(hadresp,x,'NormalizeDoppler',true);

 plotResponse

1-73

See Also
phitheta2azel | uv2azel

1 Alphabetical List

1-74

release
System object: phased.AngleDopplerResponse
Package: phased

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

 step

1-75

step
System object: phased.AngleDopplerResponse
Package: phased

Calculate angle-Doppler response

Syntax

[RESP,ANG_GRID,DOP_GRID] = step(H,X)

[RESP,ANG_GRID,DOP_GRID] = step(H,X,ELANG)

Description

[RESP,ANG_GRID,DOP_GRID] = step(H,X) calculates the angle-Doppler response
of the data X. RESP is the complex angle-Doppler response. ANG_GRID and DOP_GRID
provide the angle samples and Doppler samples, respectively, at which the angle-Doppler
response is evaluated. This syntax is available when the ElevationAngleSource
property is 'Property'.

[RESP,ANG_GRID,DOP_GRID] = step(H,X,ELANG) calculates the angle-Doppler
response using the specified elevation angle ELANG. This syntax is available when the
ElevationAngleSource property is 'Input port'.

Note: The object performs an initialization the first time the step method is executed.
This initialization locks nontunable properties and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Input Arguments

H

Angle-Doppler response object.

1 Alphabetical List

1-76

X

Input data as a matrix or column vector.

If X is a matrix, the number of rows in the matrix must equal the number of elements of
the array specified in the SensorArray property of H.

If X is a vector, the number of rows must be an integer multiple of the number of
elements of the array specified in the SensorArray property of H. In addition, the
multiple must be at least 2.

ELANG

Elevation angle in degrees.

Default: Value of Elevation property of H

Output Arguments

RESP

Complex angle-Doppler response of X. RESP is a P-by-Q matrix. P is determined by the
NumDopplerSamples property of H and Q is determined by the NumAngleSamples
property.

ANG_GRID

Angle samples at which the angle-Doppler response is evaluated. ANG_GRID is a column
vector of length Q.

DOP_GRID

Doppler samples at which the angle-Doppler response is evaluated. DOP_GRID is a
column vector of length P.

Calculate Angle-Doppler response

Calculate the angle-Doppler response of the 190th cell of a collected data cube.

 step

1-77

Load data and construct AngleDopplerResponse System object

load STAPExampleData;

x = shiftdim(STAPEx_ReceivePulse(190,:,:));

hadresp = phased.AngleDopplerResponse(...

 'SensorArray',STAPEx_HArray,...

 'OperatingFrequency',STAPEx_OperatingFrequency,...

 'PropagationSpeed',STAPEx_PropagationSpeed,...

 'PRF',STAPEx_PRF);

Plot Angle-Doppler response

[resp,ang_grid,dop_grid] = step(hadresp,x);

contour(ang_grid,dop_grid,abs(resp))

xlabel('Angle'); ylabel('Doppler');

1 Alphabetical List

1-78

Algorithms

phased.AngleDopplerResponse generates the response using a conventional
beamformer and an FFT-based Doppler filter. For further details, see [1].

References

[1] Guerci, J. R. Space-Time Adaptive Processing for Radar. Boston: Artech House, 2003.

 step

1-79

See Also
azel2phitheta | azel2uv | phitheta2azel | uv2azel

1 Alphabetical List

1-80

phased.ArrayGain System object
Package: phased

Sensor array gain

Description

The ArrayGain object calculates the array gain for a sensor array. The array gain is
defined as the signal to noise ratio (SNR) improvement between the array output and the
individual channel input, assuming the noise is spatially white. It is related to the array
response but is not the same.

To compute the SNR gain of the antenna for specified directions:

1 Define and set up your array gain calculator. See “Construction” on page 1-80.
2 Call step to estimate the gain according to the properties of phased.ArrayGain.

The behavior of step is specific to each object in the toolbox.

Construction

H = phased.ArrayGain creates an array gain System object, H. This object calculates
the array gain of a 2-element uniform linear array for specified directions.

H = phased.ArrayGain(Name,Value) creates and array-gain object, H, with the
specified property Name set to the specified Value. You can specify additional name-
value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties

SensorArray

Sensor array

Sensor array specified as an array System object belonging to the phased package. A
sensor array can contain subarrays.

Default: phased.ULA with default property values

 phased.ArrayGain System object

1-81

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second, as a positive scalar.

Default: Speed of light

WeightsInputPort

Add input to specify weights

To specify weights, set this property to true and use the corresponding input argument
when you invoke step. If you do not want to specify weights, set this property to false.

Default: false

Methods

clone Create array gain object with same
property values

getNumInputs Number of expected inputs to step method
getNumOutputs Number of outputs from step method
isLocked Locked status for input attributes and

nontunable properties
release Allow property value and input

characteristics changes
step Calculate array gain of sensor array

Definitions

Array Gain

The array gain is defined as the signal to noise ratio (SNR) improvement between the
array output and the individual channel input, assuming the noise is spatially white. You
can express the array gain as follows:

1 Alphabetical List

1-82

SNR

SNR

w vsv w

w Nw

s

N

w vv w

w w

H H

H H H

H

out

in

=

Ê

Ë
ÁÁ

ˆ

¯
˜̃

Ê
Ë
Á

ˆ
¯
˜

=

In this equation:

• w is the vector of weights applied on the sensor array. When you use
phased.ArrayGain, you can optionally specify weights by setting the
WeightsInputPort property to true and specifying the W argument in the step
method syntax.

• v is the steering vector representing the array response toward a given direction.
When you call the step method, the ANG argument specifies the direction.

• s is the input signal power.
• N is the noise power.
• H denotes the complex conjugate transpose.

For example, if a rectangular taper is used in the array, the array gain is the square of
the array response normalized by the number of elements in the array.

Examples

Calculate the array gain for a uniform linear array at the direction of 30 degrees azimuth
and 20 degrees elevation. The array operating frequency is 300 MHz.

ha = phased.ULA(4);

hag = phased.ArrayGain('SensorArray',ha);

g = step(hag,3e8,[30;20]);

References

[1] Guerci, J. R. Space-Time Adaptive Processing for Radar. Boston: Artech House, 2003.

[2] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002.

 phased.ArrayGain System object

1-83

See Also
phased.ArrayResponse | phased.ElementDelay | phased.SteeringVector

Introduced in R2012a

1 Alphabetical List

1-84

clone
System object: phased.ArrayGain
Package: phased

Create array gain object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates an object, C, having the same property values and same states as
H. If H is locked, so is C.

 getNumInputs

1-85

getNumInputs
System object: phased.ArrayGain
Package: phased

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of inputs
(not counting the object itself) that you must use when calling the step method. This
value changes when you alter properties that turn inputs on or off.

1 Alphabetical List

1-86

getNumOutputs
System object: phased.ArrayGain
Package: phased

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value changes when you alter properties that turn outputs on or off.

 isLocked

1-87

isLocked
System object: phased.ArrayGain
Package: phased

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF, for the ArrayGain System object.

isLocked returns a logical value that indicates whether input attributes and
nontunable properties for the object are locked. The object performs an internal
initialization the first time that you execute step. This initialization locks nontunable
properties and input specifications, such as the dimensions, complexity, and data type of
the input data. After locking, isLocked returns a true value.

1 Alphabetical List

1-88

release
System object: phased.ArrayGain
Package: phased

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

 step

1-89

step
System object: phased.ArrayGain
Package: phased

Calculate array gain of sensor array

Syntax

G = step(H,FREQ,ANG)

G = step(H,FREQ,ANG,WEIGHTS)

G = step(H,FREQ,ANG,STEERANGLE)

G = step(H,FREQ,ANG,WEIGHTS,STEERANGLE)

Description

G = step(H,FREQ,ANG) returns the array gain G of the array for the operating
frequencies specified in FREQ and directions specified in ANG.

G = step(H,FREQ,ANG,WEIGHTS) applies weights WEIGHTS on the sensor array. This
syntax is available when you set the WeightsInputPort property to true.

G = step(H,FREQ,ANG,STEERANGLE) uses STEERANGLE as the subarray steering
angle. This syntax is available when you configure H so that H.Sensor is an array that
contains subarrays, and H.Sensor.SubarraySteering is either 'Phase' or 'Time'.

G = step(H,FREQ,ANG,WEIGHTS,STEERANGLE) combines all input arguments.
This syntax is available when you configure H so that H.WeightsInputPort is true,
H.Sensor is an array that contains subarrays, and H.Sensor.SubarraySteering is
either 'Phase' or 'Time'.

Note: The object performs an initialization the first time the step method is executed.
This initialization locks nontunable properties and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

1 Alphabetical List

1-90

Input Arguments

H

Array gain object.

FREQ

Operating frequencies of array in hertz. FREQ is a row vector of length L. Typical
values are within the range specified by a property of the sensor element. The
element is H.SensorArray.Element, H.SensorArray.Array.Element, or
H.SensorArray.Subarray.Element, depending on the type of array. The frequency
range property is named FrequencyRange or FrequencyVector, depending on the type
of element in the array. The element has zero response at frequencies outside that range.

ANG

Directions in degrees. ANG can be either a 2-by-M matrix or a row vector of length M.

If ANG is a 2-by-M matrix, each column of the matrix specifies the direction in the
form [azimuth; elevation]. The azimuth angle must be between –180 and 180 degrees,
inclusive. The elevation angle must be between –90 and 90 degrees, inclusive.

If ANG is a row vector of length M, each element specifies a direction’s azimuth angle. In
this case, the corresponding elevation angle is assumed to be 0.

WEIGHTS

Weights on the sensor array. WEIGHTS can be either an N-by-L matrix or a column vector
of length N. N is the number of subarrays if H.SensorArray contains subarrays, or the
number of elements otherwise. L is the number of frequencies specified in FREQ.

If WEIGHTS is a matrix, each column of the matrix represents the weights at the
corresponding frequency in FREQ.

If WEIGHTS is a vector, the weights apply at all frequencies in FREQ.

STEERANGLE

Subarray steering angle in degrees. STEERANGLE can be a length-2 column vector or a
scalar.

 step

1-91

If STEERANGLE is a length-2 vector, it has the form [azimuth; elevation]. The azimuth
angle must be between –180 and 180 degrees, and the elevation angle must be between –
90 and 90 degrees.

If STEERANGLE is a scalar, it represents the azimuth angle. In this case, the elevation
angle is assumed to be 0.

Output Arguments

G

Gain of sensor array, in decibels. G is an M-by-L matrix. G contains the gain at the M
angles specified in ANG and the L frequencies specified in FREQ.

Definitions

Array Gain

The array gain is defined as the signal to noise ratio (SNR) improvement between the
array output and the individual channel input, assuming the noise is spatially white. You
can express the array gain as follows:

SNR

SNR

w vsv w

w Nw

s

N

w vv w

w w

H H

H H H

H

out

in

=

Ê

Ë
ÁÁ

ˆ

¯
˜̃

Ê
Ë
Á

ˆ
¯
˜

=

In this equation:

• w is the vector of weights applied on the sensor array. When you use
phased.ArrayGain, you can optionally specify weights by setting the
WeightsInputPort property to true and specifying the W argument in the step
method syntax.

• v is the steering vector representing the array response toward a given direction.
When you call the step method, the ANG argument specifies the direction.

• s is the input signal power.

1 Alphabetical List

1-92

• N is the noise power.
• H denotes the complex conjugate transpose.

For example, if a rectangular taper is used in the array, the array gain is the square of
the array response normalized by the number of elements in the array.

Examples

Construct a uniform linear array with six elements. The array operates at 1 GHz and
the array elements are spaced at one half the operating frequency wavelength. Find the
array gain in decibels for the direction 45 degrees azimuth and 10 degrees elevation.

% operating frequency 1 GHz

fc = 1e9;

% 1 GHz wavelength

lambda = physconst('LightSpeed')/fc;

% construct the ULA

hULA = phased.ULA('NumElements',6,'ElementSpacing',lambda/2);

% construct the array gain object with the ULA as the sensor array

hgain = phased.ArrayGain('SensorArray',hULA);

% use step method to determine array gain at the specified

% operating frequency and angle

arraygain = step(hgain,fc,[45;10]);

% array gain is approximately -17.93 dB

See Also
phitheta2azel | uv2azel

 phased.ArrayResponse System object

1-93

phased.ArrayResponse System object
Package: phased

Sensor array response

Description

The ArrayResponse object calculates the complex-valued response of a sensor array.

To compute the response of the array for specified directions:

1 Define and set up your array response calculator. See “Construction” on page
1-93.

2 Call step to estimate the response according to the properties of
phased.ArrayResponse. The behavior of step is specific to each object in the
toolbox.

Construction

H = phased.ArrayResponse creates an array response System object, H. This object
calculates the response of a sensor array for the specified directions. By default, a 2-
element uniform linear array (ULA) is used.

H = phased.ArrayResponse(Name,Value) creates object, H, with each specified
property Name set to the specified Value. You can specify additional name-value pair
arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties

SensorArray

Handle to sensor array used to calculate response

Specify the sensor array as a handle. The sensor array must be an array object in the
phased package. The array can contain subarrays.

1 Alphabetical List

1-94

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second, as a positive scalar.

Default: Speed of light

WeightsInputPort

Add input to specify weights

To specify weights, set this property to true and use the corresponding input argument
when you invoke step. If you do not want to specify weights, set this property to false.

Default: false

EnablePolarization

Enable polarization simulation

Set this property to true to let the array response simulate polarization. Set this
property to false to ignore polarization. This property applies only when the array
specified in the SensorArray property is capable of simulating polarization.

Default: false

Methods

clone Create array response object with same
property values

getNumInputs Number of expected inputs to step method
getNumOutputs Number of outputs from step method
isLocked Locked status for input attributes and

nontunable properties

 phased.ArrayResponse System object

1-95

release Allow property value and input
characteristics changes

step Calculate array response of sensor array

Plot Array Response

Calculate array response for a 4-element uniform linear array (ULA) in the direction of
30 degrees azimuth and 20 degrees elevation. Assume the array's operating frequency is
300 MHz.

Construct ULA and ArrayResponse System objects

ha = phased.ULA(4);

har = phased.ArrayResponse('SensorArray',ha);

resp = step(har,3e8,[30;20]);

Plot the array response in dB

By default, the plot has a normalized power and is taken as an azimuth cut at 0 degrees
elevation.

plotResponse(ha,3e8,physconst('LightSpeed'));

1 Alphabetical List

1-96

References

[1] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002.

See Also
phased.ArrayGain | phased.ConformalArray/plotResponse | phased.ElementDelay |
phased.SteeringVector | phased.ULA/plotResponse | phased.URA/plotResponse

Introduced in R2012a

 clone

1-97

clone
System object: phased.ArrayResponse
Package: phased

Create array response object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates an object, C, having the same property values and same states as
H. If H is locked, so is C.

1 Alphabetical List

1-98

getNumInputs
System object: phased.ArrayResponse
Package: phased

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of inputs
(not counting the object itself) that you must use when calling the step method. This
value changes when you alter properties that turn inputs on or off.

 getNumOutputs

1-99

getNumOutputs
System object: phased.ArrayResponse
Package: phased

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value changes when you alter properties that turn outputs on or off.

1 Alphabetical List

1-100

isLocked
System object: phased.ArrayResponse
Package: phased

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF, for the ArrayResponse System
object.

isLocked returns a logical value that indicates whether input attributes and
nontunable properties for the object are locked. The object performs an internal
initialization the first time that you execute step. This initialization locks nontunable
properties and input specifications, such as the dimensions, complexity, and data type of
the input data. After locking, isLocked returns a true value.

 release

1-101

release
System object: phased.ArrayResponse
Package: phased

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

1 Alphabetical List

1-102

step
System object: phased.ArrayResponse
Package: phased

Calculate array response of sensor array

Syntax

RESP = step(H,FREQ,ANG)

RESP = step(H,FREQ,ANG,WEIGHTS)

RESP = step(H,FREQ,ANG,STEERANGLE)

RESP = step(H,FREQ,ANG,WEIGHTS,STEERANGLE)

Description

RESP = step(H,FREQ,ANG) returns the array response RESP at operating frequencies
specified in FREQ and directions specified in ANG.

RESP = step(H,FREQ,ANG,WEIGHTS) applies weights WEIGHTS on the sensor array.
This syntax is available when you set the WeightsInputPort property to true.

RESP = step(H,FREQ,ANG,STEERANGLE) uses STEERANGLE as the subarray steering
angle. This syntax is available when you configure H so that H.Sensor is an array that
contains subarrays, and H.Sensor.SubarraySteering is either 'Phase' or 'Time'.

RESP = step(H,FREQ,ANG,WEIGHTS,STEERANGLE) combines all input arguments.
This syntax is available when you configure H so that H.WeightsInputPort is true,
H.Sensor is an array that contains subarrays, and H.Sensor.SubarraySteering is
either 'Phase' or 'Time'.

Note: The object performs an initialization the first time the step method is executed.
This initialization locks nontunable properties and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

 step

1-103

Input Arguments

H

Array response object.

FREQ

Operating frequencies of array in hertz. FREQ is a row vector of length L. Typical
values are within the range specified by a property of the sensor element. The
element is H.SensorArray.Element, H.SensorArray.Array.Element, or
H.SensorArray.Subarray.Element, depending on the type of array. The frequency
range property is named FrequencyRange or FrequencyVector, depending on the type
of element in the array. The element has zero response at frequencies outside that range.
The element has zero response at frequencies outside that range.

ANG

Directions in degrees. ANG can be either a 2-by-M matrix or a row vector of length M.

If ANG is a 2-by-M matrix, each column of the matrix specifies the direction in the
form [azimuth; elevation]. The azimuth angle must be between –180 and 180 degrees,
inclusive. The elevation angle must be between –90 and 90 degrees, inclusive.

If ANG is a row vector of length M, each element specifies a direction’s azimuth angle. In
this case, the corresponding elevation angle is assumed to be 0.

WEIGHTS

Weights on the sensor array. WEIGHTS can be either an N-by-L matrix or a column vector
of length N. N is the number of subarrays if H.SensorArray contains subarrays, or the
number of elements otherwise. L is the number of frequencies specified in FREQ.

If WEIGHTS is a matrix, each column of the matrix represents the weights at the
corresponding frequency in FREQ.

If WEIGHTS is a vector, the weights apply at all frequencies in FREQ.

STEERANGLE

Subarray steering angle in degrees. STEERANGLE can be a length-2 column vector or a
scalar.

1 Alphabetical List

1-104

If STEERANGLE is a length-2 vector, it has the form [azimuth; elevation]. The azimuth
angle must be between –180 and 180 degrees, and the elevation angle must be between –
90 and 90 degrees.

If STEERANGLE is a scalar, it represents the azimuth angle. In this case, the elevation
angle is assumed to be 0.

Output Arguments

RESP

Voltage response of the sensor array. The response depends on whether the
EnablePolarization property is set to true or false.

• If the EnablePolarization property is set to false, the voltage response, RESP,
has the dimensions M-by-L. M represents the number of angles specified in the input
argument ANG while L represents the number of frequencies specified in FREQ.

• If the EnablePolarization property is set to true, the voltage response, RESP, is
a MATLAB struct containing two fields, RESP.H and RESP.V. The RESP.H field
represents the array’s horizontal polarization response, while RESP.V represents
the array’s vertical polarization response. Each field has the dimensions M-by-L.
M represents the number of angles specified in the input argument, ANG, while L
represents the number of frequencies specified in FREQ.

Examples

Find the array response for a 6-element uniform linear array operating at 1 GHz. The
array elements are spaced at one half the operating frequency wavelength. The incident
angle is 45 degrees azimuth and 10 degrees elevation.

fc = 1e9;

% 1 GHz wavelength

lambda = physconst('LightSpeed')/fc;

% construct the ULA

hULA = phased.ULA('NumElements',6,'ElementSpacing',lambda/2);

% construct array response object with the ULA as sensor array

har = phased.ArrayResponse('SensorArray',hULA);

% use step to obtain array response at 1 GHz for an incident

% angle of 45 degrees azimuth and 10 degrees elevation

 step

1-105

resp = step(har,fc,[45;10]);

See Also
phitheta2azel | uv2azel

1 Alphabetical List

1-106

phased.BackscatterRadarTarget System object
Package: phased

Backscatter radar target

Description

The phased.BackscatterRadarTarget System object models the backscattering of a
signal from a target. Backscattering is a special case of radar target scattering when the
incident and reflected angles are the same. This type of scattering applies to monostatic
radar configurations. The radar cross-section determines the backscattering response of
a target to an incoming signal. This System object lets you specify an angle-dependent
radar cross-section model that covers a range of incident angles.

The phased.BackscatterRadarTarget System object creates a backscattered
signal for polarized and nonpolarized signals. While electromagnetic radar signals are
polarized, you can often ignore polarization in your simulation and process the signals
as scalar signals. To ignore polarization, specify the EnablePolarization property as
false. To employ polarization, specify the EnablePolarization property as true.

For nonpolarized signals, you specify the radar cross section as an array of radar cross-
section (RCS) values at discrete azimuth and elevation points. The System object
interpolates values for incident angles between array points. For polarized signals, you
specify the radar scattering matrix using three arrays defined at discrete azimuth and
elevation points. These three arrays correspond to the HH, HV, and VV polarization
components. The VH component is computed from the conjugate symmetry of the HV
component.

For both nonpolarized and polarized signal cases, you can employ one of four Swerling
models to generate random fluctuations in the RCS or radar scattering matrix. Choose
the model using the Model property. Then, use the SeedSource and Seed properties to
control the fluctuations.

EnablePolarization Use these properties

false RCSPattern

true ShhPattern, SvvPattern, and
ShvPattern

 phased.BackscatterRadarTarget System object

1-107

To compute the propagation delay for specified source and receiver points:

1 Define and set up your radar target. You can set
phased.BackscatterRadarTarget System object properties at construction time
or leave them to their default values. See “Construction” on page 1-107. Some
properties that you set at construction time can be changed later. These properties
are tunable.

2 To compute the propagated signal, call the step method of
phased.BackscatterRadarTarget. The output of the method depends on the
properties of the phased.BackscatterRadarTarget System object. You can
change tunable properties at any time.

Construction

sBSTgt = phased.BackscatterRadarTarget creates a backscatter radar target
System object, sBSTgt.

sBSTgt = phased.BackscatterRadarTarget(Name,Value) creates a backscatter
radar target System object, sBSTgt, with each specified property Name set to the
specified Value. You can specify additional name and value pair arguments in any order
as (Name1,Value1,...,NameN,ValueN).

Properties

EnablePolarization — Enable polarized signals
false (default) | true

Option to enable processing of polarized signals, specified as false or true. Set this
property to true to allow the target to simulate the reflection of polarized radiation. Set
this property to false to ignore polarization.

Example: true

Data Types: logical

AzimuthAngles — Azimuth angles
[-180:180] (default) | 1-by-P real-valued row vector | P-by-1 real-valued column vector

Azimuth angles used to define the angular coordinates of each column of the matrices
specified by the RCSPattern, ShhPattern, ShvPattern, or SvvPattern properties.

1 Alphabetical List

1-108

Specify the azimuth angles as a length P vector. P must be greater than two. Angle units
are in degrees.
Example: [-45:0.1:45]

Data Types: double

ElevationAngles — Elevation angles
[-90:90] (default) | 1-by-Q real-valued row vector | Q-by-1 real-valued column vector

Elevation angles used to define the angular coordinates of each row of the matrices
specified by the RCSPattern, ShhPattern, ShvPattern, or SvvPattern properties.
Specify the elevation angles as a length Q vector. Q must be greater than two. Angle
units are in degrees.
Example: [-30:0.1:30]

Data Types: double

RCSPattern — Radar cross-section pattern
ones(181,361) (default) | Q-by-P complex-valued matrix | Q-by-P-by-M complex-
valued array | 1-by-P complex-valued vector | M-by-P complex-valued matrix

Radar cross-section pattern, specified as a Q-by-P complex-valued matrix or a Q-by-P-
by-M complex-valued array. Q is the length of the vector in the ElevationAngles
property. P is the length of the vector in the AzimuthAngles property. M is the number
of target patterns. The number of patterns corresponds to the number of signals passed
into the step method. You can, however, use a single pattern to model multiple signals
reflecting from a single target. Pattern units are square-meters.

You can also specify the pattern as a function only of azimuth for a single elevation. In
this case, specify the pattern as either a 1-by-P vector or an M-by-P matrix. Each row is a
separate pattern.

This property applies when the SpecifyPolarizationPattern property is false.

Example: [1,1;1i,1i]

Data Types: double
Complex Number Support: Yes

ShhPattern — Radar-scattering matrix HH polarization component
ones(181,361) (default) | Q-by-P complex-valued matrix | Q-by-P-by-M complex-
valued array | 1-by-P complex-valued vector | M-by-P complex-valued matrix

 phased.BackscatterRadarTarget System object

1-109

Radar scattering matrix HH polarization component, specified as a Q-by-P complex-
valued matrix or a Q-by-P-by-M complex-valued array. Q is the length of the vector in
the ElevationAngles property. P is the length of the vector in the AzimuthAngles
property. M is the number of target patterns. The number of patterns corresponds to the
number of signals passed into the step method. You can, however, use a single pattern
to model multiple signals reflecting from a single target. Scattering matrix units are
meters.

You can also specify the pattern as a function only of azimuth for a single elevation.
Then, specify the pattern as either a 1-by-P vector or an M-by-P matrix. Each row is a
separate pattern.

This property applies when the SpecifyPolarizationPattern property is true.

Example: [1,1;1i,1i]

Data Types: double
Complex Number Support: Yes

SvvPattern — Radar scattering matrix VV polarization component
ones(181,361) (default) | Q-by-P complex-valued matrix | Q-by-P-by-M complex-
valued array | 1-by-P complex-valued vector | M-by-P complex-valued matrix

Radar scattering matrix VV polarization component, specified as a Q-by-P complex-
valued matrix or a Q-by-P-by-M complex-valued array. Q is the length of the vector in
the ElevationAngles property. P is the length of the vector in the AzimuthAngles
property. M is the number of target patterns. The number of patterns corresponds to the
number of signals passed into the step method. You can, however, use a single pattern
to model multiple signals reflecting from a single target. Scattering matrix units are
meters.

You can also specify the pattern as a function only of azimuth for a single elevation. In
this case, specify the pattern as either a 1-by-P vector or an M-by-P matrix. Each row is a
separate pattern.

This property applies when the SpecifyPolarizationPattern property is true.

Example: [1,1;1i,1i]

Data Types: double
Complex Number Support: Yes

1 Alphabetical List

1-110

ShvPattern — Radar scattering matrix HV polarization component
ones(181,361) (default) | Q-by-P complex-valued matrix | Q-by-P-by-M complex-
valued array | 1-by-P complex-valued vector | M-by-P complex-valued matrix

Radar scattering matrix HV polarization component, specified as a Q-by-P complex-
valued matrix or a Q-by-P-by-M complex-valued array. Q is the length of the vector in
the ElevationAngles property. P is the length of the vector in the AzimuthAngles
property. M is the number of target patterns. The number of patterns corresponds to the
number of signals passed into the step method. You can, however, use a single pattern
to model multiple signals reflecting from a single target. Scattering matrix units are
meters.

You can also specify the pattern as a function only of azimuth for a single elevation. In
this case, specify the pattern as either a 1-by-P vector or an M-by-P matrix. Each row is a
separate pattern.

This property applies when the SpecifyPolarizationPattern property is true.

Example: [1,1;1i,1i]

Data Types: double
Complex Number Support: Yes

Model — Target fluctuation model
'Nonfluctuating' (default) | 'Swerling1' | 'Swerling2' | 'Swerling3' |
'Swerling4'

Target fluctuation model, specified as 'Nonfluctuating', 'Swerling1',
'Swerling2', 'Swerling3', or 'Swerling4'. If you set this property to a value
other than 'Nonfluctuating', use the update input argument when calling
phased.BackscatterRadarTarget.stepstep.

Example: 'Swerling3'

Data Types: char

PropagationSpeed — Signal propagation speed
speed of light (default) | real-valued positive scalar

Signal propagation speed, specified as a real-valued positive scalar. Units are in meters
per second.
Example: physconst('LightSpeed')

 phased.BackscatterRadarTarget System object

1-111

Data Types: double

OperatingFrequency — Signal carrier frequency
300e6 (default) | positive real-valued scalar

Signal carrier frequency, specified as a positive real-valued scalar. Units are in hertz.
Example: 1e9

Data Types: double

SeedSource — Seed source of random number generator for RCS fluctuation model
'Auto' (default) | 'Property'

Seed source of random number generator for RCS fluctuation model, specified as 'Auto'
or 'Property'. When you set this property to 'Auto', the System object generates
random numbers using the default MATLAB random number generator. When you set
this property to 'Property', you specify the random number generator seed using the
Seed property. This property applies when you set the Model property to'Swerling1',
'Swerling2', 'Swerling3', or 'Swerling4'. When you use this object with Parallel
Computing Toolbox™ software, you set this property to 'Auto'.

Example: 'Property'

Data Types: char

Seed — Random number generator seed
0 (default) | nonnegative integer less than 232

Random number generator seed, specified as a nonnegative integer less than 232. This
property applies when the SeedSource property is set to 'Property'.

Example: 32301

Data Types: double

Methods

clone Create System object with identical
property values

getNumInputs Number of expected inputs to step method

1 Alphabetical List

1-112

getNumOutputs Number of outputs from step method
isLocked Locked status for input attributes and

nontunable properties
release Allow property values and input

characteristics to change
reset Reset states of System object
step Backscatter incoming signal

Definitions

Backscattered Radiation

For nonpolarized waves, the reflected wave is given by

Y G X= ◊ ,

where:

• X is the incoming signal.
• G is the target gain factor, a dimensionless quantity given by

G =
4

2

ps

l
.

• σ is the mean radar cross-section (RCS) of the target.
• λ is the wavelength of the incoming signal.

The incident signal on the target is scaled by the square root of the gain factor.

For polarized waves, the single scalar signal, X, is replaced by a vector signal, (EH, EV),
with horizontal and vertical components. The scattering matrix, S, replaces the scalar
cross-section, σ. Through the scattering matrix, the incident horizontal and vertical
polarized signals are converted into the reflected horizontal and vertical polarized
signals.

 phased.BackscatterRadarTarget System object

1-113

E

E

S S

S S

E

E

H

scat

V

scat

HH VH

HV VV

H

inc

V

i

()

()

()

(

È

Î

Í
Í

˘

˚

˙
˙

=
È

Î
Í

˘

˚
˙

4

2

p

l nnc

H

inc

V

inc
S

E

E
)

()

()

È

Î

Í
Í

˘

˚

˙
˙

= []
È

Î

Í
Í

˘

˚

˙
˙

4

2

p

l

For further details, see [1] or [2].

Examples

Backscatter A Nonpolarized Signal

Calculate the reflected radar signal from a nonfluctuating point target with a peak RCS
of 10.0 . Use a simplified expression of an RCS pattern of a target for illustrative
purposes. Real RCS patterns are more complicated. The RCS pattern covers a range of
angles from 10°–30° in azimuth and 5°–15° in elevation. The RCS peaks at 20° azimuth
and 10° elevation. Assume that the radar operating frequency is 1 GHz and that the
signal is a sinusoid at 1 MHz.

Create and plot the RCS pattern.

azmax = 20.0;

elmax = 10.0;

azpattern = [10.0:0.1:30.0];

elpattern = [5.0:0.1:15.0];

rcspattern = 10.0*cosd(4*(elpattern - elmax))'*cosd(4*(azpattern - azmax));

imagesc(azpattern,elpattern,rcspattern)

axis image

axis tight

title('RCS')

xlabel('Azimuth (deg)')

ylabel('Elevation (deg)')

1 Alphabetical List

1-114

Generate and plot 50 samples of the radar signal.

foper = 1.0e9;

freq = 1.0e6;

fs = 10*freq;

nsamp = 50;

t = [0:(nsamp-1)]'/fs;

sig = sin(2*pi*freq*t);

plot(t*1e6,sig)

xlabel('Time (\mu seconds)')

ylabel('Signal Amplitude')

grid

 phased.BackscatterRadarTarget System object

1-115

Create the phased.BackscatterRadarTarget System object™.

tgt = phased.BackscatterRadarTarget('Model','Nonfluctuating',...

 'AzimuthAngles',azpattern,'ElevationAngles',elpattern,...

 'RCSPattern',rcspattern,'OperatingFrequency',foper);

For a sequence of incident angles at constant elevation angle, find and plot the scattered
signal amplitude.

az0 = 13.0;

el = 10.0;

na = 20;

ss = zeros(1,na);

az = az0 + [0:(na-1)];

1 Alphabetical List

1-116

for k = 1:na

 y = step(tgt,sig,[az(k);el]);

 ss(k) = max(abs(y));

end

plot(az,ss,'*')

xlabel('Azimuth (deg)')

ylabel('Scattered Signal Amplitude')

grid

Backscatter A Polarized Signal

Calculate the polarized radar signal scattered from a Swerling1 fluctuating point
target. Assume the target axis is rotated from the global coordinate system. Use simple

 phased.BackscatterRadarTarget System object

1-117

expressions for the scattering patterns for illustration. Real scattering patterns are more
complicated. For polarized signals, you need to specify the HH, HV, and VV components
of the scattering matrix for a range of incident angles. In this example, the patterns
cover the range 10°–30° in azimuth and 5°–15° in elevation. Angles are with respect to
the target local coordinate system. Assume that the radar operating frequency is 1 GHz
and that the signal is a sinusoid with a frequency of 1 MHz. The incident angle is 13.0°
azimuth and 14.0° elevation with respect to the target orientation.

Create and plot the scattering matrix patterns.

azmax = 20.0;

elmax = 10.0;

azpattern = [10.0:0.1:30.0];

elpattern = [5.0:0.1:15.0];

shhpat = cosd(4*(elpattern - elmax))'*cosd(4*(azpattern - azmax));

shvpat = 1i*cosd(4*(elpattern - elmax))'*sind(4*(azpattern - azmax));

svvpat = sind(4*(elpattern - elmax))'*sind(4*(azpattern - azmax));

subplot(1,3,1)

imagesc(azpattern,elpattern,abs(shhpat))

axis image

axis tight

title('HH')

xlabel('Azimuth (deg)')

ylabel('Elevation (deg)')

subplot(1,3,2)

imagesc(azpattern,elpattern,abs(shvpat))

axis image

axis tight

title('HV')

xlabel('Azimuth (deg)')

subplot(1,3,3)

imagesc(azpattern,elpattern,abs(svvpat))

axis image

axis tight

title('VV')

xlabel('Azimuth (deg)')

1 Alphabetical List

1-118

Create the phased.BackscatterRadarTarget System object™.

sTgt = phased.BackscatterRadarTarget('EnablePolarization',true,...

 'Model','Swerling1','AzimuthAngles',azpattern,...

 'ElevationAngles',elpattern,'ShhPattern',shhpat,'ShvPattern',shvpat,...

 'SvvPattern',svvpat);

Generate 50 samples of a polarized radar signal.

foper = 1.0e9;

freq = 1.0e6;

fs = 10*freq;

nsamp = 50;

t = [0:(nsamp-1)]'/fs;

 phased.BackscatterRadarTarget System object

1-119

signal.X = exp(1i*2*pi*freq*t);

signal.Y = exp(1i*2*pi*freq*t + pi/3);

signal.Z = zeros(size(signal.X));

tgtaxes = azelaxes(60,10);

ang = [13.0;14.0];

Reflect the signal from the target and plot its components.

refl_signal = step(sTgt,signal,ang,tgtaxes,true);

figure

plot(t*1e6,real(refl_signal.X))

hold on

plot(t*1e6,real(refl_signal.Y))

plot(t*1e6,real(refl_signal.Z))

hold off

xlabel('Time \mu seconds')

ylabel('Amplitude')

grid

1 Alphabetical List

1-120

• “Modeling Target Radar Cross Section”
• “Designing a Basic Monostatic Pulse Radar”

References

[1] Mott, H. Antennas for Radar and Communications. New York: John Wiley & Sons,
1992.

[2] Richards, M. A. Fundamentals of Radar Signal Processing. New York: McGraw-Hill,
2005.

 phased.BackscatterRadarTarget System object

1-121

[3] Skolnik, M. Introduction to Radar Systems, 3rd Ed. New York: McGraw-Hill, 2001.

See Also
phased.RadarTarget

More About
• “Swerling Target Models”

Introduced in R2016a

1 Alphabetical List

1-122

clone
System object: phased.BackscatterRadarTarget
Package: phased

Create System object with identical property values

Syntax

sBStgt = clone(sBStgt)

Description

sBStgt = clone(sBStgt) creates a System object, sBStgt2, having the same
property values and states as sBStgt. If sBStgt is locked, so is sBStgt2.

Input Arguments

sBStgt — Backscatter radar target
System object

Backscatter radar target, specified as a System object.
Example: phased.BackscatterRadarTarget

Output Arguments

sBStgt2 — Backscatter radar target
System object

Backscatter radar target, returned as a System object.

Introduced in R2016a

 getNumInputs

1-123

getNumInputs
System object: phased.BackscatterRadarTarget
Package: phased

Number of expected inputs to step method

Syntax

N = getNumInputs(sBStgt)

Description

N = getNumInputs(sBStgt) returns a positive integer, N, representing the number of
inputs (not counting the object itself) that you must use when calling the step method.
This value changes when you alter properties that turn inputs on or off.

Input Arguments

H — Backscatter radar target
phased.BackscatterRadarTarget System object

Backscatter radar target, specified as a phased.BackscatterRadarTarget System object.
Example: phased.BackscatterRadarTarget

Output Arguments

N — Number of expected inputs to step method
positive integer

Number of expected inputs to the step method, returned as a positive integer. The
number does not include the object itself.

Introduced in R2016a

1 Alphabetical List

1-124

getNumOutputs
System object: phased.BackscatterRadarTarget
Package: phased

Number of outputs from step method

Syntax

N = getNumOutputs(sBStgt)

Description

N = getNumOutputs(sBStgt) returns the number of outputs, N, from the step
method. This value changes when you alter properties that turn outputs on or off.

Input Arguments

sBStgt — Backscatter radar target
phased.BackscatterRadarTarget System object

Backscatter radar target, specified as a phased.BackscatterRadarTarget System object.
Example: phased.BackscatterRadarTarget

Output Arguments

N — Number of expected outputs
positive integer

Number of outputs expected from calling the step method, returned as a positive integer.

Introduced in R2016a

 isLocked

1-125

isLocked
System object: phased.BackscatterRadarTarget
Package: phased

Locked status for input attributes and nontunable properties

Syntax

LS = isLocked(sSBTgt)

Description

LS = isLocked(sSBTgt) returns the locked status, LS, for the
BackscatterRadarTarget System object

isLocked returns a logical value that indicates whether input attributes and
nontunable properties for the object are locked. The object performs an internal
initialization the first time that you execute step. This initialization locks nontunable
properties and input specifications, such as the dimensions, complexity, and data type of
the input data. After locking, isLocked returns a true value.

Input Arguments

sSBTgt — Backscatter radar target
System object

Backscatter radar target, specified as a System object.
Example: phased.BackscatterRadarTarget

Output Arguments

LS — Locked status
true | false

1 Alphabetical List

1-126

Locked status of phased.BackscatterRadarTarget System object, returned as true when
the input attributes and nontunable properties of the object are locked. Otherwise, the
returned value is false.

Introduced in R2016a

 release

1-127

release
System object: phased.BackscatterRadarTarget
Package: phased

Allow property values and input characteristics to change

Syntax

release(sBSTgt)

Description

release(sBSTgt) releases system resources (such as memory, file handles, or
hardware connections) and enables you to change properties and input characteristics.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

Input Arguments

sBSTgt — Backscatter radar target
System object

Backscatter tadar target, specified as a phased.BackscatterRadarTarget System object.
Example: phased.BackscatterRadarTarget

Introduced in R2016a

1 Alphabetical List

1-128

reset
System object: phased.BackscatterRadarTarget
Package: phased

Reset states of System object

Syntax

reset(sBSTgt)

Description

reset(sBSTgt) resets the internal state of the phased.BackscatterRadarTarget
object, sBSTgt. This method resets the random number generator state if SeedSource is
a property of this System object and has the value 'Property'.

Input Arguments

sBSTgt — Backscatter radar target
System object

Backscatter radar target, specified as a System object.
Example: phased.BackscatterRadarTarget

Introduced in R2016a

 step

1-129

step
System object: phased.BackscatterRadarTarget
Package: phased

Backscatter incoming signal

Syntax

refl_sig = step(sBSTgt,sig,ang)

refl_sig = step(sBSTgt,sig,ang,update)

refl_sig = step(sBSTgt,sig,ang,laxes)

refl_sig = step(sBSTgt,sig,ang,laxes,update)

Description

refl_sig = step(sBSTgt,sig,ang) returns the reflected signal, refl_sig,
of an incident nonpolarized signal, sig. This syntax applies when you set
the EnablePolarization property to false and the Model property to
'Nonfluctuating'. In this case, the values specified in the RCSPattern property are
used to compute the RCS values for the incident and reflected directions, ang.

refl_sig = step(sBSTgt,sig,ang,update) uses update to control whether to
update the RCS values. This syntax applies when you set the EnablePolarization
property to false and the Model property to one of the fluctuating RCS models:
'Swerling1', 'Swerling2', 'Swerling3', or 'Swerling4'. If update is true, a
new RCS value is generated. If update is false, the previous RCS value is used.

refl_sig = step(sBSTgt,sig,ang,laxes) returns the reflected signal,
refl_sig, of an incident polarized signal, sig. This syntax applies when you set
EnablePolarization to true and the Model property to 'Nonfluctuating'. The
values specified in the ShhPattern, SvvPattern, and ShvPattern properties are used
to compute the scattering matrices for the incident and reflected directions, ang.

refl_sig = step(sBSTgt,sig,ang,laxes,update) uses the update argument to
control whether to update the scattering matrix values. This syntax applies when you

1 Alphabetical List

1-130

set the EnablePolarization property to true and the Model property to one of the
fluctuating RCS models: 'Swerling1', 'Swerling2', 'Swerling3', or 'Swerling4'.
If update is true, a new RCS value is generated. If update is false, the previous RCS
value is used.

Note: The object performs an initialization the first time the step method is executed.
This initialization locks nontunable properties and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Input Arguments

sBSTgt — Backscatter target
System object

Backscatter target, specified as a System object.
Example: phased.BackscatterRadarTarget

sig — Narrowband signal
N-by-M complex-valued matrix | 1-by-M struct array containing complex-valued fields

• Narrowband nonpolarized signal, specified as an N-by-M complex-valued matrix.
Each column contains an independent signal reflected from the target.

• Narrowband polarized signal, specified as a 1-by-M struct array containing
complex-valued fields. Each struct element contains three N-by-1 column vectors of
electromagnetic field components (sig.X,sig.Y,sig.Z) representing the polarized
signal that reflects from the target.

The quantity N is the number of signal samples and M is the number of signals reflecting
off the target. Each column corresponds to a different reflecting angle.

For polarized fields, the struct element contains three N-by-1 complex-valued column
vectors, sig.X, sig.Y, and sig.Z. These vectors represent the x, y, and z Cartesian
components of the polarized signal.
Example: [1,1;j,1;0.5,0]

 step

1-131

Data Types: double
Complex Number Support: Yes

ang — Incident signal direction
2-by-1 positive real-valued column vector | 2-by-M positive real-valued column matrix

Incident signal direction, specified as a 2-by-1 positive real-valued column
vector or a 2-by-M positive real-valued column matrix. Each column of ang
specifies the incident direction of the corresponding signal in the form of an
[AzimuthAngle;ElevationAngle] pair. Units are degrees. The number of columns in
ang must match the number of independent signals in sig.

Example: [30;45]

Data Types: double

update — Update RCS
false (default) | true

Allow the RCS values for fluctuation models to update, specified as false or true. When
update is true, a new RCS value is generated with each call to the step method. If
update is false, the RCS remains unchanged with each call to step.

Example: true

Data Types: logical

laxes — Local coordinate matrix
eye(3,3) (default) | 3-by-3 real-valued orthonormal matrix | 3-by-3-by-M real-valued
array

Local coordinate system matrix, specified as a 3-by-3 real-valued orthonormal matrix
or a 3-by-3-by-M real-valued array. The matrix columns specify the local coordinate
system orthonormal x-axis, y-axis, and z-axis, respectively. Each axis is a vector of the
form (x;y;z) with respect to the global coordinate system. When sig has only one signal,
laxes is a 3-by-3 matrix. When sig has multiple signals, you can use a single 3-by-3
matrix for multiple signals in sig. In this case, all targets have the same local coordinate
systems. When you specify laxes as a 3-by-3-by-M MATLAB array, each page (third
index) defines a 3-by-3 local coordinate matrix for the corresponding target.
Example: [1,0,0;0,0.7071,-0.7071;0,0.7071,0.7071]

Data Types: double

1 Alphabetical List

1-132

Output Arguments

refl_sig — Narrowband reflected signal
N-by-M complex-valued matrix | 1-by-M struct array containing complex-valued fields

• Narrowband nonpolarized signal, specified as an N-by-M complex-valued matrix.
Each column contains an independent signal reflected from the target.

• Narrowband polarized signal, specified as a 1-by-M struct array containing
complex-valued fields. Each struct element contains three N-by-1 column vectors of
electromagnetic field components (sig.X,sig.Y,sig.Z) representing the polarized
signal that reflects from the target.

The quantity N is the number of signal samples and M is the number of signals reflecting
off the target. Each column corresponds to a reflecting angle.

For polarized fields, the struct element contains three N-by-1 complex-valued column
vectors, sig.X, sig.Y, and sig.Z. These vectors represent the x, y, and z Cartesian
components of the polarized signal.

The output refl_sig contains signal samples arriving at the signal destination within
the current input time frame. When the propagation time from source to destination
exceeds the current time frame duration, the output will not contain all contributions
from the input of the current time frame. The remaining output appears in the next call
to step.

Examples

Backscatter A Nonpolarized Signal

Calculate the reflected radar signal from a nonfluctuating point target with a peak RCS
of 10.0 . Use a simplified expression of an RCS pattern of a target for illustrative
purposes. Real RCS patterns are more complicated. The RCS pattern covers a range of
angles from 10°–30° in azimuth and 5°–15° in elevation. The RCS peaks at 20° azimuth
and 10° elevation. Assume that the radar operating frequency is 1 GHz and that the
signal is a sinusoid at 1 MHz.

Create and plot the RCS pattern.

azmax = 20.0;

 step

1-133

elmax = 10.0;

azpattern = [10.0:0.1:30.0];

elpattern = [5.0:0.1:15.0];

rcspattern = 10.0*cosd(4*(elpattern - elmax))'*cosd(4*(azpattern - azmax));

imagesc(azpattern,elpattern,rcspattern)

axis image

axis tight

title('RCS')

xlabel('Azimuth (deg)')

ylabel('Elevation (deg)')

Generate and plot 50 samples of the radar signal.

foper = 1.0e9;

1 Alphabetical List

1-134

freq = 1.0e6;

fs = 10*freq;

nsamp = 50;

t = [0:(nsamp-1)]'/fs;

sig = sin(2*pi*freq*t);

plot(t*1e6,sig)

xlabel('Time (\mu seconds)')

ylabel('Signal Amplitude')

grid

Create the phased.BackscatterRadarTarget System object™.

tgt = phased.BackscatterRadarTarget('Model','Nonfluctuating',...

 step

1-135

 'AzimuthAngles',azpattern,'ElevationAngles',elpattern,...

 'RCSPattern',rcspattern,'OperatingFrequency',foper);

For a sequence of incident angles at constant elevation angle, find and plot the scattered
signal amplitude.

az0 = 13.0;

el = 10.0;

na = 20;

ss = zeros(1,na);

az = az0 + [0:(na-1)];

for k = 1:na

 y = step(tgt,sig,[az(k);el]);

 ss(k) = max(abs(y));

end

plot(az,ss,'*')

xlabel('Azimuth (deg)')

ylabel('Scattered Signal Amplitude')

grid

1 Alphabetical List

1-136

Backscatter A Polarized Signal

Calculate the polarized radar signal scattered from a Swerling1 fluctuating point
target. Assume the target axis is rotated from the global coordinate system. Use simple
expressions for the scattering patterns for illustration. Real scattering patterns are more
complicated. For polarized signals, you need to specify the HH, HV, and VV components
of the scattering matrix for a range of incident angles. In this example, the patterns
cover the range 10°–30° in azimuth and 5°–15° in elevation. Angles are with respect to
the target local coordinate system. Assume that the radar operating frequency is 1 GHz
and that the signal is a sinusoid with a frequency of 1 MHz. The incident angle is 13.0°
azimuth and 14.0° elevation with respect to the target orientation.

Create and plot the scattering matrix patterns.

 step

1-137

azmax = 20.0;

elmax = 10.0;

azpattern = [10.0:0.1:30.0];

elpattern = [5.0:0.1:15.0];

shhpat = cosd(4*(elpattern - elmax))'*cosd(4*(azpattern - azmax));

shvpat = 1i*cosd(4*(elpattern - elmax))'*sind(4*(azpattern - azmax));

svvpat = sind(4*(elpattern - elmax))'*sind(4*(azpattern - azmax));

subplot(1,3,1)

imagesc(azpattern,elpattern,abs(shhpat))

axis image

axis tight

title('HH')

xlabel('Azimuth (deg)')

ylabel('Elevation (deg)')

subplot(1,3,2)

imagesc(azpattern,elpattern,abs(shvpat))

axis image

axis tight

title('HV')

xlabel('Azimuth (deg)')

subplot(1,3,3)

imagesc(azpattern,elpattern,abs(svvpat))

axis image

axis tight

title('VV')

xlabel('Azimuth (deg)')

1 Alphabetical List

1-138

Create the phased.BackscatterRadarTarget System object™.

sTgt = phased.BackscatterRadarTarget('EnablePolarization',true,...

 'Model','Swerling1','AzimuthAngles',azpattern,...

 'ElevationAngles',elpattern,'ShhPattern',shhpat,'ShvPattern',shvpat,...

 'SvvPattern',svvpat);

Generate 50 samples of a polarized radar signal.

foper = 1.0e9;

freq = 1.0e6;

fs = 10*freq;

nsamp = 50;

t = [0:(nsamp-1)]'/fs;

 step

1-139

signal.X = exp(1i*2*pi*freq*t);

signal.Y = exp(1i*2*pi*freq*t + pi/3);

signal.Z = zeros(size(signal.X));

tgtaxes = azelaxes(60,10);

ang = [13.0;14.0];

Reflect the signal from the target and plot its components.

refl_signal = step(sTgt,signal,ang,tgtaxes,true);

figure

plot(t*1e6,real(refl_signal.X))

hold on

plot(t*1e6,real(refl_signal.Y))

plot(t*1e6,real(refl_signal.Z))

hold off

xlabel('Time \mu seconds')

ylabel('Amplitude')

grid

1 Alphabetical List

1-140

See Also
phased.RadarTarget.step

Introduced in R2016a

 phased.BarrageJammer System object

1-141

phased.BarrageJammer System object

Package: phased

Barrage jammer

Description

The BarrageJammer object implements a white Gaussian noise jammer.

To obtain the jamming signal:

1 Define and set up your barrage jammer. See “Construction” on page 1-141.
2 Call step to compute the jammer output according to the properties of

phased.BarrageJammer. The behavior of step is specific to each object in the
toolbox.

Construction

H = phased.BarrageJammer creates a barrage jammer System object, H. This object
generates a complex white Gaussian noise jamming signal.

H = phased.BarrageJammer(Name,Value) creates object, H, with each specified
property Name set to the specified Value. You can specify additional name-value pair
arguments in any order as (Name1,Value1,...,NameN,ValueN).

H = phased.BarrageJammer(E,Name,Value) creates a barrage jammer object, H,
with the ERP property set to E and other specified property Names set to the specified
Values.

Properties

ERP

Effective radiated power

1 Alphabetical List

1-142

Specify the effective radiated power (ERP) (in watts) of the jamming signal as a positive
scalar.

Default: 5000

SamplesPerFrameSource

Source of number of samples per frame

Specify whether the number of samples of the jamming signal comes from the
SamplesPerFrame property of this object or from an input argument in step. Values of
this property are:

'Property' The SamplesPerFrame property of this object
specifies the number of samples of the jamming
signal.

'Input port' An input argument in each invocation of step
specifies the number of samples of the jamming
signal.

Default: 'Property'

SamplesPerFrame

Number of samples per frame

Specify the number of samples in the output jamming signal as a positive integer. This
property applies when you set the SamplesPerFrameSource property to 'Property'.

Default: 100

SeedSource

Source of seed for random number generator

Specify how the object generates random numbers. Values of this property are:

'Auto' The default MATLAB random number generator produces
the random numbers. Use 'Auto' if you are using this
object with Parallel Computing Toolbox software.

 phased.BarrageJammer System object

1-143

'Property' The object uses its own private random number generator
to produce random numbers. The Seed property of this
object specifies the seed of the random number generator.
Use 'Property' if you want repeatable results and are
not using this object with Parallel Computing Toolbox
software.

Default: 'Auto'

Seed

Seed for random number generator

Specify the seed for the random number generator as a scalar integer between 0 and 232–
1. This property applies when you set the SeedSource property to 'Property'.

Default: 0

Methods

clone Create barrage jammer object with same
property values

getNumInputs Number of expected inputs to step method
getNumOutputs Number of outputs from step method
isLocked Locked status for input attributes and

nontunable properties
release Allow property value and input

characteristics changes
reset Reset random number generator for noise

generation
step Generate noise jamming signal

Plot Barrage Jammer Output

Create a barrage jammer with an effective radiated power of 1000W. Then plot the
magnitude of the jammer output. Your plot might vary because of random numbers.

1 Alphabetical List

1-144

Hjammer = phased.BarrageJammer('ERP',1000);

x = step(Hjammer);

plot(abs(x)); xlabel('Samples'); ylabel('Magnitude');

References

[1] Ward, J. “Space-Time Adaptive Processing for Airborne Radar Data Systems,”
Technical Report 1015, MIT Lincoln Laboratory, December, 1994.

See Also
phased.Platform | phased.RadarTarget

 phased.BarrageJammer System object

1-145

Introduced in R2012a

1 Alphabetical List

1-146

clone
System object: phased.BarrageJammer
Package: phased

Create barrage jammer object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates an object, C, having the same property values and same states as
H. If H is locked, so is C.

 getNumInputs

1-147

getNumInputs
System object: phased.BarrageJammer
Package: phased

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of inputs
(not counting the object itself) that you must use when calling the step method. This
value changes when you alter properties that turn inputs on or off.

1 Alphabetical List

1-148

getNumOutputs
System object: phased.BarrageJammer
Package: phased

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value changes when you alter properties that turn outputs on or off.

 isLocked

1-149

isLocked
System object: phased.BarrageJammer
Package: phased

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF, for the BarrageJammer System
object.

isLocked returns a logical value that indicates whether input attributes and
nontunable properties for the object are locked. The object performs an internal
initialization the first time that you execute step. This initialization locks nontunable
properties and input specifications, such as the dimensions, complexity, and data type of
the input data. After locking, isLocked returns a true value.

1 Alphabetical List

1-150

release
System object: phased.BarrageJammer
Package: phased

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

 reset

1-151

reset
System object: phased.BarrageJammer
Package: phased

Reset random number generator for noise generation

Syntax

reset(H)

Description

reset(H) resets the states of the BarrageJammer object, H. This method resets the
random number generator state if the SeedSource property is set to 'Property'.

1 Alphabetical List

1-152

step
System object: phased.BarrageJammer
Package: phased

Generate noise jamming signal

Syntax

Y = step(H)

Y = step(H,N)

Description

Y = step(H) returns a column vector, Y, that is a complex white Gaussian noise
jamming signal. The power of the jamming signal is specified by the ERP property. The
length of the jamming signal is specified by the SamplesPerFrame property. This syntax
is available when the SamplesPerFrameSource property is 'Property'.

Y = step(H,N) returns the jamming signal with length N. This syntax is available
when the SamplesPerFrameSource property is 'Input port'.

Note: The object performs an initialization the first time the step method is executed.
This initialization locks nontunable properties and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Plot Barrage Jammer Output

Create a barrage jammer with an effective radiated power of 1000W. Then plot the
magnitude of the jammer output. Your plot might vary because of random numbers.

Hjammer = phased.BarrageJammer('ERP',1000);

 step

1-153

x = step(Hjammer);

plot(abs(x)); xlabel('Samples'); ylabel('Magnitude');

1 Alphabetical List

1-154

phased.BeamscanEstimator System object
Package: phased

Beamscan spatial spectrum estimator for ULA

Description

The BeamscanEstimator object calculates a beamscan spatial spectrum estimate for a
uniform linear array.

To estimate the spatial spectrum:

1 Define and set up your beamscan spatial spectrum estimator. See “Construction” on
page 1-154.

2 Call step to estimate the spatial spectrum according to the properties of
phased.BeamscanEstimator. The behavior of step is specific to each object in the
toolbox.

Construction

H = phased.BeamscanEstimator creates a beamscan spatial spectrum estimator
System object, H. The object estimates the incoming signal's spatial spectrum using a
narrowband conventional beamformer for a uniform linear array (ULA).

H = phased.BeamscanEstimator(Name,Value) creates object, H, with each specified
property Name set to the specified Value. You can specify additional name-value pair
arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties

SensorArray

Handle to sensor array

Specify the sensor array as a handle. The sensor array must be a phased.ULA object.

 phased.BeamscanEstimator System object

1-155

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second, as a positive scalar.

Default: Speed of light

OperatingFrequency

System operating frequency

Specify the operating frequency of the system in hertz as a positive scalar. The default
value corresponds to 300 MHz.

Default: 3e8

NumPhaseShifterBits

Number of phase shifter quantization bits

The number of bits used to quantize the phase shift component of beamformer or steering
vector weights. Specify the number of bits as a non-negative integer. A value of zero
indicates that no quantization is performed.

Default: 0

ForwardBackwardAveraging

Perform forward-backward averaging

Set this property to true to use forward-backward averaging to estimate the covariance
matrix for sensor arrays with conjugate symmetric array manifold.

Default: false

SpatialSmoothing

Spatial smoothing

Specify the number of averaging used by spatial smoothing to estimate the covariance
matrix as a nonnegative integer. Each additional smoothing handles one extra coherent

1 Alphabetical List

1-156

source, but reduces the effective number of elements by 1. The maximum value of this
property is M–2, where M is the number of sensors.

Default: 0, indicating no spatial smoothing

ScanAngles

Scan angles

Specify the scan angles (in degrees) as a real vector. The angles are broadside angles and
must be between –90 and 90, inclusive. You must specify the angles in ascending order.

Default: -90:90

DOAOutputPort

Enable DOA output

To obtain the signal's direction of arrival (DOA), set this property to true and use the
corresponding output argument when invoking step. If you do not want to obtain the
DOA, set this property to false.

Default: false

NumSignals

Number of signals

Specify the number of signals for DOA estimation as a positive scalar integer. This
property applies when you set the DOAOutputPort property to true.

Default: 1

Methods

clone Create beamscan spatial spectrum
estimator object with same property values

getNumInputs Number of expected inputs to step method
getNumOutputs Number of outputs from step method

 phased.BeamscanEstimator System object

1-157

isLocked Locked status for input attributes and
nontunable properties

plotSpectrum Plot spatial spectrum
release Allow property value and input

characteristics changes
reset Reset states of beamscan spatial spectrum

estimator object
step Perform spatial spectrum estimation

Estimate Directions of Arrival of Two Signals

Create the signals and solve for the DOA's

Estimate the DOA's of two signals received by a 10-element ULA with element spacing
of 1 meter. The antenna operating frequency is 150 MHz. The actual direction of the first
signal is 10 degrees in azimuth and 20 degrees in elevation. The direction of the second
signal is 60 degrees in azimuth and -5 degrees in elevation.

fs = 8000; t = (0:1/fs:1).';

x1 = cos(2*pi*t*300); x2 = cos(2*pi*t*400);

ha = phased.ULA('NumElements',10,'ElementSpacing',1);

ha.Element.FrequencyRange = [100e6 300e6];

fc = 150e6;

x = collectPlaneWave(ha,[x1 x2],[10 20;60 -5]',fc);

noise = 0.1*(randn(size(x))+1i*randn(size(x)));

hdoa = phased.BeamscanEstimator('SensorArray',ha,...

 'OperatingFrequency',fc,...

 'DOAOutputPort',true,'NumSignals',2);

[y,doas] = step(hdoa,x+noise);

doas = broadside2az(sort(doas),[20 -5])

doas =

 9.5829 60.3813

Plot the beamscan spectrum

plotSpectrum(hdoa);

1 Alphabetical List

1-158

References

[1] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002, pp.
1142–1143.

See Also
broadside2az | phased.BeamscanEstimator2D

Introduced in R2012a

 clone

1-159

clone
System object: phased.BeamscanEstimator
Package: phased

Create beamscan spatial spectrum estimator object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates an object, C, having the same property values and same states as
H. If H is locked, so is C.

1 Alphabetical List

1-160

getNumInputs
System object: phased.BeamscanEstimator
Package: phased

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of inputs
(not counting the object itself) that you must use when calling the step method. This
value changes when you alter properties that turn inputs on or off.

 getNumOutputs

1-161

getNumOutputs
System object: phased.BeamscanEstimator
Package: phased

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value changes when you alter properties that turn outputs on or off.

1 Alphabetical List

1-162

isLocked
System object: phased.BeamscanEstimator
Package: phased

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF, for the BeamscanEstimator System
object.

isLocked returns a logical value that indicates whether input attributes and
nontunable properties for the object are locked. The object performs an internal
initialization the first time that you execute step. This initialization locks nontunable
properties and input specifications, such as the dimensions, complexity, and data type of
the input data. After locking, isLocked returns a true value.

 plotSpectrum

1-163

plotSpectrum
System object: phased.BeamscanEstimator
Package: phased

Plot spatial spectrum

Syntax

plotSpectrum(H)

plotSpectrum(H,Name,Value)

h = plotSpectrum(___)

Description

plotSpectrum(H) plots the spatial spectrum resulting from the last call of the step
method.

plotSpectrum(H,Name,Value) plots the spatial spectrum with additional options
specified by one or more Name,Value pair arguments.

h = plotSpectrum(___) returns the line handle in the figure.

Input Arguments

H

Spatial spectrum estimator object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

1 Alphabetical List

1-164

'NormalizeResponse'

Set this value to true to plot the normalized spectrum. Set this value to false to plot
the spectrum without normalizing it.

Default: false

'Title'

String to use as title of figure.

Default: Empty string

'Unit'

The unit of the plot. Valid values are 'db', 'mag', and 'pow'.

Default: 'db'

Estimate Directions of Arrival of Two Signals

Create the signals and solve for the DOA's

Estimate the DOA's of two signals received by a 10-element ULA with element spacing
of 1 meter. The antenna operating frequency is 150 MHz. The actual direction of the first
signal is 10 degrees in azimuth and 20 degrees in elevation. The direction of the second
signal is 60 degrees in azimuth and -5 degrees in elevation.

fs = 8000; t = (0:1/fs:1).';

x1 = cos(2*pi*t*300); x2 = cos(2*pi*t*400);

ha = phased.ULA('NumElements',10,'ElementSpacing',1);

ha.Element.FrequencyRange = [100e6 300e6];

fc = 150e6;

x = collectPlaneWave(ha,[x1 x2],[10 20;60 -5]',fc);

noise = 0.1*(randn(size(x))+1i*randn(size(x)));

hdoa = phased.BeamscanEstimator('SensorArray',ha,...

 'OperatingFrequency',fc,...

 'DOAOutputPort',true,'NumSignals',2);

[y,doas] = step(hdoa,x+noise);

doas = broadside2az(sort(doas),[20 -5])

 plotSpectrum

1-165

doas =

 9.5829 60.3813

Plot the beamscan spectrum

plotSpectrum(hdoa);

1 Alphabetical List

1-166

release
System object: phased.BeamscanEstimator
Package: phased

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

 reset

1-167

reset
System object: phased.BeamscanEstimator
Package: phased

Reset states of beamscan spatial spectrum estimator object

Syntax

reset(H)

Description

reset(H) resets the states of the BeamscanEstimator object, H.

1 Alphabetical List

1-168

step
System object: phased.BeamscanEstimator
Package: phased

Perform spatial spectrum estimation

Syntax

Y = step(H,X)

[Y,ANG] = step(H,X)

Description

Y = step(H,X) estimates the spatial spectrum from X using the estimator, H. X is a
matrix whose columns correspond to channels. Y is a column vector representing the
magnitude of the estimated spatial spectrum.

[Y,ANG] = step(H,X) returns additional output ANG as the signal's direction of arrival
(DOA) when the DOAOutputPort property is true. ANG is a row vector of the estimated
broadside angles (in degrees).

Note: The object performs an initialization the first time the step method is executed.
This initialization locks nontunable properties and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Examples

Estimate the DOAs of two signals received by a standard 10-element ULA with element
spacing 1 meter. The antenna operating frequency is 150 MHz. The actual direction of
the first signal is 10 degrees in azimuth and 20 degrees in elevation. The direction of the
second signal is 60 degrees in azimuth and -5 degrees in elevation.

 step

1-169

fs = 8000; t = (0:1/fs:1).';

x1 = cos(2*pi*t*300); x2 = cos(2*pi*t*400);

ha = phased.ULA('NumElements',10,'ElementSpacing',1);

ha.Element.FrequencyRange = [100e6 300e6];

fc = 150e6;

x = collectPlaneWave(ha,[x1 x2],[10 20;60 -5]',fc);

noise = 0.1*(randn(size(x))+1i*randn(size(x)));

hdoa = phased.BeamscanEstimator('SensorArray',ha,...

 'OperatingFrequency',fc,...

 'DOAOutputPort',true,'NumSignals',2);

[y,doas] = step(hdoa,x+noise);

doas = broadside2az(sort(doas),[20 -5]);

See Also
azel2phitheta | azel2uv

1 Alphabetical List

1-170

phased.BeamscanEstimator2D System object
Package: phased

2-D beamscan spatial spectrum estimator

Description

The BeamscanEstimator2D object calculates a 2-D beamscan spatial spectrum
estimate.

To estimate the spatial spectrum:

1 Define and set up your 2-D beamscan spatial spectrum estimator. See “Construction”
on page 1-170.

2 Call step to estimate the spatial spectrum according to the properties of
phased.BeamscanEstimator2D. The behavior of step is specific to each object in
the toolbox.

Construction

H = phased.BeamscanEstimator2D creates a 2-D beamscan spatial spectrum
estimator System object, H. The object estimates the signal's spatial spectrum using a
narrowband conventional beamformer.

H = phased.BeamscanEstimator2D(Name,Value) creates object, H, with each
specified property Name set to the specified Value. You can specify additional name-
value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties

SensorArray

Handle to sensor array

Specify the sensor array as a handle. The sensor array must be an array object in the
phased package. The array cannot contain subarrays.

 phased.BeamscanEstimator2D System object

1-171

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second, as a positive scalar.

Default: Speed of light

OperatingFrequency

System operating frequency

Specify the operating frequency of the system in hertz as a positive scalar. The default
value corresponds to 300 MHz.

Default: 3e8

NumPhaseShifterBits

Number of phase shifter quantization bits

The number of bits used to quantize the phase shift component of beamformer or steering
vector weights. Specify the number of bits as a non-negative integer. A value of zero
indicates that no quantization is performed.

Default: 0

ForwardBackwardAveraging

Perform forward-backward averaging

Set this property to true to use forward-backward averaging to estimate the covariance
matrix for sensor arrays with conjugate symmetric array manifold.

Default: false

AzimuthScanAngles

Azimuth scan angles

1 Alphabetical List

1-172

Specify the azimuth scan angles (in degrees) as a real vector. The angles must be
between –180 and 180, inclusive. You must specify the angles in ascending order.

Default: -90:90

ElevationScanAngles

Elevation scan angles

Specify the elevation scan angles (in degrees) as a real vector or scalar. The angles must
be within [–90 90]. You must specify the angles in an ascending order.

Default: 0

DOAOutputPort

Enable DOA output

To obtain the signal's direction of arrival (DOA), set this property to true and use the
corresponding output argument when invoking step. If you do not want to obtain the
DOA, set this property to false.

Default: false

NumSignals

Number of signals

Specify the number of signals for DOA estimation as a positive scalar integer. This
property applies when you set the DOAOutputPort property to true.

Default: 1

Methods

clone Create 2-D beamscan spatial spectrum
estimator object with same property values

getNumInputs Number of expected inputs to step method
getNumOutputs Number of outputs from step method

 phased.BeamscanEstimator2D System object

1-173

isLocked Locked status for input attributes and
nontunable properties

plotSpectrum Plot spatial spectrum
release Allow property value and input

characteristics changes
reset Reset states of 2-D beamscan spatial

spectrum estimator object
step Perform spatial spectrum estimation

Estimate the DOAs of Two Signals
Create the signals and solve for the DOA's

Estimate the DOAs of two signals received by a 50-element URA with a rectangular
lattice. The antenna operating frequency is 150 MHz. The actual direction of the first
signal is -37 degrees in azimuth and 0 degrees in elevation. The direction of the second
signal is 17 degrees in azimuth and 20 degrees in elevation.

ha = phased.URA('Size',[5 10],'ElementSpacing',[1 0.6]);

ha.Element.FrequencyRange = [100e6 300e6];

fc = 150e6;

lambda = physconst('LightSpeed')/fc;

ang1 = [-37; 0]; ang2 = [17; 20];

x = sensorsig(getElementPosition(ha)/lambda,8000,[ang1 ang2],0.2);

hdoa = phased.BeamscanEstimator2D('SensorArray',ha,...

 'OperatingFrequency',fc,...

 'DOAOutputPort',true,'NumSignals',2,...

 'AzimuthScanAngles',-50:50,...

 'ElevationScanAngles',-30:30);

[~,doas] = step(hdoa,x)

doas =

 -37 17

 0 20

Plot the beamscan spatial spectrum

plotSpectrum(hdoa);

1 Alphabetical List

1-174

References

[1] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002.

See Also
phased.BeamscanEstimator | phitheta2azel | uv2azel

Introduced in R2012a

 clone

1-175

clone
System object: phased.BeamscanEstimator2D
Package: phased

Create 2-D beamscan spatial spectrum estimator object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates an object, C, having the same property values and same states as
H. If H is locked, so is C.

1 Alphabetical List

1-176

getNumInputs
System object: phased.BeamscanEstimator2D
Package: phased

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of inputs
(not counting the object itself) that you must use when calling the step method. This
value changes when you alter properties that turn inputs on or off.

 getNumOutputs

1-177

getNumOutputs
System object: phased.BeamscanEstimator2D
Package: phased

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value changes when you alter properties that turn outputs on or off.

1 Alphabetical List

1-178

isLocked
System object: phased.BeamscanEstimator2D
Package: phased

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF, for the BeamscanEstimator2D
System object.

isLocked returns a logical value that indicates whether input attributes and
nontunable properties for the object are locked. The object performs an internal
initialization the first time that you execute step. This initialization locks nontunable
properties and input specifications, such as the dimensions, complexity, and data type of
the input data. After locking, isLocked returns a true value.

 plotSpectrum

1-179

plotSpectrum
System object: phased.BeamscanEstimator2D
Package: phased

Plot spatial spectrum

Syntax

plotSpectrum(H)

plotSpectrum(H,Name,Value)

h = plotSpectrum(___)

Description

plotSpectrum(H) plots the spatial spectrum resulting from the last call of the step
method.

plotSpectrum(H,Name,Value) plots the spatial spectrum with additional options
specified by one or more Name,Value pair arguments.

h = plotSpectrum(___) returns the line handle in the figure.

Input Arguments

H

Spatial spectrum estimator object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

1 Alphabetical List

1-180

'NormalizeResponse'

Set this value to true to plot the normalized spectrum. Set this value to false to plot
the spectrum without normalizing it.

Default: false

'Title'

String to use as title of figure.

Default: Empty string

'Unit'

The unit of the plot. Valid values are 'db', 'mag', and 'pow'.

Default: 'db'

Estimate the DOAs of Two Signals

Create the signals and solve for the DOA's

Estimate the DOAs of two signals received by a 50-element URA with a rectangular
lattice. The antenna operating frequency is 150 MHz. The actual direction of the first
signal is -37 degrees in azimuth and 0 degrees in elevation. The direction of the second
signal is 17 degrees in azimuth and 20 degrees in elevation.

ha = phased.URA('Size',[5 10],'ElementSpacing',[1 0.6]);

ha.Element.FrequencyRange = [100e6 300e6];

fc = 150e6;

lambda = physconst('LightSpeed')/fc;

ang1 = [-37; 0]; ang2 = [17; 20];

x = sensorsig(getElementPosition(ha)/lambda,8000,[ang1 ang2],0.2);

hdoa = phased.BeamscanEstimator2D('SensorArray',ha,...

 'OperatingFrequency',fc,...

 'DOAOutputPort',true,'NumSignals',2,...

 'AzimuthScanAngles',-50:50,...

 'ElevationScanAngles',-30:30);

[~,doas] = step(hdoa,x)

 plotSpectrum

1-181

doas =

 -37 17

 0 20

Plot the beamscan spatial spectrum

plotSpectrum(hdoa);

1 Alphabetical List

1-182

release
System object: phased.BeamscanEstimator2D
Package: phased

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

 reset

1-183

reset
System object: phased.BeamscanEstimator2D
Package: phased

Reset states of 2-D beamscan spatial spectrum estimator object

Syntax

reset(H)

Description

reset(H) resets the states of the BeamscanEstimator2D object, H.

1 Alphabetical List

1-184

step
System object: phased.BeamscanEstimator2D
Package: phased

Perform spatial spectrum estimation

Syntax

Y = step(H,X)

[Y,ANG] = step(H,X)

Description

Y = step(H,X) estimates the spatial spectrum from X using the estimator H. X is a
matrix whose columns correspond to channels. Y is a matrix representing the magnitude
of the estimated 2-D spatial spectrum. Y has a row dimension equal to the number of
elevation angles specified in ElevationScanAngles and a column dimension equal to
the number of azimuth angles specified in AzimuthScanAngles.

[Y,ANG] = step(H,X) returns additional output ANG as the signal’s direction of arrival
(DOA) when the DOAOutputPort property is true. ANG is a two row matrix where the
first row represents the estimated azimuth and the second row represents the estimated
elevation (in degrees).

Note: The object performs an initialization the first time the step method is executed.
This initialization locks nontunable properties and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Examples

Estimate the DOAs of two signals received by a 50-element URA with a rectangular
lattice. The antenna operating frequency is 150 MHz. The actual direction of the first

 step

1-185

signal is –37 degrees in azimuth and 0 degrees in elevation. The direction of the second
signal is 17 degrees in azimuth and 20 degrees in elevation.

ha = phased.URA('Size',[5 10],'ElementSpacing',[1 0.6]);

ha.Element.FrequencyRange = [100e6 300e6];

fc = 150e6;

lambda = physconst('LightSpeed')/fc;

ang1 = [-37; 0]; ang2 = [17; 20];

x = sensorsig(getElementPosition(ha)/lambda,8000,[ang1 ang2],0.2);

hdoa = phased.BeamscanEstimator2D('SensorArray',ha,...

 'OperatingFrequency',fc,...

 'DOAOutputPort',true,'NumSignals',2,...

 'AzimuthScanAngles',-50:50,...

 'ElevationScanAngles',-30:30);

[~,doas] = step(hdoa,x);

See Also
azel2phitheta | azel2uv

1 Alphabetical List

1-186

phased.BeamspaceESPRITEstimator System object
Package: phased

Beamspace ESPRIT direction of arrival (DOA) estimator

Description

The BeamspaceESPRITEstimator object computes a DOA estimate for a uniform
linear array. The computation uses the estimation of signal parameters via rotational
invariance techniques (ESPRIT) algorithm in beamspace.

To estimate the direction of arrival (DOA):

1 Define and set up your DOA estimator. See “Construction” on page 1-186.
2 Call step to estimate the DOA according to the properties of

phased.BeamspaceESPRITEstimator. The behavior of step is specific to each
object in the toolbox.

Construction

H = phased.BeamspaceESPRITEstimator creates a beamspace ESPRIT DOA
estimator System object, H. The object estimates the signal's direction of arrival using the
beamspace ESPRIT algorithm with a uniform linear array (ULA).

H = phased.BeamspaceESPRITEstimator(Name,Value) creates object, H, with each
specified property Name set to the specified Value. You can specify additional name-
value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties

SensorArray

Handle to sensor array

Specify the sensor array as a handle. The sensor array must be a phased.ULA object.

 phased.BeamspaceESPRITEstimator System object

1-187

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second, as a positive scalar.

Default: Speed of light

OperatingFrequency

System operating frequency

Specify the operating frequency of the system in hertz as a positive scalar. The default
value corresponds to 300 MHz.

Default: 3e8

SpatialSmoothing

Spatial smoothing

Specify the number of averaging used by spatial smoothing to estimate the covariance
matrix as a nonnegative integer. Each additional smoothing handles one extra coherent
source, but reduces the effective number of element by 1. The maximum value of this
property is M–2, where M is the number of sensors.

Default: 0, indicating no spatial smoothing

NumSignalsSource

Source of number of signals

Specify the source of the number of signals as one of 'Auto' or 'Property'. If you set
this property to 'Auto', the number of signals is estimated by the method specified by
the NumSignalsMethod property.

Default: 'Auto'

NumSignalsMethod

Method to estimate number of signals

1 Alphabetical List

1-188

Specify the method to estimate the number of signals as one of 'AIC' or 'MDL'. 'AIC'
uses the Akaike Information Criterion and 'MDL' uses Minimum Description Length
Criterion. This property applies when you set the NumSignalsSource property to
'Auto'.

Default: 'AIC'

NumSignals

Number of signals

Specify the number of signals as a positive integer scalar. This property applies when you
set the NumSignalsSource property to 'Property'.

Default: 1

Method

Type of least square method

Specify the least squares method used for ESPRIT as one of 'TLS' or 'LS'. 'TLS' refers
to total least squares and 'LS' refers to least squares.

Default: 'TLS'

BeamFanCenter

Beam fan center direction (in degrees)

Specify the direction of the center of the beam fan (in degrees) as a real scalar value
between –90 and 90. This property is tunable.

Default: 0

NumBeamsSource

Source of number of beams

Specify the source of the number of beams as one of 'Auto' or 'Property'. If you set
this property to 'Auto', the number of beams equals N–L, where N is the number of
array elements and L is the value of the SpatialSmoothing property.

Default: 'Auto'

 phased.BeamspaceESPRITEstimator System object

1-189

NumBeams

Number of beams

Specify the number of beams as a positive scalar integer. The lower the number of beams,
the greater the reduction in computational cost. This property applies when you set the
NumBeamsSource to 'Property'.

Default: 2

Methods

clone Create beamspace ESPRIT DOA estimator
object with same property values

getNumInputs Number of expected inputs to step method
getNumOutputs Number of outputs from step method
isLocked Locked status for input attributes and

nontunable properties
release Allow property value and input

characteristics changes
step Perform DOA estimation

Examples

Estimate the DOAs of two signals received by a standard 10-element ULA with element
spacing 1 meter. The antenna operating frequency is 150 MHz. The actual direction of
the first signal is 10 degrees in azimuth and 20 degrees in elevation. The direction of the
second signal is 45 degrees in azimuth and 60 degrees in elevation.

fs = 8000; t = (0:1/fs:1).';

x1 = cos(2*pi*t*300); x2 = cos(2*pi*t*400);

ha = phased.ULA('NumElements',10,'ElementSpacing',1);

ha.Element.FrequencyRange = [100e6 300e6];

fc = 150e6;

x = collectPlaneWave(ha,[x1 x2],[10 20;45 60]',fc);

rng default;

noise = 0.1/sqrt(2)*(randn(size(x))+1i*randn(size(x)));

1 Alphabetical List

1-190

% construct beamspace ESPRIT estimator

hdoa = phased.BeamspaceESPRITEstimator('SensorArray',ha,...

 'OperatingFrequency',fc,...

 'NumSignalsSource','Property','NumSignals',2);

% use the step method to obtain the direction of arrival estimates

doas = step(hdoa,x+noise);

az = broadside2az(sort(doas),[20 60]);

References

[1] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002.

See Also
broadside2az | phased.ESPRITEstimator

Introduced in R2012a

 clone

1-191

clone
System object: phased.BeamspaceESPRITEstimator
Package: phased

Create beamspace ESPRIT DOA estimator object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates an object, C, having the same property values and same states as
H. If H is locked, so is C.

1 Alphabetical List

1-192

getNumInputs
System object: phased.BeamspaceESPRITEstimator
Package: phased

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of inputs
(not counting the object itself) that you must use when calling the step method. This
value changes when you alter properties that turn inputs on or off.

 getNumOutputs

1-193

getNumOutputs
System object: phased.BeamspaceESPRITEstimator
Package: phased

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value changes when you alter properties that turn outputs on or off.

1 Alphabetical List

1-194

isLocked
System object: phased.BeamspaceESPRITEstimator
Package: phased

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF, for the
BeamspaceESPRITEstimator System object.

isLocked returns a logical value that indicates whether input attributes and
nontunable properties for the object are locked. The object performs an internal
initialization the first time that you execute step. This initialization locks nontunable
properties and input specifications, such as the dimensions, complexity, and data type of
the input data. After locking, isLocked returns a true value.

 release

1-195

release
System object: phased.BeamspaceESPRITEstimator
Package: phased

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

1 Alphabetical List

1-196

step
System object: phased.BeamspaceESPRITEstimator
Package: phased

Perform DOA estimation

Syntax

ANG = step(H,X)

Description

ANG = step(H,X) estimates the DOAs from X using the DOA estimator H. X is a matrix
whose columns correspond to channels. ANG is a row vector of the estimated broadside
angles (in degrees).

Note: The object performs an initialization the first time the step method is executed.
This initialization locks nontunable properties and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Examples

Estimate the DOAs of two signals received by a standard 10-element ULA with element
spacing 1 meter. The antenna operating frequency is 150 MHz. The actual direction of
the first signal is 10 degrees in azimuth and 20 degrees in elevation. The direction of the
second signal is 45 degrees in azimuth and 60 degrees in elevation.

fs = 8000; t = (0:1/fs:1).';

x1 = cos(2*pi*t*300); x2 = cos(2*pi*t*400);

ha = phased.ULA('NumElements',10,'ElementSpacing',1);

ha.Element.FrequencyRange = [100e6 300e6];

fc = 150e6;

 step

1-197

x = collectPlaneWave(ha,[x1 x2],[10 20;45 60]',fc);

rng default;

noise = 0.1/sqrt(2)*(randn(size(x))+1i*randn(size(x)));

% construct beamspace ESPRIT estimator

hdoa = phased.BeamspaceESPRITEstimator('SensorArray',ha,...

 'OperatingFrequency',fc,...

 'NumSignalsSource','Property','NumSignals',2);

% use the step method to obtain the direction of arrival estimates

doas = step(hdoa,x+noise);

az = broadside2az(sort(doas),[20 60]);

1 Alphabetical List

1-198

phased.CFARDetector System object
Package: phased

Constant false alarm rate (CFAR) detector

Description

The CFARDetector object implements a constant false-alarm rate detector.

To perform the detection:

1 Define and set up your CFAR detector. See “Construction” on page 1-198.
2 Call step to perform CFAR detection according to the properties of

phased.CFARDetector. The behavior of step is specific to each object in the
toolbox.

Construction

H = phased.CFARDetector creates a constant false alarm rate (CFAR) detector
System object, H. The object performs CFAR detection on the input data.

H = phased.CFARDetector(Name,Value) creates object, H, with each specified
property Name set to the specified Value. You can specify additional name-value pair
arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties

Method

CFAR algorithm

Specify the algorithm of the CFAR detector as a string. Values of this property are:

'CA' Cell-averaging CFAR
'GOCA' Greatest-of cell-averaging CFAR

 phased.CFARDetector System object

1-199

'OS' Order statistic CFAR
'SOCA' Smallest-of cell-averaging CFAR

Default: 'CA'

Rank

Rank of order statistic

Specify the rank of the order statistic as a positive integer scalar. The value must be less
than or equal to the value of the NumTrainingCells property. This property applies
only when you set the Method property to 'OS'.

Default: 1

NumGuardCells

Number of guard cells

Specify the number of guard cells used in training as an even integer. This property
specifies the total number of cells on both sides of the cell under test.

Default: 2, indicating that there is one guard cell at both the front and back of the cell
under test

NumTrainingCells

Number of training cells

Specify the number of training cells used in training as an even integer. Whenever
possible, the training cells are equally divided before and after the cell under test.

Default: 2, indicating that there is one training cell at both the front and back of the cell
under test

ThresholdFactor

Methods of obtaining threshold factor

Specify whether the threshold factor comes from an automatic calculation, the
CustomThresholdFactor property of this object, or an input argument in step. Values
of this property are:

1 Alphabetical List

1-200

'Auto' The application calculates the threshold factor
automatically based on the desired probability of false
alarm specified in the ProbabilityFalseAlarm
property. The calculation assumes each independent
signal in the input is a single pulse coming out of a
square law detector with no pulse integration. The
calculation also assumes the noise is white Gaussian.

'Custom' The CustomThresholdFactor property of this object
specifies the threshold factor.

'Input port' An input argument in each invocation of step
specifies the threshold factor.

Default: 'Auto'

ProbabilityFalseAlarm

Desired probability of false alarm

Specify the desired probability of false alarm as a scalar between 0 and 1 (not inclusive).
This property applies only when you set the ThresholdFactor property to 'Auto'.

Default: 0.1

CustomThresholdFactor

Custom threshold factor

Specify the custom threshold factor as a positive scalar. This property applies only when
you set the ThresholdFactor property to 'Custom'. This property is tunable.

Default: 1

ThresholdOutputPort

Output detection threshold

To obtain the detection threshold, set this property to true and use the corresponding
output argument when invoking step. If you do not want to obtain the detection
threshold, set this property to false.

Default: false

 phased.CFARDetector System object

1-201

Methods

clone Create CFAR detector object with same
property values

getNumInputs Number of expected inputs to step method
getNumOutputs Number of outputs from step method
isLocked Locked status for input attributes and

nontunable properties
release Allow property value and input

characteristics changes
step Perform CFAR detection

Examples

Perform cell-averaging CFAR detection on a given Gaussian noise vector with a desired
probability of false alarm of 0.1. Assume that the data is from a square law detector and
no pulse integration is performed. Use 50 cells to estimate the noise level and 1 cell to
separate the test cell and training cells. Perform the detection on all cells of input.

rng(5);

hdet = phased.CFARDetector('NumTrainingCells',50,...

 'NumGuardCells',2,'ProbabilityFalseAlarm',0.1);

N = 1000; x = 1/sqrt(2)*(randn(N,1)+1i*randn(N,1));

dresult = step(hdet,abs(x).^2,1:N);

Pfa = sum(dresult)/N;

Algorithms

phased.CFARDetector uses cell averaging in three steps:

1 Identify the training cells from the input, and form the noise estimate. The next
table indicates how the detector forms the noise estimate, depending on the Method
property value.

Method Noise Estimate

'CA' Use the average of the values in all the training cells.

1 Alphabetical List

1-202

Method Noise Estimate

'GOCA' Select the greater of the averages in the front training cells
and rear training cells.

'OS' Sort the values in the training cells in ascending order. Select
the Nth item, where N is the value of the Rank property.

'SOCA' Select the smaller of the averages in the front training cells
and rear training cells.

2 Multiply the noise estimate by the threshold factor to form the threshold.
3 Compare the value in the test cell against the threshold to determine whether the

target is present or absent. If the value is greater than the threshold, the target is
present.

For further details, see [1].

References

[1] Richards, M. A. Fundamentals of Radar Signal Processing. New York: McGraw-Hill,
2005.

See Also
npwgnthresh | phased.MatchedFilter | phased.TimeVaryingGain

Introduced in R2012a

 clone

1-203

clone
System object: phased.CFARDetector
Package: phased

Create CFAR detector object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates an object, C, having the same property values and same states as
H. If H is locked, so is C.

1 Alphabetical List

1-204

getNumInputs
System object: phased.CFARDetector
Package: phased

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of inputs
(not counting the object itself) that you must use when calling the step method. This
value changes when you alter properties that turn inputs on or off.

 getNumOutputs

1-205

getNumOutputs
System object: phased.CFARDetector
Package: phased

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value changes when you alter properties that turn outputs on or off.

1 Alphabetical List

1-206

isLocked
System object: phased.CFARDetector
Package: phased

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF, for the CFARDetector System object.

isLocked returns a logical value that indicates whether input attributes and
nontunable properties for the object are locked. The object performs an internal
initialization the first time that you execute step. This initialization locks nontunable
properties and input specifications, such as the dimensions, complexity, and data type of
the input data. After locking, isLocked returns a true value.

 release

1-207

release
System object: phased.CFARDetector
Package: phased

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

1 Alphabetical List

1-208

step

System object: phased.CFARDetector
Package: phased

Perform CFAR detection

Syntax

Y = step(H,X,CUTIDX)

Y = step(H,X,CUTIDX,THFAC)

[Y,TH] = step(___)

Description

Y = step(H,X,CUTIDX) performs the CFAR detection on the real input data X. X can
be either a column vector or a matrix. Each row of X is a cell and each column of X is
independent data. Detection is performed along each column for the cells specified in
CUTIDX. CUTIDX must be a vector of positive integers with each entry specifying the
index of a cell under test (CUT). Y is an M-by-N matrix containing the logical detection
result for the cells in X. M is the number of indices specified in CUTIDX, and N is the
number of independent signals in X.

Y = step(H,X,CUTIDX,THFAC) uses THFAC as the threshold factor used to calculate
the detection threshold. This syntax is available when you set the ThresholdFactor
property to 'Input port'. THFAC must be a positive scalar.

[Y,TH] = step(___) returns additional output, TH, as the detection
threshold for each cell under test in X. This syntax is available when you set the
ThresholdOutputPort property to true. TH has the same dimensionality as Y.

Note: The object performs an initialization the first time the step method is executed.
This initialization locks nontunable properties and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change

 step

1-209

nontunable properties or inputs, you must first call the release method to unlock the
object.

Examples

Perform cell-averaging CFAR detection on a given Gaussian noise vector with a desired
probability of false alarm of 0.1. Assume that the data is from a square law detector and
no pulse integration is performed. Use 50 cells to estimate the noise level and 1 cell to
separate the test cell and training cells. Perform the detection on all cells of input.

rng(5);

hdet = phased.CFARDetector('NumTrainingCells',50,...

 'NumGuardCells',2,'ProbabilityFalseAlarm',0.1);

N = 1000; x = 1/sqrt(2)*(randn(N,1)+1i*randn(N,1));

dresult = step(hdet,abs(x).^2,1:N);

Pfa = sum(dresult)/N;

Algorithms

phased.CFARDetector uses cell averaging in three steps:

1 Identify the training cells from the input, and form the noise estimate. The next
table indicates how the detector forms the noise estimate, depending on the Method
property value.

Method Noise Estimate

'CA' Use the average of the values in all the training cells.
'GOCA' Select the greater of the averages in the front training cells

and rear training cells.
'OS' Sort the values in the training cells in ascending order. Select

the Nth item, where N is the value of the Rank property.
'SOCA' Select the smaller of the averages in the front training cells

and rear training cells.
2 Multiply the noise estimate by the threshold factor to form the threshold.
3 Compare the value in the test cell against the threshold to determine whether the

target is present or absent. If the value is greater than the threshold, the target is
present.

1 Alphabetical List

1-210

For details, see [1].

References

[1] Richards, M. A. Fundamentals of Radar Signal Processing. New York: McGraw-Hill,
2005.

 phased.Collector System object

1-211

phased.Collector System object
Package: phased

Narrowband signal collector

Description

The Collector object implements a narrowband signal collector.

To compute the collected signal at the sensor(s):

1 Define and set up your signal collector. See “Construction” on page 1-211.
2 Call step to collect the signal according to the properties of phased.Collector. The

behavior of step is specific to each object in the toolbox.

Construction

H = phased.Collector creates a narrowband signal collector System object, H. The
object collects incident narrowband signals from given directions using a sensor array or
a single element.

H = phased.Collector(Name,Value) creates a collector object, H, with each specified
property Name set to the specified Value. You can specify additional name-value pair
arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties

Sensor

Sensor element or sensor array

Sensor element or sensor array specified as a System object in the Phased Array System
Toolbox™. A sensor array can contain subarrays.

Antenna Toolbox™ antenna

1 Alphabetical List

1-212

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second, as a positive scalar.

Default: Speed of light

OperatingFrequency

System operating frequency

Specify the operating frequency of the system in hertz as a positive scalar. The default
value corresponds to 300 MHz.

Default: 3e8

WeightsInputPort

Enable weights input

To specify weights, set this property to true and use the corresponding input argument
when you invoke step. If you do not want to specify weights, set this property to false.

Default: false

EnablePolarization

EnablePolarization

Set this property to true to simulate the collection of polarized waves. Set this property
to false to ignore polarization. This property applies when the sensor specified in the
Sensor property is capable of simulating polarization.

Default: false

Wavefront

Type of incoming wavefront

Specify the type of incoming wavefront as one of 'Plane', or 'Unspecified':

 phased.Collector System object

1-213

• If you set the Wavefront property to 'Plane', the input signals are multiple plane
waves impinging on the entire array. Each plane wave is received by all collecting
elements. If the Sensor property is an array that contains subarrays, the Wavefront
property must be 'Plane'.

• If you set the Wavefront property to 'Unspecified', the input signals are
individual waves impinging on individual sensors.

Default: 'Plane'

Methods

clone Create collector object with same property
values

getNumInputs Number of expected inputs to step method
getNumOutputs Number of outputs from step method
isLocked Locked status for input attributes and

nontunable properties
release Allow property value and input

characteristics changes
step Collect signals

Examples

Collect signal with a single antenna.

ha = phased.IsotropicAntennaElement;

hc = phased.Collector('Sensor',ha,'OperatingFrequency',1e9);

x = [1;1];

incidentAngle = [10 30]';

y = step(hc,x,incidentAngle);

Collect a far field signal with a 5-element array.

ha = phased.ULA('NumElements',5);

hc = phased.Collector('Sensor',ha,'OperatingFrequency',1e9);

x = [1;1];

incidentAngle = [10 30]';

1 Alphabetical List

1-214

y = step(hc,x,incidentAngle);

Collect signals with a 3-element array. Each antenna collects a separate input signal
from a separate direction.

ha = phased.ULA('NumElements',3);

hc = phased.Collector('Sensor',ha,'OperatingFrequency',1e9,...

 'Wavefront','Unspecified');

x = rand(10,3); % Each column is a separate signal for one element

incidentAngle = [10 0; 20 5; 45 2]'; % 3 angles for 3 signals

y = step(hc,x,incidentAngle);

Algorithms

If the Wavefront property value is 'Plane', phased.Collector collects each plane
wave signal using the phase approximation of the time delays across collecting elements
in the far field.

If the Wavefront property value is 'Unspecified', phased.Collector collects each
channel independently.

For further details, see [1].

References

[1] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002.

See Also
phased.WidebandCollector

Introduced in R2012a

 clone

1-215

clone
System object: phased.Collector
Package: phased

Create collector object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates an object, C, having the same property values and same states as
H. If H is locked, so is C.

1 Alphabetical List

1-216

getNumInputs
System object: phased.Collector
Package: phased

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of inputs
(not counting the object itself) that you must use when calling the step method. This
value changes when you alter properties that turn inputs on or off.

 getNumOutputs

1-217

getNumOutputs
System object: phased.Collector
Package: phased

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value changes when you alter properties that turn outputs on or off.

1 Alphabetical List

1-218

isLocked
System object: phased.Collector
Package: phased

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF, for the Collector System object.

isLocked returns a logical value that indicates whether input attributes and
nontunable properties for the object are locked. The object performs an internal
initialization the first time that you execute step. This initialization locks nontunable
properties and input specifications, such as the dimensions, complexity, and data type of
the input data. After locking, isLocked returns a true value.

 release

1-219

release
System object: phased.Collector
Package: phased

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

1 Alphabetical List

1-220

step
System object: phased.Collector
Package: phased

Collect signals

Syntax

Y = step(H,X,ANG)

Y = step(H,X,ANG,LAXES)

Y = step(H,X,ANG,WEIGHTS)

Y = step(H,X,ANG,STEERANGLE)

Y = step(H,X,ANG,LAXES,WEIGHTS,STEERANGLE)

Description

Y = step(H,X,ANG) collects signals X arriving from directions ANG. The collection
process depends on the Wavefront property of H, as follows:

• If Wavefront has the value 'Plane', each collecting element collects all the far field
signals in X. Each column of Y contains the output of the corresponding element in
response to all the signals in X.

• If Wavefront has the value 'Unspecified', each collecting element collects
only one impinging signal from X. Each column of Y contains the output of
the corresponding element in response to the corresponding column of X. The
'Unspecified' option is available when the Sensor property of H does not contain
subarrays.

Y = step(H,X,ANG,LAXES) uses LAXES as the local coordinate system axes directions.
This syntax is available when you set the EnablePolarization property to true.

Y = step(H,X,ANG,WEIGHTS) uses WEIGHTS as the weight vector. This syntax is
available when you set the WeightsInputPort property to true.

Y = step(H,X,ANG,STEERANGLE) uses STEERANGLE as the subarray steering angle.
This syntax is available when you configure H so that H.Sensor is an array that contains
subarrays and H.Sensor.SubarraySteering is either 'Phase' or 'Time'.

 step

1-221

Y = step(H,X,ANG,LAXES,WEIGHTS,STEERANGLE) combines all input arguments.
This syntax is available when you configure H so that H.WeightsInputPort is true,
H.Sensor is an array that contains subarrays, and H.Sensor.SubarraySteering is
either 'Phase' or 'Time'.

Note: The object performs an initialization the first time the step method is executed.
This initialization locks nontunable properties and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Input Arguments

H

Collector object.

X

Arriving signals. Each column of X represents a separate signal. The specific
interpretation of X depends on the Wavefront property of H.

Wavefront Property
Value

Description

'Plane' Each column of X is a far field signal.
'Unspecified' Each column of X is the signal impinging on the corresponding

element. In this case, the number of columns in X must equal
the number of collecting elements in the Sensor property.

• If the EnablePolarization property value is set to false, X is a matrix. The
number of columns of the matrix equals the number of separate signals.

• If the EnablePolarization property value is set to true, X is a row vector of
MATLAB struct type. The dimension of the struct array equals the number of
separate signals. Each struct member contains three column-vector fields, X, Y, and
Z, representing the x, y, and z components of the polarized wave vector signals in the
global coordinate system.

1 Alphabetical List

1-222

ANG

Incident directions of signals, specified as a two-row matrix. Each column specifies the
incident direction of the corresponding column of X. Each column of ANG has the form
[azimuth; elevation], in degrees. The azimuth angle must be between –180 and 180
degrees, inclusive. The elevation angle must be between –90 and 90 degrees, inclusive.

LAXES

Local coordinate system. LAXES is a 3-by-3 matrix whose columns specify the local
coordinate system's orthonormal x, y, and z axes, respectively. Each axis is specified in
terms of [x;y;z] with respect to the global coordinate system. This argument is only
used when the EnablePolarization property is set to true.

WEIGHTS

Vector of weights. WEIGHTS is a column vector of length M, where M is the number of
collecting elements.

Default: ones(M,1)

STEERANGLE

Subarray steering angle, specified as a length-2 column vector. The vector has the form
[azimuth; elevation], in degrees. The azimuth angle must be between –180 and 180
degrees, inclusive. The elevation angle must be between –90 and 90 degrees, inclusive.

Output Arguments

Y

Collected signals. Each column of Y contains the output of the corresponding element.
The output is the response to all the signals in X, or one signal in X, depending on the
Wavefront property of H.

Examples

Construct a 4-element uniform linear array. The array operating frequency is 1 GHz. The
array element spacing is half the operating frequency wavelength. Model the collection of

 step

1-223

a 200-Hz sine wave incident on the array from 45 degrees azimuth, 10 degrees elevation
from the far field.

fc = 1e9;

lambda = physconst('LightSpeed')/fc;

hULA = phased.ULA('NumElements',4,'ElementSpacing',lambda/2);

t = linspace(0,1,1e3);

x = cos(2*pi*200*t)';

% construct the collector object.

hc = phased.Collector('Sensor',hULA,...

 'PropagationSpeed',physconst('LightSpeed'),...

 'Wavefront','Plane','OperatingFrequency',fc);

% incident angle is 45 degrees azimuth, 10 degrees elevation

incidentangle = [45;10];

% collect the incident waveform at the ULA

receivedsig = step(hc,x,incidentangle);

Algorithms

If the Wavefront property value is 'Plane', phased.Collector collects each plane
wave signal using the phase approximation of the time delays across collecting elements
in the far field.

If the Wavefront property value is 'Unspecified', phased.Collector collects each
channel independently.

For further details, see [1].

References

[1] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002.

See Also
phitheta2azel | uv2azel

1 Alphabetical List

1-224

phased.ConformalArray System object
Package: phased

Conformal array

Description
The ConformalArray object constructs a conformal array. A conformal array can have
elements in any position pointing in any direction.

To compute the response for each element in the array for specified directions:

1 Define and set up your conformal array. See “Construction” on page 1-224.
2 Call step to compute the response according to the properties of

phased.ConformalArray. The behavior of step is specific to each object in the
toolbox.

Construction
H = phased.ConformalArray creates a conformal array System object, H. The object
models a conformal array formed with identical sensor elements.

H = phased.ConformalArray(Name,Value) creates object, H, with each specified
property Name set to the specified Value. You can specify additional name-value pair
arguments in any order as (Name1,Value1,...,NameN,ValueN).

H = phased.ConformalArray(POS,NV,Name,Value) creates a conformal array
object, H, with the ElementPosition property set to POS, the ElementNormal property
set to NV, and other specified property Names set to the specified Values. POS and NV
are value-only arguments. When specifying a value-only argument, specify all preceding
value-only arguments. You can specify name-value arguments in any order.

Properties

Element

Element of array

 phased.ConformalArray System object

1-225

Specify the element of the sensor array as a handle. The element must be an element
object in the phased package.

Default: Isotropic antenna element with default properties

ElementPosition

Element positions

ElementPosition specifies the positions of the elements in the conformal array.
ElementPosition must be a 3-by-N matrix, where N indicates the number of elements
in the conformal array. Each column of ElementPosition represents the position, in
the form [x; y; z] (in meters), of a single element in the local coordinate system of the
array. The local coordinate system has its origin at an arbitrary point. The default value
of this property represents a single element at the origin of the local coordinate system.

Default: [0; 0; 0]

ElementNormal

Element normal directions

ElementNormal specifies the normal directions of the elements in the conformal array.
Angle units are degrees. The value assigned to ElementNormal must be either a 2-by-N
matrix or a 2-by-1 column vector. The variable N indicates the number of elements in
the array. If the value of ElementNormal is a matrix, each column specifies the normal
direction of the corresponding element in the form [azimuth;elevation] with respect
to the local coordinate system. The local coordinate system aligns the positive x-axis with
the direction normal to the conformal array. If the value of ElementNormal is a 2-by-1
column vector, it specifies the same pointing direction for all elements in the array.

You can use the ElementPosition and ElementNormal properties to represent
any arrangement in which pairs of elements differ by certain transformations. The
transformations can combine translation, azimuth rotation, and elevation rotation.
However, you cannot use transformations that require rotation about the normal.

Default: [0; 0]

Taper

Element taper or weighting

Element tapering or weighting, specified as a complex-valued scalar, 1-by-N row
vector, or N-by-1 column vector. Weights are applied to each element in the sensor

1 Alphabetical List

1-226

array. N is the number of elements along in the array as determined by the size of the
ElementPosition property. If the Taper parameter is a scalar, the same taper value is
applied to all elements. If the value of Taper is a vector, each taper values is applied to
the corresponding element.

Default: 1

Methods

clone Create conformal array object with same
property values

directivity Directivity of conformal array
collectPlaneWave Simulate received plane waves
getElementNormal Normal vector to array elements
getElementPosition Positions of array elements
getNumElements Number of elements in array
getNumInputs Number of expected inputs to step method
getNumOutputs Number of outputs from step method
getTaper Array element tapers
isLocked Locked status for input attributes and

nontunable properties
isPolarizationCapable Polarization capability
pattern Plot conformal array pattern
patternAzimuth Plot conformal array directivity or pattern

versus azimuth
patternElevation Plot conformal array array directivity or

pattern versus elevation
plotResponse Plot response pattern of array
release Allow property value and input

characteristics changes
step Output responses of array elements
viewArray View array geometry

 phased.ConformalArray System object

1-227

Examples

Plot Power Pattern of 8-Element Uniform Circular Array

Using the ConformalArray System object, construct an 8-element uniform circular array
(UCA) of isotropic antenna elements. Plot a normalized azimuth power pattern at 0
degrees elevation. Assume the operating frequency is 1 GHz and the wave propagation
speed is the speed of light.

N = 8;

azang = (0:N-1)*360/N-180;

sCA = phased.ConformalArray(...

 'ElementPosition',[cosd(azang);sind(azang);zeros(1,N)],...

 'ElementNormal',[azang;zeros(1,N)]);

fc = 1e9;

c = physconst('LightSpeed');

pattern(sCA,fc,[-180:180],0,...

 'PropagationSpeed',c,'Type','powerdb',...

 'CoordinateSystem','polar')

1 Alphabetical List

1-228

Plot Pattern of 31-Element Uniform Circular Sonar Array

Construct a 31-element acoustic uniform circular sonar array (UCA) using the
ConformalArray System object. Assume the array is one meter in diameter. Using
the ElevationAngles parameter, restrict the display to +/-40 degrees in 0.1 degree
increments. Assume the operating frequency is 4 kHz. A typical value for the speed of
sound in seawater is 1500.0 m/s.

Construct the array

N = 31;

theta = (0:N-1)*360/N-180;

Radius = 0.5;

sMic = phased.OmnidirectionalMicrophoneElement(...

 phased.ConformalArray System object

1-229

 'FrequencyRange',[0,10000],'BackBaffled',true);

sArray = phased.ConformalArray('Element',sMic,...

 'ElementPosition',Radius*[zeros(1,N);cosd(theta);sind(theta)],...

 'ElementNormal',[ones(1,N);zeros(1,N)]);

Plot the magnitude pattern

fc = 4000;

c = 1500.0;

pattern(sArray,fc,0,[-40:0.1:40],...

 'PropagationSpeed',c,...

 'CoordinateSystem','polar',...

 'Type','efield')

1 Alphabetical List

1-230

Plot the directivity pattern

pattern(sArray,fc,0,[-40:0.1:40],...

 'PropagationSpeed',c,...

 'CoordinateSystem','polar',...

 'Type','directivity')

• Phased Array Gallery

References

[1] Josefsson, L. and P. Persson. Conformal Array Antenna Theory and Design.
Piscataway, NJ: IEEE Press, 2006.

../examples/phased-array-gallery.html

 phased.ConformalArray System object

1-231

[2] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002.

See Also
phased.UCA | phased.CosineAntennaElement | phased.CustomAntennaElement
| phased.IsotropicAntennaElement | phased.PartitionedArray |
phased.ReplicatedSubarray | phased.ULA | phased.URA | phitheta2azel | uv2azel

Introduced in R2012a

1 Alphabetical List

1-232

clone
System object: phased.ConformalArray
Package: phased

Create conformal array object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates an object, C, having the same property values and same states as
H. If H is locked, so is C.

 directivity

1-233

directivity

System object: phased.ConformalArray
Package: phased

Directivity of conformal array

Syntax

D = directivity(H,FREQ,ANGLE)

D = directivity(H,FREQ,ANGLE,Name,Value)

Description

D = directivity(H,FREQ,ANGLE) computes the “Directivity” on page 1-236 of a
conformal array of antenna or microphone elements, H, at frequencies specified by the
FREQ and in angles of direction specified by the ANGLE.

D = directivity(H,FREQ,ANGLE,Name,Value) computes the directivity with
additional options specified by one or more Name,Value pair arguments.

Input Arguments

H — Conformal array
System object

Conformal array specified as a phased.ConformalArray System object.
Example: H = phased.ConformalArray;

FREQ — Frequency for computing directivity and patterns
positive scalar | 1-by-L real-valued row vector

Frequencies for computing directivity and patterns, specified as a positive scalar or 1-
by-L real-valued row vector. Frequency units are in hertz.

1 Alphabetical List

1-234

• For an antenna or microphone element, FREQ must lie within the range of
values specified by the FrequencyRange or FrequencyVector property of the
element. Otherwise, the element produces no response and the directivity is
returned as –Inf. Most elements use the FrequencyRange property except for
phased.CustomAntennaElement and phased.CustomMicrophoneElement, which use
the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements
that make up the array. Otherwise, the array produces no response and the
directivity is returned as –Inf.

Example: [1e8 2e8]

Data Types: double

ANGLE — Angles for computing directivity
1-by-M real-valued row vector | 2-by-M real-valued matrix

Angles for computing directivity, specified as a 1-by-M real-valued row vector or a 2-
by-M real-valued matrix, where M is the number of angular directions. Angle units
are in degrees. If ANGLE is a 2-by-M matrix, then each column specifies a direction in
azimuth and elevation, [az;el]. The azimuth angle must lie between –180° and 180°.
The elevation angle must lie between –90° and 90°.

If ANGLE is a 1-by-M vector, then each entry represents an azimuth angle, with the
elevation angle assumed to be zero.

The azimuth angle is the angle between the x-axis and the projection of the direction
vector onto the xy plane. This angle is positive when measured from the x-axis toward the
y-axis. The elevation angle is the angle between the direction vector and xy plane. This
angle is positive when measured towards the z-axis.
Example: [45 60; 0 10]

Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

 directivity

1-235

'PropagationSpeed' — Signal propagation speed
speed of light (default) | positive scalar

Signal propagation speed, specified as the comma-separated pair consisting of
'PropagationSpeed' and a positive scalar in meters per second.

Example: 'PropagationSpeed',physconst('LightSpeed')

Data Types: double

'Weights' — Array weights
1 (default) | N-by-1 complex-valued column vector | N-by-L complex-valued matrix

Array weights, specified as the comma-separated pair consisting of 'Weights' and an
N-by-1 complex-valued column vector or N-by-L complex-valued matrix. Array weights
are applied to the elements of the array to produce array steering, tapering, or both. The
dimension N is the number of elements in the array. The dimension L is the number of
frequencies specified by FREQ.

Weights Dimension FREQ Dimension Purpose

N-by-1 complex-valued
column vector

Scalar or 1-by-L row vector Applies a set of weights for
the single frequency or for all
L frequencies.

N-by-L complex-valued
matrix

1-by-L row vector Applies each of the L
columns of 'Weights' for
the corresponding frequency
in FREQ.

Note: Use complex weights to steer the array response toward different directions. You
can create weights using the phased.SteeringVector System object or you can compute
your own weights. In general, you apply Hermitian conjugation before using weights in
any Phased Array System Toolbox function or System object such as phased.Radiator
or phased.Collector. However, for the directivity, pattern, patternAzimuth, and
patternElevation methods of any array System object use the steering vector without
conjugation.

Example: 'Weights',ones(N,M)

Data Types: double

1 Alphabetical List

1-236

Complex Number Support: Yes

Output Arguments

D — Directivity
M-by-L matrix

Directivity, returned as an M-by-L matrix whose columns contain the directivities at the
M angles specified by ANGLE. Each column corresponds to one of the L frequency values
specified in FREQ. Directivity units are in dBi.

Definitions

Directivity

Directivity describes the directionality of the radiation pattern of a sensor element
or array of sensor elements. Higher directivity is desired when you want to transmit
more radiation in a specific direction. Directivity is the ratio of the transmitted radiant
intensity in a specified direction to the radiant intensity transmitted by an isotropic
radiator with the same total transmitted power

D
U

P
=

()
4p

q jrad

total

,

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal
is the total power transmitted by an isotropic radiator. For a receiving element or array,
directivity measures the sensitivity toward radiation arriving from a specific direction.
The principle of reciprocity shows that the directivity of an element or array used for
reception equals the directivity of the same element or array used for transmission.
When converted to decibels, the directivity is denoted as dBi. For information on
directivity, read the notes on “Element directivity” and “Array directivity”.

Computing directivity requires integrating the far-field transmitted radiant intensity
over all directions in space to obtain the total transmitted power. There is a difference
between how that integration is performed when Antenna Toolbox antennas are used
in a phased array and when Phased Array System Toolbox antennas are used. When

 directivity

1-237

an array contains Antenna Toolbox antennas, the directivity computation is performed
using a triangular mesh created from 500 regularly spaced points over a sphere. For
Phased Array System Toolbox antennas, the integration uses a uniform rectangular
mesh of points spaced 1° apart in azimuth and elevation over a sphere. There may be
significant differences in computed directivity, especially for large arrays.

Examples

Directivity of Conformal Array

Compute the directivity of a circular array constructed using a conformal array System
object™.

Construct a 21-element uniform circular sonar array (UCA) of backbaffled
omnidirectional microphones. The array is one meter in diameter. Set the operating
frequency to 4 kHz. A typical value for the speed of sound in seawater is 1500.0 m/s.

N = 21;

theta = (0:N-1)*360/N-180;

Radius = 0.5;

myMic = phased.OmnidirectionalMicrophoneElement;

myMicFrequencyRange = [0,5000];

myMic.BackBaffled = true;

myArray = phased.ConformalArray;

myArray.Element = myMic;

myArray.ElementPosition = Radius*[zeros(1,N);cosd(theta);sind(theta)];

myArray.ElementNormal = [ones(1,N);zeros(1,N)];

c = 1500.0;

fc = 4000;

Steer the array to 30 degrees in azimuth and compute the directivity in the steering
direction.

lambda = c/fc;

ang = [30;0];

w = steervec(getElementPosition(myArray)/lambda,ang);

d = directivity(myArray,fc,ang,...

 'PropagationSpeed',c,...

 'Weights',w)

d =

1 Alphabetical List

1-238

 15.1633

See Also
phased.ConformalArray.pattern | phased.ConformalArray.patternAzimuth |
phased.ConformalArray.patternElevation

 collectPlaneWave

1-239

collectPlaneWave

System object: phased.ConformalArray
Package: phased

Simulate received plane waves

Syntax

Y = collectPlaneWave(H,X,ANG)

Y = collectPlaneWave(H,X,ANG,FREQ)

Y = collectPlaneWave(H,X,ANG,FREQ,C)

Description

Y = collectPlaneWave(H,X,ANG) returns the received signals at the sensor array, H,
when the input signals indicated by X arrive at the array from the directions specified in
ANG.

Y = collectPlaneWave(H,X,ANG,FREQ), in addition, specifies the incoming signal
carrier frequency in FREQ.

Y = collectPlaneWave(H,X,ANG,FREQ,C), in addition, specifies the signal
propagation speed in C.

Input Arguments

H

Array object.

X

Incoming signals, specified as an M-column matrix. Each column of X represents an
individual incoming signal.

1 Alphabetical List

1-240

ANG

Directions from which incoming signals arrive, in degrees. ANG can be either a 2-by-M
matrix or a row vector of length M.

If ANG is a 2-by-M matrix, each column specifies the direction of arrival of the
corresponding signal in X. Each column of ANG is in the form [azimuth; elevation].
The azimuth angle must be between –180° and 180°, inclusive. The elevation angle must
be between –90° and 90°, inclusive.

If ANG is a row vector of length M, each entry in ANG specifies the azimuth angle. In this
case, the corresponding elevation angle is assumed to be 0°.

FREQ

Carrier frequency of signal in hertz. FREQ must be a scalar.

Default: 3e8

C

Propagation speed of signal in meters per second.

Default: Speed of light

Output Arguments

Y

Received signals. Y is an N-column matrix, where N is the number of elements in the
array H. Each column of Y is the received signal at the corresponding array element, with
all incoming signals combined.

Examples

Simulate the received signal at an 8-element uniform circular array.

The signals arrive from 10 degrees and 30 degrees azimuth. Both signals have an
elevation angle of 0 degrees. Assume the propagation speed is the speed of light and the
carrier frequency of the signal is 100 MHz.

 collectPlaneWave

1-241

N = 8; azang = (0:N-1)*360/N-180;

hArray = phased.ConformalArray(...

 'ElementPosition',[cosd(azang);sind(azang);zeros(1,N)],...

 'ElementNormal',[azang;zeros(1,N)]);

y = collectPlaneWave(hArray,randn(4,2),[10 30],1e8);

Algorithms

collectPlaneWave modulates the input signal with a phase corresponding to the
delay caused by the direction of arrival. The method does not account for the response of
individual elements in the array.

For further details, see [1].

References

[1] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002.

See Also
phitheta2azel | uv2azel

1 Alphabetical List

1-242

getElementNormal
System object: phased.ConformalArray
Package: phased

Normal vector to array elements

Syntax

normvec = getElementNormal(sConfArray)

normvec = getElementNormal(sConfArray,elemidx)

Description

normvec = getElementNormal(sConfArray) returns the normal vectors of the
array elements of the phased.sConfArray System object, sConfArray. The output
argument normvec is a 2-by-N matrix, where N is the number of elements in array,
sConfArray. Each column of normvec defines the normal direction of an element in the
local coordinate system in the form[az;el]. Units are degrees. The origin of the local
coordinate system is defined by the phase center of the array.

normvec = getElementNormal(sConfArray,elemidx) returns only the normal
vectors of the elements specified in the element index vector, elemidx. This syntax can
use any of the input arguments in the previous syntax.

Input Arguments

sConfArray — Conformal array
phased.ConformalArray System object

Conformal array, specified as a phased.ConformalArray System object.

Example: phased.ConformalArray

elemidx — Element indices
all array elements (default) | integer-valued 1-by-M row vector | integer-valued M-by-1
column vector

 getElementNormal

1-243

Element indices , specified as a 1-by-M or M-by-1 vector. Index values lie in the range
1 to N where N is the number of elements of the array. When elemidx is specified,
getElementNormal returns the normal vectors of the elements contained in elemidx.

Example: [1,5,4]

Output Arguments

normvec — Element normal vectors
2-by-P real-valued vector

Element normal vectors, specified as a 2-by-P real-valued vector. Each column of
normvec takes the form [az,el]. When elemidx is not specified, P equals the array
dimension. When elemidx is specified, P equals the length of elemidx, M.

Examples

Conformal Array Element Normals

Construct a 5-element acoustic cross array (UCA) using the ConformalArray System
object. Assume the operating frequency is 4 kHz. A typical value for the speed of sound in
seawater is 1500.0 m/s. Display the array normal vectors.

N = 5;

fc = 4000;

c = 1500.0;

lam = c/fc;

x = zeros(1,N);

y = [-1,0,1,0,0]*lam/2;

z = [0,0,0,-1,1]*lam/2;

sMic = phased.OmnidirectionalMicrophoneElement(...

 'FrequencyRange',[0,10000],'BackBaffled',true);

sConformArray = phased.ConformalArray('Element',sMic,...

 'ElementPosition',[x;y;z],...

 'ElementNormal',[45*ones(1,N);zeros(1,N)]);

pos = getElementPosition(sConformArray)

normvec = getElementNormal(sConformArray)

pos =

1 Alphabetical List

1-244

 0 0 0 0 0

 -0.1875 0 0.1875 0 0

 0 0 0 -0.1875 0.1875

normvec =

 45 45 45 45 45

 0 0 0 0 0

Introduced in R2016a

 getElementPosition

1-245

getElementPosition
System object: phased.ConformalArray
Package: phased

Positions of array elements

Syntax

POS = getElementPosition(H)

POS = getElementPosition(H,ELEIDX)

Description

POS = getElementPosition(H) returns the element positions of the conformal array
H. POS is an 3xN matrix where N is the number of elements in H. Each column of POS
defines the position of an element in the local coordinate system, in meters, using the
form [x; y; z].

For details regarding the local coordinate system of the conformal array, enter
phased.ConformalArray.coordinateSystemInfo.

POS = getElementPosition(H,ELEIDX) returns the positions of the elements that
are specified in the element index vector ELEIDX.

Examples

Construct a default conformal array and obtain the element positions.

ha = phased.ConformalArray;

pos = getElementPosition(ha)

1 Alphabetical List

1-246

getNumElements
System object: phased.ConformalArray
Package: phased

Number of elements in array

Syntax

N = getNumElements(H)

Description

N = getNumElements(H) returns the number of elements, N, in the conformal array
object H.

Examples

Construct a default conformal array and obtain the number of elements.

 ha = phased.ConformalArray;

 N = getNumElements(ha)

 getNumInputs

1-247

getNumInputs
System object: phased.ConformalArray
Package: phased

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of inputs
(not counting the object itself) that you must use when calling the step method. This
value changes when you alter properties that turn inputs on or off.

1 Alphabetical List

1-248

getNumOutputs
System object: phased.ConformalArray
Package: phased

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value changes when you alter properties that turn outputs on or off.

 getTaper

1-249

getTaper

System object: phased.ConformalArray
Package: phased

Array element tapers

Syntax

wts = getTaper(h)

Description

wts = getTaper(h) returns the tapers applied to each element of a conformal array, h.
Tapers are often referred to as weights.

Input Arguments

h — Conformal array
phased.ConformalArray System object

Conformal array specified as a phased.ConformalArray System object.

Output Arguments

wts — Array element tapers
N-by-1 complex-valued vector

Array element tapers returned as an N-by-1, complex-valued vector, where N is the
number of elements in the array.

1 Alphabetical List

1-250

Examples

Create and View a Tapered Array

Create a two-ring tapered disk array

Create a two-ring disk array and set the taper values on the outer ring to be smaller than
those on the inner ring.

elemAngles = ([0:5]*360/6);

elemPosInner = 0.5*[zeros(size(elemAngles));...

 cosd(elemAngles);...

 sind(elemAngles)];

elemPosOuter = [zeros(size(elemAngles));...

 cosd(elemAngles);...

 sind(elemAngles)];

elemNorms = repmat([0;0],1,12);

taper = [ones(size(elemAngles)),0.3*ones(size(elemAngles))];

ha = phased.ConformalArray(...

 [elemPosInner,elemPosOuter],elemNorms,'Taper',taper);

Display the taper values

w = getTaper(ha)

w =

 1.0000

 1.0000

 1.0000

 1.0000

 1.0000

 1.0000

 0.3000

 0.3000

 0.3000

 0.3000

 0.3000

 0.3000

View the array

viewArray(ha,'ShowTaper',true,'ShowIndex','all');

 getTaper

1-251

1 Alphabetical List

1-252

isLocked
System object: phased.ConformalArray
Package: phased

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF, for the ConformalArray System
object.

isLocked returns a logical value that indicates whether input attributes and
nontunable properties for the object are locked. The object performs an internal
initialization the first time that you execute step. This initialization locks nontunable
properties and input specifications, such as the dimensions, complexity, and data type of
the input data. After locking, isLocked returns a true value.

 isPolarizationCapable

1-253

isPolarizationCapable

System object: phased.ConformalArray
Package: phased

Polarization capability

Syntax

flag = isPolarizationCapable(h)

Description

flag = isPolarizationCapable(h) returns a Boolean value, flag, indicating
whether the array supports polarization. An array supports polarization if all of its
constituent sensor elements support polarization.

Input Arguments

h — Conformal array

Conformal array specified as a phased.ConformalArray System object.

Output Arguments

flag — Polarization-capability flag

Polarization-capability returned as a Boolean value true if the array supports
polarization or false if it does not.

1 Alphabetical List

1-254

Examples

Conformal Array of Short-dipole Antenna Elements Supports Polarization

Show that a circular conformal array of phased.ShortDipoleAntennaElement antenna
elements supports polarization.

N = 8; azang = (0:N-1)*360/N-180;

h = phased.ShortDipoleAntennaElement;

ha = phased.ConformalArray(...

 'Element',h,'ElementPosition',[cosd(azang);sind(azang);zeros(1,N)],...

 'ElementNormal',[azang;zeros(1,N)]);

isPolarizationCapable(ha)

ans =

 1

The returned value true (1) shows that this array supports polarization.

 pattern

1-255

pattern

System object: phased.ConformalArray
Package: phased

Plot conformal array pattern

Syntax

pattern(sArray,FREQ)

pattern(sArray,FREQ,AZ)

pattern(sArray,FREQ,AZ,EL)

pattern(___ ,Name,Value)

[PAT,AZ_ANG,EL_ANG] = pattern(___)

Description

pattern(sArray,FREQ) plots the 3-D array directivity pattern (in dBi) for the array
specified in sArray. The operating frequency is specified in FREQ.

pattern(sArray,FREQ,AZ) plots the array directivity pattern at the specified azimuth
angle.

pattern(sArray,FREQ,AZ,EL) plots the array directivity pattern at specified azimuth
and elevation angles.

pattern(___ ,Name,Value) plots the array pattern with additional options specified
by one or more Name,Value pair arguments.

[PAT,AZ_ANG,EL_ANG] = pattern(___) returns the array pattern in PAT. The
AZ_ANG output contains the coordinate values corresponding to the rows of PAT. The
EL_ANG output contains the coordinate values corresponding to the columns of PAT.
If the 'CoordinateSystem' parameter is set to 'uv', then AZ_ANG contains the
U coordinates of the pattern and EL_ANG contains the V coordinates of the pattern.
Otherwise, they are in angular units in degrees. UV units are dimensionless.

1 Alphabetical List

1-256

Note: This method replaces the previous plotResponse method. To replace plots using
plotResponse plots with equivalent plots using pattern, see “Convert plotResponse to
pattern” on page 1-1955

Input Arguments

sArray — Conformal array
System object

Conformal array, specified as a phased.ConformalArray System object.
Example: sArray= phased.ConformalArray;

FREQ — Frequency for computing directivity and patterns
positive scalar | 1-by-L real-valued row vector

Frequencies for computing directivity and patterns, specified as a positive scalar or 1-
by-L real-valued row vector. Frequency units are in hertz.

• For an antenna or microphone element, FREQ must lie within the range of
values specified by the FrequencyRange or FrequencyVector property of the
element. Otherwise, the element produces no response and the directivity is
returned as –Inf. Most elements use the FrequencyRange property except for
phased.CustomAntennaElement and phased.CustomMicrophoneElement, which use
the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements
that make up the array. Otherwise, the array produces no response and the
directivity is returned as –Inf.

Example: [1e8 2e8]

Data Types: double

AZ — Azimuth angles
[-180:180] (default) | 1-by-M real-valued row vector

Azimuth angles for computing directivity and pattern, specified as a 1-by-M real-
valued row vector where M is the number of azimuth angles. Angle units are in degrees.
Azimuth angles must lie between –180° and 180°.

 pattern

1-257

The azimuth angle is the angle between the x-axis and the projection of the direction
vector onto the xy plane. When measured from the x-axis toward the y-axis, this angle is
positive.
Example: [-45:2:45]

Data Types: double

EL — Elevation angles
[-90:90] (default) | 1-by-N real-valued row vector

Elevation angles for computing directivity and pattern, specified as a 1-by-N real-valued
row vector where N is the number of desired elevation directions. Angle units are in
degrees. The elevation angle must lie between –90° and 90°.

The elevation angle is the angle between the direction vector and xy-plane. When
measured towards the z-axis, this angle is positive.
Example: [-75:1:70]

Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'CoordinateSystem' — Plotting coordinate system
'polar' (default) | 'rectangular' | 'uv'

Plotting coordinate system of the pattern, specified as the comma-separated pair
consisting of 'CoordinateSystem' and one of 'polar', 'rectangular', or
'uv'. When 'CoordinateSystem' is set to 'polar' or 'rectangular', the
AZ and EL arguments specify the pattern azimuth and elevation, respectively. AZ
values must lie between –180° and 180°. EL values must lie between –90° and 90°. If
'CoordinateSystem' is set to 'uv', AZ and EL then specify U and V coordinates,
respectively. AZ and EL must lie between -1 and 1.

Example: 'uv'

Data Types: char

1 Alphabetical List

1-258

'Type' — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and
one of

• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed

pattern is for the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field

pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'

Data Types: char

'Normalize' — Display normalize pattern
true (default) | false

Display normalized pattern, specified as the comma-separated pair consisting of
'Normalize' and a Boolean. Set this parameter to true to display a normalized pattern.
When you set 'Type' to 'directivity', this parameter does not apply. Directivity
patterns are already normalized.
Example:
Data Types: logical

'PlotStyle' — Plotting style
'overlay' (default) | 'waterfall'

Plotting style, specified as the comma-separated pair consisting of 'Plotstyle' and
either 'overlay' or 'waterfall'. This parameter applies when you specify multiple
frequencies in FREQ in 2-D plots. You can draw 2-D plots by setting one of the arguments
AZ or EL to a scalar.

Example:
Data Types: char

'Polarization' — Polarized field component
'combined' (default) | 'H' | 'V'

 pattern

1-259

Polarized field component to display, specified as the comma-separated pair consisting
of 'Polarization' and 'combined', 'H', or 'V'. This parameter applies only when
the sensors are polarization-capable and when the 'Type' parameter is not set to
'directivity'. This table shows the meaning of the display options

'Polarization' Display

'combined' Combined H and V polarization
components

'H' H polarization component
'V' V polarization component

Example: 'V'

Data Types: char

'PropagationSpeed' — Signal propagation speed
speed of light (default) | positive scalar

Signal propagation speed, specified as the comma-separated pair consisting of
'PropagationSpeed' and a positive scalar in meters per second.

Example: 'PropagationSpeed',physconst('LightSpeed')

Data Types: double

'Weights' — Array weights
1 (default) | N-by-1 complex-valued column vector | N-by-L complex-valued matrix

Array weights, specified as the comma-separated pair consisting of 'Weights' and an
N-by-1 complex-valued column vector or N-by-L complex-valued matrix. Array weights
are applied to the elements of the array to produce array steering, tapering, or both. The
dimension N is the number of elements in the array. The dimension L is the number of
frequencies specified by FREQ.

Weights Dimension FREQ Dimension Purpose

N-by-1 complex-valued
column vector

Scalar or 1-by-L row vector Applies a set of weights for
the single frequency or for all
L frequencies.

N-by-L complex-valued
matrix

1-by-L row vector Applies each of the L
columns of 'Weights' for

1 Alphabetical List

1-260

Weights Dimension FREQ Dimension Purpose

the corresponding frequency
in FREQ.

Note: Use complex weights to steer the array response toward different directions. You
can create weights using the phased.SteeringVector System object or you can compute
your own weights. In general, you apply Hermitian conjugation before using weights in
any Phased Array System Toolbox function or System object such as phased.Radiator
or phased.Collector. However, for the directivity, pattern, patternAzimuth, and
patternElevation methods of any array System object use the steering vector without
conjugation.

Example: 'Weights',ones(N,M)

Data Types: double
Complex Number Support: Yes

Output Arguments

PAT — Array pattern
M-by-N real-valued matrix

Array pattern, returned as an M-by-N real-valued matrix. The dimensions of PAT
correspond to the dimensions of the output arguments AZ_ANG and EL_ANG.

AZ_ANG — Azimuth angles
scalar | 1-by-M real-valued row vector

Azimuth angles for displaying directivity or response pattern, returned as a scalar or 1-
by-M real-valued row vector corresponding to the dimension set in AZ. The rows of PAT
correspond to the values in AZ_ANG.

EL_ANG — Elevation angles
scalar | 1-by-N real-valued row vector

Elevation angles for displaying directivity or response, returned as a scalar or 1-by-N
real-valued row vector corresponding to the dimension set in EL. The columns of PAT
correspond to the values in EL_ANG.

 pattern

1-261

More About

Directivity

Directivity describes the directionality of the radiation pattern of a sensor element
or array of sensor elements. Higher directivity is desired when you want to transmit
more radiation in a specific direction. Directivity is the ratio of the transmitted radiant
intensity in a specified direction to the radiant intensity transmitted by an isotropic
radiator with the same total transmitted power

D
U

P
=

()
4p

q jrad

total

,

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal
is the total power transmitted by an isotropic radiator. For a receiving element or array,
directivity measures the sensitivity toward radiation arriving from a specific direction.
The principle of reciprocity shows that the directivity of an element or array used for
reception equals the directivity of the same element or array used for transmission.
When converted to decibels, the directivity is denoted as dBi. For information on
directivity, read the notes on “Element directivity” and “Array directivity”.

Computing directivity requires integrating the far-field transmitted radiant intensity
over all directions in space to obtain the total transmitted power. There is a difference
between how that integration is performed when Antenna Toolbox antennas are used
in a phased array and when Phased Array System Toolbox antennas are used. When
an array contains Antenna Toolbox antennas, the directivity computation is performed
using a triangular mesh created from 500 regularly spaced points over a sphere. For
Phased Array System Toolbox antennas, the integration uses a uniform rectangular
mesh of points spaced 1° apart in azimuth and elevation over a sphere. There may be
significant differences in computed directivity, especially for large arrays.

Convert plotResponse to pattern

For antenna, microphone, and array System objects, the pattern method replaces the
plotResponse method. In addition, two new simplified methods exist just to draw
2-D azimuth and elevation pattern plots. These methods are azimuthPattern and
elevationPattern.

1 Alphabetical List

1-262

The following table is a guide for converting your code from using plotResponse to
pattern. Notice that some of the inputs have changed from input arguments to Name-
Value pairs and conversely. The general pattern method syntax is

pattern(H,FREQ,AZ,EL,'Name1','Value1',...,'NameN','ValueN')

plotResponse Inputs plotResponse Description pattern Inputs

H argument Antenna, microphone, or array
System object.

H argument (no change)

FREQ argument Operating frequency. FREQ argument (no change)
V argument Propagation speed. This

argument is used only for
arrays.

'PropagationSpeed' name-
value pair. This parameter is
only used for arrays.

'Format' and 'RespCut'
name-value pairs

These options work together to
let you create a plot in angle
space (line or polar style) or
UV space. They also determine
whether the plot is 2-D or 3-
D. This table shows you how to
create different types of plots
using plotResponse.

Display space

Angle space
(2D)

Set
'RespCut'

to 'Az' or

'El'. Set
'Format' to
'line' or
'polar'.

Set the display
axis using
either the
the
'AzimuthAngles'

or
'ElevationAngles'

'CoordinateSystem' name-
value pair used together with
the AZ and EL input arguments.

'CoordinateSystem' has
the same options as the
plotResponse method
'Format'name-value pair,
except that 'line' is now
named 'rectangular'. The
table shows how to create
different types of plots using
pattern.

Display space

Angle space
(2D)

Set
'Coordinate

System' to
'rectangular'

or 'polar'.
Specify either
AZ or EL as a
scalar.

Angle space
(3D)

Set
'Coordinate

 pattern

1-263

plotResponse Inputs plotResponse Description pattern Inputs

Display space

name-value
pairs.

Angle space
(3D)

Set
'RespCut'

to '3D'. Set
'Format' to
'line' or
'polar'.

Set the display
axis using
both the
'AzimuthAngles'

and'ElevationAngles'
name-value
pairs.

UV space (2D) Set
'RespCut'

to'U'. Set
'Format'

to 'UV'. Set
the display
range using
the 'UGrid'
name-value
pair.

UV space (3D) Set
'RespCut'

to'3D'. Set
'Format' to
'UV'. Set the
display range
using both
the 'UGrid'
and 'VGrid'

Display space

System' to
'rectangular'

or 'polar'.
Specify both
AZ and EL as
vectors.

UV space (2D) Set
'Coordinate

System' to
'uv'. Use AZ
to specify a U-
space vector.
Use EL to
specify a V-
space scalar.

UV space (3D) Set
'Coordinate

System' to
'uv'. Use AZ
to specify a U-
space vector.
Use EL to
specify a V-
space vector.

If you set CoordinateSystem
to 'uv', enter the UV grid
values using AZ and EL.

1 Alphabetical List

1-264

plotResponse Inputs plotResponse Description pattern Inputs

Display space

name-value
pairs.

'CutAngle' name-value pair Constant angle at to take an
azimuth or elevation cut. When
producing a 2-D plot and when
'RespCut' is set to 'Az' or
'El', use 'CutAngle' to set
the slice across which to view
the plot.

No equivalent name-value pair.
To create a cut, specify either AZ
or EL as a scalar, not a vector.

'NormalizeResponse' name-
value pair

Normalizes the plot.
When 'Unit' is set to
'dbi', you cannot specify
'NormalizeResponse'.

'Normalize' name-value
pair. When 'Type' is set to
'directivity',

you cannot specify
'Normalize'.
.

'OverlayFreq' name-value
pair

Plot multiple frequencies on
the same 2-D plot. Available
only when 'Format' is
set to 'line' or 'uv' and
'RespCut' is not set to '3D'.
The value true produces an
overlay plot and the value
false produces a waterfall
plot.

'PlotStyle' name-value pair
plots multiple frequencies on the
same 2-D plot.

The values 'overlay' and
'waterfall' correspond to
'OverlayFreq' values of
true and false. The option
'waterfall' is allowed only
when 'CoordinateSystem' is
set to 'rectangular' or 'uv'.

'Polarization' name-value
pair

Determines how to plot
polarized fields. Options are
'None', 'Combined', 'H', or
'V'.

'Polarization' name-value
pair determines how to plot
polarized fields. The 'None'
option is removed. The options
'Combined', 'H', or 'V' are
unchanged.

 pattern

1-265

plotResponse Inputs plotResponse Description pattern Inputs

'Unit' name-value pair Determines the plot units.
Choose 'db', 'mag', 'pow',
or 'dbi', where the default is
'db'.

'Type' name-value pair, uses
equivalent options with different
names

plotResponse pattern

'db' 'powerdb'

'mag' 'efield'

'pow' 'power'

'dbi' 'directivity'

'Weights' name-value pair Array element tapers (or
weights).

'Weights' name-value pair (no
change).

'AzimuthAngles' name-value
pair

Azimuth angles used to display
the antenna or array response.

AZ argument

'ElevationAngles' name-
value pair

Elevation angles used to
display the antenna or array
response.

EL argument

'UGrid' name-value pair Contains U coordinates in UV-
space.

AZ argument when
'CoordinateSystem' name-
value pair is set to 'uv'

'VGrid' name-value pair Contains V-coordinates in UV-
space.

EL argument when
'CoordinateSystem' name-
value pair is set to 'uv'

Examples

Plot Power Pattern of 8-Element Uniform Circular Array

Using the ConformalArray System object, construct an 8-element uniform circular array
(UCA) of isotropic antenna elements. Plot a normalized azimuth power pattern at 0
degrees elevation. Assume the operating frequency is 1 GHz and the wave propagation
speed is the speed of light.

N = 8;

azang = (0:N-1)*360/N-180;

1 Alphabetical List

1-266

sCA = phased.ConformalArray(...

 'ElementPosition',[cosd(azang);sind(azang);zeros(1,N)],...

 'ElementNormal',[azang;zeros(1,N)]);

fc = 1e9;

c = physconst('LightSpeed');

pattern(sCA,fc,[-180:180],0,...

 'PropagationSpeed',c,'Type','powerdb',...

 'CoordinateSystem','polar')

Plot Pattern of 31-Element Uniform Circular Sonar Array

Construct a 31-element acoustic uniform circular sonar array (UCA) using the
ConformalArray System object. Assume the array is one meter in diameter. Using

 pattern

1-267

the ElevationAngles parameter, restrict the display to +/-40 degrees in 0.1 degree
increments. Assume the operating frequency is 4 kHz. A typical value for the speed of
sound in seawater is 1500.0 m/s.

Construct the array

N = 31;

theta = (0:N-1)*360/N-180;

Radius = 0.5;

sMic = phased.OmnidirectionalMicrophoneElement(...

 'FrequencyRange',[0,10000],'BackBaffled',true);

sArray = phased.ConformalArray('Element',sMic,...

 'ElementPosition',Radius*[zeros(1,N);cosd(theta);sind(theta)],...

 'ElementNormal',[ones(1,N);zeros(1,N)]);

Plot the magnitude pattern

fc = 4000;

c = 1500.0;

pattern(sArray,fc,0,[-40:0.1:40],...

 'PropagationSpeed',c,...

 'CoordinateSystem','polar',...

 'Type','efield')

1 Alphabetical List

1-268

Plot the directivity pattern

pattern(sArray,fc,0,[-40:0.1:40],...

 'PropagationSpeed',c,...

 'CoordinateSystem','polar',...

 'Type','directivity')

 pattern

1-269

See Also
phased.ConformalArray.patternAzimuth | phased.ConformalArray.patternElevation

Introduced in R2015a

1 Alphabetical List

1-270

patternAzimuth

System object: phased.ConformalArray
Package: phased

Plot conformal array directivity or pattern versus azimuth

Syntax

patternAzimuth(sArray,FREQ)

patternAzimuth(sArray,FREQ,EL)

patternAzimuth(sArray,FREQ,EL,Name,Value)

PAT = patternAzimuth(___)

Description

patternAzimuth(sArray,FREQ) plots the 2-D array directivity pattern versus
azimuth (in dBi) for the array sArray at zero degrees elevation angle. The argument
FREQ specifies the operating frequency.

patternAzimuth(sArray,FREQ,EL), in addtion, plots the 2-D array directivity
pattern versus azimuth (in dBi) for the array sArray at the elevation angle specified by
EL. When EL is a vector, multiple overlaid plots are created.

patternAzimuth(sArray,FREQ,EL,Name,Value) plots the array pattern with
additional options specified by one or more Name,Value pair arguments.

PAT = patternAzimuth(___) returns the array pattern. PAT is a matrix whose
entries represent the pattern at corresponding sampling points specified by the
'Azimuth' parameter and the EL input argument.

Input Arguments

sArray — Conformal array
System object

 patternAzimuth

1-271

Conformal array, specified as a phased.ConformalArray System object.
Example: sArray= phased.ConformalArray;

FREQ — Frequency for computing directivity and pattern
positive scalar

Frequency for computing directivity and pattern, specified as a positive scalar. Frequency
units are in hertz.

• For an antenna or microphone element, FREQ must lie within the range of values
specified by the FrequencyRange or the FrequencyVector property of the
element. Otherwise, the element produces no response and the directivity is
returned as –Inf. Most elements use the FrequencyRange property except for
phased.CustomAntennaElement and phased.CustomMicrophoneElement, which use
the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements
that make up the array. Otherwise, the array produces no response and the
directivity is returned as –Inf.

Example: 1e8

Data Types: double

EL — Elevation angles
1-by-N real-valued row vector

Elevation angles for computing array directivity and pattern, specified as a 1-by-N real-
valued row vector, where N is the number of requested elevation directions. Angle units
are in degrees. The elevation angle must lie between –90° and 90°.

The elevation angle is the angle between the direction vector and the xy plane. When
measured toward the z-axis, this angle is positive.
Example: [0,10,20]

Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

1 Alphabetical List

1-272

quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Type' — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and
one of

• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed

pattern is for the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field

pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'

Data Types: char

'PropagationSpeed' — Signal propagation speed
speed of light (default) | positive scalar

Signal propagation speed, specified as the comma-separated pair consisting of
'PropagationSpeed' and a positive scalar in meters per second.

Example: 'PropagationSpeed',physconst('LightSpeed')

Data Types: double

'Weights' — Array weights
M-by-1 complex-valued column vector

Array weights, specified as the comma-separated pair consisting of 'Weights' and an
M-by-1 complex-valued column vector. Array weights are applied to the elements of the
array to produce array steering, tapering, or both. The dimension M is the number of
elements in the array.

Note: Use complex weights to steer the array response toward different directions. You
can create weights using the phased.SteeringVector System object or you can compute
your own weights. In general, you apply Hermitian conjugation before using weights in

 patternAzimuth

1-273

any Phased Array System Toolbox function or System object such as phased.Radiator
or phased.Collector. However, for the directivity, pattern, patternAzimuth, and
patternElevation methods of any array System object use the steering vector without
conjugation.

Example: 'Weights',ones(10,1)

Data Types: double
Complex Number Support: Yes

'Azimuth' — Azimuth angles
[-180:180] (default) | 1-by-P real-valued row vector

Azimuth angles, specified as the comma-separated pair consisting of 'Azimuth' and a 1-
by-P real-valued row vector. Azimuth angles define where the array pattern is calculated.
Example: 'Azimuth',[-90:2:90]

Data Types: double

Output Arguments

PAT — Array directivity or pattern
L-by-N real-valued matrix

Array directivity or pattern, returned as an L-by-N rea-valued matrix. The dimension
L is the number of azimuth values determined by the 'Azimuth' name-value pair
argument. The dimension N is the number of elevation angles, as determined by the EL
input argument.

Definitions

Directivity

Directivity describes the directionality of the radiation pattern of a sensor element
or array of sensor elements. Higher directivity is desired when you want to transmit
more radiation in a specific direction. Directivity is the ratio of the transmitted radiant
intensity in a specified direction to the radiant intensity transmitted by an isotropic
radiator with the same total transmitted power

1 Alphabetical List

1-274

D
U

P
=

()
4p

q jrad

total

,

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal
is the total power transmitted by an isotropic radiator. For a receiving element or array,
directivity measures the sensitivity toward radiation arriving from a specific direction.
The principle of reciprocity shows that the directivity of an element or array used for
reception equals the directivity of the same element or array used for transmission.
When converted to decibels, the directivity is denoted as dBi. For information on
directivity, read the notes on “Element directivity” and “Array directivity”.

Computing directivity requires integrating the far-field transmitted radiant intensity
over all directions in space to obtain the total transmitted power. There is a difference
between how that integration is performed when Antenna Toolbox antennas are used
in a phased array and when Phased Array System Toolbox antennas are used. When
an array contains Antenna Toolbox antennas, the directivity computation is performed
using a triangular mesh created from 500 regularly spaced points over a sphere. For
Phased Array System Toolbox antennas, the integration uses a uniform rectangular
mesh of points spaced 1° apart in azimuth and elevation over a sphere. There may be
significant differences in computed directivity, especially for large arrays.

Examples

Plot Azimuth Pattern of 5-Element Cross Sonar Array

Construct a 5-element acoustic cross array (UCA) using the ConformalArray System
object. Assume the operating frequency is 4 kHz. A typical value for the speed of sound in
seawater is 1500.0 m/s. Plot the array patterns at two different elevation angles.

Construct and view array

N = 5;

fc = 4000;

c = 1500.0;

lam = c/fc;

x = zeros(1,N);

y = [-1,0,1,0,0]*lam/2;

z = [0,0,0,-1,1]*lam/2;

sMic = phased.OmnidirectionalMicrophoneElement(...

 patternAzimuth

1-275

 'FrequencyRange',[0,10000],'BackBaffled',true);

sArray = phased.ConformalArray('Element',sMic,...

 'ElementPosition',[x;y;z],...

 'ElementNormal',[zeros(1,N);zeros(1,N)]);

viewArray(sArray)

Plot azimuth pattern for magnitude

fc = 4000;

c = 1500.0;

patternAzimuth(sArray,fc,[0,20],...

 'PropagationSpeed',c,...

 'Type','efield')

1 Alphabetical List

1-276

Plot azimuth pattern for directivity

patternAzimuth(sArray,fc,[0,20],...

 'PropagationSpeed',c,...

 'Type','directivity')

 patternAzimuth

1-277

See Also
phased.UCA.pattern | phased.UCA.patternElevation

Introduced in R2015a

1 Alphabetical List

1-278

patternElevation
System object: phased.ConformalArray
Package: phased

Plot conformal array array directivity or pattern versus elevation

Syntax

patternElevation(sArray,FREQ)

patternElevation(sArray,FREQ,AZ)

patternElevation(sArray,FREQ,AZ,Name,Value)

PAT = patternElevation(___)

Description

patternElevation(sArray,FREQ) plots the 2-D array directivity pattern versus
elevation (in dBi) for the array sArray at zero degrees azimuth angle. When AZ is a
vector, multiple overlaid plots are created. The argument FREQ specifies the operating
frequency.

patternElevation(sArray,FREQ,AZ), in addition, plots the 2-D element directivity
pattern versus elevation (in dBi) at the azimuth angle specified by AZ. When AZ is a
vector, multiple overlaid plots are created.

patternElevation(sArray,FREQ,AZ,Name,Value) plots the array pattern with
additional options specified by one or more Name,Value pair arguments.

PAT = patternElevation(___) returns the array pattern. PAT is a matrix whose
entries represent the pattern at corresponding sampling points specified by the
'Elevation' parameter and the AZ input argument.

Input Arguments

sArray — Conformal array
System object

 patternElevation

1-279

Conformal array, specified as a phased.ConformalArray System object.
Example: sArray= phased.ConformalArray;

FREQ — Frequency for computing directivity and pattern
positive scalar

Frequency for computing directivity and pattern, specified as a positive scalar. Frequency
units are in hertz.

• For an antenna or microphone element, FREQ must lie within the range of values
specified by the FrequencyRange or the FrequencyVector property of the
element. Otherwise, the element produces no response and the directivity is
returned as –Inf. Most elements use the FrequencyRange property except for
phased.CustomAntennaElement and phased.CustomMicrophoneElement, which use
the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements
that make up the array. Otherwise, the array produces no response and the
directivity is returned as –Inf.

Example: 1e8

Data Types: double

AZ — Azimuth angles for computing directivity and pattern
1-by-N real-valued row vector

Azimuth angles for computing array directivity and pattern, specified as a 1-by-M real-
valued row vector where N is the number of desired azimuth directions. Angle units are
in degrees. The azimuth angle must lie between –180° and 180°.

The azimuth angle is the angle between the x-axis and the projection of the direction
vector onto the xy plane. This angle is positive when measured from the x-axis toward the
y-axis.
Example: [0,10,20]

Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

1 Alphabetical List

1-280

quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Type' — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and
one of

• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed

pattern is for the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field

pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'

Data Types: char

'PropagationSpeed' — Signal propagation speed
speed of light (default) | positive scalar

Signal propagation speed, specified as the comma-separated pair consisting of
'PropagationSpeed' and a positive scalar in meters per second.

Example: 'PropagationSpeed',physconst('LightSpeed')

Data Types: double

'Weights' — Array weights
M-by-1 complex-valued column vector

Array weights, specified as the comma-separated pair consisting of 'Weights' and an
M-by-1 complex-valued column vector. Array weights are applied to the elements of the
array to produce array steering, tapering, or both. The dimension M is the number of
elements in the array.

Note: Use complex weights to steer the array response toward different directions. You
can create weights using the phased.SteeringVector System object or you can compute
your own weights. In general, you apply Hermitian conjugation before using weights in

 patternElevation

1-281

any Phased Array System Toolbox function or System object such as phased.Radiator
or phased.Collector. However, for the directivity, pattern, patternAzimuth, and
patternElevation methods of any array System object use the steering vector without
conjugation.

Example: 'Weights',ones(10,1)

Data Types: double
Complex Number Support: Yes

'Elevation' — Elevation angles
[-90:90] (default) | 1-by-P real-valued row vector

Elevation angles, specified as the comma-separated pair consisting of 'Elevation'
and a 1-by-P real-valued row vector. Elevation angles define where the array pattern is
calculated.
Example: 'Elevation',[-90:2:90]

Data Types: double

Output Arguments

PAT — Array directivity or pattern
L-by-N real-valued matrix

Array directivity or pattern, returned as an L-by-N real-valued matrix. The dimension
L is the number of elevation angles determined by the 'Elevation' name-value pair
argument. The dimension N is the number of azimuth angles determined by the AZ
argument.

Definitions

Directivity

Directivity describes the directionality of the radiation pattern of a sensor element
or array of sensor elements. Higher directivity is desired when you want to transmit
more radiation in a specific direction. Directivity is the ratio of the transmitted radiant

1 Alphabetical List

1-282

intensity in a specified direction to the radiant intensity transmitted by an isotropic
radiator with the same total transmitted power

D
U

P
=

()
4p

q jrad

total

,

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal
is the total power transmitted by an isotropic radiator. For a receiving element or array,
directivity measures the sensitivity toward radiation arriving from a specific direction.
The principle of reciprocity shows that the directivity of an element or array used for
reception equals the directivity of the same element or array used for transmission.
When converted to decibels, the directivity is denoted as dBi. For information on
directivity, read the notes on “Element directivity” and “Array directivity”.

Computing directivity requires integrating the far-field transmitted radiant intensity
over all directions in space to obtain the total transmitted power. There is a difference
between how that integration is performed when Antenna Toolbox antennas are used
in a phased array and when Phased Array System Toolbox antennas are used. When
an array contains Antenna Toolbox antennas, the directivity computation is performed
using a triangular mesh created from 500 regularly spaced points over a sphere. For
Phased Array System Toolbox antennas, the integration uses a uniform rectangular
mesh of points spaced 1° apart in azimuth and elevation over a sphere. There may be
significant differences in computed directivity, especially for large arrays.

Examples

Plot Elevation Pattern of 5-Element Cross Sonar Array

Construct a 5-element acoustic cross array (UCA) using the ConformalArray System
object. Assume the operating frequency is 4 kHz. A typical value for the speed of sound in
seawater is 1500.0 m/s. Plot the array patterns at two different azimuth angles.

Construct and view array

N = 5;

fc = 4000;

c = 1500.0;

lam = c/fc;

 patternElevation

1-283

x = zeros(1,N);

y = [-1,0,1,0,0]*lam/2;

z = [0,0,0,-1,1]*lam/2;

sMic = phased.OmnidirectionalMicrophoneElement(...

 'FrequencyRange',[0,10000],'BackBaffled',true);

sArray = phased.ConformalArray('Element',sMic,...

 'ElementPosition',[x;y;z],...

 'ElementNormal',[zeros(1,N);zeros(1,N)]);

viewArray(sArray)

Plot magnitude elevation pattern

fc = 4000;

1 Alphabetical List

1-284

c = 1500.0;

patternElevation(sArray,fc,[0,90],...

 'PropagationSpeed',c,...

 'Type','efield')

Plot directivity elevation pattern

Plot the pattern for elevation angles between -60 and 6- degrees at 0.1 degree resolution.

patternElevation(sArray,fc,[0,90],...

 'PropagationSpeed',c,...

 'Type','directivity',...

 'Elevation',[-60:0.1:60])

 patternElevation

1-285

See Also
phased.UCA.pattern | phased.UCA.patternAzimuth

Introduced in R2015a

1 Alphabetical List

1-286

plotResponse
System object: phased.ConformalArray
Package: phased

Plot response pattern of array

Syntax

plotResponse(H,FREQ,V)

plotResponse(H,FREQ,V,Name,Value)

hPlot = plotResponse(___)

Description

plotResponse(H,FREQ,V) plots the array response pattern along the azimuth cut,
where the elevation angle is 0. The operating frequency is specified in FREQ. The
propagation speed is specified in V.

plotResponse(H,FREQ,V,Name,Value) plots the array response with additional
options specified by one or more Name,Value pair arguments.

hPlot = plotResponse(___) returns handles of the lines or surface in the figure
window, using any of the input arguments in the previous syntaxes.

Input Arguments

H

Array object

FREQ

Operating frequency in Hertz specified as a scalar or 1-by-K row vector. Values must lie
within the range specified by a property of H. That property is named FrequencyRange
or FrequencyVector, depending on the type of element in the array. The element has
no response at frequencies outside that range. If you set the 'RespCut' property of H to

 plotResponse

1-287

'3D', FREQ must be a scalar. When FREQ is a row vector, plotResponse draws multiple
frequency responses on the same axes.

V

Propagation speed in meters per second.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'CutAngle'

Cut angle as a scalar. This argument is applicable only when RespCut is 'Az' or
'El'. If RespCut is 'Az', CutAngle must be between –90 and 90. If RespCut is 'El',
CutAngle must be between –180 and 180.

Default: 0

'Format'

Format of the plot, using one of 'Line', 'Polar', or 'UV'. If you set Format to 'UV',
FREQ must be a scalar.

Default: 'Line'

'NormalizeResponse'

Set this value to true to normalize the response pattern. Set this value to false to plot
the response pattern without normalizing it. This parameter is not applicable when you
set the Unit parameter value to 'dbi'.

Default: true

'OverlayFreq'

Set this value to true to overlay pattern cuts in a 2-D line plot. Set this value to false
to plot pattern cuts against frequency in a 3-D waterfall plot. If this value is false, FREQ
must be a vector with at least two entries.

1 Alphabetical List

1-288

This parameter applies only when Format is not 'Polar' and RespCut is not '3D'.

Default: true

'Polarization'

Specify the polarization options for plotting the array response pattern. The allowable
values are |'None' | 'Combined' | 'H' | 'V' | where

• 'None' specifies plotting a nonpolarized response pattern
• 'Combined' specifies plotting a combined polarization response pattern
• 'H' specifies plotting the horizontal polarization response pattern
• 'V' specifies plotting the vertical polarization response pattern

For arrays that do not support polarization, the only allowed value is 'None'. This
parameter is not applicable when you set the Unit parameter value to 'dbi'.

Default: 'None'

'RespCut'

Cut of the response. Valid values depend on Format, as follows:

• If Format is 'Line' or 'Polar', the valid values of RespCut are 'Az', 'El', and
'3D'. The default is 'Az'.

• If Format is 'UV', the valid values of RespCut are 'U' and '3D'. The default is 'U'.

If you set RespCut to '3D', FREQ must be a scalar.

'Unit'

The unit of the plot. Valid values are 'db', 'mag', 'pow', or 'dbi'. This parameter
determines the type of plot that is produced.

Unit value Plot type

db power pattern in dB
scale

mag field pattern
pow power pattern
dbi directivity

 plotResponse

1-289

Default: 'db'

'Weights'

Weight values applied to the array, specified as a length-N column vector or N-by-M
matrix. The dimension N is the number of elements in the array. The interpretation of M
depends upon whether the input argument FREQ is a scalar or row vector.

Weights Dimensions FREQ Dimension Purpose

N-by-1 column vector Scalar or 1-by-M row vector Apply one set of weights for
the same single frequency or
all M frequencies.

Scalar Apply all of the M different
columns in Weights for the
same single frequency.

N-by-M matrix 1-by-M row vector Apply each of the M different
columns in Weights for the
corresponding frequency in
FREQ.

'AzimuthAngles'

Azimuth angles for plotting array response, specified as a row vector. The
AzimuthAngles parameter sets the display range and resolution of azimuth angles for
visualizing the radiation pattern. This parameter is allowed only when the RespCut
parameter is set to 'Az' or '3D' and the Format parameter is set to 'Line' or
'Polar'. The values of azimuth angles should lie between –180° and 180° and must be
in nondecreasing order. When you set the RespCut parameter to '3D', you can set the
AzimuthAngles and ElevationAngles parameters simultaneously.

Default: [-180:180]

'ElevationAngles'

Elevation angles for plotting array response, specified as a row vector. The
ElevationAngles parameter sets the display range and resolution of elevation
angles for visualizing the radiation pattern. This parameter is allowed only when the
RespCut parameter is set to 'El' or '3D' and the Format parameter is set to 'Line'
or 'Polar'. The values of elevation angles should lie between –90° and 90° and must be
in nondecreasing order. When yous set the RespCut parameter to '3D', you can set the
ElevationAngles and AzimuthAngles parameters simultaneously.

1 Alphabetical List

1-290

Default: [-90:90]

'UGrid'

U coordinate values for plotting array response, specified as a row vector. The UGrid
parameter sets the display range and resolution of the U coordinates for visualizing
the radiation pattern in U/V space. This parameter is allowed only when the Format
parameter is set to 'UV' and the RespCut parameter is set to 'U' or '3D'. The values of
UGrid should be between –1 and 1 and should be specified in nondecreasing order. You
can set the UGrid and VGrid parameters simultaneously.

Default: [-1:0.01:1]

'VGrid'

V coordinate values for plotting array response, specified as a row vector. The VGrid
parameter sets the display range and resolution of the V coordinates for visualizing
the radiation pattern in U/V space. This parameter is allowed only when the Format
parameter is set to 'UV' and the RespCut parameter is set to '3D'. The values of VGrid
should be between –1 and 1 and should be specified in nondecreasing order. You can set
VGrid and UGrid parameters simultaneously.

Default: [-1:0.01:1]

Examples

Plot Power Pattern of 8-Element Uniform Circular Array

Using the ConformalArray System object, construct an 8-element uniform circular array
(UCA) of isotropic antenna elements. Plot a normalized azimuth power pattern at 0
degrees elevation. Assume the operating frequency is 1 GHz and the wave propagation
speed is the speed of light.

N = 8;

azang = (0:N-1)*360/N-180;

sCA = phased.ConformalArray(...

 'ElementPosition',[cosd(azang);sind(azang);zeros(1,N)],...

 'ElementNormal',[azang;zeros(1,N)]);

fc = 1e9;

c = physconst('LightSpeed');

pattern(sCA,fc,[-180:180],0,...

 'PropagationSpeed',c,'Type','powerdb',...

 plotResponse

1-291

 'CoordinateSystem','polar')

Plot Pattern of 31-Element Uniform Circular Sonar Array

Construct a 31-element acoustic uniform circular sonar array (UCA) using the
ConformalArray System object. Assume the array is one meter in diameter. Using
the ElevationAngles parameter, restrict the display to +/-40 degrees in 0.1 degree
increments. Assume the operating frequency is 4 kHz. A typical value for the speed of
sound in seawater is 1500.0 m/s.

Construct the array

N = 31;

theta = (0:N-1)*360/N-180;

1 Alphabetical List

1-292

Radius = 0.5;

sMic = phased.OmnidirectionalMicrophoneElement(...

 'FrequencyRange',[0,10000],'BackBaffled',true);

sArray = phased.ConformalArray('Element',sMic,...

 'ElementPosition',Radius*[zeros(1,N);cosd(theta);sind(theta)],...

 'ElementNormal',[ones(1,N);zeros(1,N)]);

Plot the magnitude pattern

fc = 4000;

c = 1500.0;

pattern(sArray,fc,0,[-40:0.1:40],...

 'PropagationSpeed',c,...

 'CoordinateSystem','polar',...

 'Type','efield')

 plotResponse

1-293

Plot the directivity pattern

pattern(sArray,fc,0,[-40:0.1:40],...

 'PropagationSpeed',c,...

 'CoordinateSystem','polar',...

 'Type','directivity')

See Also
azel2uv | uv2azel

1 Alphabetical List

1-294

release
System object: phased.ConformalArray
Package: phased

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

 step

1-295

step
System object: phased.ConformalArray
Package: phased

Output responses of array elements

Syntax

RESP = step(H,FREQ,ANG)

Description

RESP = step(H,FREQ,ANG) returns the response of the array elements, RESP, at
operating frequencies specified in FREQ and directions specified in ANG.

Note: The object performs an initialization the first time the step method is executed.
This initialization locks nontunable properties and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Input Arguments

H

Array object

FREQ

Operating frequencies of array in hertz. FREQ is a row vector of length L. Typical values
are within the range specified by a property of H.Element. That property is named
FrequencyRange or FrequencyVector, depending on the type of element in the array.
The element has zero response at frequencies outside that range.

1 Alphabetical List

1-296

ANG

Directions in degrees. ANG is either a 2-by-M matrix or a row vector of length M.

If ANG is a 2-by-M matrix, each column of the matrix specifies the direction in the
form [azimuth; elevation]. The azimuth angle must lie between –180° and 180°,
inclusive. The elevation angle must lie between –90° and 90°, inclusive.

If ANG is a row vector of length M, each element specifies the azimuth angle of the
direction. In this case, the corresponding elevation angle is assumed to be 0°.

Output Arguments

RESP

Voltage responses of the phased array. The output depends on whether the array
supports polarization or not.

• If the array is not capable of supporting polarization, the voltage response, RESP,
has the dimensions N-by-M-by-L. N is the number of elements in the array. The
dimension M is the number of angles specified in ANG. L is the number of frequencies
specified in FREQ. For any element, the columns of RESP contain the responses of the
array elements for the corresponding direction specified in ANG. Each of the L pages
of RESP contains the responses of the array elements for the corresponding frequency
specified in FREQ.

• If the array is capable of supporting polarization, the voltage response, RESP, is a
MATLAB struct containing two fields, RESP.H and RESP.V. The field, RESP.H,
represents the array’s horizontal polarization response, while RESP.V represents the
array’s vertical polarization response. Each field has the dimensions N-by-M-by-L.
N is the number of elements in the array, and M is the number of angles specified in
ANG. L is the number of frequencies specified in FREQ. Each column of RESP contains
the responses of the array elements for the corresponding direction specified in ANG.
Each of the L pages of RESP contains the responses of the array elements for the
corresponding frequency specified in FREQ.

 step

1-297

Examples

Response of 8-Element Uniform Circular Array

Using the ConformalArray System object, construct an 8-element uniform circular array
(UCA) of isotropic antenna elements. The radius of the array is one meter. Assume the
operating frequency is 1 GHz and the wave propagation speed is the speed of light.

N = 8;

azang = (0:N-1)*360/N-180;

sCA = phased.ConformalArray(...

 'ElementPosition',[cosd(azang);sind(azang);zeros(1,N)],...

 'ElementNormal',[azang;zeros(1,N)]);

Get the element response at 35 degrees azimuth and 5 degrees elevation.

fc = 1e9;

ang = [30;5];

resp = step(sCA,fc,ang)

resp =

 1

 1

 1

 1

 1

 1

 1

 1

See Also
phitheta2azel | uv2azel

1 Alphabetical List

1-298

viewArray
System object: phased.ConformalArray
Package: phased

View array geometry

Syntax

viewArray(H)

viewArray(H,Name,Value)

hPlot = viewArray(___)

Description

viewArray(H) plots the geometry of the array specified in H.

viewArray(H,Name,Value) plots the geometry of the array, with additional options
specified by one or more Name,Value pair arguments.

hPlot = viewArray(___) returns the handle of the array elements in the figure
window. All input arguments described for the previous syntaxes also apply here.

Input Arguments

H

Array object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

 viewArray

1-299

'ShowIndex'

Vector specifying the element indices to show in the figure. Each number in the vector
must be an integer between 1 and the number of elements. You can also specify the
string 'All' to show indices of all elements of the array or 'None' to suppress indices.

Default: 'None'

'ShowNormals'

Set this value to true to show the normal directions of all elements of the array. Set this
value to false to plot the elements without showing normal directions.

Default: false

'ShowTaper'

Set this value to true to specify whether to change the element color brightness in
proportion to the element taper magnitude. When this value is set to false, all elements
are drawn with the same color.

Default: false

'Title'

String specifying the title of the plot.

Default: 'Array Geometry'

Output Arguments

hPlot

Handle of array elements in figure window.

Examples

View Uniform Circular Array

Display the element positions and normal directions of all elements of an 8-element
uniform circular array.

1 Alphabetical List

1-300

Create the uniform circular array

N = 8;

azang = (0:N-1)*360/N - 180;

ha = phased.ConformalArray(...

 'ElementPosition',[cosd(azang);sind(azang);zeros(1,N)],...

 'ElementNormal',[azang;zeros(1,N)]);

Display the positions and normal directions of the elements

viewArray(ha,'ShowNormals',true);

• Phased Array Gallery

../examples/phased-array-gallery.html

 viewArray

1-301

See Also
phased.ArrayResponse

1 Alphabetical List

1-302

phased.ConstantGammaClutter System object
Package: phased

Constant gamma clutter simulation

Description

The ConstantGammaClutter object simulates clutter.

To compute the clutter return:

1 Define and set up your clutter simulator. See “Construction” on page 1-302.
2 Call step to simulate the clutter return for your system according to the properties of

phased.ConstantGammaClutter. The behavior of step is specific to each object in
the toolbox.

The clutter simulation that ConstantGammaClutter provides is based on these
assumptions:

• The radar system is monostatic.
• The propagation is in free space.
• The terrain is homogeneous.
• The clutter patch is stationary during the coherence time. Coherence time indicates

how frequently the software changes the set of random numbers in the clutter
simulation.

• The signal is narrowband. Thus, the spatial response can be approximated by a phase
shift. Similarly, the Doppler shift can be approximated by a phase shift.

• The radar system maintains a constant height during simulation.
• The radar system maintains a constant speed during simulation.

Construction

H = phased.ConstantGammaClutter creates a constant gamma clutter simulation
System object, H. This object simulates the clutter return of a monostatic radar system
using the constant gamma model.

 phased.ConstantGammaClutter System object

1-303

H = phased.ConstantGammaClutter(Name,Value) creates a constant gamma
clutter simulation object, H, with additional options specified by one or more Name,Value
pair arguments. Name is a property name, and Value is the corresponding value.
Name must appear inside single quotes (''). You can specify several name-value pair
arguments in any order as Name1,Value1,…,NameN,ValueN.

Properties

Sensor

Handle of sensor

Specify the sensor as an antenna element object or as an array object whose Element
property value is an antenna element object. If the sensor is an array, it can contain
subarrays.

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second, as a positive scalar.

Default: Speed of light

OperatingFrequency

System operating frequency

Specify the operating frequency of the system in hertz as a positive scalar. The default
value corresponds to 300 MHz.

Default: 3e8

SampleRate

Sample rate

Specify the sample rate, in hertz, as a positive scalar. The default value corresponds to 1
MHz.

Default: 1e6

1 Alphabetical List

1-304

PRF

Pulse repetition frequency

Specify the pulse repetition frequency in hertz as a positive scalar or a row vector. The
default value of this property corresponds to 10 kHz. When PRF is a vector, it represents
a staggered PRF. In this case, the output pulses use elements in the vector as their PRFs,
one after another, in a cycle.

Default: 1e4

Gamma

Terrain gamma value

Specify the g value used in the constant g clutter model, as a scalar in decibels. The g

value depends on both terrain type and the operating frequency.

Default: 0

EarthModel

Earth model

Specify the earth model used in clutter simulation as one of | 'Flat' | 'Curved' |.
When you set this property to 'Flat', the earth is assumed to be a flat plane. When you
set this property to 'Curved', the earth is assumed to be a sphere.

Default: 'Flat'

PlatformHeight

Radar platform height from surface

Specify the radar platform height (in meters) measured upward from the surface as a
nonnegative scalar.

Default: 300

PlatformSpeed

Radar platform speed

Specify the radar platform’s speed as a nonnegative scalar in meters per second.

Default: 300

 phased.ConstantGammaClutter System object

1-305

PlatformDirection

Direction of radar platform motion

Specify the direction of radar platform motion as a 2-by-1 vector in the form
[AzimuthAngle; ElevationAngle] in degrees. The default value of this property indicates
that the platform moves perpendicular to the radar antenna array’s broadside.

Both azimuth and elevation angle are measured in the local coordinate system of the
radar antenna or antenna array. Azimuth angle must be between –180 and 180 degrees.
Elevation angle must be between –90 and 90 degrees.

Default: [90;0]

BroadsideDepressionAngle

Depression angle of array broadside

Specify the depression angle in degrees of the broadside of the radar antenna array. This
value is a scalar. The broadside is defined as zero degrees azimuth and zero degrees
elevation. The depression angle is measured downward from horizontal.

Default: 0

MaximumRange

Maximum range for clutter simulation

Specify the maximum range in meters for the clutter simulation as a positive scalar.
The maximum range must be greater than the value specified in the PlatformHeight
property.

Default: 5000

AzimuthCoverage

Azimuth coverage for clutter simulation

Specify the azimuth coverage in degrees as a positive scalar. The clutter simulation
covers a region having the specified azimuth span, symmetric to 0 degrees azimuth.
Typically, all clutter patches have their azimuth centers within the region, but the
PatchAzimuthWidth value can cause some patches to extend beyond the region.

Default: 60

1 Alphabetical List

1-306

PatchAzimuthWidth

Azimuth span of each clutter patch

Specify the azimuth span of each clutter patch in degrees as a positive scalar.

Default: 1

TransmitSignalInputPort

Add input to specify transmit signal

Set this property to true to add input to specify the transmit signal in the step syntax.
Set this property to false omit the transmit signal in the step syntax. The false
option is less computationally expensive; to use this option, you must also specify the
TransmitERP property.

Default: false

TransmitERP

Effective transmitted power

Specify the transmitted effective radiated power (ERP) of the radar system
in watts as a positive scalar. This property applies only when you set the
TransmitSignalInputPort property to false.

Default: 5000

CoherenceTime

Clutter coherence time

Specify the coherence time in seconds for the clutter simulation as a positive scalar. After
the coherence time elapses, the step method updates the random numbers it uses for
the clutter simulation at the next pulse. A value of inf means the random numbers are
never updated.

Default: inf

OutputFormat

Output signal format

Specify the format of the output signal as one of | 'Pulses' | 'Samples' |. When you
set the OutputFormat property to 'Pulses', the output of the step method is in the

 phased.ConstantGammaClutter System object

1-307

form of multiple pulses. In this case, the number of pulses is the value of the NumPulses
property.

When you set the OutputFormat property to 'Samples', the output of the step method
is in the form of multiple samples. In this case, the number of samples is the value of the
NumSamples property. In staggered PRF applications, you might find the 'Samples'
option more convenient because the step output always has the same matrix size.

Default: 'Pulses'

NumPulses

Number of pulses in output

Specify the number of pulses in the output of the step method as a positive integer. This
property applies only when you set the OutputFormat property to 'Pulses'.

Default: 1

NumSamples

Number of samples in output

Specify the number of samples in the output of the step method as a positive integer.
Typically, you use the number of samples in one pulse. This property applies only when
you set the OutputFormat property to 'Samples'.

Default: 100

SeedSource

Source of seed for random number generator

Specify how the object generates random numbers. Values of this property are:

'Auto' The default MATLAB random number generator produces
the random numbers. Use 'Auto' if you are using this
object with Parallel Computing Toolbox software.

'Property' The object uses its own private random number generator
to produce random numbers. The Seed property of this
object specifies the seed of the random number generator.
Use 'Property' if you want repeatable results and are
not using this object with Parallel Computing Toolbox
software.

1 Alphabetical List

1-308

Default: 'Auto'

Seed

Seed for random number generator

Specify the seed for the random number generator as a scalar integer between 0 and 232–
1. This property applies when you set the SeedSource property to 'Property'.

Default: 0

Methods

clone Create constant gamma clutter simulation
object with same property values

getNumInputs Number of expected inputs to step method
getNumOutputs Number of outputs from step method
isLocked Locked status for input attributes and

nontunable properties
release Allow property value and input

characteristics changes
reset Reset random numbers and time count for

clutter simulation
step Simulate clutter using constant gamma

model

Examples

Clutter Simulation of System with Known Power

Simulate the clutter return from terrain with a gamma value of 0 dB. The effective
transmitted power of the radar system is 5 kW.

Set up radar system

Set up the characteristics of the radar system. This system has a 4-element uniform
linear array (ULA). The sample rate is 1 MHz, and the PRF is 10 kHz. The propagation

 phased.ConstantGammaClutter System object

1-309

speed is 300,000 km/s, and the operating frequency is 300 MHz. The radar platform is
flying 1 km above the ground with a path parallel to the ground along the array axis. The
platform speed is 2000 m/s. The mainlobe has a depression angle of 30 degrees.

Nele = 4;

c = 3e8;

fc = 3e8;

lambda = c/fc;

ha = phased.ULA('NumElements',Nele,'ElementSpacing',lambda/2);

fs = 1e6;

prf = 10e3;

height = 1000;

direction = [90;0];

speed = 2000;

depang = 30;

Create clutter simulation object

Create the clutter simulation object. The configuration assumes the earth is flat. The
maximum clutter range of interest is 5 km, and the maximum azimuth coverage is +/-60
degrees.

Rmax = 5000;

Azcov = 120;

tergamma = 0;

tpower = 5000;

hclutter = phased.ConstantGammaClutter('Sensor',ha,...

 'PropagationSpeed',c,'OperatingFrequency',fc,'PRF',prf,...

 'SampleRate',fs,'Gamma',tergamma,'EarthModel','Flat',...

 'TransmitERP',tpower,'PlatformHeight',height,...

 'PlatformSpeed',speed,'PlatformDirection',direction,...

 'BroadsideDepressionAngle',depang,'MaximumRange',Rmax,...

 'AzimuthCoverage',Azcov,'SeedSource','Property',...

 'Seed',40547);

Simulate clutter return

Simulate the clutter return for 10 pulses.

Nsamp = fs/prf;

Npulse = 10;

csig = zeros(Nsamp,Nele,Npulse);

for m = 1:Npulse

 csig(:,:,m) = step(hclutter);

end

1 Alphabetical List

1-310

Plot angle-Doppler response

Plot the angle-Doppler response of the clutter at the 20th range bin.

hresp = phased.AngleDopplerResponse('SensorArray',ha,...

 'OperatingFrequency',fc,'PropagationSpeed',c,'PRF',prf);

plotResponse(hresp,shiftdim(csig(20,:,:)),...

 'NormalizeDoppler',true);

Clutter Simulation Using Known Transmit Signal

Simulate the clutter return from terrain with a gamma value of 0 dB. The step syntax
includes the transmit signal of the radar system as an input argument. In this case, you
do not record the effective transmitted power of the signal in a property.

 phased.ConstantGammaClutter System object

1-311

Set up radar system

Set up the characteristics of the radar system. This system has a 4-element uniform
linear array (ULA). The sample rate is 1 MHz, and the PRF is 10 kHz. The propagation
speed is 300,000 km/s, and the operating frequency is 300 MHz. The radar platform is
flying 1 km above the ground with a path parallel to the ground along the array axis. The
platform speed is 2000 m/s. The mainlobe has a depression angle of 30 degrees.

Nele = 4;

c = 3e8;

fc = 3e8;

lambda = c/fc;

ha = phased.ULA('NumElements',Nele,'ElementSpacing',lambda/2);

fs = 1e6;

prf = 10e3;

height = 1000;

direction = [90;0];

speed = 2000;

depang = 30;

Create clutter simulation object

Create the clutter simulation object and configure it to take a transmit signal as an input
argument to step. The configuration assumes the earth is flat. The maximum clutter
range of interest is 5 km, and the maximum azimuth coverage is +/-60 degrees.

Rmax = 5000;

Azcov = 120;

tergamma = 0;

hclutter = phased.ConstantGammaClutter('Sensor',ha,...

 'PropagationSpeed',c,'OperatingFrequency',fc,'PRF',prf,...

 'SampleRate',fs,'Gamma',tergamma,'EarthModel','Flat',...

 'TransmitSignalInputPort',true,'PlatformHeight',height,...

 'PlatformSpeed',speed,'PlatformDirection',direction,...

 'BroadsideDepressionAngle',depang,'MaximumRange',Rmax,...

 'AzimuthCoverage',Azcov,'SeedSource','Property',...

 'Seed',40547);

Simulate clutter return

Simulate the clutter return for 10 pulses. At each step, pass the transmit signal as an
input argument. The software automatically computes the effective transmitted power
of the signal. The transmit signal is a rectangular waveform with a pulse width of 2
microseconds.

1 Alphabetical List

1-312

tpower = 5000;

pw = 2e-6;

X = tpower*ones(floor(pw*fs),1);

Nsamp = fs/prf;

Npulse = 10;

csig = zeros(Nsamp,Nele,Npulse);

for m = 1:Npulse

 csig(:,:,m) = step(hclutter,X);

end

Plot angle-Doppler response

Plot the angle-Doppler response of the clutter at the 20th range bin.

hresp = phased.AngleDopplerResponse('SensorArray',ha,...

 'OperatingFrequency',fc,'PropagationSpeed',c,'PRF',prf);

plotResponse(hresp,shiftdim(csig(20,:,:)),...

 'NormalizeDoppler',true);

 phased.ConstantGammaClutter System object

1-313

• Ground Clutter Mitigation with Moving Target Indication (MTI) Radar
• “Example: DPCA Pulse Canceller for Clutter Rejection”

Extended Capabilities

Parallel Computing

You can use this System object to perform Monte Carlo simulations with Parallel
Computing Toolbox constructs, such as parfor. In this situation, set the SeedSource
property to 'Auto' to ensure correct, automatic handling of random number streams on
the workers.

../examples/ground-clutter-mitigation-with-moving-target-indication-mti-radar.html

1 Alphabetical List

1-314

Do not use this System object in a parallel construct whose iterations represent data
from consecutive pulses. Because such iterations are not independent of each other, they
must run sequentially. For more information about parallel computing constructs, see
“Deciding When to Use parfor” or “parfor Programming Considerations”.

To perform computations on a GPU instead of a CPU, use
phased.gpu.ConstantGammaClutter instead of phased.ConstantGammaClutter.

References

[1] Barton, David. “Land Clutter Models for Radar Design and Analysis,” Proceedings of
the IEEE. Vol. 73, Number 2, February, 1985, pp. 198–204.

[2] Long, Maurice W. Radar Reflectivity of Land and Sea, 3rd Ed. Boston: Artech House,
2001.

[3] Nathanson, Fred E., J. Patrick Reilly, and Marvin N. Cohen. Radar Design Principles,
2nd Ed. Mendham, NJ: SciTech Publishing, 1999.

[4] Ward, J. “Space-Time Adaptive Processing for Airborne Radar Data Systems,”
Technical Report 1015, MIT Lincoln Laboratory, December, 1994.

See Also
phased.BarrageJammer | phased.gpu.ConstantGammaClutter | phitheta2azel |
surfacegamma | uv2azel

More About
• “Clutter Modeling”

Introduced in R2012a

 clone

1-315

clone
System object: phased.ConstantGammaClutter
Package: phased

Create constant gamma clutter simulation object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates an object, C, having the same property values and same states as
H. If H is locked, so is C.

1 Alphabetical List

1-316

getNumInputs
System object: phased.ConstantGammaClutter
Package: phased

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of inputs
(not counting the object itself) that you must use when calling the step method. This
value changes when you alter properties that turn inputs on or off.

 getNumOutputs

1-317

getNumOutputs
System object: phased.ConstantGammaClutter
Package: phased

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value changes when you alter properties that turn outputs on or off.

1 Alphabetical List

1-318

isLocked
System object: phased.ConstantGammaClutter
Package: phased

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF, for the ConstantGammaClutter
System object.

isLocked returns a logical value that indicates whether input attributes and
nontunable properties for the object are locked. The object performs an internal
initialization the first time that you execute step. This initialization locks nontunable
properties and input specifications, such as the dimensions, complexity, and data type of
the input data. After locking, isLocked returns a true value.

 release

1-319

release
System object: phased.ConstantGammaClutter
Package: phased

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

1 Alphabetical List

1-320

reset
System object: phased.ConstantGammaClutter
Package: phased

Reset random numbers and time count for clutter simulation

Syntax

reset(H)

Description

reset(H) resets the states of the ConstantGammaClutter object, H. This method resets
the random number generator state if the SeedSource property is set to 'Property'.
This method resets the elapsed coherence time. Also, if the PRF property is a vector, the
next call to step uses the first PRF value in the vector.

 step

1-321

step
System object: phased.ConstantGammaClutter
Package: phased

Simulate clutter using constant gamma model

Syntax

Y = step(H)

Y = step(H,X)

Y = step(H,STEERANGLE)

Y = step(H,X,STEERANGLE)

Description

Y = step(H) computes the collected clutter return at each sensor. This syntax is
available when you set the TransmitSignalInputPort property to false.

Y = step(H,X) specifies the transmit signal in X. Transmit signal refers to the output
of the transmitter while it is on during a given pulse. This syntax is available when you
set the TransmitSignalInputPort property to true.

Y = step(H,STEERANGLE) uses STEERANGLE as the subarray steering angle. This
syntax is available when you configure H so that H.Sensor is an array that contains
subarrays and H.Sensor.SubarraySteering is either 'Phase' or 'Time'.

Y = step(H,X,STEERANGLE) combines all input arguments. This syntax is available
when you configure H so that H.TransmitSignalInputPort is true, H.Sensor is an
array that contains subarrays, and H.Sensor.SubarraySteering is either 'Phase' or
'Time'.

Input Arguments

H

Constant gamma clutter object.

1 Alphabetical List

1-322

X

Transmit signal, specified as a column vector.

STEERANGLE

Subarray steering angle in degrees. STEERANGLE can be a length-2 column vector or a
scalar.

If STEERANGLE is a length-2 vector, it has the form [azimuth; elevation]. The azimuth
angle must be between –180 and 180 degrees, and the elevation angle must be between –
90 and 90 degrees.

If STEERANGLE is a scalar, it represents the azimuth angle. In this case, the elevation
angle is assumed to be 0.

Output Arguments

Y

Collected clutter return at each sensor. Y has dimensions N-by-M matrix. M is the
number of subarrays in the radar system if H.Sensor contains subarrays, or the number
of sensors, otherwise. When you set the OutputFormat property to 'Samples', N
is specified in the NumSamples property. When you set the OutputFormat property
to 'Pulses', N is the total number of samples in the next L pulses. In this case, L is
specified in the NumPulses property.

Tips

The clutter simulation that ConstantGammaClutter provides is based on these
assumptions:

• The radar system is monostatic.
• The propagation is in free space.
• The terrain is homogeneous.
• The clutter patch is stationary during the coherence time. Coherence time indicates

how frequently the software changes the set of random numbers in the clutter
simulation.

 step

1-323

• The signal is narrowband. Thus, the spatial response can be approximated by a phase
shift. Similarly, the Doppler shift can be approximated by a phase shift.

• The radar system maintains a constant height during simulation.
• The radar system maintains a constant speed during simulation.

Examples

Clutter Simulation of System with Known Power

Simulate the clutter return from terrain with a gamma value of 0 dB. The effective
transmitted power of the radar system is 5 kw.

Set up the characteristics of the radar system. This system has a 4-element uniform
linear array (ULA). The sample rate is 1 MHz, and the PRF is 10 kHz. The propagation
speed is 300,000 km/s, and the operating frequency is 300 MHz. The radar platform is
flying 1 km above the ground with a path parallel to the ground along the array axis. The
platform speed is 2000 m/s. The mainlobe has a depression angle of 30 degrees.

Nele = 4;

c = 3e8; fc = 3e8; lambda = c/fc;

ha = phased.ULA('NumElements',Nele,'ElementSpacing',lambda/2);

fs = 1e6; prf = 10e3;

height = 1000; direction = [90; 0];

speed = 2000; depang = 30;

Create the clutter simulation object. The configuration assumes the earth is flat. The
maximum clutter range of interest is 5 km, and the maximum azimuth coverage is +/– 60
degrees.

Rmax = 5000; Azcov = 120;

tergamma = 0; tpower = 5000;

hclutter = phased.ConstantGammaClutter('Sensor',ha,...

 'PropagationSpeed',c,'OperatingFrequency',fc,'PRF',prf,...

 'SampleRate',fs,'Gamma',tergamma,'EarthModel','Flat',...

 'TransmitERP',tpower,'PlatformHeight',height,...

 'PlatformSpeed',speed,'PlatformDirection',direction,...

 'BroadsideDepressionAngle',depang,'MaximumRange',Rmax,...

 'AzimuthCoverage',Azcov,'SeedSource','Property',...

 'Seed',40547);

1 Alphabetical List

1-324

Simulate the clutter return for 10 pulses.

Nsamp = fs/prf; Npulse = 10;

csig = zeros(Nsamp,Nele,Npulse);

for m = 1:Npulse

 csig(:,:,m) = step(hclutter);

end

Plot the angle-Doppler response of the clutter at the 20th range bin.

hresp = phased.AngleDopplerResponse('SensorArray',ha,...

 'OperatingFrequency',fc,'PropagationSpeed',c,'PRF',prf);

plotResponse(hresp,shiftdim(csig(20,:,:)),...

 'NormalizeDoppler',true);

 step

1-325

Clutter Simulation Using Known Transmit Signal

Simulate the clutter return from terrain with a gamma value of 0 dB. The step syntax
includes the transmit signal of the radar system as an input argument. In this case, you
do not record the effective transmitted power of the signal in a property.

Set up the characteristics of the radar system. This system has a 4-element uniform
linear array (ULA). The sample rate is 1 MHz, and the PRF is 10 kHz. The propagation
speed is 300,000 km/s, and the operating frequency is 300 MHz. The radar platform is
flying 1 km above the ground with a path parallel to the ground along the array axis. The
platform speed is 2000 m/s. The mainlobe has a depression angle of 30 degrees.

Nele = 4;

1 Alphabetical List

1-326

c = 3e8; fc = 3e8; lambda = c/fc;

ha = phased.ULA('NumElements',Nele,'ElementSpacing',lambda/2);

fs = 1e6; prf = 10e3;

height = 1000; direction = [90; 0];

speed = 2000; depang = 30;

Create the clutter simulation object and configure it to take a transmit signal as an input
argument to step. The configuration assumes the earth is flat. The maximum clutter
range of interest is 5 km, and the maximum azimuth coverage is +/– 60 degrees.

Rmax = 5000; Azcov = 120;

tergamma = 0;

hclutter = phased.ConstantGammaClutter('Sensor',ha,...

 'PropagationSpeed',c,'OperatingFrequency',fc,'PRF',prf,...

 'SampleRate',fs,'Gamma',tergamma,'EarthModel','Flat',...

 'TransmitSignalInputPort',true,'PlatformHeight',height,...

 'PlatformSpeed',speed,'PlatformDirection',direction,...

 'BroadsideDepressionAngle',depang,'MaximumRange',Rmax,...

 'AzimuthCoverage',Azcov,'SeedSource','Property',...

 'Seed',40547);

Simulate the clutter return for 10 pulses. At each step, pass the transmit signal as an
input argument. The software automatically computes the effective transmitted power of
the signal. The transmit signal is a rectangular waveform with a pulse width of 2 µs.

tpower = 5000;

pw = 2e-6;

X = tpower*ones(floor(pw*fs),1);

Nsamp = fs/prf; Npulse = 10;

csig = zeros(Nsamp,Nele,Npulse);

for m = 1:Npulse

 csig(:,:,m) = step(hclutter,X);

end

Plot the angle-Doppler response of the clutter at the 20th range bin.

hresp = phased.AngleDopplerResponse('SensorArray',ha,...

 'OperatingFrequency',fc,'PropagationSpeed',c,'PRF',prf);

plotResponse(hresp,shiftdim(csig(20,:,:)),...

 'NormalizeDoppler',true);

 step

1-327

• Ground Clutter Mitigation with Moving Target Indication (MTI) Radar
• “Example: DPCA Pulse Canceller for Clutter Rejection”

More About
• “Clutter Modeling”

../examples/ground-clutter-mitigation-with-moving-target-indication-mti-radar.html

1 Alphabetical List

1-328

phased.CosineAntennaElement System object

Package: phased

Cosine antenna element

Description

The CosineAntennaElement object models an antenna with a cosine response in both
azimuth and elevation.

To compute the response of the antenna element for specified directions:

1 Define and set up your cosine antenna element. See “Construction” on page 1-328.
2 Call step to compute the antenna response according to the properties of

phased.CosineAntennaElement. The behavior of step is specific to each object in
the toolbox.

This antenna element is not capable of supporting polarization.

Construction

H = phased.CosineAntennaElement creates a cosine antenna system object, H, that
models an antenna element whose response is cosine raised to a specified power greater
than or equal to one in both the azimuth and elevation directions.

H = phased.CosineAntennaElement(Name,Value) creates a cosine antenna object,
H, with each specified property set to the specified value. You can specify additional
name-value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties

FrequencyRange

Operating frequency range

 phased.CosineAntennaElement System object

1-329

Specify the operating frequency range (in Hz) of the antenna element as a 1-by-2 row
vector in the form [LowerBound HigherBound]. The antenna element has no response
outside the specified frequency range.

Default: [0 1e20]

CosinePower

Exponent of cosine pattern

Specify the exponent of cosine pattern as a scalar or a 1-by-2 vector. All specified values
must be real numbers greater than or equal to 1. When you set CosinePower to a scalar,
both the azimuth direction cosine pattern and the elevation direction cosine pattern are
raised to the specified value. When you set CosinePower to a 1-by-2 vector, the first
element is the exponent for the azimuth direction cosine pattern and the second element
is the exponent for the elevation direction cosine pattern.

Default: [1.5 1.5]

Methods

clone Create cosine antenna object with same
property values

directivity Directivity of cosine antenna element
getNumInputs Number of expected inputs to step method
getNumOutputs Number of outputs from step method
isLocked Locked status for input attributes and

nontunable properties
isPolarizationCapable Polarization capability
pattern Plot cosine antenna element directivity and

patterns
patternAzimuth Plot cosine antenna element directivity or

pattern versus azimuth
patternElevation Plot cosine antenna element directivity or

pattern versus elevation
plotResponse Plot response pattern of antenna

1 Alphabetical List

1-330

release Allow property value and input
characteristics changes

step Output response of antenna element

Definitions

Cosine Response

The cosine response, or cosine pattern, is given by:

P az el az el
m n(,) cos ()cos ()=

In this expression:

• az is the azimuth angle.
• el is the elevation angle.
• The exponents m and n are real numbers greater than or equal to 1.

The response is defined for azimuth and elevation angles between –90 and 90 degrees,
inclusive. There is no response at the back of a cosine antenna. The cosine response
pattern achieves a maximum value of 1 at 0 degrees azimuth and elevation. Raising the
response pattern to powers greater than one concentrates the response in azimuth or
elevation.

Examples

Calculate Response of Cosine Antenna

Construct a cosine pattern antenna and calculate its response at boresight (0 degrees
azimuth and 0 degrees elevation). Then, plot the antenna pattern. Assume the antenna
works between 800 MHz and 1.2 GHz and its operating frequency is 1 GHz.

sCos = phased.CosineAntennaElement(...

 'FrequencyRange',[800e6 1.2e9]);

fc = 1e9;

resp = step(sCos,fc,[0; 0]);

 phased.CosineAntennaElement System object

1-331

pattern(sCos,fc,0,[-90:90],...

 'Type','powerdb',...

 'CoordinateSystem','polar')

See Also
phased.UCA | phased.ConformalArray | phased.CrossedDipoleAntennaElement
| phased.CustomAntennaElement | phased.IsotropicAntennaElement |
phased.ShortDipoleAntennaElement | phased.ULA | phased.URA

Introduced in R2012a

1 Alphabetical List

1-332

clone
System object: phased.CosineAntennaElement
Package: phased

Create cosine antenna object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates an object, C, having the same property values and same states as
H. If H is locked, so is C.

 directivity

1-333

directivity

System object: phased.CosineAntennaElement
Package: phased

Directivity of cosine antenna element

Syntax

D = directivity(H,FREQ,ANGLE)

Description

D = directivity(H,FREQ,ANGLE) returns the “Directivity (dBi)” on page 1-335
of a cosine antenna element, H, at frequencies specified by FREQ and in direction angles
specified by ANGLE.

Input Arguments

H — Cosine antenna element
System object

Cosine antenna element specified as a phased.CosineAntennaElement System object.
Example: H = phased.CosineAntennaElement;

FREQ — Frequency for computing directivity and patterns
positive scalar | 1-by-L real-valued row vector

Frequencies for computing directivity and patterns, specified as a positive scalar or 1-
by-L real-valued row vector. Frequency units are in hertz.

• For an antenna or microphone element, FREQ must lie within the range of
values specified by the FrequencyRange or FrequencyVector property of the
element. Otherwise, the element produces no response and the directivity is

1 Alphabetical List

1-334

returned as –Inf. Most elements use the FrequencyRange property except for
phased.CustomAntennaElement and phased.CustomMicrophoneElement, which use
the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements
that make up the array. Otherwise, the array produces no response and the
directivity is returned as –Inf.

Example: [1e8 2e8]

Data Types: double

ANGLE — Angles for computing directivity
1-by-M real-valued row vector | 2-by-M real-valued matrix

Angles for computing directivity, specified as a 1-by-M real-valued row vector or a 2-
by-M real-valued matrix, where M is the number of angular directions. Angle units
are in degrees. If ANGLE is a 2-by-M matrix, then each column specifies a direction in
azimuth and elevation, [az;el]. The azimuth angle must lie between –180° and 180°.
The elevation angle must lie between –90° and 90°.

If ANGLE is a 1-by-M vector, then each entry represents an azimuth angle, with the
elevation angle assumed to be zero.

The azimuth angle is the angle between the x-axis and the projection of the direction
vector onto the xy plane. This angle is positive when measured from the x-axis toward the
y-axis. The elevation angle is the angle between the direction vector and xy plane. This
angle is positive when measured towards the z-axis.
Example: [45 60; 0 10]

Data Types: double

Output Arguments

D — Directivity
M-by-L matrix

Directivity, returned as an M-by-L matrix whose columns contain the directivities at the
M angles specified by ANGLE. Each column corresponds to one of the L frequency values
specified in FREQ. Directivity units are in dBi.

 directivity

1-335

Definitions

Directivity (dBi)

Directivity describes the directionality of the radiation pattern of a sensor element
or array of sensor elements. Higher directivity is desired when you want to transmit
more radiation in a specific direction. Directivity is the ratio of the transmitted radiant
intensity in a specified direction to the radiant intensity transmitted by an isotropic
radiator with the same total transmitted power

D
U

P
=

()
4p

q jrad

total

,

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal
is the total power transmitted by an isotropic radiator. For a receiving element or array,
directivity measures the sensitivity toward radiation arriving from a specific direction.
The principle of reciprocity shows that the directivity of an element or array used for
reception equals the directivity of the same element or array used for transmission.
When converted to decibels, the directivity is denoted as dBi. For information on
directivity, read the notes on “Element directivity” and “Array directivity”.

Computing directivity requires integrating the far-field transmitted radiant intensity
over all directions in space to obtain the total transmitted power. There is a difference
between how that integration is performed when Antenna Toolbox antennas are used
in a phased array and when Phased Array System Toolbox antennas are used. When
an array contains Antenna Toolbox antennas, the directivity computation is performed
using a triangular mesh created from 500 regularly spaced points over a sphere. For
Phased Array System Toolbox antennas, the integration uses a uniform rectangular
mesh of points spaced 1° apart in azimuth and elevation over a sphere. There may be
significant differences in computed directivity, especially for large arrays.

Examples

Directivity of Cosine Antenna Element

Compute the directivity of a cosine antenna element for a set of seven azimuth directions
centered around boresight (zero degrees azimuth and zero degrees elevation). All
elevation angles are set to zero degrees.

1 Alphabetical List

1-336

Create a cosine antenna element system object with the CosinePower exponents set to
1.8.

myAnt = phased.CosineAntennaElement('CosinePower',[1.8,1.8]);

Set the directivity angles so that the elevation angles are zero. Set the frequency to 1
GHz.

ang = [-30,-20,-10,0,10,20,30; 0,0,0,0,0,0,0];

freq = 1e9;

Compute the directivity

d = directivity(myAnt,freq,ang)

d =

 7.3890

 8.6654

 9.3985

 9.6379

 9.3985

 8.6654

 7.3890

The maximum directivity is at boresight.

See Also
phased.CosineAntennaElement.pattern

 getNumInputs

1-337

getNumInputs
System object: phased.CosineAntennaElement
Package: phased

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of inputs
(not counting the object itself) that you must use when calling the step method. This
value changes when you alter properties that turn inputs on or off.

1 Alphabetical List

1-338

getNumOutputs
System object: phased.CosineAntennaElement
Package: phased

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value changes when you alter properties that turn outputs on or off.

 isLocked

1-339

isLocked
System object: phased.CosineAntennaElement
Package: phased

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the CosineAntennaElement
System object.

isLocked returns a logical value that indicates whether input attributes and
nontunable properties for the object are locked. The object performs an internal
initialization the first time that you execute step. This initialization locks nontunable
properties and input specifications, such as the dimensions, complexity, and data type of
the input data. After locking, isLocked returns a true value.

1 Alphabetical List

1-340

isPolarizationCapable

System object: phased.CosineAntennaElement
Package: phased

Polarization capability

Syntax

flag = isPolarizationCapable(h)

Description

flag = isPolarizationCapable(h) returns a Boolean value, flag, indicating
whether the phased.CosineAntennaElement System object supports polarization. An
antenna element supports polarization if it can create or respond to polarized fields. This
object does not support polarization.

Input Arguments

h — Cosine antenna element

Cosine antenna element specified as a phased.CosineAntennaElement System object.

Output Arguments

flag — Polarization-capability flag

Polarization-capability flag returned as a Boolean value true if the antenna element
supports polarization or false if it does not. Because the phased.CosineAntennaElement
object does not support polarization, flag is always returned as false.

 isPolarizationCapable

1-341

Examples

Cosine Antenna Does Not Support Polarization

Create a cosine antenna element using the phased.CosineAntennaElement antenna
element and show that it does not support polarization.

h = phased.CosineAntennaElement('FrequencyRange',[1.0,10]*1e9);

isPolarizationCapable(h)

ans =

 0

The returned value false (0) shows that the antenna element does not support
polarization.

1 Alphabetical List

1-342

pattern

System object: phased.CosineAntennaElement
Package: phased

Plot cosine antenna element directivity and patterns

Syntax

pattern(sElem,FREQ)

pattern(sElem,FREQ,AZ)

pattern(sElem,FREQ,AZ,EL)

pattern(___ ,Name,Value)

[PAT,AZ_ANG,EL_ANG] = pattern(___)

Description

pattern(sElem,FREQ) plots the 3-D array directivity pattern (in dBi) for the array
specified in sElem. The operating frequency is specified in FREQ.

pattern(sElem,FREQ,AZ) plots the array directivity pattern at the specified azimuth
angle.

pattern(sElem,FREQ,AZ,EL) plots the array directivity pattern at specified azimuth
and elevation angles.

pattern(___ ,Name,Value) plots the array pattern with additional options specified
by one or more Name,Value pair arguments.

[PAT,AZ_ANG,EL_ANG] = pattern(___) returns the array pattern in PAT. The
AZ_ANG output contains the coordinate values corresponding to the rows of PAT. The
EL_ANG output contains the coordinate values corresponding to the columns of PAT.
If the 'CoordinateSystem' parameter is set to 'uv', then AZ_ANG contains the
U coordinates of the pattern and EL_ANG contains the V coordinates of the pattern.
Otherwise, they are in angular units in degrees. UV units are dimensionless.

 pattern

1-343

Note: This method replaces the previous plotResponse method. To replace plots using
plotResponse plots with equivalent plots using pattern, see “Convert plotResponse to
pattern” on page 1-1955

Input Arguments

sElem — Cosine antenna element
System object

Cosine antenna element, specified as a phased.CosineAntennaElement System object.
Example: sElem = phased.CosineAntennaElement;

FREQ — Frequency for computing directivity and patterns
positive scalar | 1-by-L real-valued row vector

Frequencies for computing directivity and patterns, specified as a positive scalar or 1-
by-L real-valued row vector. Frequency units are in hertz.

• For an antenna or microphone element, FREQ must lie within the range of
values specified by the FrequencyRange or FrequencyVector property of the
element. Otherwise, the element produces no response and the directivity is
returned as –Inf. Most elements use the FrequencyRange property except for
phased.CustomAntennaElement and phased.CustomMicrophoneElement, which use
the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements
that make up the array. Otherwise, the array produces no response and the
directivity is returned as –Inf.

Example: [1e8 2e8]

Data Types: double

AZ — Azimuth angles
[-180:180] (default) | 1-by-M real-valued row vector

Azimuth angles for computing directivity and pattern, specified as a 1-by-M real-
valued row vector where M is the number of azimuth angles. Angle units are in degrees.
Azimuth angles must lie between –180° and 180°.

1 Alphabetical List

1-344

The azimuth angle is the angle between the x-axis and the projection of the direction
vector onto the xy plane. When measured from the x-axis toward the y-axis, this angle is
positive.
Example: [-45:2:45]

Data Types: double

EL — Elevation angles
[-90:90] (default) | 1-by-N real-valued row vector

Elevation angles for computing directivity and pattern, specified as a 1-by-N real-valued
row vector where N is the number of desired elevation directions. Angle units are in
degrees. The elevation angle must lie between –90° and 90°.

The elevation angle is the angle between the direction vector and xy-plane. When
measured towards the z-axis, this angle is positive.
Example: [-75:1:70]

Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'CoordinateSystem' — Plotting coordinate system
'polar' (default) | 'rectangular' | 'uv'

Plotting coordinate system of the pattern, specified as the comma-separated pair
consisting of 'CoordinateSystem' and one of 'polar', 'rectangular', or
'uv'. When 'CoordinateSystem' is set to 'polar' or 'rectangular', the
AZ and EL arguments specify the pattern azimuth and elevation, respectively. AZ
values must lie between –180° and 180°. EL values must lie between –90° and 90°. If
'CoordinateSystem' is set to 'uv', AZ and EL then specify U and V coordinates,
respectively. AZ and EL must lie between -1 and 1.

Example: 'uv'

Data Types: char

 pattern

1-345

'Type' — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and
one of

• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed

pattern is for the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field

pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'

Data Types: char

'Normalize' — Display normalize pattern
true (default) | false

Display normalized pattern, specified as the comma-separated pair consisting of
'Normalize' and a Boolean. Set this parameter to true to display a normalized pattern.
When you set 'Type' to 'directivity', this parameter does not apply. Directivity
patterns are already normalized.
Example:
Data Types: logical

'PlotStyle' — Plotting style
'overlay' (default) | 'waterfall'

Plotting style, specified as the comma-separated pair consisting of 'Plotstyle' and
either 'overlay' or 'waterfall'. This parameter applies when you specify multiple
frequencies in FREQ in 2-D plots. You can draw 2-D plots by setting one of the arguments
AZ or EL to a scalar.

Example:
Data Types: char

1 Alphabetical List

1-346

Output Arguments
PAT — Element pattern
M-by-N real-valued matrix

Element pattern, returned as an M-by-N real-valued matrix. The dimensions of PAT
correspond to the dimensions of the output arguments AZ_ANG and EL_ANG.

AZ_ANG — Azimuth angles
scalar | 1-by-M real-valued row vector

Azimuth angles for displaying directivity or response pattern, returned as a scalar or 1-
by-M real-valued row vector corresponding to the dimension set in AZ. The rows of PAT
correspond to the values in AZ_ANG.

EL_ANG — Elevation angles
scalar | 1-by-N real-valued row vector

Elevation angles for displaying directivity or response, returned as a scalar or 1-by-N
real-valued row vector corresponding to the dimension set in EL. The columns of PAT
correspond to the values in EL_ANG.

More About

Directivity

Directivity describes the directionality of the radiation pattern of a sensor element
or array of sensor elements. Higher directivity is desired when you want to transmit
more radiation in a specific direction. Directivity is the ratio of the transmitted radiant
intensity in a specified direction to the radiant intensity transmitted by an isotropic
radiator with the same total transmitted power

D
U

P
=

()
4p

q jrad

total

,

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal
is the total power transmitted by an isotropic radiator. For a receiving element or array,
directivity measures the sensitivity toward radiation arriving from a specific direction.
The principle of reciprocity shows that the directivity of an element or array used for
reception equals the directivity of the same element or array used for transmission.

 pattern

1-347

When converted to decibels, the directivity is denoted as dBi. For information on
directivity, read the notes on “Element directivity” and “Array directivity”.

Computing directivity requires integrating the far-field transmitted radiant intensity
over all directions in space to obtain the total transmitted power. There is a difference
between how that integration is performed when Antenna Toolbox antennas are used
in a phased array and when Phased Array System Toolbox antennas are used. When
an array contains Antenna Toolbox antennas, the directivity computation is performed
using a triangular mesh created from 500 regularly spaced points over a sphere. For
Phased Array System Toolbox antennas, the integration uses a uniform rectangular
mesh of points spaced 1° apart in azimuth and elevation over a sphere. There may be
significant differences in computed directivity, especially for large arrays.

Convert plotResponse to pattern

For antenna, microphone, and array System objects, the pattern method replaces the
plotResponse method. In addition, two new simplified methods exist just to draw
2-D azimuth and elevation pattern plots. These methods are azimuthPattern and
elevationPattern.

The following table is a guide for converting your code from using plotResponse to
pattern. Notice that some of the inputs have changed from input arguments to Name-
Value pairs and conversely. The general pattern method syntax is

pattern(H,FREQ,AZ,EL,'Name1','Value1',...,'NameN','ValueN')

plotResponse Inputs plotResponse Description pattern Inputs

H argument Antenna, microphone, or array
System object.

H argument (no change)

FREQ argument Operating frequency. FREQ argument (no change)
V argument Propagation speed. This

argument is used only for
arrays.

'PropagationSpeed' name-
value pair. This parameter is
only used for arrays.

'Format' and 'RespCut'
name-value pairs

These options work together to
let you create a plot in angle
space (line or polar style) or
UV space. They also determine
whether the plot is 2-D or 3-
D. This table shows you how to

'CoordinateSystem' name-
value pair used together with
the AZ and EL input arguments.

'CoordinateSystem' has
the same options as the

1 Alphabetical List

1-348

plotResponse Inputs plotResponse Description pattern Inputs

create different types of plots
using plotResponse.

Display space

Angle space
(2D)

Set
'RespCut'

to 'Az' or

'El'. Set
'Format' to
'line' or
'polar'.

Set the display
axis using
either the
the
'AzimuthAngles'

or
'ElevationAngles'

name-value
pairs.

Angle space
(3D)

Set
'RespCut'

to '3D'. Set
'Format' to
'line' or
'polar'.

Set the display
axis using
both the
'AzimuthAngles'

and'ElevationAngles'
name-value
pairs.

UV space (2D) Set
'RespCut'

plotResponse method
'Format'name-value pair,
except that 'line' is now
named 'rectangular'. The
table shows how to create
different types of plots using
pattern.

Display space

Angle space
(2D)

Set
'Coordinate

System' to
'rectangular'

or 'polar'.
Specify either
AZ or EL as a
scalar.

Angle space
(3D)

Set
'Coordinate

System' to
'rectangular'

or 'polar'.
Specify both
AZ and EL as
vectors.

UV space (2D) Set
'Coordinate

System' to
'uv'. Use AZ
to specify a U-
space vector.
Use EL to
specify a V-
space scalar.

UV space (3D) Set
'Coordinate

System' to

 pattern

1-349

plotResponse Inputs plotResponse Description pattern Inputs

Display space

to'U'. Set
'Format'

to 'UV'. Set
the display
range using
the 'UGrid'
name-value
pair.

UV space (3D) Set
'RespCut'

to'3D'. Set
'Format' to
'UV'. Set the
display range
using both
the 'UGrid'
and 'VGrid'
name-value
pairs.

Display space

'uv'. Use AZ
to specify a U-
space vector.
Use EL to
specify a V-
space vector.

If you set CoordinateSystem
to 'uv', enter the UV grid
values using AZ and EL.

'CutAngle' name-value pair Constant angle at to take an
azimuth or elevation cut. When
producing a 2-D plot and when
'RespCut' is set to 'Az' or
'El', use 'CutAngle' to set
the slice across which to view
the plot.

No equivalent name-value pair.
To create a cut, specify either AZ
or EL as a scalar, not a vector.

'NormalizeResponse' name-
value pair

Normalizes the plot.
When 'Unit' is set to
'dbi', you cannot specify
'NormalizeResponse'.

'Normalize' name-value
pair. When 'Type' is set to
'directivity',

you cannot specify
'Normalize'.
.

1 Alphabetical List

1-350

plotResponse Inputs plotResponse Description pattern Inputs

'OverlayFreq' name-value
pair

Plot multiple frequencies on
the same 2-D plot. Available
only when 'Format' is
set to 'line' or 'uv' and
'RespCut' is not set to '3D'.
The value true produces an
overlay plot and the value
false produces a waterfall
plot.

'PlotStyle' name-value pair
plots multiple frequencies on the
same 2-D plot.

The values 'overlay' and
'waterfall' correspond to
'OverlayFreq' values of
true and false. The option
'waterfall' is allowed only
when 'CoordinateSystem' is
set to 'rectangular' or 'uv'.

'Polarization' name-value
pair

Determines how to plot
polarized fields. Options are
'None', 'Combined', 'H', or
'V'.

'Polarization' name-value
pair determines how to plot
polarized fields. The 'None'
option is removed. The options
'Combined', 'H', or 'V' are
unchanged.

'Unit' name-value pair Determines the plot units.
Choose 'db', 'mag', 'pow',
or 'dbi', where the default is
'db'.

'Type' name-value pair, uses
equivalent options with different
names

plotResponse pattern

'db' 'powerdb'

'mag' 'efield'

'pow' 'power'

'dbi' 'directivity'

'Weights' name-value pair Array element tapers (or
weights).

'Weights' name-value pair (no
change).

'AzimuthAngles' name-value
pair

Azimuth angles used to display
the antenna or array response.

AZ argument

'ElevationAngles' name-
value pair

Elevation angles used to
display the antenna or array
response.

EL argument

 pattern

1-351

plotResponse Inputs plotResponse Description pattern Inputs

'UGrid' name-value pair Contains U coordinates in UV-
space.

AZ argument when
'CoordinateSystem' name-
value pair is set to 'uv'

'VGrid' name-value pair Contains V-coordinates in UV-
space.

EL argument when
'CoordinateSystem' name-
value pair is set to 'uv'

Examples

Plot 3-D Polar Pattern of Cosine Antenna

Construct a cosine antenna element using default parameters. Then, plot the 3-D
polar power pattern. Assume the antenna operating frequency is 1 GHz. Then, plot the
antenna's response in 3-D polar format.

sCos = phased.CosineAntennaElement;

fc = 1e9;

pattern(sCos,fc,[-180:180],[-90:90],...

 'Type','powerdb',...

 'CoordinateSystem','polar')

1 Alphabetical List

1-352

Plot Azimuth-Cut of Cosine Antenna Response

Construct a cosine antenna element using default parameters. Then, plot the pattern
of field magnitude. Assume the antenna operating frequency is 1 GHz. Restrict the
response to the range of azimuth angles from -30 to 30 degrees in 0.1 degree increments.
The default elevation angle is 0 degrees.

sCos = phased.CosineAntennaElement;

fc = 1e9;

pattern(sCos,fc,[-30:0.1:30],0,...

 'Type','efield',...

 'CoordinateSystem','polar')

 pattern

1-353

Directivity of Cosine Antenna

Construct a cosine-pattern antenna. Assume the antenna works between 1 and 2 GHz
and its operating frequency is 1.5 GHz. Set the azimuth angle cosine power to 2.5 and the
elevation angle cosine power to 3.5. Then, plot an elevation cut of its directivity.

sCos = phased.CosineAntennaElement('FrequencyRange',...

 [1e9 2e9],'CosinePower',[2.5,3.5]);

fc = 1.5e9;

pattern(sCos,fc,0,[-90:90],...

 'Type','directivity',...

 'CoordinateSystem','rectangular')

1 Alphabetical List

1-354

The directivity is maximum at 0 degrees elevation and attains a value of approximately
12 dB.

See Also
phased.CosineAntennaElement.patternAzimuth |
phased.CosineAntennaElement.patternElevation

Introduced in R2015a

 patternAzimuth

1-355

patternAzimuth
System object: phased.CosineAntennaElement
Package: phased

Plot cosine antenna element directivity or pattern versus azimuth

Syntax
patternAzimuth(sElem,FREQ)

patternAzimuth(sElem,FREQ,EL)

patternAzimuth(sElem,FREQ,EL,Name,Value)

PAT = patternAzimuth(___)

Description
patternAzimuth(sElem,FREQ) plots the 2-D element directivity pattern versus
azimuth (in dBi) for the element sElem at zero degrees elevation angle. The argument
FREQ specifies the operating frequency.

patternAzimuth(sElem,FREQ,EL), in addition, plots the 2-D element directivity
pattern versus azimuth (in dBi) at the elevation angle specified by EL. When EL is a
vector, multiple overlaid plots are created.

patternAzimuth(sElem,FREQ,EL,Name,Value) plots the element pattern with
additional options specified by one or more Name,Value pair arguments.

PAT = patternAzimuth(___) returns the element pattern. PAT is a matrix whose
entries represent the pattern at corresponding sampling points specified by the
'Azimuth' parameter and the EL input argument.

Input Arguments
sElem — Cosine antenna element
System object

Cosine antenna element, specified as a phased.CosineAntennaElement System object.
Example: sElem = phased.CosineAntennaElement;

1 Alphabetical List

1-356

FREQ — Frequency for computing directivity and pattern
positive scalar

Frequency for computing directivity and pattern, specified as a positive scalar. Frequency
units are in hertz.

• For an antenna or microphone element, FREQ must lie within the range of values
specified by the FrequencyRange or the FrequencyVector property of the
element. Otherwise, the element produces no response and the directivity is
returned as –Inf. Most elements use the FrequencyRange property except for
phased.CustomAntennaElement and phased.CustomMicrophoneElement, which use
the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements
that make up the array. Otherwise, the array produces no response and the
directivity is returned as –Inf.

Example: 1e8

Data Types: double

EL — Elevation angles
1-by-N real-valued row vector

Elevation angles for computing array directivity and pattern, specified as a 1-by-N real-
valued row vector, where N is the number of requested elevation directions. Angle units
are in degrees. The elevation angle must lie between –90° and 90°.

The elevation angle is the angle between the direction vector and the xy plane. When
measured toward the z-axis, this angle is positive.
Example: [0,10,20]

Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Type' — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

 patternAzimuth

1-357

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and
one of

• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed

pattern is for the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field

pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'

Data Types: char

'Azimuth' — Azimuth angles
[-180:180] (default) | 1-by-P real-valued row vector

Azimuth angles, specified as the comma-separated pair consisting of 'Azimuth' and a 1-
by-P real-valued row vector. Azimuth angles define where the array pattern is calculated.
Example: 'Azimuth',[-90:2:90]

Data Types: double

Output Arguments
PAT — Element directivity or pattern
L-by-N real-valued matrix

Element directivity or pattern, returned as an L-by-N real-valued matrix. The dimension
L is the number of azimuth values determined by the 'Azimuth' name-value pair
argument. The dimension N is the number of elevation angles, as determined by the EL
input argument.

Definitions

Directivity

Directivity describes the directionality of the radiation pattern of a sensor element
or array of sensor elements. Higher directivity is desired when you want to transmit

1 Alphabetical List

1-358

more radiation in a specific direction. Directivity is the ratio of the transmitted radiant
intensity in a specified direction to the radiant intensity transmitted by an isotropic
radiator with the same total transmitted power

D
U

P
=

()
4p

q jrad

total

,

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal
is the total power transmitted by an isotropic radiator. For a receiving element or array,
directivity measures the sensitivity toward radiation arriving from a specific direction.
The principle of reciprocity shows that the directivity of an element or array used for
reception equals the directivity of the same element or array used for transmission.
When converted to decibels, the directivity is denoted as dBi. For information on
directivity, read the notes on “Element directivity” and “Array directivity”.

Computing directivity requires integrating the far-field transmitted radiant intensity
over all directions in space to obtain the total transmitted power. There is a difference
between how that integration is performed when Antenna Toolbox antennas are used
in a phased array and when Phased Array System Toolbox antennas are used. When
an array contains Antenna Toolbox antennas, the directivity computation is performed
using a triangular mesh created from 500 regularly spaced points over a sphere. For
Phased Array System Toolbox antennas, the integration uses a uniform rectangular
mesh of points spaced 1° apart in azimuth and elevation over a sphere. There may be
significant differences in computed directivity, especially for large arrays.

Examples

Reduced Azimuth Pattern of Cosine Antenna Element

Plot an azimuth cut of directivity of a cosine antenna element at 0 and 10 degrees
elevation. Assume the operating frequency is 500 MHz.

Create the Antenna Element

fc = 500e6;

sCos = phased.CosineAntennaElement('FrequencyRange',[100,900]*1e6,...

 'CosinePower',[3,2]);

patternAzimuth(sCos,fc,[0 30])

 patternAzimuth

1-359

Plot a reduced range of azimuth angles using the Azimuth parameter. Notice the change
in scale.

patternAzimuth(sCos,fc,[0 30],'Azimuth',[-20:20])

1 Alphabetical List

1-360

See Also
phased.CosineAntennaElement.pattern |
phased.CosineAntennaElement.patternElevation

Introduced in R2015a

 patternElevation

1-361

patternElevation

System object: phased.CosineAntennaElement
Package: phased

Plot cosine antenna element directivity or pattern versus elevation

Syntax

patternElevation(sElem,FREQ)

patternElevation(sElem,FREQ,AZ)

patternElevation(sElem,FREQ,AZ,Name,Value)

PAT = patternElevation(___)

Description

patternElevation(sElem,FREQ) plots the 2-D element directivity pattern versus
elevation (in dBi) for the element sElem at zero degrees azimuth angle. The argument
FREQ specifies the operating frequency.

patternElevation(sElem,FREQ,AZ), in addition, plots the 2-D element directivity
pattern versus elevation (in dBi) at the azimuth angle specified by AZ. When AZ is a
vector, multiple overlaid plots are created.

patternElevation(sElem,FREQ,AZ,Name,Value) plots the element pattern with
additional options specified by one or more Name,Value pair arguments.

PAT = patternElevation(___) returns the element pattern. PAT is a matrix
whose entries represent the pattern at corresponding sampling points specified by the
'Elevation' parameter and the AZ input argument.

Input Arguments

sElem — Cosine antenna element
System object

1 Alphabetical List

1-362

Cosine antenna element, specified as a phased.CosineAntennaElement System object.
Example: sElem = phased.CosineAntennaElement;

FREQ — Frequency for computing directivity and pattern
positive scalar

Frequency for computing directivity and pattern, specified as a positive scalar. Frequency
units are in hertz.

• For an antenna or microphone element, FREQ must lie within the range of values
specified by the FrequencyRange or the FrequencyVector property of the
element. Otherwise, the element produces no response and the directivity is
returned as –Inf. Most elements use the FrequencyRange property except for
phased.CustomAntennaElement and phased.CustomMicrophoneElement, which use
the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements
that make up the array. Otherwise, the array produces no response and the
directivity is returned as –Inf.

Example: 1e8

Data Types: double

AZ — Azimuth angles for computing directivity and pattern
1-by-N real-valued row vector

Azimuth angles for computing array directivity and pattern, specified as a 1-by-M real-
valued row vector where N is the number of desired azimuth directions. Angle units are
in degrees. The azimuth angle must lie between –180° and 180°.

The azimuth angle is the angle between the x-axis and the projection of the direction
vector onto the xy plane. This angle is positive when measured from the x-axis toward the
y-axis.
Example: [0,10,20]

Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

 patternElevation

1-363

quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Type' — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and
one of

• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed

pattern is for the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field

pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'

Data Types: char

'Elevation' — Elevation angles
[-90:90] (default) | 1-by-P real-valued row vector

Elevation angles, specified as the comma-separated pair consisting of 'Elevation'
and a 1-by-P real-valued row vector. Elevation angles define where the array pattern is
calculated.
Example: 'Elevation',[-90:2:90]

Data Types: double

Output Arguments

PAT — Element directivity or pattern
L-by-N real-valued matrix

Element directivity or pattern, returned as an L-by-N real-valued matrix. The dimension
L is the number of elevation angles determined by the 'Elevation' name-value pair
argument. The dimension N is the number of azimuth angles determined by the AZ
argument.

1 Alphabetical List

1-364

Definitions

Directivity

Directivity describes the directionality of the radiation pattern of a sensor element
or array of sensor elements. Higher directivity is desired when you want to transmit
more radiation in a specific direction. Directivity is the ratio of the transmitted radiant
intensity in a specified direction to the radiant intensity transmitted by an isotropic
radiator with the same total transmitted power

D
U

P
=

()
4p

q jrad

total

,

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal
is the total power transmitted by an isotropic radiator. For a receiving element or array,
directivity measures the sensitivity toward radiation arriving from a specific direction.
The principle of reciprocity shows that the directivity of an element or array used for
reception equals the directivity of the same element or array used for transmission.
When converted to decibels, the directivity is denoted as dBi. For information on
directivity, read the notes on “Element directivity” and “Array directivity”.

Computing directivity requires integrating the far-field transmitted radiant intensity
over all directions in space to obtain the total transmitted power. There is a difference
between how that integration is performed when Antenna Toolbox antennas are used
in a phased array and when Phased Array System Toolbox antennas are used. When
an array contains Antenna Toolbox antennas, the directivity computation is performed
using a triangular mesh created from 500 regularly spaced points over a sphere. For
Phased Array System Toolbox antennas, the integration uses a uniform rectangular
mesh of points spaced 1° apart in azimuth and elevation over a sphere. There may be
significant differences in computed directivity, especially for large arrays.

Examples

Reduced Elevation Pattern of Cosine Antenna Element

Plot an elevation cut of directivity of a cosine antenna element at 45 and 55 degrees
azimuth. Assume the operating frequency is 500 MHz.

 patternElevation

1-365

Create the Antenna Element

fc = 500e6;

sCos = phased.CosineAntennaElement('FrequencyRange',[100,900]*1e6,...

 'CosinePower',[3,2]);

patternElevation(sCos,fc,[45 55])

Plot a reduced range of azimuth angles using the Azimuth parameter. Notice the change
in scale.

patternElevation(sCos,fc,[45 55],'Elevation',[-20:20])

1 Alphabetical List

1-366

See Also
phased.CosineAntennaElement.pattern |
phased.CosineAntennaElement.patternAzimuth

Introduced in R2015a

 plotResponse

1-367

plotResponse
System object: phased.CosineAntennaElement
Package: phased

Plot response pattern of antenna

Syntax

plotResponse(H,FREQ)

plotResponse(H,FREQ,Name,Value)

hPlot = plotResponse(___)

Description

plotResponse(H,FREQ) plots the element response pattern along the azimuth cut,
where the elevation angle is 0. The operating frequency is specified in FREQ.

plotResponse(H,FREQ,Name,Value) plots the element response with additional
options specified by one or more Name,Value pair arguments.

hPlot = plotResponse(___) returns handles of the lines or surface in the figure
window, using any of the input arguments in the previous syntaxes.

Input Arguments

H

Element System object

FREQ

Operating frequency in Hertz specified as a scalar or 1–by-K row vector. FREQ must
lie within the range specified by the FrequencyVector property of H. If you set the
'RespCut' property of H to '3D', FREQ must be a scalar. When FREQ is a row vector,
plotResponse draws multiple frequency responses on the same axes.

1 Alphabetical List

1-368

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'CutAngle'

Cut angle specified as a scalar. This argument is applicable only when RespCut is 'Az'
or 'El'. If RespCut is 'Az', CutAngle must be between –90 and 90. If RespCut is
'El', CutAngle must be between –180 and 180.

Default: 0

'Format'

Format of the plot, using one of 'Line', 'Polar', or 'UV'. If you set Format to 'UV',
FREQ must be a scalar.

Default: 'Line'

'NormalizeResponse'

Set this value to true to normalize the response pattern. Set this value to false to plot
the response pattern without normalizing it. This parameter is not applicable when you
set the Unit parameter value to 'dbi'.

Default: true

'OverlayFreq'

Set this value to true to overlay pattern cuts in a 2-D line plot. Set this value to false
to plot pattern cuts against frequency in a 3-D waterfall plot. If this value is false, FREQ
must be a vector with at least two entries.

This parameter applies only when Format is not 'Polar' and RespCut is not '3D'.

Default: true

'Polarization'

Specify the polarization options for plotting the antenna response pattern. The allowable
values are |'None' | 'Combined' | 'H' | 'V' | where

 plotResponse

1-369

• 'None' specifies plotting a nonpolarized response pattern
• 'Combined' specifies plotting a combined polarization response pattern
• 'H' specifies plotting the horizontal polarization response pattern
• 'V' specifies plotting the vertical polarization response pattern

For antennas that do not support polarization, the only allowed value is 'None'. This
parameter is not applicable when you set the Unit parameter value to 'dbi'.

Default: 'None'

'RespCut'

Cut of the response. Valid values depend on Format, as follows:

• If Format is 'Line' or 'Polar', the valid values of RespCut are 'Az', 'El', and
'3D'. The default is 'Az'.

• If Format is 'UV', the valid values of RespCut are 'U' and '3D'. The default is 'U'.

If you set RespCut to '3D', FREQ must be a scalar.

'Unit'

The unit of the plot. Valid values are 'db', 'mag', 'pow', or 'dbi'. This parameter
determines the type of plot that is produced.

Unit value Plot type

db power pattern in dB
scale

mag field pattern
pow power pattern
dbi directivity

Default: 'db'

'AzimuthAngles'

Azimuth angles for plotting element response, specified as a row vector. The
AzimuthAngles parameter sets the display range and resolution of azimuth angles for

1 Alphabetical List

1-370

visualizing the radiation pattern. This parameter is allowed only when the RespCut
parameter is set to 'Az' or '3D' and the Format parameter is set to 'Line' or
'Polar'. The values of azimuth angles should lie between –180° and 180° and must be
in nondecreasing order. When you set the RespCut parameter to '3D', you can set the
AzimuthAngles and ElevationAngles parameters simultaneously.

Default: [-180:180]

'ElevationAngles'

Elevation angles for plotting element response, specified as a row vector. The
ElevationAngles parameter sets the display range and resolution of elevation
angles for visualizing the radiation pattern. This parameter is allowed only when the
RespCut parameter is set to 'El' or '3D' and the Format parameter is set to 'Line'
or 'Polar'. The values of elevation angles should lie between –90° and 90° and must be
in nondecreasing order. When you set the RespCut parameter to '3D', you can set the
ElevationAngles and AzimuthAngles parameters simultaneously.

Default: [-90:90]

'UGrid'

U coordinate values for plotting element response, specified as a row vector. The UGrid
parameter sets the display range and resolution of the U coordinates for visualizing
the radiation pattern in U/V space. This parameter is allowed only when the Format
parameter is set to 'UV' and the RespCut parameter is set to 'U' or '3D'. The values of
UGrid should be between –1 and 1 and should be specified in nondecreasing order. You
can set the UGrid and VGrid parameters simultaneously.

Default: [-1:0.01:1]

'VGrid'

V coordinate values for plotting element response, specified as a row vector. The VGrid
parameter sets the display range and resolution of the V coordinates for visualizing
the radiation pattern in U/V space. This parameter is allowed only when the Format
parameter is set to 'UV' and the RespCut parameter is set to '3D'. The values of VGrid
should be between –1 and 1 and should be specified in nondecreasing order. You can set
the VGrid and UGrid parameters simultaneously.

Default: [-1:0.01:1]

 plotResponse

1-371

Examples

Plot 3-D Polar Response of Cosine Antenna

This example shows how to plot the 3-D polar response of a cosine antenna element.
Construct a cosine antenna element using default parameters. Assume the antenna
operating frequency is 1 GHz. Then, plot the antenna's response in 3-D polar format.

hcos = phased.CosineAntennaElement;

plotResponse(hcos,1e9,'Format','Polar','RespCut','3D');

1 Alphabetical List

1-372

Plot Azimuth-Cut of Cosine Antenna Response

This example shows how to plot an azimuth-cut of the cosine antenna response.
Construct a cosine antenna element using default parameters. Assume the antenna
operating frequency is 1 GHz. Restrict the response to the range of azimuth angles from
-30 to 30 degrees in 0.1 degree increments. The default elevation angle is 0 degrees.

hcos = phased.CosineAntennaElement;

plotResponse(hcos,1e9,'Format','Polar','RespCut','Az',...

 'AzimuthAngles',[-30:0.1:30],'Unit','mag');

 plotResponse

1-373

Plot Directivity of Cosine Antenna

This example shows how to construct a cosine-pattern antenna and plot an elevation
cut of its directivity. Assume the antenna works between 1 and 2 GHz and its operating
frequency is 1.5 GHz. Set the azimuth angle cosine power to 2.5 and the elevation angle
cosine power to 3.5.

sCos = phased.CosineAntennaElement('FrequencyRange',...

 [1e9 2e9],'CosinePower',[2.5,3.5]);

plotResponse(sCos,1.5e9,'RespCut','El','Unit','dbi');

1 Alphabetical List

1-374

The directivity is maximum at 0 degrees elevation and attains a value of approximately
12 dB.

See Also
azel2uv | uv2azel

 release

1-375

release
System object: phased.CosineAntennaElement
Package: phased

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

1 Alphabetical List

1-376

step
System object: phased.CosineAntennaElement
Package: phased

Output response of antenna element

Syntax

RESP = step(H,FREQ,ANG)

Description

RESP = step(H,FREQ,ANG) returns the antenna’s voltage response RESP at operating
frequencies specified in FREQ and directions specified in ANG.

Note: The object performs an initialization the first time the step method is executed.
This initialization locks nontunable properties and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Input Arguments

H

Antenna element object.

FREQ

Operating frequencies of antenna in hertz. FREQ is a row vector of length L.

ANG

Directions in degrees. ANG can be either a 2-by-M matrix or a row vector of length M.

 step

1-377

If ANG is a 2-by-M matrix, each column of the matrix specifies the direction in the
form [azimuth; elevation]. The azimuth angle must be between –180 and 180 degrees,
inclusive. The elevation angle must be between –90 and 90 degrees, inclusive.

If ANG is a row vector of length M, each element specifies a direction’s azimuth angle. In
this case, the corresponding elevation angle is assumed to be 0.

Output Arguments

RESP

Voltage response of antenna element specified as an M-by-L, complex-valued matrix. In
this matrix, M represents the number of angles specified in ANG while L represents the
number of frequencies specified in FREQ.

Definitions

Cosine Response

The cosine response, or cosine pattern, is given by:

P az el az el
m n(,) cos ()cos ()=

In this expression:

• az is the azimuth angle.
• el is the elevation angle.
• The exponents m and n are real numbers greater than or equal to 1.

The response is defined for azimuth and elevation angles between –90 and 90 degrees,
inclusive. There is no response at the back of a cosine antenna. The cosine response
pattern achieves a maximum value of 1 at 0 degrees azimuth and elevation. Raising the
response pattern to powers greater than one concentrates the response in azimuth or
elevation.

1 Alphabetical List

1-378

Examples

Construct a cosine antenna element. The cosine response is raised to a power of 1.5. The
antenna frequency range is the IEEE® X band from 8 to 12 GHz. The antenna operates at
10 GHz. Obtain the antenna's response for an incident angle of 30 degrees azimuth and 5
degrees elevation.

hant = phased.CosineAntennaElement(...

 'FrequencyRange',[8e9 12e9],...

 'CosinePower',1.5);

% operating frequency

fc = 10e9;

% incident angle

ang = [30;5];

% use the step method to obtain the antenna's response

resp = step(hant,fc,ang);

See Also
phitheta2azel | uv2azel

 phased.CrossedDipoleAntennaElement System object

1-379

phased.CrossedDipoleAntennaElement System object
Package: phased

Crossed-dipole antenna element

Description
The phased.CrossedDipoleAntennaElement System object models a crossed-
dipole antenna element. A crossed-dipole antenna is often used for generating circularly
polarized fields. A crossed-dipole antenna is formed from two orthogonal short-dipole
antennas, one along y-axis and the other along the z-axis in the antenna's local
coordinate system. This antenna object generates right-handed circularly polarized fields
along the x-axis (defined by 0° azimuth and 0° elevation angles).

To compute the response of the antenna element for specified directions:

1 Define and set up your crossed-dipole antenna element. See “Construction” on page
1-379.

2 Call step to compute the antenna response according to the properties of
phased.CrossedDipoleAntennaElement. The behavior of step is specific to each
object in the toolbox.

Construction
h = phased.CrossedDipoleAntennaElement creates the system object, h, to model a
crossed-dipole antenna element.

h = phased.CrossedDipoleAntennaElement(Name,Value) creates
the system object, h, with each specified property Name set to the specified
Value. You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties
FrequencyRange

Antenna operating frequency range

1 Alphabetical List

1-380

Antenna operating frequency range specified as a 1-by-2 row vector in the form of
[LowerBound HigherBound]. This defines the frequency range over which the antenna
has a response. The antenna element has no response outside the specified frequency
range.

Default: [0 1e20]

Methods
clone Create crossed-dipole antenna object with

same property values
directivity Directivity of crossed-dipole antenna

element
getNumInputs Number of expected inputs to step method
getNumOutputs Number of outputs from step method
isLocked Locked status for input attributes and

nontunable properties
isPolarizationCapable Polarization capability
pattern Plot crossed-dipole antenna element

directivity and patterns
patternAzimuth Plot crossed-dipole antenna element

directivity or pattern versus azimuth
patternElevation Plot crossed-dipole antenna element

directivity or pattern versus elevation
plotResponse Plot response pattern of antenna
release Allow property value and input

characteristics changes
step Output response of antenna element

Examples
Plot Response of a Crossed-Dipole Antenna

Examine the response patterns of a crossed-dipole antenna used in an L-band radar with
a frequency range between 1-2 GHz.

 phased.CrossedDipoleAntennaElement System object

1-381

First, set up the radar parameters, and obtain the vertical and horizontal polarization
responses at five different directions: elevation angles -30, -15, 0, 15 and 30 degrees, all
at 0 degrees azimuth angle. The responses are computed at an operating frequency of 1.5
GHz.

sCD = phased.CrossedDipoleAntennaElement(...

 'FrequencyRange',[1,2]*1e9);

fc = 1.5e9;

resp = step(sCD,fc,[0,0,0,0,0;-30,-15,0,15,30]);

[resp.V, resp.H]

ans =

 -1.0607 + 0.0000i 0.0000 - 1.2247i

 -1.1830 + 0.0000i 0.0000 - 1.2247i

 -1.2247 + 0.0000i 0.0000 - 1.2247i

 -1.1830 + 0.0000i 0.0000 - 1.2247i

 -1.0607 + 0.0000i 0.0000 - 1.2247i

Next, draw a 3-D plot of the combined polarization response.

pattern(sCD,fc,[-180:180],[-90:90],...

 'CoordinateSystem','polar',...

 'Type','powerdb',...

 'Polarization','combined')

1 Alphabetical List

1-382

Algorithms

The total response of a crossed-dipole antenna element is a combination of its frequency
response and spatial response. phased.CrossedDipoleAntennaElement calculates
both responses using nearest neighbor interpolation, and then multiplies the responses to
form the total response.

References

[1] Mott, H., Antennas for Radar and Communications, John Wiley & Sons, 1992.

 phased.CrossedDipoleAntennaElement System object

1-383

See Also
phased.UCA | phased.ConformalArray | phased.CosineAntennaElement
| phased.CustomAntennaElement | phased.IsotropicAntennaElement |
phased.ShortDipoleAntennaElement | phased.ULA | phased.URA | phitheta2azel |
phitheta2azelpat | uv2azel | uv2azelpat

Introduced in R2013a

1 Alphabetical List

1-384

clone
System object: phased.CrossedDipoleAntennaElement
Package: phased

Create crossed-dipole antenna object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates an object, C, having the same property values and same states as
H. If H is locked, so is C.

 directivity

1-385

directivity
System object: phased.CrossedDipoleAntennaElement
Package: phased

Directivity of crossed-dipole antenna element

Syntax

D = directivity(H,FREQ,ANGLE)

Description

D = directivity(H,FREQ,ANGLE) returns the “Directivity” on page 1-387 of a
crossed-dipole antenna element, H, at frequencies specified by FREQ and in direction
angles specified by ANGLE.

Input Arguments

H — Crossed-dipole antenna element
System object

Crossed-dipole antenna element specified as a phased.CrossedDipoleAntennaElement
System object.
Example: H = phased.CrossedDipoleAntennaElement;

FREQ — Frequency for computing directivity and patterns
positive scalar | 1-by-L real-valued row vector

Frequencies for computing directivity and patterns, specified as a positive scalar or 1-
by-L real-valued row vector. Frequency units are in hertz.

• For an antenna or microphone element, FREQ must lie within the range of
values specified by the FrequencyRange or FrequencyVector property of the
element. Otherwise, the element produces no response and the directivity is

1 Alphabetical List

1-386

returned as –Inf. Most elements use the FrequencyRange property except for
phased.CustomAntennaElement and phased.CustomMicrophoneElement, which use
the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements
that make up the array. Otherwise, the array produces no response and the
directivity is returned as –Inf.

Example: [1e8 2e8]

Data Types: double

ANGLE — Angles for computing directivity
1-by-M real-valued row vector | 2-by-M real-valued matrix

Angles for computing directivity, specified as a 1-by-M real-valued row vector or a 2-
by-M real-valued matrix, where M is the number of angular directions. Angle units
are in degrees. If ANGLE is a 2-by-M matrix, then each column specifies a direction in
azimuth and elevation, [az;el]. The azimuth angle must lie between –180° and 180°.
The elevation angle must lie between –90° and 90°.

If ANGLE is a 1-by-M vector, then each entry represents an azimuth angle, with the
elevation angle assumed to be zero.

The azimuth angle is the angle between the x-axis and the projection of the direction
vector onto the xy plane. This angle is positive when measured from the x-axis toward the
y-axis. The elevation angle is the angle between the direction vector and xy plane. This
angle is positive when measured towards the z-axis.
Example: [45 60; 0 10]

Data Types: double

Output Arguments

D — Directivity
M-by-L matrix

Directivity, returned as an M-by-L matrix whose columns contain the directivities at the
M angles specified by ANGLE. Each column corresponds to one of the L frequency values
specified in FREQ. Directivity units are in dBi.

 directivity

1-387

Definitions

Directivity

Directivity describes the directionality of the radiation pattern of a sensor element
or array of sensor elements. Higher directivity is desired when you want to transmit
more radiation in a specific direction. Directivity is the ratio of the transmitted radiant
intensity in a specified direction to the radiant intensity transmitted by an isotropic
radiator with the same total transmitted power

D
U

P
=

()
4p

q jrad

total

,

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal
is the total power transmitted by an isotropic radiator. For a receiving element or array,
directivity measures the sensitivity toward radiation arriving from a specific direction.
The principle of reciprocity shows that the directivity of an element or array used for
reception equals the directivity of the same element or array used for transmission.
When converted to decibels, the directivity is denoted as dBi. For information on
directivity, read the notes on “Element directivity” and “Array directivity”.

Computing directivity requires integrating the far-field transmitted radiant intensity
over all directions in space to obtain the total transmitted power. There is a difference
between how that integration is performed when Antenna Toolbox antennas are used
in a phased array and when Phased Array System Toolbox antennas are used. When
an array contains Antenna Toolbox antennas, the directivity computation is performed
using a triangular mesh created from 500 regularly spaced points over a sphere. For
Phased Array System Toolbox antennas, the integration uses a uniform rectangular
mesh of points spaced 1° apart in azimuth and elevation over a sphere. There may be
significant differences in computed directivity, especially for large arrays.

Examples

Directivity of Crossed-Dipole Antenna Element

Compute the directivity of a crossed-dipole antenna element in several different
directions.

1 Alphabetical List

1-388

Create a crossed-dipole antenna element system object.

myAnt = phased.CrossedDipoleAntennaElement;

Set the angles of interest to be at zero-degrees constant elevation angle. The seven
azimuth angles are centered around boresight (zero degrees azimuth and zero degrees
elevation). Set the desired frequency to 1 GHz.

ang = [-30,-20,-10,0,10,20,30; 0,0,0,0,0,0,0];

freq = 1e9;

Compute the directivity along the constant elevation cut.

d = directivity(myAnt,freq,ang)

d =

 1.1811

 1.4992

 1.6950

 1.7610

 1.6950

 1.4992

 1.1811

See Also
phased.CrossedDipoleAntennaElement.pattern

 getNumInputs

1-389

getNumInputs
System object: phased.CrossedDipoleAntennaElement
Package: phased

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of inputs
(not counting the object itself) that you must use when calling the step method. This
value changes when you alter properties that turn inputs on or off.

1 Alphabetical List

1-390

getNumOutputs
System object: phased.CrossedDipoleAntennaElement
Package: phased

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value changes when you alter properties that turn outputs on or off.

 isLocked

1-391

isLocked
System object: phased.CrossedDipoleAntennaElement
Package: phased

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF, for the
phased.CrossedDipoleAntennaElement System object.

isLocked returns a logical value that indicates whether input attributes and
nontunable properties for the object are locked. The object performs an internal
initialization the first time that you execute step. This initialization locks nontunable
properties and input specifications, such as the dimensions, complexity, and data type of
the input data. After locking, isLocked returns a true value.

1 Alphabetical List

1-392

isPolarizationCapable
System object: phased.CrossedDipoleAntennaElement
Package: phased

Polarization capability

Syntax

flag = isPolarizationCapable(h)

Description

flag = isPolarizationCapable(h) returns a Boolean value, flag, indicating
whether the phased.CrossedDipoleAntennaElement System object supports polarization.
An antenna element supports polarization if it can create or respond to polarized fields.
This object supports only polarized fields.

Input Arguments

h — Crossed-dipole antenna element
phased.CrossedDipoleAntennaElementSystem object

Crossed-dipole antenna element specified as a
phased.CrossedDipoleAntennaElementSystem object.

Output Arguments

flag — Polarization-capability flag

Polarization-capability returned as a Boolean value true if the antenna
element supports polarization or false if it does not. Because the
phased.CrossedDipoleAntennaElement antenna element supports polarization, the
returned value is always true.

 isPolarizationCapable

1-393

Examples

Crossed-Dipole Antenna Element Supports Polarization

Determine whether the phased.CrossedDipoleAntennaElement antenna element
supports polarization.

h = phased.CrossedDipoleAntennaElement;

isPolarizationCapable(h)

ans =

 1

The returned value true (1) shows that the crossed-dipole antenna element supports
polarization.

1 Alphabetical List

1-394

pattern

System object: phased.CrossedDipoleAntennaElement
Package: phased

Plot crossed-dipole antenna element directivity and patterns

Syntax

pattern(sElem,FREQ)

pattern(sElem,FREQ,AZ)

pattern(sElem,FREQ,AZ,EL)

pattern(___ ,Name,Value)

[PAT,AZ_ANG,EL_ANG] = pattern(___)

Description

pattern(sElem,FREQ) plots the 3-D array directivity pattern (in dBi) for the array
specified in sElem. The operating frequency is specified in FREQ.

pattern(sElem,FREQ,AZ) plots the array directivity pattern at the specified azimuth
angle.

pattern(sElem,FREQ,AZ,EL) plots the array directivity pattern at specified azimuth
and elevation angles.

pattern(___ ,Name,Value) plots the array pattern with additional options specified
by one or more Name,Value pair arguments.

[PAT,AZ_ANG,EL_ANG] = pattern(___) returns the array pattern in PAT. The
AZ_ANG output contains the coordinate values corresponding to the rows of PAT. The
EL_ANG output contains the coordinate values corresponding to the columns of PAT.
If the 'CoordinateSystem' parameter is set to 'uv', then AZ_ANG contains the
U coordinates of the pattern and EL_ANG contains the V coordinates of the pattern.
Otherwise, they are in angular units in degrees. UV units are dimensionless.

 pattern

1-395

Note: This method replaces the previous plotResponse method. To replace plots using
plotResponse plots with equivalent plots using pattern, see “Convert plotResponse to
pattern” on page 1-1955

Input Arguments

sElem — Crossed-dipole antenna element
System object

Crossed-dipole antenna element, specified as a phased.CrossedDipoleAntennaElement
System object.
Example: sElem = phased.CrossedDipoleAntennaElement;

FREQ — Frequency for computing directivity and patterns
positive scalar | 1-by-L real-valued row vector

Frequencies for computing directivity and patterns, specified as a positive scalar or 1-
by-L real-valued row vector. Frequency units are in hertz.

• For an antenna or microphone element, FREQ must lie within the range of
values specified by the FrequencyRange or FrequencyVector property of the
element. Otherwise, the element produces no response and the directivity is
returned as –Inf. Most elements use the FrequencyRange property except for
phased.CustomAntennaElement and phased.CustomMicrophoneElement, which use
the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements
that make up the array. Otherwise, the array produces no response and the
directivity is returned as –Inf.

Example: [1e8 2e8]

Data Types: double

AZ — Azimuth angles
[-180:180] (default) | 1-by-M real-valued row vector

Azimuth angles for computing directivity and pattern, specified as a 1-by-M real-
valued row vector where M is the number of azimuth angles. Angle units are in degrees.
Azimuth angles must lie between –180° and 180°.

1 Alphabetical List

1-396

The azimuth angle is the angle between the x-axis and the projection of the direction
vector onto the xy plane. When measured from the x-axis toward the y-axis, this angle is
positive.
Example: [-45:2:45]

Data Types: double

EL — Elevation angles
[-90:90] (default) | 1-by-N real-valued row vector

Elevation angles for computing directivity and pattern, specified as a 1-by-N real-valued
row vector where N is the number of desired elevation directions. Angle units are in
degrees. The elevation angle must lie between –90° and 90°.

The elevation angle is the angle between the direction vector and xy-plane. When
measured towards the z-axis, this angle is positive.
Example: [-75:1:70]

Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'CoordinateSystem' — Plotting coordinate system
'polar' (default) | 'rectangular' | 'uv'

Plotting coordinate system of the pattern, specified as the comma-separated pair
consisting of 'CoordinateSystem' and one of 'polar', 'rectangular', or
'uv'. When 'CoordinateSystem' is set to 'polar' or 'rectangular', the
AZ and EL arguments specify the pattern azimuth and elevation, respectively. AZ
values must lie between –180° and 180°. EL values must lie between –90° and 90°. If
'CoordinateSystem' is set to 'uv', AZ and EL then specify U and V coordinates,
respectively. AZ and EL must lie between -1 and 1.

Example: 'uv'

Data Types: char

 pattern

1-397

'Type' — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and
one of

• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed

pattern is for the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field

pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'

Data Types: char

'Normalize' — Display normalize pattern
true (default) | false

Display normalized pattern, specified as the comma-separated pair consisting of
'Normalize' and a Boolean. Set this parameter to true to display a normalized pattern.
When you set 'Type' to 'directivity', this parameter does not apply. Directivity
patterns are already normalized.
Example:
Data Types: logical

'PlotStyle' — Plotting style
'overlay' (default) | 'waterfall'

Plotting style, specified as the comma-separated pair consisting of 'Plotstyle' and
either 'overlay' or 'waterfall'. This parameter applies when you specify multiple
frequencies in FREQ in 2-D plots. You can draw 2-D plots by setting one of the arguments
AZ or EL to a scalar.

Example:
Data Types: char

'Polarization' — Polarized field component
'combined' (default) | 'H' | 'V'

1 Alphabetical List

1-398

Polarized field component to display, specified as the comma-separated pair consisting
of 'Polarization' and 'combined', 'H', or 'V'. This parameter applies only when
the sensors are polarization-capable and when the 'Type' parameter is not set to
'directivity'. This table shows the meaning of the display options

'Polarization' Display

'combined' Combined H and V polarization
components

'H' H polarization component
'V' V polarization component

Example: 'V'

Data Types: char

Output Arguments

PAT — Element pattern
M-by-N real-valued matrix

Element pattern, returned as an M-by-N real-valued matrix. The dimensions of PAT
correspond to the dimensions of the output arguments AZ_ANG and EL_ANG.

AZ_ANG — Azimuth angles
scalar | 1-by-M real-valued row vector

Azimuth angles for displaying directivity or response pattern, returned as a scalar or 1-
by-M real-valued row vector corresponding to the dimension set in AZ. The rows of PAT
correspond to the values in AZ_ANG.

EL_ANG — Elevation angles
scalar | 1-by-N real-valued row vector

Elevation angles for displaying directivity or response, returned as a scalar or 1-by-N
real-valued row vector corresponding to the dimension set in EL. The columns of PAT
correspond to the values in EL_ANG.

 pattern

1-399

More About

Directivity

Directivity describes the directionality of the radiation pattern of a sensor element
or array of sensor elements. Higher directivity is desired when you want to transmit
more radiation in a specific direction. Directivity is the ratio of the transmitted radiant
intensity in a specified direction to the radiant intensity transmitted by an isotropic
radiator with the same total transmitted power

D
U

P
=

()
4p

q jrad

total

,

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal
is the total power transmitted by an isotropic radiator. For a receiving element or array,
directivity measures the sensitivity toward radiation arriving from a specific direction.
The principle of reciprocity shows that the directivity of an element or array used for
reception equals the directivity of the same element or array used for transmission.
When converted to decibels, the directivity is denoted as dBi. For information on
directivity, read the notes on “Element directivity” and “Array directivity”.

Computing directivity requires integrating the far-field transmitted radiant intensity
over all directions in space to obtain the total transmitted power. There is a difference
between how that integration is performed when Antenna Toolbox antennas are used
in a phased array and when Phased Array System Toolbox antennas are used. When
an array contains Antenna Toolbox antennas, the directivity computation is performed
using a triangular mesh created from 500 regularly spaced points over a sphere. For
Phased Array System Toolbox antennas, the integration uses a uniform rectangular
mesh of points spaced 1° apart in azimuth and elevation over a sphere. There may be
significant differences in computed directivity, especially for large arrays.

Convert plotResponse to pattern

For antenna, microphone, and array System objects, the pattern method replaces the
plotResponse method. In addition, two new simplified methods exist just to draw
2-D azimuth and elevation pattern plots. These methods are azimuthPattern and
elevationPattern.

1 Alphabetical List

1-400

The following table is a guide for converting your code from using plotResponse to
pattern. Notice that some of the inputs have changed from input arguments to Name-
Value pairs and conversely. The general pattern method syntax is

pattern(H,FREQ,AZ,EL,'Name1','Value1',...,'NameN','ValueN')

plotResponse Inputs plotResponse Description pattern Inputs

H argument Antenna, microphone, or array
System object.

H argument (no change)

FREQ argument Operating frequency. FREQ argument (no change)
V argument Propagation speed. This

argument is used only for
arrays.

'PropagationSpeed' name-
value pair. This parameter is
only used for arrays.

'Format' and 'RespCut'
name-value pairs

These options work together to
let you create a plot in angle
space (line or polar style) or
UV space. They also determine
whether the plot is 2-D or 3-
D. This table shows you how to
create different types of plots
using plotResponse.

Display space

Angle space
(2D)

Set
'RespCut'

to 'Az' or

'El'. Set
'Format' to
'line' or
'polar'.

Set the display
axis using
either the
the
'AzimuthAngles'

or
'ElevationAngles'

'CoordinateSystem' name-
value pair used together with
the AZ and EL input arguments.

'CoordinateSystem' has
the same options as the
plotResponse method
'Format'name-value pair,
except that 'line' is now
named 'rectangular'. The
table shows how to create
different types of plots using
pattern.

Display space

Angle space
(2D)

Set
'Coordinate

System' to
'rectangular'

or 'polar'.
Specify either
AZ or EL as a
scalar.

Angle space
(3D)

Set
'Coordinate

 pattern

1-401

plotResponse Inputs plotResponse Description pattern Inputs

Display space

name-value
pairs.

Angle space
(3D)

Set
'RespCut'

to '3D'. Set
'Format' to
'line' or
'polar'.

Set the display
axis using
both the
'AzimuthAngles'

and'ElevationAngles'
name-value
pairs.

UV space (2D) Set
'RespCut'

to'U'. Set
'Format'

to 'UV'. Set
the display
range using
the 'UGrid'
name-value
pair.

UV space (3D) Set
'RespCut'

to'3D'. Set
'Format' to
'UV'. Set the
display range
using both
the 'UGrid'
and 'VGrid'

Display space

System' to
'rectangular'

or 'polar'.
Specify both
AZ and EL as
vectors.

UV space (2D) Set
'Coordinate

System' to
'uv'. Use AZ
to specify a U-
space vector.
Use EL to
specify a V-
space scalar.

UV space (3D) Set
'Coordinate

System' to
'uv'. Use AZ
to specify a U-
space vector.
Use EL to
specify a V-
space vector.

If you set CoordinateSystem
to 'uv', enter the UV grid
values using AZ and EL.

1 Alphabetical List

1-402

plotResponse Inputs plotResponse Description pattern Inputs

Display space

name-value
pairs.

'CutAngle' name-value pair Constant angle at to take an
azimuth or elevation cut. When
producing a 2-D plot and when
'RespCut' is set to 'Az' or
'El', use 'CutAngle' to set
the slice across which to view
the plot.

No equivalent name-value pair.
To create a cut, specify either AZ
or EL as a scalar, not a vector.

'NormalizeResponse' name-
value pair

Normalizes the plot.
When 'Unit' is set to
'dbi', you cannot specify
'NormalizeResponse'.

'Normalize' name-value
pair. When 'Type' is set to
'directivity',

you cannot specify
'Normalize'.
.

'OverlayFreq' name-value
pair

Plot multiple frequencies on
the same 2-D plot. Available
only when 'Format' is
set to 'line' or 'uv' and
'RespCut' is not set to '3D'.
The value true produces an
overlay plot and the value
false produces a waterfall
plot.

'PlotStyle' name-value pair
plots multiple frequencies on the
same 2-D plot.

The values 'overlay' and
'waterfall' correspond to
'OverlayFreq' values of
true and false. The option
'waterfall' is allowed only
when 'CoordinateSystem' is
set to 'rectangular' or 'uv'.

'Polarization' name-value
pair

Determines how to plot
polarized fields. Options are
'None', 'Combined', 'H', or
'V'.

'Polarization' name-value
pair determines how to plot
polarized fields. The 'None'
option is removed. The options
'Combined', 'H', or 'V' are
unchanged.

 pattern

1-403

plotResponse Inputs plotResponse Description pattern Inputs

'Unit' name-value pair Determines the plot units.
Choose 'db', 'mag', 'pow',
or 'dbi', where the default is
'db'.

'Type' name-value pair, uses
equivalent options with different
names

plotResponse pattern

'db' 'powerdb'

'mag' 'efield'

'pow' 'power'

'dbi' 'directivity'

'Weights' name-value pair Array element tapers (or
weights).

'Weights' name-value pair (no
change).

'AzimuthAngles' name-value
pair

Azimuth angles used to display
the antenna or array response.

AZ argument

'ElevationAngles' name-
value pair

Elevation angles used to
display the antenna or array
response.

EL argument

'UGrid' name-value pair Contains U coordinates in UV-
space.

AZ argument when
'CoordinateSystem' name-
value pair is set to 'uv'

'VGrid' name-value pair Contains V-coordinates in UV-
space.

EL argument when
'CoordinateSystem' name-
value pair is set to 'uv'

Examples

Plot 3-D Polar Patterns of Crossed-Dipole Antenna

Construct a crossed-dipole antenna element that operates in the frequency range
from 100 MHz to 1.5 GHz. Then, plot the 3-D polar power pattern for the horizontal
polarization component. Assume the antenna operating operates at 1 GHz.

sCD = phased.CrossedDipoleAntennaElement('FrequencyRange',[100 1500]*1e6);

fc = 1e9;

pattern(sCD,fc,[-180:180],[-90:90],...

1 Alphabetical List

1-404

 'Type','powerdb',...

 'CoordinateSystem','polar',...

 'Polarization','H')

Next, plot the vertical polarization component.

pattern(sCD,fc,[-180:180],[-90:90],...

 'Type','powerdb',...

 'CoordinateSystem','polar',...

 'Polarization','V')

 pattern

1-405

Azimuth-Cut of Crossed-Dipole Antenna Pattern

Construct a crossed-dipole antenna element. Then, plot the pattern of the horizontal
component of the field magnitude. Assume the antenna operating frequency is 1 GHz.
Restrict the response to the range of azimuth angles from -70 to 70 degrees in 0.1 degree
increments. Set the elevation angle to 0 degrees.

sCD = phased.CrossedDipoleAntennaElement('FrequencyRange',[0.5 1.5]*1e9);

fc = 1e9;

pattern(sCD,fc,[-70:0.1:70],0,...

 'Type','efield',...

 'CoordinateSystem','polar',...

 'Polarization','combined')

1 Alphabetical List

1-406

Directivity of Crossed-Dipole Antenna

Create a crossed-dipole antenna. Assume the antenna works between 1 and 2 GHz and
its operating frequency is 1.5 GHz. Then, plot an elevation cut of its directivity.

sCD = phased.CrossedDipoleAntennaElement('FrequencyRange',[1e9 2e9]);

fc = 1.5e9;

pattern(sCD,fc,0,[-90:90],...

 'Type','directivity',...

 'CoordinateSystem','rectangular')

 pattern

1-407

The directivity is maximum at 0 degrees elevation and attains a value of approximately
1.75 dB.

See Also
phased.CrossedDipoleAntennaElement.patternAzimuth |
phased.CrossedDipoleAntennaElement.patternElevation

Introduced in R2015a

1 Alphabetical List

1-408

patternAzimuth

System object: phased.CrossedDipoleAntennaElement
Package: phased

Plot crossed-dipole antenna element directivity or pattern versus azimuth

Syntax

patternAzimuth(sElem,FREQ)

patternAzimuth(sElem,FREQ,EL)

patternAzimuth(sElem,FREQ,EL,Name,Value)

PAT = patternAzimuth(___)

Description

patternAzimuth(sElem,FREQ) plots the 2-D element directivity pattern versus
azimuth (in dBi) for the element sElem at zero degrees elevation angle. The argument
FREQ specifies the operating frequency.

patternAzimuth(sElem,FREQ,EL), in addition, plots the 2-D element directivity
pattern versus azimuth (in dBi) at the elevation angle specified by EL. When EL is a
vector, multiple overlaid plots are created.

patternAzimuth(sElem,FREQ,EL,Name,Value) plots the element pattern with
additional options specified by one or more Name,Value pair arguments.

PAT = patternAzimuth(___) returns the element pattern. PAT is a matrix whose
entries represent the pattern at corresponding sampling points specified by the
'Azimuth' parameter and the EL input argument.

Input Arguments

sElem — Crossed-dipole antenna element
System object

 patternAzimuth

1-409

Crossed-dipole antenna element, specified as a phased.CrossedDipoleAntennaElement
System object.
Example: sElem = phased.CrossedDipoleAntennaElement;

FREQ — Frequency for computing directivity and pattern
positive scalar

Frequency for computing directivity and pattern, specified as a positive scalar. Frequency
units are in hertz.

• For an antenna or microphone element, FREQ must lie within the range of values
specified by the FrequencyRange or the FrequencyVector property of the
element. Otherwise, the element produces no response and the directivity is
returned as –Inf. Most elements use the FrequencyRange property except for
phased.CustomAntennaElement and phased.CustomMicrophoneElement, which use
the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements
that make up the array. Otherwise, the array produces no response and the
directivity is returned as –Inf.

Example: 1e8

Data Types: double

EL — Elevation angles
1-by-N real-valued row vector

Elevation angles for computing array directivity and pattern, specified as a 1-by-N real-
valued row vector, where N is the number of requested elevation directions. Angle units
are in degrees. The elevation angle must lie between –90° and 90°.

The elevation angle is the angle between the direction vector and the xy plane. When
measured toward the z-axis, this angle is positive.
Example: [0,10,20]

Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

1 Alphabetical List

1-410

quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Type' — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and
one of

• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed

pattern is for the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field

pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'

Data Types: char

'Azimuth' — Azimuth angles
[-180:180] (default) | 1-by-P real-valued row vector

Azimuth angles, specified as the comma-separated pair consisting of 'Azimuth' and a 1-
by-P real-valued row vector. Azimuth angles define where the array pattern is calculated.
Example: 'Azimuth',[-90:2:90]

Data Types: double

Output Arguments

PAT — Element directivity or pattern
L-by-N real-valued matrix

Element directivity or pattern, returned as an L-by-N real-valued matrix. The dimension
L is the number of azimuth values determined by the 'Azimuth' name-value pair
argument. The dimension N is the number of elevation angles, as determined by the EL
input argument.

 patternAzimuth

1-411

Definitions

Directivity

Directivity describes the directionality of the radiation pattern of a sensor element
or array of sensor elements. Higher directivity is desired when you want to transmit
more radiation in a specific direction. Directivity is the ratio of the transmitted radiant
intensity in a specified direction to the radiant intensity transmitted by an isotropic
radiator with the same total transmitted power

D
U

P
=

()
4p

q jrad

total

,

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal
is the total power transmitted by an isotropic radiator. For a receiving element or array,
directivity measures the sensitivity toward radiation arriving from a specific direction.
The principle of reciprocity shows that the directivity of an element or array used for
reception equals the directivity of the same element or array used for transmission.
When converted to decibels, the directivity is denoted as dBi. For information on
directivity, read the notes on “Element directivity” and “Array directivity”.

Computing directivity requires integrating the far-field transmitted radiant intensity
over all directions in space to obtain the total transmitted power. There is a difference
between how that integration is performed when Antenna Toolbox antennas are used
in a phased array and when Phased Array System Toolbox antennas are used. When
an array contains Antenna Toolbox antennas, the directivity computation is performed
using a triangular mesh created from 500 regularly spaced points over a sphere. For
Phased Array System Toolbox antennas, the integration uses a uniform rectangular
mesh of points spaced 1° apart in azimuth and elevation over a sphere. There may be
significant differences in computed directivity, especially for large arrays.

Examples

Reduced Azimuth Pattern of Crossed-Dipole Antenna Element

Plot an azimuth cut of the directivity of a crossed-dipole antenna element at 0 and 30
degrees elevation. Assume the operating frequency is 500 MHz.

1 Alphabetical List

1-412

Create the antenna element.

fc = 500e6;

sCD = phased.CrossedDipoleAntennaElement('FrequencyRange',[100,900]*1e6);

patternAzimuth(sCD,fc,[0 30])

Plot a reduced range of azimuth angles using the Azimuth parameter. Notice the change
in scale.

patternAzimuth(sCD,fc,[0 30],'Azimuth',[-20:20])

 patternAzimuth

1-413

See Also
phased.CrossedDipoleAntennaElement.pattern |
phased.CrossedDipoleAntennaElement.patternElevation

Introduced in R2015a

1 Alphabetical List

1-414

patternElevation
System object: phased.CrossedDipoleAntennaElement
Package: phased

Plot crossed-dipole antenna element directivity or pattern versus elevation

Syntax
patternElevation(sElem,FREQ)

patternElevation(sElem,FREQ,AZ)

patternElevation(sElem,FREQ,AZ,Name,Value)

PAT = patternElevation(___)

Description
patternElevation(sElem,FREQ) plots the 2-D element directivity pattern versus
elevation (in dBi) for the element sElem at zero degrees azimuth angle. The argument
FREQ specifies the operating frequency.

patternElevation(sElem,FREQ,AZ), in addition, plots the 2-D element directivity
pattern versus elevation (in dBi) at the azimuth angle specified by AZ. When AZ is a
vector, multiple overlaid plots are created.

patternElevation(sElem,FREQ,AZ,Name,Value) plots the element pattern with
additional options specified by one or more Name,Value pair arguments.

PAT = patternElevation(___) returns the element pattern. PAT is a matrix
whose entries represent the pattern at corresponding sampling points specified by the
'Elevation' parameter and the AZ input argument.

Input Arguments
sElem — Crossed-dipole antenna element
System object

Crossed-dipole antenna element, specified as a phased.CrossedDipoleAntennaElement
System object.

 patternElevation

1-415

Example: sElem = phased.CrossedDipoleAntennaElement;

FREQ — Frequency for computing directivity and pattern
positive scalar

Frequency for computing directivity and pattern, specified as a positive scalar. Frequency
units are in hertz.

• For an antenna or microphone element, FREQ must lie within the range of values
specified by the FrequencyRange or the FrequencyVector property of the
element. Otherwise, the element produces no response and the directivity is
returned as –Inf. Most elements use the FrequencyRange property except for
phased.CustomAntennaElement and phased.CustomMicrophoneElement, which use
the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements
that make up the array. Otherwise, the array produces no response and the
directivity is returned as –Inf.

Example: 1e8

Data Types: double

AZ — Azimuth angles for computing directivity and pattern
1-by-N real-valued row vector

Azimuth angles for computing array directivity and pattern, specified as a 1-by-M real-
valued row vector where N is the number of desired azimuth directions. Angle units are
in degrees. The azimuth angle must lie between –180° and 180°.

The azimuth angle is the angle between the x-axis and the projection of the direction
vector onto the xy plane. This angle is positive when measured from the x-axis toward the
y-axis.
Example: [0,10,20]

Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

1 Alphabetical List

1-416

quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Type' — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and
one of

• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed

pattern is for the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field

pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'

Data Types: char

'Elevation' — Elevation angles
[-90:90] (default) | 1-by-P real-valued row vector

Elevation angles, specified as the comma-separated pair consisting of 'Elevation'
and a 1-by-P real-valued row vector. Elevation angles define where the array pattern is
calculated.
Example: 'Elevation',[-90:2:90]

Data Types: double

Output Arguments

PAT — Element directivity or pattern
L-by-N real-valued matrix

Element directivity or pattern, returned as an L-by-N real-valued matrix. The dimension
L is the number of elevation angles determined by the 'Elevation' name-value pair
argument. The dimension N is the number of azimuth angles determined by the AZ
argument.

 patternElevation

1-417

Definitions

Directivity

Directivity describes the directionality of the radiation pattern of a sensor element
or array of sensor elements. Higher directivity is desired when you want to transmit
more radiation in a specific direction. Directivity is the ratio of the transmitted radiant
intensity in a specified direction to the radiant intensity transmitted by an isotropic
radiator with the same total transmitted power

D
U

P
=

()
4p

q jrad

total

,

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal
is the total power transmitted by an isotropic radiator. For a receiving element or array,
directivity measures the sensitivity toward radiation arriving from a specific direction.
The principle of reciprocity shows that the directivity of an element or array used for
reception equals the directivity of the same element or array used for transmission.
When converted to decibels, the directivity is denoted as dBi. For information on
directivity, read the notes on “Element directivity” and “Array directivity”.

Computing directivity requires integrating the far-field transmitted radiant intensity
over all directions in space to obtain the total transmitted power. There is a difference
between how that integration is performed when Antenna Toolbox antennas are used
in a phased array and when Phased Array System Toolbox antennas are used. When
an array contains Antenna Toolbox antennas, the directivity computation is performed
using a triangular mesh created from 500 regularly spaced points over a sphere. For
Phased Array System Toolbox antennas, the integration uses a uniform rectangular
mesh of points spaced 1° apart in azimuth and elevation over a sphere. There may be
significant differences in computed directivity, especially for large arrays.

Examples

Reduced Elevation Pattern of Crossed-Dipole Antenna Element

Plot an elevation cut of directivity of a crossed dipole antenna element at 45 and 55
degrees azimuth. Assume the operating frequency is 500 MHz.

1 Alphabetical List

1-418

Create the antenna element

fc = 500e6;

sCD = phased.CrossedDipoleAntennaElement('FrequencyRange',[100,900]*1e6);

patternElevation(sCD,fc,[45 55])

Plot a reduced range of elevation angles using the Elevation parameter. Notice the
change in scale.

patternElevation(sCD,fc,[45 55],'Elevation',[-20:20])

 patternElevation

1-419

See Also
phased.CrossedDipoleAntennaElement.pattern |
phased.CrossedDipoleAntennaElement.patternAzimuth

Introduced in R2015a

1 Alphabetical List

1-420

plotResponse
System object: phased.CrossedDipoleAntennaElement
Package: phased

Plot response pattern of antenna

Syntax

plotResponse(H,FREQ)

plotResponse(H,FREQ,Name,Value)

hPlot = plotResponse(___)

Description

plotResponse(H,FREQ) plots the element response pattern along the azimuth cut,
where the elevation angle is 0. The operating frequency is specified in FREQ.

plotResponse(H,FREQ,Name,Value) plots the element response with additional
options specified by one or more Name,Value pair arguments.

hPlot = plotResponse(___) returns handles of the lines or surface in the figure
window, using any of the input arguments in the previous syntaxes.

Input Arguments

H

Element System object

FREQ

Operating frequency in Hertz specified as a scalar or 1–by-K row vector. FREQ must
lie within the range specified by the FrequencyVector property of H. If you set the
'RespCut' property of H to '3D', FREQ must be a scalar. When FREQ is a row vector,
plotResponse draws multiple frequency responses on the same axes.

 plotResponse

1-421

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'CutAngle'

Cut angle specified as a scalar. This argument is applicable only when RespCut is 'Az'
or 'El'. If RespCut is 'Az', CutAngle must be between –90 and 90. If RespCut is
'El', CutAngle must be between –180 and 180.

Default: 0

'Format'

Format of the plot, using one of 'Line', 'Polar', or 'UV'. If you set Format to 'UV',
FREQ must be a scalar.

Default: 'Line'

'NormalizeResponse'

Set this value to true to normalize the response pattern. Set this value to false to plot
the response pattern without normalizing it. This parameter is not applicable when you
set the Unit parameter value to 'dbi'.

Default: true

'OverlayFreq'

Set this value to true to overlay pattern cuts in a 2-D line plot. Set this value to false
to plot pattern cuts against frequency in a 3-D waterfall plot. If this value is false, FREQ
must be a vector with at least two entries.

This parameter applies only when Format is not 'Polar' and RespCut is not '3D'.

Default: true

'Polarization'

Specify the polarization options for plotting the antenna response pattern. The allowable
values are |'None' | 'Combined' | 'H' | 'V' | where

1 Alphabetical List

1-422

• 'None' specifies plotting a nonpolarized response pattern
• 'Combined' specifies plotting a combined polarization response pattern
• 'H' specifies plotting the horizontal polarization response pattern
• 'V' specifies plotting the vertical polarization response pattern

For antennas that do not support polarization, the only allowed value is 'None'. This
parameter is not applicable when you set the Unit parameter value to 'dbi'.

Default: 'None'

'RespCut'

Cut of the response. Valid values depend on Format, as follows:

• If Format is 'Line' or 'Polar', the valid values of RespCut are 'Az', 'El', and
'3D'. The default is 'Az'.

• If Format is 'UV', the valid values of RespCut are 'U' and '3D'. The default is 'U'.

If you set RespCut to '3D', FREQ must be a scalar.

'Unit'

The unit of the plot. Valid values are 'db', 'mag', 'pow', or 'dbi'. This parameter
determines the type of plot that is produced.

Unit value Plot type

db power pattern in dB
scale

mag field pattern
pow power pattern
dbi directivity

Default: 'db'

'AzimuthAngles'

Azimuth angles for plotting element response, specified as a row vector. The
AzimuthAngles parameter sets the display range and resolution of azimuth angles for

 plotResponse

1-423

visualizing the radiation pattern. This parameter is allowed only when the RespCut
parameter is set to 'Az' or '3D' and the Format parameter is set to 'Line' or
'Polar'. The values of azimuth angles should lie between –180° and 180° and must be
in nondecreasing order. When you set the RespCut parameter to '3D', you can set the
AzimuthAngles and ElevationAngles parameters simultaneously.

Default: [-180:180]

'ElevationAngles'

Elevation angles for plotting element response, specified as a row vector. The
ElevationAngles parameter sets the display range and resolution of elevation
angles for visualizing the radiation pattern. This parameter is allowed only when the
RespCut parameter is set to 'El' or '3D' and the Format parameter is set to 'Line'
or 'Polar'. The values of elevation angles should lie between –90° and 90° and must be
in nondecreasing order. When you set the RespCut parameter to '3D', you can set the
ElevationAngles and AzimuthAngles parameters simultaneously.

Default: [-90:90]

'UGrid'

U coordinate values for plotting element response, specified as a row vector. The UGrid
parameter sets the display range and resolution of the U coordinates for visualizing
the radiation pattern in U/V space. This parameter is allowed only when the Format
parameter is set to 'UV' and the RespCut parameter is set to 'U' or '3D'. The values of
UGrid should be between –1 and 1 and should be specified in nondecreasing order. You
can set the UGrid and VGrid parameters simultaneously.

Default: [-1:0.01:1]

'VGrid'

V coordinate values for plotting element response, specified as a row vector. The VGrid
parameter sets the display range and resolution of the V coordinates for visualizing
the radiation pattern in U/V space. This parameter is allowed only when the Format
parameter is set to 'UV' and the RespCut parameter is set to '3D'. The values of VGrid
should be between –1 and 1 and should be specified in nondecreasing order. You can set
the VGrid and UGrid parameters simultaneously.

Default: [-1:0.01:1]

1 Alphabetical List

1-424

Examples

Vertical and Horizontal Responses of Crossed-Dipole Antenna

This example shows how to create a crossed-dipole antenna operating between 100 and
900 MHz and then how to plot its vertical polarization response at 250 MHz in the form
of a 3-D polar plot.

scd = phased.CrossedDipoleAntennaElement(...

 'FrequencyRange',[100 900]*1e6);

plotResponse(scd,250e6,'Format','Polar',...

 'RespCut','3D','Polarization','V');

 plotResponse

1-425

The antenna pattern of the vertical-polarization component is almost isotropic and has a
maximum at elevation and azimuth, as shown in the figure above.

Plot the antenna's horizontal polarization response. The pattern of the horizontal
polarization response also has a maximum at elevation and azimuth but no
response at azimuth.

scd = phased.CrossedDipoleAntennaElement(...

 'FrequencyRange',[100 900]*1e6);

plotResponse(scd,250e6,'Format','Polar',...

 'RespCut','3D','Polarization','H');

1 Alphabetical List

1-426

Response and Directivity of Crossed-Dipole Antenna As Elevation-Cut

Create a crossed-dipole antenna operating between 100 and 900 MHz. Then, plot the
antenna's vertical polarization response at 250 MHz as an elevation cut. Display the
response from to elevation in increments.

scd = phased.CrossedDipoleAntennaElement(...

 'FrequencyRange',[100 900]*1e6);

plotResponse(scd,250e6,'Format','Polar',...

 'RespCut','El','ElevationAngles',[-90:0.1:90],...

 'Polarization','V');

 plotResponse

1-427

Plot the antenna's directivity at 250 MHz as an elevation cut.

plotResponse(scd,250e6,'Format','Polar','Unit','dbi',...

 'RespCut','El','ElevationAngles',[-90:0.1:90]);

1 Alphabetical List

1-428

See Also
azel2uv | uv2azel

 release

1-429

release
System object: phased.CrossedDipoleAntennaElement
Package: phased

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

1 Alphabetical List

1-430

step
System object: phased.CrossedDipoleAntennaElement
Package: phased

Output response of antenna element

Syntax

RESP = step(H,FREQ,ANG)

Description

RESP = step(H,FREQ,ANG) returns the antenna’s voltage response, RESP, at the
operating frequencies specified in FREQ and in the directions specified in ANG. For the
crossed-dipole antenna element object, RESP is a MATLAB struct containing two fields,
RESP.H and RESP.V, representing the horizontal and vertical polarization components of
the antenna's response. Each field is an M-by-L matrix containing the antenna response
at the M angles specified in ANG and at the L frequencies specified in FREQ.

Note: The object performs an initialization the first time the step method is executed.
This initialization locks nontunable properties and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Input Arguments

H

Antenna element object.

FREQ

Operating frequencies of antenna in hertz. FREQ is a row vector of length L.

 step

1-431

ANG

Directions in degrees. ANG can be either a 2-by-M matrix or a row vector of length M.

If ANG is a 2-by-M matrix, each column of the matrix specifies the direction in the
form [azimuth; elevation]. The azimuth angle must be between –180 and 180 degrees,
inclusive. The elevation angle must be between –90 and 90 degrees, inclusive.

If ANG is a row vector of length M, each element specifies a direction’s azimuth angle. In
this case, the corresponding elevation angle is assumed to be 0.

Output Arguments

RESP

Voltage response of antenna element returned as a MATLAB struct with fields RESP.H
and RESP.V. Both RESP.H and RESP.V contain responses for the horizontal and vertical
polarization components of the antenna radiation pattern. Both RESP.H and RESP.V are
M-by-L matrices. In these matrices, M represents the number of angles specified in ANG,
and L represents the number of frequencies specified in FREQ.

Examples

Find the response of a crossed-dipole antenna at boresight, 0° azimuth and 0° elevation,
and off-boresight at 30° azimuth and 0° elevation. The antenna operates at frequencies
between 100 and 900 MHz. Find the response of the antenna at these angles at 250 MHz.

hcd = phased.CrossedDipoleAntennaElement(...

 'FrequencyRange',[100 900]*1e6);

ang = [0 30;0 0];

fc = 250e6;

resp = step(hcd,fc,ang);

resp.H =

 0.0000 - 1.2247i

 0.0000 - 1.0607i

resp.V =

 -1.2247

 -1.2247

1 Alphabetical List

1-432

Algorithms

The total response of a crossed-dipole antenna element is a combination of its frequency
response and spatial response. phased.CrossedDipoleAntennaElement calculates
both responses using nearest neighbor interpolation, and then multiplies the responses to
form the total response.

See Also
phitheta2azel | uv2azel

 phased.CustomAntennaElement System object

1-433

phased.CustomAntennaElement System object
Package: phased

Custom antenna element

Description
The phased.CustomAntennaElement object models an antenna element with a custom
response pattern. The response pattern may be defined for polarized or non-polarized
fields.

To compute the response of the antenna element for specified directions:

1 Define and set up your custom antenna element. See “Construction” on page
1-433.

2 Call step to compute the antenna response according to the properties of
phased.CustomAntennaElement. The behavior of step is specific to each object in
the toolbox.

Construction
H = phased.CustomAntennaElement creates a system object, H, to model an antenna
element with a custom response pattern. How the response pattern is specified depends
upon whether polarization is desired or not. The default pattern has an isotropic spatial
response.

• To create a nonpolarized response pattern, set the SpecifyPolarizationPattern
property to false (default). Then, use the RadiationPattern property to set the
response pattern.

• To create a polarized response pattern, set the SpecifyPolarizationPattern
property to true. Then, use any or all of the HorizontalMagnitudePattern,
HorizontalPhasePattern, VerticalMagnitudePattern, and
VerticalPhasePattern properties to set the response pattern.

The output response of the step method depends on whether polarization is set or not.

H = phased.CustomAntennaElement(Name,Value) creates a custom
antenna object, H, with each specified property Name set to the specified

1 Alphabetical List

1-434

Value. You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties

FrequencyVector

Response and pattern frequency vector

Specify the frequencies (in Hz) at which the frequency response and antenna patterns are
to be returned, as a 1-by-L row vector. The elements of the vector must be in increasing
order. The antenna element has no response outside the frequency range specified by the
minimum and maximum elements of the frequency vector.

Default: [0 1e20]

AzimuthAngles

Azimuth angles

Specify the azimuth angles (in degrees) as a length-P vector. These values are the
azimuth angles where the custom radiation pattern is to be specified. P must be greater
than 2. The azimuth angles should lie between –180 and 180 degrees and be in strictly
increasing order.

Default: [-180:180]

ElevationAngles

Elevation angles

Specify the elevation angles (in degrees) as a length-Q vector. These values are the
elevation angles where the custom radiation pattern is to be specified. Q must be greater
than 2. The elevation angles should lie between –90 and 90 degrees and be in strictly
increasing order.

Default: [-90:90]

FrequencyResponse

Frequency responses of antenna element

 phased.CustomAntennaElement System object

1-435

Specify the frequency responses in decibels measured at the frequencies defined in
FrequencyVector property as a 1-by-L row vector where L must equal the length of the
vector specified in the FrequencyVector property.

Default: [0 0]

SpecifyPolarizationPattern

Polarized array response

• When the SpecifyPolarizationPattern property is set to false, nonpolarized
radiation is transmitted or received by the antenna element. In this case, use the
RadiationPattern property to set the antenna response pattern.

• When the SpecifyPolarizationPattern property is set to true, polarized
radiation is transmitted or received by the antenna element. In this case, use the
HorizontalMagnitudePattern and HorizontalPhasePattern properties to set
the horizontal polarization response pattern and the VerticalMagnitudePattern
and VerticalPhasePattern properties to set the vertical polarization response
pattern.

Default: false

RadiationPattern

Magnitude of combined antenna radiation pattern

The magnitude of the combined polarization antenna radiation pattern specified
as a Q-by-P matrix or a Q-by-P-by-L array. This property is used only when the
SpecifyPolarizationPattern property is set to false. Magnitude units are in dB.

• If the value of this property is a Q-by-P matrix, the same pattern is applied to all
frequencies specified in the FrequencyVector property.

• If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern
for the corresponding frequency specified in the FrequencyVector property.

If the pattern contains a NaN at any azimuth and elevation direction, it is converted
to -Inf, indicating zero response in that direction. The custom antenna object uses
interpolation to estimate the response of the antenna at a given direction. To avoid
interpolation errors, the custom response pattern should contain azimuth angles in
the range[–180,180] degrees. You should also set the range of elevation angles to [–
90,90] degrees.

1 Alphabetical List

1-436

Default: A 181-by-361 matrix with all elements equal to 0 dB

HorizontalMagnitudePattern

Magnitude of horizontal polarization component of antenna radiation pattern

The magnitude of the horizontal polarization component of the antenna radiation pattern
specified as a Q-by-P matrix or a Q-by-P-by-L array. This property is used only when the
SpecifyPolarizationPattern property is set to true. Magnitude units are in dB.

• If the value of this property is a Q-by-P matrix, the same pattern is applied to all
frequencies specified in the FrequencyVector property.

• If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern
for the corresponding frequency specified in the FrequencyVector property.

If the magnitude pattern contains a NaN at any azimuth and elevation direction, it is
converted to -Inf, indicating zero response in that direction. The custom antenna object
uses interpolation to estimate the response of the antenna at a given direction. To avoid
interpolation errors, the custom response pattern should contain azimuth angles in the
range [–180,180]° nd elevation angles in the range [–90,90]°.

Default: A 181-by-361 matrix with all elements equal to 0 dB

HorizontalPhasePattern

Phase of horizontal polarization component of antenna radiation pattern

The phase of the horizontal polarization component of the antenna radiation pattern
specified as a Q-by-P matrix or a Q-by-P-by-L array. This property is used only when the
SpecifyPolarizationPattern property is set to true. Phase units are in degrees.

• If the value of this property is a Q-by-P matrix, the same pattern is applied to all
frequencies specified in the FrequencyVector property.

• If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern
for the corresponding frequency specified in the FrequencyVector property.

The custom antenna object uses interpolation to estimate the response of the antenna
at a given direction. To avoid interpolation errors, the custom response pattern should
contain azimuth angles in the range[–180,180]° and elevation angles in the range [–
90,90]°.

 phased.CustomAntennaElement System object

1-437

Default: A 181-by-361 matrix with all elements equal to 0°

VerticalMagnitudePattern

Magnitude of vertical polarization component of antenna radiation pattern

The magnitude of the vertical polarization component of the antenna radiation pattern
specified as a Q-by-P matrix or a Q-by-P-by-L array. This property is used only when the
SpecifyPolarizationPattern property is set to true. Magnitude units are in dB.

• If the value of this property is a Q-by-P matrix, the same pattern is applied to all
frequencies specified in the FrequencyVector property.

• If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern
for the corresponding frequency specified in the FrequencyVector property.

If the pattern contains a NaN at any azimuth and elevation direction, it is converted
to -Inf, indicating zero response in that direction. The custom antenna object uses
interpolation to estimate the response of the antenna at a given direction. To avoid
interpolation errors, the custom response pattern should contain azimuth angles in the
range[–180,180]° and elevation angles in the range [–90,90]°.

Default: A 181-by-361 matrix with all elements equal to 0 dB

VerticalPhasePattern

Phase of vertical polarization component of antenna radiation pattern

The phase of the vertical polarization component of the antenna radiation pattern
specified as a Q-by-P matrix or a Q-by-P-by-L array. This property is used only when the
SpecifyPolarizationPattern property is set to true. Phase units are in degrees.

• If the value of this property is a Q-by-P matrix, the same pattern is applied to all
frequencies specified in the FrequencyVector property.

• If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern
for the corresponding frequency specified in the FrequencyVector property.

The custom antenna object uses interpolation to estimate the response of the antenna
at a given direction. To avoid interpolation errors, the custom response pattern should
contain azimuth angles in the range[–180,180]° and elevation angles in the range [–
90,90]°.

Default: A 181-by-361 matrix with all elements equal to 0°

1 Alphabetical List

1-438

Methods

clone Create custom antenna object with same
property values

directivity Directivity of custom antenna element
getNumInputs Number of expected inputs to step method
getNumOutputs Number of outputs from step method
isLocked Locked status for input attributes and

nontunable properties
isPolarizationCapable Polarization capability
pattern Plot custom antenna element directivity

and patterns
patternAzimuth Plot custom antenna element directivity or

pattern versus azimuth
patternElevation Plot custom antenna element directivity or

pattern versus elevation
plotResponse Plot response pattern of antenna
release Allow property value and input

characteristics changes
step Output response of antenna element

Examples

Response and Directivity of Custom Antenna

Create a user-defined antenna with a cosine pattern. Then, plot an elevation cut of the
antenna's power response.

The user-defined pattern is omnidirectional in the azimuth direction and has a cosine
pattern in the elevation direction. Assume the antenna operates at 1 GHz. Get the
response at 0 degrees azimuth and 30 degrees elevation.

fc = 1e9;

sCust = phased.CustomAntennaElement;

sCust.AzimuthAngles = -180:180;

sCust.ElevationAngles = -90:90;

 phased.CustomAntennaElement System object

1-439

sCust.RadiationPattern = mag2db(repmat(cosd(sCust.ElevationAngles)',...

 1,numel(sCust.AzimuthAngles)));

resp = step(sCust,fc,[0;30])

resp =

 0.8660

Plot an elevation cut of the power response.

pattern(sCust,fc,0,[-90:90],...

 'CoordinateSystem','polar',...

 'Type','powerdb')

1 Alphabetical List

1-440

Plot an elevation cut of the directivity.

pattern(sCust,fc,0,[-90:90],...

 'CoordinateSystem','polar',...

 'Type','directivity')

Antenna Radiation Pattern in U-V Coordinates

Define a custom antenna in u-v space. Then, calculate and plot the response.

Define the radiation pattern (in dB) of an antenna in terms of u and v coordinates within
the unit circle.

u = -1:0.01:1;

 phased.CustomAntennaElement System object

1-441

v = -1:0.01:1;

[u_grid,v_grid] = meshgrid(u,v);

pat_uv = sqrt(1 - u_grid.^2 - v_grid.^2);

pat_uv(hypot(u_grid,v_grid) >= 1) = 0;

Create an antenna with this radiation pattern. Convert u-v coordinates to azimuth and
elevation coordinates.

[pat_azel,az,el] = uv2azelpat(pat_uv,u,v);

ha = phased.CustomAntennaElement(...

 'AzimuthAngles',az,'ElevationAngles',el,...

 'RadiationPattern',pat_azel);

Calculate the response in the direction u = 0.5, v = 0. Assume the antenna operates at 1
GHz. The output of the step method is in linear units.

dir_uv = [0.5;0];

dir_azel = uv2azel(dir_uv);

fc = 1e9;

resp = step(ha,fc,dir_azel)

resp =

 1.1048

Plot the 3D response in u-v coordinates.

pattern(ha,fc,[-1:.01:1],[-1:.01:1],...

 'CoordinateSystem','uv',...

 'Type','powerdb')

1 Alphabetical List

1-442

Display the antenna response as a line plot in u-v coordinates.

pattern(ha,fc,[-1:.01:1],0,...

 'CoordinateSystem','uv',...

 'Type','powerdb')

 phased.CustomAntennaElement System object

1-443

Polarized Antenna Radiation Patterns

Model a short dipole antenna oriented along the -axis of the local antenna coordinate
system. For this type of antenna, the horizontal and vertical components of the electric

field are given by and .

Specify a normalized radiation pattern of a short dipole antenna terms of azimuth,
, and elevation, , coordinates. The vertical and horizontal radiation patterns are

normalized to a maximum of unity.

az = [-180:180];

el = [-90:90];

[az_grid,el_grid] = meshgrid(az,el);

1 Alphabetical List

1-444

horz_pat_azel = ...

 mag2db(abs(sind(az_grid)));

vert_pat_azel = ...

 mag2db(abs(sind(el_grid).*cosd(az_grid)));

Set up the antenna. Specify the SpecifyPolarizationPattern property to produce
polarized radiation. In addition, use the HorizontalMagnitudePattern and
VerticalMagnitudePattern properties to specify the pattern magnitude values. The
HorizontalPhasePattern and VerticalPhasePattern properties take default
values of zero.

sCust = phased.CustomAntennaElement(...

 'AzimuthAngles',az,'ElevationAngles',el,...

 'SpecifyPolarizationPattern',true,...

 'HorizontalMagnitudePattern',horz_pat_azel,...

 'VerticalMagnitudePattern',vert_pat_azel);

Assume the antenna operates at 1 GHz.

fc = 1e9;

Display the vertical response pattern.

pattern(sCust,fc,[-180:180],[-90:90],...

 'CoordinateSystem','polar',...

 'Type','powerdb',...

 'Polarization','V')

 phased.CustomAntennaElement System object

1-445

Display the horizontal response pattern.

pattern(sCust,fc,[-180:180],[-90:90],...

 'CoordinateSystem','polar',...

 'Type','powerdb',...

 'Polarization','H')

1 Alphabetical List

1-446

The combined polarization response, shown below, illustrates the -axis null of the
dipole.

pattern(sCust,fc,[-180:180],[-90:90],...

 'CoordinateSystem','polar',...

 'Type','powerdb',...

 'Polarization','combined')

 phased.CustomAntennaElement System object

1-447

Algorithms

The total response of a custom antenna element is a combination of its frequency
response and spatial response. phased.CustomAntennaElement calculates both
responses using nearest neighbor interpolation, and then multiplies the responses to
form the total response.

See Also
phased.ConformalArray | phased.CosineAntennaElement |
phased.CrossedDipoleAntennaElement | phased.IsotropicAntennaElement |

1 Alphabetical List

1-448

phased.ShortDipoleAntennaElement | phased.ULA | phased.URA | phitheta2azel |
phitheta2azelpat | uv2azel | uv2azelpat

Introduced in R2012a

 clone

1-449

clone
System object: phased.CustomAntennaElement
Package: phased

Create custom antenna object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates an object, C, having the same property values and same states as
H. If H is locked, so is C.

1 Alphabetical List

1-450

directivity

System object: phased.CustomAntennaElement
Package: phased

Directivity of custom antenna element

Syntax

D = directivity(H,FREQ,ANGLE)

Description

D = directivity(H,FREQ,ANGLE) returns the “Directivity” on page 1-452 of a
custom antenna element, H, at frequencies specified by FREQ and in direction angles
specified by ANGLE.

Input Arguments

H — Custom antenna element
System object

Custom antenna element specified as a phased.CustomAntennaElement System object.
Example: H = phased.CustomAntennaElement;

FREQ — Frequency for computing directivity and patterns
positive scalar | 1-by-L real-valued row vector

Frequencies for computing directivity and patterns, specified as a positive scalar or 1-
by-L real-valued row vector. Frequency units are in hertz.

• For an antenna or microphone element, FREQ must lie within the range of
values specified by the FrequencyRange or FrequencyVector property of the
element. Otherwise, the element produces no response and the directivity is

 directivity

1-451

returned as –Inf. Most elements use the FrequencyRange property except for
phased.CustomAntennaElement and phased.CustomMicrophoneElement, which use
the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements
that make up the array. Otherwise, the array produces no response and the
directivity is returned as –Inf.

Example: [1e8 2e8]

Data Types: double

ANGLE — Angles for computing directivity
1-by-M real-valued row vector | 2-by-M real-valued matrix

Angles for computing directivity, specified as a 1-by-M real-valued row vector or a 2-
by-M real-valued matrix, where M is the number of angular directions. Angle units
are in degrees. If ANGLE is a 2-by-M matrix, then each column specifies a direction in
azimuth and elevation, [az;el]. The azimuth angle must lie between –180° and 180°.
The elevation angle must lie between –90° and 90°.

If ANGLE is a 1-by-M vector, then each entry represents an azimuth angle, with the
elevation angle assumed to be zero.

The azimuth angle is the angle between the x-axis and the projection of the direction
vector onto the xy plane. This angle is positive when measured from the x-axis toward the
y-axis. The elevation angle is the angle between the direction vector and xy plane. This
angle is positive when measured towards the z-axis.
Example: [45 60; 0 10]

Data Types: double

Output Arguments

D — Directivity
M-by-L matrix

Directivity, returned as an M-by-L matrix whose columns contain the directivities at the
M angles specified by ANGLE. Each column corresponds to one of the L frequency values
specified in FREQ. Directivity units are in dBi.

1 Alphabetical List

1-452

Definitions

Directivity

Directivity describes the directionality of the radiation pattern of a sensor element
or array of sensor elements. Higher directivity is desired when you want to transmit
more radiation in a specific direction. Directivity is the ratio of the transmitted radiant
intensity in a specified direction to the radiant intensity transmitted by an isotropic
radiator with the same total transmitted power

D
U

P
=

()
4p

q jrad

total

,

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal
is the total power transmitted by an isotropic radiator. For a receiving element or array,
directivity measures the sensitivity toward radiation arriving from a specific direction.
The principle of reciprocity shows that the directivity of an element or array used for
reception equals the directivity of the same element or array used for transmission.
When converted to decibels, the directivity is denoted as dBi. For information on
directivity, read the notes on “Element directivity” and “Array directivity”.

Computing directivity requires integrating the far-field transmitted radiant intensity
over all directions in space to obtain the total transmitted power. There is a difference
between how that integration is performed when Antenna Toolbox antennas are used
in a phased array and when Phased Array System Toolbox antennas are used. When
an array contains Antenna Toolbox antennas, the directivity computation is performed
using a triangular mesh created from 500 regularly spaced points over a sphere. For
Phased Array System Toolbox antennas, the integration uses a uniform rectangular
mesh of points spaced 1° apart in azimuth and elevation over a sphere. There may be
significant differences in computed directivity, especially for large arrays.

Examples

Directivity of Custom Antenna Element

Compute the directivity of a custom antenna element.

 directivity

1-453

Define an antenna pattern for a custom antenna element in azimuth-elevation space.
The pattern is omnidirectional in the azimuth direction and has a cosine pattern in the
elevation direction. Assume the antenna operates at 1 GHz. Get the response at zero
degrees azimuth and from -30 to 30 degrees elevation.

myAnt = phased.CustomAntennaElement;

myAnt.AzimuthAngles = -180:180;

myAnt.ElevationAngles = -90:90;

myAnt.RadiationPattern = mag2db(repmat(cosd(myAnt.ElevationAngles)',...

 1,numel(myAnt.AzimuthAngles)));

Calculate the directivities as a function of elevation for zero azimuth angle.

ang = [0,0,0,0,0,0,0;-30,-20,-10,0,10,20,30];

freq = 1e9;

d = directivity(myAnt,freq,ang)

d =

 0.5115

 1.2206

 1.6279

 1.7609

 1.6279

 1.2206

 0.5115

The directivity is maximum at elevation.

See Also
phased.CustomAntennaElement.pattern

1 Alphabetical List

1-454

getNumInputs
System object: phased.CustomAntennaElement
Package: phased

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of inputs
(not counting the object itself) that you must use when calling the step method. This
value changes when you alter properties that turn inputs on or off.

 getNumOutputs

1-455

getNumOutputs
System object: phased.CustomAntennaElement
Package: phased

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value changes when you alter properties that turn outputs on or off.

1 Alphabetical List

1-456

isLocked
System object: phased.CustomAntennaElement
Package: phased

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF, for the CustomAntennaElement
System object.

isLocked returns a logical value that indicates whether input attributes and
nontunable properties for the object are locked. The object performs an internal
initialization the first time that you execute step. This initialization locks nontunable
properties and input specifications, such as the dimensions, complexity, and data type of
the input data. After locking, isLocked returns a true value.

 isPolarizationCapable

1-457

isPolarizationCapable

System object: phased.CustomAntennaElement
Package: phased

Polarization capability

Syntax

flag = isPolarizationCapable(h)

Description

flag = isPolarizationCapable(h) returns a Boolean value, flag, indicating
whether the phased.CustomAntennaElement System object supports polarization. An
antenna element supports polarization if it can create or respond to polarized fields. This
antenna object supports both polarized and nonpolarized fields.

Input Arguments

h — Custom antenna element
phased.CustomAntennaElement System object

Custom antenna element specified as a phased.CustomAntennaElement System object.

Output Arguments

flag — Polarization-capability flag

Polarization-capability returned as a Boolean value true if the antenna element
supports polarization or false if it does not. The returned value depends upon the value
of the SpecifyPolarizationPattern property. If SpecifyPolarizationPattern is
true, then flag is true. Otherwise it is false.

1 Alphabetical List

1-458

Examples

Custom Antenna Element Polarization Capability

Determine whether the phased.CustomAntennaElement antenna element supports
polarization when SpecifyPolarizationPattern is set to true.

h = phased.CustomAntennaElement(...

 'SpecifyPolarizationPattern',true);

isPolarizationCapable(h)

ans =

 1

The returned value true (1) shows that this antenna element supports polarization
when the 'SpecifyPolarizationPattern' property is set to true.

 pattern

1-459

pattern

System object: phased.CustomAntennaElement
Package: phased

Plot custom antenna element directivity and patterns

Syntax

pattern(sElem,FREQ)

pattern(sElem,FREQ,AZ)

pattern(sElem,FREQ,AZ,EL)

pattern(___ ,Name,Value)

[PAT,AZ_ANG,EL_ANG] = pattern(___)

Description

pattern(sElem,FREQ) plots the 3-D array directivity pattern (in dBi) for the array
specified in sElem. The operating frequency is specified in FREQ.

pattern(sElem,FREQ,AZ) plots the array directivity pattern at the specified azimuth
angle.

pattern(sElem,FREQ,AZ,EL) plots the array directivity pattern at specified azimuth
and elevation angles.

pattern(___ ,Name,Value) plots the array pattern with additional options specified
by one or more Name,Value pair arguments.

[PAT,AZ_ANG,EL_ANG] = pattern(___) returns the array pattern in PAT. The
AZ_ANG output contains the coordinate values corresponding to the rows of PAT. The
EL_ANG output contains the coordinate values corresponding to the columns of PAT.
If the 'CoordinateSystem' parameter is set to 'uv', then AZ_ANG contains the
U coordinates of the pattern and EL_ANG contains the V coordinates of the pattern.
Otherwise, they are in angular units in degrees. UV units are dimensionless.

1 Alphabetical List

1-460

Note: This method replaces the previous plotResponse method. To replace plots using
plotResponse plots with equivalent plots using pattern, see “Convert plotResponse to
pattern” on page 1-1955

Input Arguments

sElem — Custom antenna element
System object

Custom antenna element, specified as a phased.CustomAntennaElement System object.
Example: sElem = phased.CustomAntennaElement;

FREQ — Frequency for computing directivity and patterns
positive scalar | 1-by-L real-valued row vector

Frequencies for computing directivity and patterns, specified as a positive scalar or 1-
by-L real-valued row vector. Frequency units are in hertz.

• For an antenna or microphone element, FREQ must lie within the range of
values specified by the FrequencyRange or FrequencyVector property of the
element. Otherwise, the element produces no response and the directivity is
returned as –Inf. Most elements use the FrequencyRange property except for
phased.CustomAntennaElement and phased.CustomMicrophoneElement, which use
the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements
that make up the array. Otherwise, the array produces no response and the
directivity is returned as –Inf.

Example: [1e8 2e8]

Data Types: double

AZ — Azimuth angles
[-180:180] (default) | 1-by-M real-valued row vector

Azimuth angles for computing directivity and pattern, specified as a 1-by-M real-
valued row vector where M is the number of azimuth angles. Angle units are in degrees.
Azimuth angles must lie between –180° and 180°.

 pattern

1-461

The azimuth angle is the angle between the x-axis and the projection of the direction
vector onto the xy plane. When measured from the x-axis toward the y-axis, this angle is
positive.
Example: [-45:2:45]

Data Types: double

EL — Elevation angles
[-90:90] (default) | 1-by-N real-valued row vector

Elevation angles for computing directivity and pattern, specified as a 1-by-N real-valued
row vector where N is the number of desired elevation directions. Angle units are in
degrees. The elevation angle must lie between –90° and 90°.

The elevation angle is the angle between the direction vector and xy-plane. When
measured towards the z-axis, this angle is positive.
Example: [-75:1:70]

Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'CoordinateSystem' — Plotting coordinate system
'polar' (default) | 'rectangular' | 'uv'

Plotting coordinate system of the pattern, specified as the comma-separated pair
consisting of 'CoordinateSystem' and one of 'polar', 'rectangular', or
'uv'. When 'CoordinateSystem' is set to 'polar' or 'rectangular', the
AZ and EL arguments specify the pattern azimuth and elevation, respectively. AZ
values must lie between –180° and 180°. EL values must lie between –90° and 90°. If
'CoordinateSystem' is set to 'uv', AZ and EL then specify U and V coordinates,
respectively. AZ and EL must lie between -1 and 1.

Example: 'uv'

Data Types: char

1 Alphabetical List

1-462

'Type' — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and
one of

• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed

pattern is for the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field

pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'

Data Types: char

'Normalize' — Display normalize pattern
true (default) | false

Display normalized pattern, specified as the comma-separated pair consisting of
'Normalize' and a Boolean. Set this parameter to true to display a normalized pattern.
When you set 'Type' to 'directivity', this parameter does not apply. Directivity
patterns are already normalized.
Example:
Data Types: logical

'PlotStyle' — Plotting style
'overlay' (default) | 'waterfall'

Plotting style, specified as the comma-separated pair consisting of 'Plotstyle' and
either 'overlay' or 'waterfall'. This parameter applies when you specify multiple
frequencies in FREQ in 2-D plots. You can draw 2-D plots by setting one of the arguments
AZ or EL to a scalar.

Example:
Data Types: char

'Polarization' — Polarized field component
'combined' (default) | 'H' | 'V'

 pattern

1-463

Polarized field component to display, specified as the comma-separated pair consisting
of 'Polarization' and 'combined', 'H', or 'V'. This parameter applies only when
the sensors are polarization-capable and when the 'Type' parameter is not set to
'directivity'. This table shows the meaning of the display options

'Polarization' Display

'combined' Combined H and V polarization
components

'H' H polarization component
'V' V polarization component

Example: 'V'

Data Types: char

Output Arguments

PAT — Element pattern
M-by-N real-valued matrix

Element pattern, returned as an M-by-N real-valued matrix. The dimensions of PAT
correspond to the dimensions of the output arguments AZ_ANG and EL_ANG.

AZ_ANG — Azimuth angles
scalar | 1-by-M real-valued row vector

Azimuth angles for displaying directivity or response pattern, returned as a scalar or 1-
by-M real-valued row vector corresponding to the dimension set in AZ. The rows of PAT
correspond to the values in AZ_ANG.

EL_ANG — Elevation angles
scalar | 1-by-N real-valued row vector

Elevation angles for displaying directivity or response, returned as a scalar or 1-by-N
real-valued row vector corresponding to the dimension set in EL. The columns of PAT
correspond to the values in EL_ANG.

1 Alphabetical List

1-464

More About

Directivity

Directivity describes the directionality of the radiation pattern of a sensor element
or array of sensor elements. Higher directivity is desired when you want to transmit
more radiation in a specific direction. Directivity is the ratio of the transmitted radiant
intensity in a specified direction to the radiant intensity transmitted by an isotropic
radiator with the same total transmitted power

D
U

P
=

()
4p

q jrad

total

,

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal
is the total power transmitted by an isotropic radiator. For a receiving element or array,
directivity measures the sensitivity toward radiation arriving from a specific direction.
The principle of reciprocity shows that the directivity of an element or array used for
reception equals the directivity of the same element or array used for transmission.
When converted to decibels, the directivity is denoted as dBi. For information on
directivity, read the notes on “Element directivity” and “Array directivity”.

Computing directivity requires integrating the far-field transmitted radiant intensity
over all directions in space to obtain the total transmitted power. There is a difference
between how that integration is performed when Antenna Toolbox antennas are used
in a phased array and when Phased Array System Toolbox antennas are used. When
an array contains Antenna Toolbox antennas, the directivity computation is performed
using a triangular mesh created from 500 regularly spaced points over a sphere. For
Phased Array System Toolbox antennas, the integration uses a uniform rectangular
mesh of points spaced 1° apart in azimuth and elevation over a sphere. There may be
significant differences in computed directivity, especially for large arrays.

Convert plotResponse to pattern

For antenna, microphone, and array System objects, the pattern method replaces the
plotResponse method. In addition, two new simplified methods exist just to draw
2-D azimuth and elevation pattern plots. These methods are azimuthPattern and
elevationPattern.

 pattern

1-465

The following table is a guide for converting your code from using plotResponse to
pattern. Notice that some of the inputs have changed from input arguments to Name-
Value pairs and conversely. The general pattern method syntax is

pattern(H,FREQ,AZ,EL,'Name1','Value1',...,'NameN','ValueN')

plotResponse Inputs plotResponse Description pattern Inputs

H argument Antenna, microphone, or array
System object.

H argument (no change)

FREQ argument Operating frequency. FREQ argument (no change)
V argument Propagation speed. This

argument is used only for
arrays.

'PropagationSpeed' name-
value pair. This parameter is
only used for arrays.

'Format' and 'RespCut'
name-value pairs

These options work together to
let you create a plot in angle
space (line or polar style) or
UV space. They also determine
whether the plot is 2-D or 3-
D. This table shows you how to
create different types of plots
using plotResponse.

Display space

Angle space
(2D)

Set
'RespCut'

to 'Az' or

'El'. Set
'Format' to
'line' or
'polar'.

Set the display
axis using
either the
the
'AzimuthAngles'

or
'ElevationAngles'

'CoordinateSystem' name-
value pair used together with
the AZ and EL input arguments.

'CoordinateSystem' has
the same options as the
plotResponse method
'Format'name-value pair,
except that 'line' is now
named 'rectangular'. The
table shows how to create
different types of plots using
pattern.

Display space

Angle space
(2D)

Set
'Coordinate

System' to
'rectangular'

or 'polar'.
Specify either
AZ or EL as a
scalar.

Angle space
(3D)

Set
'Coordinate

1 Alphabetical List

1-466

plotResponse Inputs plotResponse Description pattern Inputs

Display space

name-value
pairs.

Angle space
(3D)

Set
'RespCut'

to '3D'. Set
'Format' to
'line' or
'polar'.

Set the display
axis using
both the
'AzimuthAngles'

and'ElevationAngles'
name-value
pairs.

UV space (2D) Set
'RespCut'

to'U'. Set
'Format'

to 'UV'. Set
the display
range using
the 'UGrid'
name-value
pair.

UV space (3D) Set
'RespCut'

to'3D'. Set
'Format' to
'UV'. Set the
display range
using both
the 'UGrid'
and 'VGrid'

Display space

System' to
'rectangular'

or 'polar'.
Specify both
AZ and EL as
vectors.

UV space (2D) Set
'Coordinate

System' to
'uv'. Use AZ
to specify a U-
space vector.
Use EL to
specify a V-
space scalar.

UV space (3D) Set
'Coordinate

System' to
'uv'. Use AZ
to specify a U-
space vector.
Use EL to
specify a V-
space vector.

If you set CoordinateSystem
to 'uv', enter the UV grid
values using AZ and EL.

 pattern

1-467

plotResponse Inputs plotResponse Description pattern Inputs

Display space

name-value
pairs.

'CutAngle' name-value pair Constant angle at to take an
azimuth or elevation cut. When
producing a 2-D plot and when
'RespCut' is set to 'Az' or
'El', use 'CutAngle' to set
the slice across which to view
the plot.

No equivalent name-value pair.
To create a cut, specify either AZ
or EL as a scalar, not a vector.

'NormalizeResponse' name-
value pair

Normalizes the plot.
When 'Unit' is set to
'dbi', you cannot specify
'NormalizeResponse'.

'Normalize' name-value
pair. When 'Type' is set to
'directivity',

you cannot specify
'Normalize'.
.

'OverlayFreq' name-value
pair

Plot multiple frequencies on
the same 2-D plot. Available
only when 'Format' is
set to 'line' or 'uv' and
'RespCut' is not set to '3D'.
The value true produces an
overlay plot and the value
false produces a waterfall
plot.

'PlotStyle' name-value pair
plots multiple frequencies on the
same 2-D plot.

The values 'overlay' and
'waterfall' correspond to
'OverlayFreq' values of
true and false. The option
'waterfall' is allowed only
when 'CoordinateSystem' is
set to 'rectangular' or 'uv'.

'Polarization' name-value
pair

Determines how to plot
polarized fields. Options are
'None', 'Combined', 'H', or
'V'.

'Polarization' name-value
pair determines how to plot
polarized fields. The 'None'
option is removed. The options
'Combined', 'H', or 'V' are
unchanged.

1 Alphabetical List

1-468

plotResponse Inputs plotResponse Description pattern Inputs

'Unit' name-value pair Determines the plot units.
Choose 'db', 'mag', 'pow',
or 'dbi', where the default is
'db'.

'Type' name-value pair, uses
equivalent options with different
names

plotResponse pattern

'db' 'powerdb'

'mag' 'efield'

'pow' 'power'

'dbi' 'directivity'

'Weights' name-value pair Array element tapers (or
weights).

'Weights' name-value pair (no
change).

'AzimuthAngles' name-value
pair

Azimuth angles used to display
the antenna or array response.

AZ argument

'ElevationAngles' name-
value pair

Elevation angles used to
display the antenna or array
response.

EL argument

'UGrid' name-value pair Contains U coordinates in UV-
space.

AZ argument when
'CoordinateSystem' name-
value pair is set to 'uv'

'VGrid' name-value pair Contains V-coordinates in UV-
space.

EL argument when
'CoordinateSystem' name-
value pair is set to 'uv'

Examples
Power and Directivity Patterns of Custom Antenna

Create a custom antenna with a cosine pattern. Show the response at boresight. Then,
plot the antenna's field and directivity patterns.

Create the antenna and calculate the response. The user-defined pattern is
omnidirectional in the azimuth direction and has a cosine pattern in the elevation
direction. Assume the antenna works at 1 GHz.

fc = 1e9;

 pattern

1-469

sCust = phased.CustomAntennaElement;

sCust.AzimuthAngles = -180:180;

sCust.ElevationAngles = -90:90;

sCust.RadiationPattern = mag2db(repmat(cosd(sCust.ElevationAngles)',...

 1,numel(sCust.AzimuthAngles)));

resp = step(sCust,fc,[0;0])

resp =

 1

Plot an elevation cut of the magnitude response as a line plot.

pattern(sCust,fc,0,[-90:90],...

 'CoordinateSystem','rectangular',...

 'Type','efield')

1 Alphabetical List

1-470

Plot an elevation cut of the directivity as a line plot, showing that the maximum
directivity is approximately 2 dB.

pattern(sCust,fc,0,[-90:90],...

 'CoordinateSystem','rectangular',...

 'Type','directivity')

 pattern

1-471

Pattern of Custom Antenna Over Selected Range of Angles

Create an custom antenna System object. The user-defined pattern is omnidirectional
in the azimuth direction and has a cosine pattern in the elevation direction. Assume the
antenna operates at a frequency of 1 GHz. First show the response at boresight. Display
the 3-D pattern for a 60 degree range of azimuth and elevation angles centered at 0
degrees azimuth and 0 degrees elevation in 0.1 degree increments.

fc = 1e9;

sCust = phased.CustomAntennaElement;

sCust.AzimuthAngles = -180:180;

sCust.ElevationAngles = -90:90;

sCust.RadiationPattern = mag2db(repmat(cosd(sCust.ElevationAngles)',...

 1,numel(sCust.AzimuthAngles)));

1 Alphabetical List

1-472

resp = step(sCust,fc,[0;0])

resp =

 1

Plot the power pattern for a range of angles.

pattern(sCust,fc,[-30:0.1:30],[-30:0.1:30],...

 'CoordinateSystem','polar',...

 'Type','power')

 pattern

1-473

See Also
phased.CustomAntennaElement.patternAzimuth |
phased.CustomAntennaElement.patternElevation

Introduced in R2015a

1 Alphabetical List

1-474

patternAzimuth

System object: phased.CustomAntennaElement
Package: phased

Plot custom antenna element directivity or pattern versus azimuth

Syntax

patternAzimuth(sElem,FREQ)

patternAzimuth(sElem,FREQ,EL)

patternAzimuth(sElem,FREQ,EL,Name,Value)

PAT = patternAzimuth(___)

Description

patternAzimuth(sElem,FREQ) plots the 2-D element directivity pattern versus
azimuth (in dBi) for the element sElem at zero degrees elevation angle. The argument
FREQ specifies the operating frequency.

patternAzimuth(sElem,FREQ,EL), in addition, plots the 2-D element directivity
pattern versus azimuth (in dBi) at the elevation angle specified by EL. When EL is a
vector, multiple overlaid plots are created.

patternAzimuth(sElem,FREQ,EL,Name,Value) plots the element pattern with
additional options specified by one or more Name,Value pair arguments.

PAT = patternAzimuth(___) returns the element pattern. PAT is a matrix whose
entries represent the pattern at corresponding sampling points specified by the
'Azimuth' parameter and the EL input argument.

Input Arguments

sElem — Custom antenna element
System object

 patternAzimuth

1-475

Custom antenna element, specified as a phased.CustomAntennaElement System object.
Example: sElem = phased.CustomAntennaElement;

FREQ — Frequency for computing directivity and pattern
positive scalar

Frequency for computing directivity and pattern, specified as a positive scalar. Frequency
units are in hertz.

• For an antenna or microphone element, FREQ must lie within the range of values
specified by the FrequencyRange or the FrequencyVector property of the
element. Otherwise, the element produces no response and the directivity is
returned as –Inf. Most elements use the FrequencyRange property except for
phased.CustomAntennaElement and phased.CustomMicrophoneElement, which use
the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements
that make up the array. Otherwise, the array produces no response and the
directivity is returned as –Inf.

Example: 1e8

Data Types: double

EL — Elevation angles
1-by-N real-valued row vector

Elevation angles for computing array directivity and pattern, specified as a 1-by-N real-
valued row vector, where N is the number of requested elevation directions. Angle units
are in degrees. The elevation angle must lie between –90° and 90°.

The elevation angle is the angle between the direction vector and the xy plane. When
measured toward the z-axis, this angle is positive.
Example: [0,10,20]

Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

1 Alphabetical List

1-476

quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Type' — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and
one of

• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed

pattern is for the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field

pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'

Data Types: char

'Azimuth' — Azimuth angles
[-180:180] (default) | 1-by-P real-valued row vector

Azimuth angles, specified as the comma-separated pair consisting of 'Azimuth' and a 1-
by-P real-valued row vector. Azimuth angles define where the array pattern is calculated.
Example: 'Azimuth',[-90:2:90]

Data Types: double

Output Arguments

PAT — Element directivity or pattern
L-by-N real-valued matrix

Element directivity or pattern, returned as an L-by-N real-valued matrix. The dimension
L is the number of azimuth values determined by the 'Azimuth' name-value pair
argument. The dimension N is the number of elevation angles, as determined by the EL
input argument.

 patternAzimuth

1-477

Definitions

Directivity

Directivity describes the directionality of the radiation pattern of a sensor element
or array of sensor elements. Higher directivity is desired when you want to transmit
more radiation in a specific direction. Directivity is the ratio of the transmitted radiant
intensity in a specified direction to the radiant intensity transmitted by an isotropic
radiator with the same total transmitted power

D
U

P
=

()
4p

q jrad

total

,

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal
is the total power transmitted by an isotropic radiator. For a receiving element or array,
directivity measures the sensitivity toward radiation arriving from a specific direction.
The principle of reciprocity shows that the directivity of an element or array used for
reception equals the directivity of the same element or array used for transmission.
When converted to decibels, the directivity is denoted as dBi. For information on
directivity, read the notes on “Element directivity” and “Array directivity”.

Computing directivity requires integrating the far-field transmitted radiant intensity
over all directions in space to obtain the total transmitted power. There is a difference
between how that integration is performed when Antenna Toolbox antennas are used
in a phased array and when Phased Array System Toolbox antennas are used. When
an array contains Antenna Toolbox antennas, the directivity computation is performed
using a triangular mesh created from 500 regularly spaced points over a sphere. For
Phased Array System Toolbox antennas, the integration uses a uniform rectangular
mesh of points spaced 1° apart in azimuth and elevation over a sphere. There may be
significant differences in computed directivity, especially for large arrays.

Examples

Reduced Azimuth Pattern of Custom Antenna Element

Create an antenna with a custom response. The user-defined pattern has a sine pattern
in the azimuth direction and a cosine pattern in the elevation direction. Assume the
antenna operates at a frequency of 500 MHz. Plot an azimuth cut of the directivity of the

1 Alphabetical List

1-478

custom antenna element at 0 and 30 degrees elevation. Assume the operating frequency
is 500 MHz.

Create the antenna element.

fc = 500e6;

sCust = phased.CustomAntennaElement;

sCust.AzimuthAngles = -180:180;

sCust.ElevationAngles = -90:90;

sCust.RadiationPattern = mag2db(abs(cosd(sCust.ElevationAngles)'*sind(sCust.AzimuthAngles)));

patternAzimuth(sCust,fc,[0 30],...

 'Type','powerdb')

Plot a reduced range of azimuth angles using the Azimuth parameter.

 patternAzimuth

1-479

patternAzimuth(sCust,fc,[0 30],'Azimuth',[-45:45],...

 'Type','powerdb')

See Also
phased.CustomAntennaElement.pattern |
phased.CustomAntennaElement.patternElevation

Introduced in R2015a

1 Alphabetical List

1-480

patternElevation

System object: phased.CustomAntennaElement
Package: phased

Plot custom antenna element directivity or pattern versus elevation

Syntax

patternElevation(sElem,FREQ)

patternElevation(sElem,FREQ,AZ)

patternElevation(sElem,FREQ,AZ,Name,Value)

PAT = patternElevation(___)

Description

patternElevation(sElem,FREQ) plots the 2-D element directivity pattern versus
elevation (in dBi) for the element sElem at zero degrees azimuth angle. The argument
FREQ specifies the operating frequency.

patternElevation(sElem,FREQ,AZ), in addition, plots the 2-D element directivity
pattern versus elevation (in dBi) at the azimuth angle specified by AZ. When AZ is a
vector, multiple overlaid plots are created.

patternElevation(sElem,FREQ,AZ,Name,Value) plots the element pattern with
additional options specified by one or more Name,Value pair arguments.

PAT = patternElevation(___) returns the element pattern. PAT is a matrix
whose entries represent the pattern at corresponding sampling points specified by the
'Elevation' parameter and the AZ input argument.

Input Arguments

sElem — Custom antenna element
System object

 patternElevation

1-481

Custom antenna element, specified as a phased.CustomAntennaElement System object.
Example: sElem = phased.CustomAntennaElement;

FREQ — Frequency for computing directivity and pattern
positive scalar

Frequency for computing directivity and pattern, specified as a positive scalar. Frequency
units are in hertz.

• For an antenna or microphone element, FREQ must lie within the range of values
specified by the FrequencyRange or the FrequencyVector property of the
element. Otherwise, the element produces no response and the directivity is
returned as –Inf. Most elements use the FrequencyRange property except for
phased.CustomAntennaElement and phased.CustomMicrophoneElement, which use
the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements
that make up the array. Otherwise, the array produces no response and the
directivity is returned as –Inf.

Example: 1e8

Data Types: double

AZ — Azimuth angles for computing directivity and pattern
1-by-N real-valued row vector

Azimuth angles for computing array directivity and pattern, specified as a 1-by-M real-
valued row vector where N is the number of desired azimuth directions. Angle units are
in degrees. The azimuth angle must lie between –180° and 180°.

The azimuth angle is the angle between the x-axis and the projection of the direction
vector onto the xy plane. This angle is positive when measured from the x-axis toward the
y-axis.
Example: [0,10,20]

Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

1 Alphabetical List

1-482

quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Type' — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and
one of

• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed

pattern is for the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field

pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'

Data Types: char

'Elevation' — Elevation angles
[-90:90] (default) | 1-by-P real-valued row vector

Elevation angles, specified as the comma-separated pair consisting of 'Elevation'
and a 1-by-P real-valued row vector. Elevation angles define where the array pattern is
calculated.
Example: 'Elevation',[-90:2:90]

Data Types: double

Output Arguments

PAT — Element directivity or pattern
L-by-N real-valued matrix

Element directivity or pattern, returned as an L-by-N real-valued matrix. The dimension
L is the number of elevation angles determined by the 'Elevation' name-value pair
argument. The dimension N is the number of azimuth angles determined by the AZ
argument.

 patternElevation

1-483

Definitions

Directivity

Directivity describes the directionality of the radiation pattern of a sensor element
or array of sensor elements. Higher directivity is desired when you want to transmit
more radiation in a specific direction. Directivity is the ratio of the transmitted radiant
intensity in a specified direction to the radiant intensity transmitted by an isotropic
radiator with the same total transmitted power

D
U

P
=

()
4p

q jrad

total

,

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal
is the total power transmitted by an isotropic radiator. For a receiving element or array,
directivity measures the sensitivity toward radiation arriving from a specific direction.
The principle of reciprocity shows that the directivity of an element or array used for
reception equals the directivity of the same element or array used for transmission.
When converted to decibels, the directivity is denoted as dBi. For information on
directivity, read the notes on “Element directivity” and “Array directivity”.

Computing directivity requires integrating the far-field transmitted radiant intensity
over all directions in space to obtain the total transmitted power. There is a difference
between how that integration is performed when Antenna Toolbox antennas are used
in a phased array and when Phased Array System Toolbox antennas are used. When
an array contains Antenna Toolbox antennas, the directivity computation is performed
using a triangular mesh created from 500 regularly spaced points over a sphere. For
Phased Array System Toolbox antennas, the integration uses a uniform rectangular
mesh of points spaced 1° apart in azimuth and elevation over a sphere. There may be
significant differences in computed directivity, especially for large arrays.

Examples

Reduced Elevation Pattern of Custom Antenna Element

Create an antenna with a custom response. The user-defined pattern has a sine pattern
in the azimuth direction and a cosine pattern in the elevation direction. Assume the
antenna operates at a frequency of 500 MHz. Plot an elevation cut of the power of the

1 Alphabetical List

1-484

custom antenna element at 0 and 30 degrees elevation. Assume the operating frequency
is 500 MHz.

Create the antenna element.

fc = 500e6;

sCust = phased.CustomAntennaElement;

sCust.AzimuthAngles = -180:180;

sCust.ElevationAngles = -90:90;

sCust.RadiationPattern = mag2db(abs(cosd(sCust.ElevationAngles)'*sind(sCust.AzimuthAngles)));

patternElevation(sCust,fc,[0 30],...

 'Type','powerdb')

Plot a reduced range of elevation angles using the Azimuth parameter.

 patternElevation

1-485

patternElevation(sCust,fc,[0 30],'Elevation',[-45:45],...

 'Type','powerdb')

See Also
phased.CustomAntennaElement.pattern |
phased.CustomAntennaElement.patternAzimuth

Introduced in R2015a

1 Alphabetical List

1-486

plotResponse
System object: phased.CustomAntennaElement
Package: phased

Plot response pattern of antenna

Syntax

plotResponse(H,FREQ)

plotResponse(H,FREQ,Name,Value)

hPlot = plotResponse(___)

Description

plotResponse(H,FREQ) plots the element response pattern along the azimuth cut,
where the elevation angle is 0. The operating frequency is specified in FREQ.

plotResponse(H,FREQ,Name,Value) plots the element response with additional
options specified by one or more Name,Value pair arguments.

hPlot = plotResponse(___) returns handles of the lines or surface in the figure
window, using any of the input arguments in the previous syntaxes.

Input Arguments

H

Element System object

FREQ

Operating frequency in Hertz specified as a scalar or 1–by-K row vector. FREQ must
lie within the range specified by the FrequencyVector property of H. If you set the
'RespCut' property of H to '3D', FREQ must be a scalar. When FREQ is a row vector,
plotResponse draws multiple frequency responses on the same axes.

 plotResponse

1-487

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'CutAngle'

Cut angle specified as a scalar. This argument is applicable only when RespCut is 'Az'
or 'El'. If RespCut is 'Az', CutAngle must be between –90 and 90. If RespCut is
'El', CutAngle must be between –180 and 180.

Default: 0

'Format'

Format of the plot, using one of 'Line', 'Polar', or 'UV'. If you set Format to 'UV',
FREQ must be a scalar.

Default: 'Line'

'NormalizeResponse'

Set this value to true to normalize the response pattern. Set this value to false to plot
the response pattern without normalizing it. This parameter is not applicable when you
set the Unit parameter value to 'dbi'.

Default: true

'OverlayFreq'

Set this value to true to overlay pattern cuts in a 2-D line plot. Set this value to false
to plot pattern cuts against frequency in a 3-D waterfall plot. If this value is false, FREQ
must be a vector with at least two entries.

This parameter applies only when Format is not 'Polar' and RespCut is not '3D'.

Default: true

'Polarization'

Specify the polarization options for plotting the antenna response pattern. The allowable
values are |'None' | 'Combined' | 'H' | 'V' | where

1 Alphabetical List

1-488

• 'None' specifies plotting a nonpolarized response pattern
• 'Combined' specifies plotting a combined polarization response pattern
• 'H' specifies plotting the horizontal polarization response pattern
• 'V' specifies plotting the vertical polarization response pattern

For antennas that do not support polarization, the only allowed value is 'None'. This
parameter is not applicable when you set the Unit parameter value to 'dbi'.

Default: 'None'

'RespCut'

Cut of the response. Valid values depend on Format, as follows:

• If Format is 'Line' or 'Polar', the valid values of RespCut are 'Az', 'El', and
'3D'. The default is 'Az'.

• If Format is 'UV', the valid values of RespCut are 'U' and '3D'. The default is 'U'.

If you set RespCut to '3D', FREQ must be a scalar.

'Unit'

The unit of the plot. Valid values are 'db', 'mag', 'pow', or 'dbi'. This parameter
determines the type of plot that is produced.

Unit value Plot type

db power pattern in dB
scale

mag field pattern
pow power pattern
dbi directivity

Default: 'db'

'AzimuthAngles'

Azimuth angles for plotting element response, specified as a row vector. The
AzimuthAngles parameter sets the display range and resolution of azimuth angles for

 plotResponse

1-489

visualizing the radiation pattern. This parameter is allowed only when the RespCut
parameter is set to 'Az' or '3D' and the Format parameter is set to 'Line' or
'Polar'. The values of azimuth angles should lie between –180° and 180° and must be
in nondecreasing order. When you set the RespCut parameter to '3D', you can set the
AzimuthAngles and ElevationAngles parameters simultaneously.

Default: [-180:180]

'ElevationAngles'

Elevation angles for plotting element response, specified as a row vector. The
ElevationAngles parameter sets the display range and resolution of elevation
angles for visualizing the radiation pattern. This parameter is allowed only when the
RespCut parameter is set to 'El' or '3D' and the Format parameter is set to 'Line'
or 'Polar'. The values of elevation angles should lie between –90° and 90° and must be
in nondecreasing order. When you set the RespCut parameter to '3D', you can set the
ElevationAngles and AzimuthAngles parameters simultaneously.

Default: [-90:90]

'UGrid'

U coordinate values for plotting element response, specified as a row vector. The UGrid
parameter sets the display range and resolution of the U coordinates for visualizing
the radiation pattern in U/V space. This parameter is allowed only when the Format
parameter is set to 'UV' and the RespCut parameter is set to 'U' or '3D'. The values of
UGrid should be between –1 and 1 and should be specified in nondecreasing order. You
can set the UGrid and VGrid parameters simultaneously.

Default: [-1:0.01:1]

'VGrid'

V coordinate values for plotting element response, specified as a row vector. The VGrid
parameter sets the display range and resolution of the V coordinates for visualizing
the radiation pattern in U/V space. This parameter is allowed only when the Format
parameter is set to 'UV' and the RespCut parameter is set to '3D'. The values of VGrid
should be between –1 and 1 and should be specified in nondecreasing order. You can set
the VGrid and UGrid parameters simultaneously.

Default: [-1:0.01:1]

1 Alphabetical List

1-490

Examples

Plot Response and Directivity of Custom Antenna

Create a custom antenna with a cosine pattern. Then, plot the antenna's response.

Create the antenna and calculate the response. The user-defined pattern is
omnidirectional in the azimuth direction and has a cosine pattern in the elevation
direction. Assume the antenna works at 1 GHz.

fc = 1e9;

sCust = phased.CustomAntennaElement;

sCust.AzimuthAngles = -180:180;

sCust.ElevationAngles = -90:90;

sCust.RadiationPattern = mag2db(repmat(cosd(sCust.ElevationAngles)',...

 1,numel(sCust.AzimuthAngles)));

resp = step(sCust,fc,[0;0]);

Plot an elevation cut of the magnitude response as a line plot.

plotResponse(sCust,fc,'RespCut','El','Format','Line','Unit','mag');

 plotResponse

1-491

Plot an elevation cut of the directivity as a line plot, showing that the maximum
directivity is approximately 2 dB.

plotResponse(sCust,fc,'RespCut','El','Format','Line','Unit','dbi');

1 Alphabetical List

1-492

Plot Response of Custom Antenna Over Selected Range of Angles

Create an antenna with a custom response. The user-defined pattern is omnidirectional
in the azimuth direction and has a cosine pattern in the elevation direction. Assume the
antenna operates at a frequency of 1 GHz. Display the 3-D response for a 60 degree range
of azimuth and elevation angles centered at 0 degrees azimuth and 0 degrees elevation in
0.1 degree increments.

fc = 1e9;

sCust = phased.CustomAntennaElement;

sCust.AzimuthAngles = -180:180;

sCust.ElevationAngles = -90:90;

sCust.RadiationPattern = mag2db(repmat(cosd(sCust.ElevationAngles)',...

 1,numel(sCust.AzimuthAngles)));

 plotResponse

1-493

resp = step(sCust,fc,[0;0]);

plotResponse(sCust,fc,'RespCut','3D','Format','Polar',...

 'AzimuthAngles',[-30:0.1:30],'ElevationAngles',...

 [-30:0.1:30],'Unit','pow');

See Also
azel2uv | uv2azel

1 Alphabetical List

1-494

release
System object: phased.CustomAntennaElement
Package: phased

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

 step

1-495

step
System object: phased.CustomAntennaElement
Package: phased

Output response of antenna element

Syntax

RESP = step(H,FREQ,ANG)

Description

RESP = step(H,FREQ,ANG) returns the antenna’s voltage response RESP at operating
frequencies specified in FREQ and directions specified in ANG. The form of RESP
depends upon whether the antenna element supports polarization as determined by
the SpecifyPolarizationPattern property. If SpecifyPolarizationPattern
is set to false, RESP is an M-by-L matrix containing the antenna response
at the M angles specified in ANG and at theL frequencies specified in FREQ. If
SpecifyPolarizationPattern is set to true, RESP is a MATLAB struct containing
two fields, RESP.H and RESP.V, representing the antenna's response in horizontal and
vertical polarization, respectively. Each field is an M-by-L matrix containing the antenna
response at the M angles specified in ANG and at theL frequencies specified in FREQ.

Note: The object performs an initialization the first time the step method is executed.
This initialization locks nontunable properties and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Input Arguments

H

Antenna element object.

1 Alphabetical List

1-496

FREQ

Operating frequencies of antenna in hertz. FREQ is a row vector of length L.

ANG

Directions in degrees. ANG can be either a 2-by-M matrix or a row vector of length M.

If ANG is a 2-by-M matrix, each column of the matrix specifies the direction in the
form [azimuth; elevation]. The azimuth angle must be between –180 and 180 degrees,
inclusive. The elevation angle must be between –90 and 90 degrees, inclusive.

If ANG is a row vector of length M, each element specifies a direction’s azimuth angle. In
this case, the corresponding elevation angle is assumed to be 0.

Output Arguments

RESP

Voltage response of antenna element. The output depends on whether the antenna
element supports polarization or not.

• If the antenna element does not support polarization, RESP is an M-by-L matrix. In
this matrix, M represents the number of angles specified in ANG while L represents
the number of frequencies specified in FREQ.

• If the antenna element supports polarization, RESP is a MATLAB struct with fields
RESP.H and RESP.V containing responses for the horizontal and vertical polarization
components of the antenna radiation pattern. RESP.H and RESP.V are M-by-L
matrices. In these matrices, M represents the number of angles specified in ANG while
L represents the number of frequencies specified in FREQ.

Examples

Construct a user defined antenna with an omnidirectional response in azimuth and a
cosine pattern in elevation. The antenna operates at 1 GHz. Find the response of the
antenna at the boresight.

ha = phased.CustomAntennaElement;

ha.AzimuthAngles = -180:180;

 step

1-497

ha.ElevationAngles = -90:90;

ha.RadiationPattern = mag2db(repmat(cosd(ha.ElevationAngles)',...

 1,numel(ha.AzimuthAngles)));

resp = step(ha,1e9,[0; 0]);

resp =

 1

Algorithms

The total response of a custom antenna element is a combination of its frequency
response and spatial response. phased.CustomAntennaElement calculates both
responses using nearest neighbor interpolation, and then multiplies the responses to
form the total response.

See Also
phitheta2azel | uv2azel

1 Alphabetical List

1-498

phased.CustomMicrophoneElement System object
Package: phased

Custom microphone

Description

The CustomMicrophoneElement object creates a custom microphone element.

To compute the response of the microphone element for specified directions:

1 Define and set up your custom microphone element. See “Construction” on page
1-498.

2 Call step to compute the response according to the properties of
phased.CustomMicrophoneElement. The behavior of step is specific to each
object in the toolbox.

Construction

H = phased.CustomMicrophoneElement creates a custom microphone system object,
H, that models a custom microphone element.

H = phased.CustomMicrophoneElement(Name,Value) creates a custom
microphone object, H, with each specified property set to the specified value.
You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties

FrequencyVector

Operating frequency vector

Specify the frequencies in hertz where the frequency responses of element are measured
as a vector. The elements of the vector must be increasing. The microphone element has
no response outside the specified frequency range.

 phased.CustomMicrophoneElement System object

1-499

Default: [0 1e20]

FrequencyResponse

Frequency responses

Specify the frequency responses in decibels measured at the frequencies defined in the
FrequencyVector property as a row vector. The length of the vector must equal the
length of the frequency vector specified in the FrequencyVector property.

Default: [0 0]

PolarPatternFrequencies

Polar pattern measuring frequencies

Specify the measuring frequencies in hertz of the polar patterns as a row vector of length
M. The measuring frequencies must be within the frequency range specified in the
FrequencyVector property.

Default: 1e3

PolarPatternAngles

Polar pattern measuring angles

Specify the measuring angles in degrees of the polar patterns as a row vector of length
N. The angles are measured from the central pickup axis of the microphone, and must be
between –180 and 180, inclusive.

Default: [-180:180]

PolarPattern

Polar pattern

Specify the polar patterns of the microphone element as an M-by-N matrix. M is the
number of measuring frequencies specified in the PolarPatternFrequencies property.
N is the number of measuring angles specified in the PolarPatternAngles property.
Each row of the matrix represents the magnitude of the polar pattern (in decibels)
measured at the corresponding frequency specified in the PolarPatternFrequencies
property and corresponding angles specified in the PolarPatternAngles property. The
pattern is assumed to be measured in the azimuth plane where the elevation angle is
0 and where the central pickup axis is assumed to be 0 degrees azimuth and 0 degrees

1 Alphabetical List

1-500

elevation. The polar pattern is assumed to be symmetric around the central axis and
therefore the microphone’s response pattern in 3-D space can be constructed from the
polar pattern.

Default: An omnidirectional pattern with 0 dB response everywhere

Methods

clone Create omnidirectional microphone object
with same property values

directivity Directivity of custom microphone element
getNumInputs Number of expected inputs to step method
getNumOutputs Number of outputs from step method
isLocked Locked status for input attributes and

nontunable properties
isPolarizationCapable Polarization capability
pattern Plot custom microphone element directivity

and patterns
patternAzimuth Plot custom microphone element directivity

or pattern versus azimuth
patternElevation Plot custom microphone element directivity

or pattern versus elevation
plotResponse Plot response pattern of microphone
release Allow property value and input

characteristics changes
step Output response of microphone

Examples

Custom Cardioid Microphone Response

Create a custom cardioid microphone, and calculate the microphone response at 500,
1500, and 2000 Hz in two directions: (0,0) azimuth and elevation, and (40,50) azimuth
and elevation.

 phased.CustomMicrophoneElement System object

1-501

sCustMic = phased.CustomMicrophoneElement;

sCustMic.PolarPatternFrequencies = [500 1000];

sCustMic.PolarPattern = mag2db([...

 0.5+0.5*cosd(sCustMic.PolarPatternAngles);...

 0.6+0.4*cosd(sCustMic.PolarPatternAngles)]);

resp = step(sCustMic,[500 1500 2000],[0 0; 40 50]')

resp =

 1.0000 1.0000 1.0000

 0.7424 0.7939 0.7939

pattern(sCustMic,500,[-180:180],0,'Type','powerdb')

1 Alphabetical List

1-502

Algorithms

The total response of a custom microphone element is a combination of its frequency
response and spatial response. phased.CustomMicrophoneElement calculates both
responses using nearest neighbor interpolation and then multiplies them to form the
total response. When the PolarPatternFrequencies property value is nonscalar, the
object specifies multiple polar patterns. In this case, the interpolation uses the polar
pattern that is measured closest to the specified frequency.

 phased.CustomMicrophoneElement System object

1-503

See Also
phased.ConformalArray | phased.OmnidirectionalMicrophoneElement | phased.ULA |
phased.URA | phitheta2azel | uv2azel

Introduced in R2012a

1 Alphabetical List

1-504

clone
System object: phased.CustomMicrophoneElement
Package: phased

Create omnidirectional microphone object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates an object, C, having the same property values and same states as
H. If H is locked, so is C.

 directivity

1-505

directivity
System object: phased.CustomMicrophoneElement
Package: phased

Directivity of custom microphone element

Syntax

D = directivity(H,FREQ,ANGLE)

Description

D = directivity(H,FREQ,ANGLE) returns the “Directivity (dBi)” on page 1-507 of
a custom microphone element, H, at frequencies specified by FREQ and in direction angles
specified by ANGLE.

Input Arguments

H — Custom microphone element
System object

Custom microphone element specified as a phased.CustomMicrophoneElement System
object.
Example: H = phased.CustomMicrophoneElement;

FREQ — Frequency for computing directivity and patterns
positive scalar | 1-by-L real-valued row vector

Frequencies for computing directivity and patterns, specified as a positive scalar or 1-
by-L real-valued row vector. Frequency units are in hertz.

• For an antenna or microphone element, FREQ must lie within the range of
values specified by the FrequencyRange or FrequencyVector property of the
element. Otherwise, the element produces no response and the directivity is

1 Alphabetical List

1-506

returned as –Inf. Most elements use the FrequencyRange property except for
phased.CustomAntennaElement and phased.CustomMicrophoneElement, which use
the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements
that make up the array. Otherwise, the array produces no response and the
directivity is returned as –Inf.

Example: [1e8 2e8]

Data Types: double

ANGLE — Angles for computing directivity
1-by-M real-valued row vector | 2-by-M real-valued matrix

Angles for computing directivity, specified as a 1-by-M real-valued row vector or a 2-
by-M real-valued matrix, where M is the number of angular directions. Angle units
are in degrees. If ANGLE is a 2-by-M matrix, then each column specifies a direction in
azimuth and elevation, [az;el]. The azimuth angle must lie between –180° and 180°.
The elevation angle must lie between –90° and 90°.

If ANGLE is a 1-by-M vector, then each entry represents an azimuth angle, with the
elevation angle assumed to be zero.

The azimuth angle is the angle between the x-axis and the projection of the direction
vector onto the xy plane. This angle is positive when measured from the x-axis toward the
y-axis. The elevation angle is the angle between the direction vector and xy plane. This
angle is positive when measured towards the z-axis.
Example: [45 60; 0 10]

Data Types: double

Output Arguments

D — Directivity
M-by-L matrix

Directivity, returned as an M-by-L matrix whose columns contain the directivities at the
M angles specified by ANGLE. Each column corresponds to one of the L frequency values
specified in FREQ. Directivity units are in dBi.

 directivity

1-507

Definitions

Directivity (dBi)

Directivity describes the directionality of the radiation pattern of a sensor element
or array of sensor elements. Higher directivity is desired when you want to transmit
more radiation in a specific direction. Directivity is the ratio of the transmitted radiant
intensity in a specified direction to the radiant intensity transmitted by an isotropic
radiator with the same total transmitted power

D
U

P
=

()
4p

q jrad

total

,

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal
is the total power transmitted by an isotropic radiator. For a receiving element or array,
directivity measures the sensitivity toward radiation arriving from a specific direction.
The principle of reciprocity shows that the directivity of an element or array used for
reception equals the directivity of the same element or array used for transmission.
When converted to decibels, the directivity is denoted as dBi. For information on
directivity, read the notes on “Element directivity” and “Array directivity”.

Computing directivity requires integrating the far-field transmitted radiant intensity
over all directions in space to obtain the total transmitted power. There is a difference
between how that integration is performed when Antenna Toolbox antennas are used
in a phased array and when Phased Array System Toolbox antennas are used. When
an array contains Antenna Toolbox antennas, the directivity computation is performed
using a triangular mesh created from 500 regularly spaced points over a sphere. For
Phased Array System Toolbox antennas, the integration uses a uniform rectangular
mesh of points spaced 1° apart in azimuth and elevation over a sphere. There may be
significant differences in computed directivity, especially for large arrays.

Examples

Directivity of Custom Microphone Element

Compute the directivity of a custom microphone element. Create a custom cardioid
microphone, and plot the microphone's response at 700 Hz for elevations between -90 and
+90 degrees.

1 Alphabetical List

1-508

Define the pattern for the custom microphone element. The System object's
PolarPatternAngles property has default value of [-180:180] degrees.

myAnt = phased.CustomMicrophoneElement;

myAnt.PolarPatternFrequencies = [500 1000];

myAnt.PolarPattern = mag2db([...

 0.5+0.5*cosd(myAnt.PolarPatternAngles);...

 0.6+0.4*cosd(myAnt.PolarPatternAngles)]);

Calculate the directivity as a function of elevation at zero degrees azimuth.

elev = [-90:5:90];

azm = zeros(size(elev));

ang = [azm;elev];

freq = 700;

d = directivity(myAnt,freq,ang);

plot(elev,d)

xlabel('Elevation (deg)')

ylabel('Directivity (dBi)')

 directivity

1-509

The directivity is maximum at elevation.

See Also
phased.CustomAntennaElement.plotResponse

1 Alphabetical List

1-510

getNumInputs
System object: phased.CustomMicrophoneElement
Package: phased

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of inputs
(not counting the object itself) that you must use when calling the step method. This
value changes when you alter properties that turn inputs on or off.

 getNumOutputs

1-511

getNumOutputs
System object: phased.CustomMicrophoneElement
Package: phased

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value changes when you alter properties that turn outputs on or off.

1 Alphabetical List

1-512

isLocked
System object: phased.CustomMicrophoneElement
Package: phased

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the CustomMicrophoneElement
System object.

isLocked returns a logical value that indicates whether input attributes and
nontunable properties for the object are locked. The object performs an internal
initialization the first time that you execute step. This initialization locks nontunable
properties and input specifications, such as the dimensions, complexity, and data type of
the input data. After locking, isLocked returns a true value.

 isPolarizationCapable

1-513

isPolarizationCapable

System object: phased.CustomMicrophoneElement
Package: phased

Polarization capability

Syntax

flag = isPolarizationCapable(h)

Description

flag = isPolarizationCapable(h) returns a Boolean value, flag, indicating
whether the phased.CustomMicrophoneElement supports polarization. An element
supports polarization if it can create or respond to polarized fields. This microphone
element, as with all microphone elements, does not support polarization.

Input Arguments

h — Custom microphone element

Custom microphone element specified as a phased.CustomMicrophoneElement System
object.

Output Arguments

flag — Polarization-capability flag

Polarization-capability returned as a Boolean value true if the microphone
element supports polarization or false if it does not. Because the
phased.CustomMicrophoneElement object does not support polarization, flag is always
returned as false.

1 Alphabetical List

1-514

Examples

Custom Microphone Element does not Support Polarization

Show that the phased.CustomMicrophoneElement microphone element does not support
polarization.

h = phased.CustomMicrophoneElement;

isPolarizationCapable(h)

ans =

 0

The returned value false (0) shows that the custom microphone element does not
support polarization.

 pattern

1-515

pattern

System object: phased.CustomMicrophoneElement
Package: phased

Plot custom microphone element directivity and patterns

Syntax

pattern(sElem,FREQ)

pattern(sElem,FREQ,AZ)

pattern(sElem,FREQ,AZ,EL)

pattern(___ ,Name,Value)

[PAT,AZ_ANG,EL_ANG] = pattern(___)

Description

pattern(sElem,FREQ) plots the 3-D array directivity pattern (in dBi) for the array
specified in sElem. The operating frequency is specified in FREQ.

pattern(sElem,FREQ,AZ) plots the array directivity pattern at the specified azimuth
angle.

pattern(sElem,FREQ,AZ,EL) plots the array directivity pattern at specified azimuth
and elevation angles.

pattern(___ ,Name,Value) plots the array pattern with additional options specified
by one or more Name,Value pair arguments.

[PAT,AZ_ANG,EL_ANG] = pattern(___) returns the array pattern in PAT. The
AZ_ANG output contains the coordinate values corresponding to the rows of PAT. The
EL_ANG output contains the coordinate values corresponding to the columns of PAT.
If the 'CoordinateSystem' parameter is set to 'uv', then AZ_ANG contains the
U coordinates of the pattern and EL_ANG contains the V coordinates of the pattern.
Otherwise, they are in angular units in degrees. UV units are dimensionless.

1 Alphabetical List

1-516

Note: This method replaces the previous plotResponse method. To replace plots using
plotResponse plots with equivalent plots using pattern, see “Convert plotResponse to
pattern” on page 1-1955

Input Arguments

sElem — Custom microphone element
System object

Custom microphone element, specified as a phased.CustomMicrophoneElement System
object.
Example: sElem = phased.CustomMicrophoneElement;

FREQ — Frequency for computing directivity and patterns
positive scalar | 1-by-L real-valued row vector

Frequencies for computing directivity and patterns, specified as a positive scalar or 1-
by-L real-valued row vector. Frequency units are in hertz.

• For an antenna or microphone element, FREQ must lie within the range of
values specified by the FrequencyRange or FrequencyVector property of the
element. Otherwise, the element produces no response and the directivity is
returned as –Inf. Most elements use the FrequencyRange property except for
phased.CustomAntennaElement and phased.CustomMicrophoneElement, which use
the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements
that make up the array. Otherwise, the array produces no response and the
directivity is returned as –Inf.

Example: [1e8 2e8]

Data Types: double

AZ — Azimuth angles
[-180:180] (default) | 1-by-M real-valued row vector

Azimuth angles for computing directivity and pattern, specified as a 1-by-M real-
valued row vector where M is the number of azimuth angles. Angle units are in degrees.
Azimuth angles must lie between –180° and 180°.

 pattern

1-517

The azimuth angle is the angle between the x-axis and the projection of the direction
vector onto the xy plane. When measured from the x-axis toward the y-axis, this angle is
positive.
Example: [-45:2:45]

Data Types: double

EL — Elevation angles
[-90:90] (default) | 1-by-N real-valued row vector

Elevation angles for computing directivity and pattern, specified as a 1-by-N real-valued
row vector where N is the number of desired elevation directions. Angle units are in
degrees. The elevation angle must lie between –90° and 90°.

The elevation angle is the angle between the direction vector and xy-plane. When
measured towards the z-axis, this angle is positive.
Example: [-75:1:70]

Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'CoordinateSystem' — Plotting coordinate system
'polar' (default) | 'rectangular' | 'uv'

Plotting coordinate system of the pattern, specified as the comma-separated pair
consisting of 'CoordinateSystem' and one of 'polar', 'rectangular', or
'uv'. When 'CoordinateSystem' is set to 'polar' or 'rectangular', the
AZ and EL arguments specify the pattern azimuth and elevation, respectively. AZ
values must lie between –180° and 180°. EL values must lie between –90° and 90°. If
'CoordinateSystem' is set to 'uv', AZ and EL then specify U and V coordinates,
respectively. AZ and EL must lie between -1 and 1.

Example: 'uv'

Data Types: char

1 Alphabetical List

1-518

'Type' — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and
one of

• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed

pattern is for the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field

pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'

Data Types: char

'Normalize' — Display normalize pattern
true (default) | false

Display normalized pattern, specified as the comma-separated pair consisting of
'Normalize' and a Boolean. Set this parameter to true to display a normalized pattern.
When you set 'Type' to 'directivity', this parameter does not apply. Directivity
patterns are already normalized.
Example:
Data Types: logical

'PlotStyle' — Plotting style
'overlay' (default) | 'waterfall'

Plotting style, specified as the comma-separated pair consisting of 'Plotstyle' and
either 'overlay' or 'waterfall'. This parameter applies when you specify multiple
frequencies in FREQ in 2-D plots. You can draw 2-D plots by setting one of the arguments
AZ or EL to a scalar.

Example:
Data Types: char

 pattern

1-519

Output Arguments
PAT — Element pattern
M-by-N real-valued matrix

Element pattern, returned as an M-by-N real-valued matrix. The dimensions of PAT
correspond to the dimensions of the output arguments AZ_ANG and EL_ANG.

AZ_ANG — Azimuth angles
scalar | 1-by-M real-valued row vector

Azimuth angles for displaying directivity or response pattern, returned as a scalar or 1-
by-M real-valued row vector corresponding to the dimension set in AZ. The rows of PAT
correspond to the values in AZ_ANG.

EL_ANG — Elevation angles
scalar | 1-by-N real-valued row vector

Elevation angles for displaying directivity or response, returned as a scalar or 1-by-N
real-valued row vector corresponding to the dimension set in EL. The columns of PAT
correspond to the values in EL_ANG.

More About

Directivity

Directivity describes the directionality of the radiation pattern of a sensor element
or array of sensor elements. Higher directivity is desired when you want to transmit
more radiation in a specific direction. Directivity is the ratio of the transmitted radiant
intensity in a specified direction to the radiant intensity transmitted by an isotropic
radiator with the same total transmitted power

D
U

P
=

()
4p

q jrad

total

,

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal
is the total power transmitted by an isotropic radiator. For a receiving element or array,
directivity measures the sensitivity toward radiation arriving from a specific direction.
The principle of reciprocity shows that the directivity of an element or array used for
reception equals the directivity of the same element or array used for transmission.

1 Alphabetical List

1-520

When converted to decibels, the directivity is denoted as dBi. For information on
directivity, read the notes on “Element directivity” and “Array directivity”.

Computing directivity requires integrating the far-field transmitted radiant intensity
over all directions in space to obtain the total transmitted power. There is a difference
between how that integration is performed when Antenna Toolbox antennas are used
in a phased array and when Phased Array System Toolbox antennas are used. When
an array contains Antenna Toolbox antennas, the directivity computation is performed
using a triangular mesh created from 500 regularly spaced points over a sphere. For
Phased Array System Toolbox antennas, the integration uses a uniform rectangular
mesh of points spaced 1° apart in azimuth and elevation over a sphere. There may be
significant differences in computed directivity, especially for large arrays.

Convert plotResponse to pattern

For antenna, microphone, and array System objects, the pattern method replaces the
plotResponse method. In addition, two new simplified methods exist just to draw
2-D azimuth and elevation pattern plots. These methods are azimuthPattern and
elevationPattern.

The following table is a guide for converting your code from using plotResponse to
pattern. Notice that some of the inputs have changed from input arguments to Name-
Value pairs and conversely. The general pattern method syntax is

pattern(H,FREQ,AZ,EL,'Name1','Value1',...,'NameN','ValueN')

plotResponse Inputs plotResponse Description pattern Inputs

H argument Antenna, microphone, or array
System object.

H argument (no change)

FREQ argument Operating frequency. FREQ argument (no change)
V argument Propagation speed. This

argument is used only for
arrays.

'PropagationSpeed' name-
value pair. This parameter is
only used for arrays.

'Format' and 'RespCut'
name-value pairs

These options work together to
let you create a plot in angle
space (line or polar style) or
UV space. They also determine
whether the plot is 2-D or 3-
D. This table shows you how to

'CoordinateSystem' name-
value pair used together with
the AZ and EL input arguments.

'CoordinateSystem' has
the same options as the

 pattern

1-521

plotResponse Inputs plotResponse Description pattern Inputs

create different types of plots
using plotResponse.

Display space

Angle space
(2D)

Set
'RespCut'

to 'Az' or

'El'. Set
'Format' to
'line' or
'polar'.

Set the display
axis using
either the
the
'AzimuthAngles'

or
'ElevationAngles'

name-value
pairs.

Angle space
(3D)

Set
'RespCut'

to '3D'. Set
'Format' to
'line' or
'polar'.

Set the display
axis using
both the
'AzimuthAngles'

and'ElevationAngles'
name-value
pairs.

UV space (2D) Set
'RespCut'

plotResponse method
'Format'name-value pair,
except that 'line' is now
named 'rectangular'. The
table shows how to create
different types of plots using
pattern.

Display space

Angle space
(2D)

Set
'Coordinate

System' to
'rectangular'

or 'polar'.
Specify either
AZ or EL as a
scalar.

Angle space
(3D)

Set
'Coordinate

System' to
'rectangular'

or 'polar'.
Specify both
AZ and EL as
vectors.

UV space (2D) Set
'Coordinate

System' to
'uv'. Use AZ
to specify a U-
space vector.
Use EL to
specify a V-
space scalar.

UV space (3D) Set
'Coordinate

System' to

1 Alphabetical List

1-522

plotResponse Inputs plotResponse Description pattern Inputs

Display space

to'U'. Set
'Format'

to 'UV'. Set
the display
range using
the 'UGrid'
name-value
pair.

UV space (3D) Set
'RespCut'

to'3D'. Set
'Format' to
'UV'. Set the
display range
using both
the 'UGrid'
and 'VGrid'
name-value
pairs.

Display space

'uv'. Use AZ
to specify a U-
space vector.
Use EL to
specify a V-
space vector.

If you set CoordinateSystem
to 'uv', enter the UV grid
values using AZ and EL.

'CutAngle' name-value pair Constant angle at to take an
azimuth or elevation cut. When
producing a 2-D plot and when
'RespCut' is set to 'Az' or
'El', use 'CutAngle' to set
the slice across which to view
the plot.

No equivalent name-value pair.
To create a cut, specify either AZ
or EL as a scalar, not a vector.

'NormalizeResponse' name-
value pair

Normalizes the plot.
When 'Unit' is set to
'dbi', you cannot specify
'NormalizeResponse'.

'Normalize' name-value
pair. When 'Type' is set to
'directivity',

you cannot specify
'Normalize'.
.

 pattern

1-523

plotResponse Inputs plotResponse Description pattern Inputs

'OverlayFreq' name-value
pair

Plot multiple frequencies on
the same 2-D plot. Available
only when 'Format' is
set to 'line' or 'uv' and
'RespCut' is not set to '3D'.
The value true produces an
overlay plot and the value
false produces a waterfall
plot.

'PlotStyle' name-value pair
plots multiple frequencies on the
same 2-D plot.

The values 'overlay' and
'waterfall' correspond to
'OverlayFreq' values of
true and false. The option
'waterfall' is allowed only
when 'CoordinateSystem' is
set to 'rectangular' or 'uv'.

'Polarization' name-value
pair

Determines how to plot
polarized fields. Options are
'None', 'Combined', 'H', or
'V'.

'Polarization' name-value
pair determines how to plot
polarized fields. The 'None'
option is removed. The options
'Combined', 'H', or 'V' are
unchanged.

'Unit' name-value pair Determines the plot units.
Choose 'db', 'mag', 'pow',
or 'dbi', where the default is
'db'.

'Type' name-value pair, uses
equivalent options with different
names

plotResponse pattern

'db' 'powerdb'

'mag' 'efield'

'pow' 'power'

'dbi' 'directivity'

'Weights' name-value pair Array element tapers (or
weights).

'Weights' name-value pair (no
change).

'AzimuthAngles' name-value
pair

Azimuth angles used to display
the antenna or array response.

AZ argument

'ElevationAngles' name-
value pair

Elevation angles used to
display the antenna or array
response.

EL argument

1 Alphabetical List

1-524

plotResponse Inputs plotResponse Description pattern Inputs

'UGrid' name-value pair Contains U coordinates in UV-
space.

AZ argument when
'CoordinateSystem' name-
value pair is set to 'uv'

'VGrid' name-value pair Contains V-coordinates in UV-
space.

EL argument when
'CoordinateSystem' name-
value pair is set to 'uv'

Examples

Azimuth Power Pattern and Directivity of Cardioid Microphone

Design a cardioid microphone to operate in the frequency range between 500 and 1000
Hz.

sCustMike = phased.CustomMicrophoneElement;

sCustMike.PolarPatternFrequencies = [500 1000];

sCustMike.PolarPattern = mag2db([...

 0.5+0.5*cosd(sCustMike.PolarPatternAngles);...

 0.6+0.4*cosd(sCustMike.PolarPatternAngles)]);

Display a polar plot of an azimuth cut of the response at 500 Hz and 1000 Hz.

fc = 500;

pattern(sCustMike,[fc 2*fc],[-180:180],0,...

 'CoordinateSystem','polar',...

 'Type','powerdb');

 pattern

1-525

Plot the directivity as a line plot for the same two frequencies.

pattern(sCustMike,[fc 2*fc],[-180:180],0,...

 'CoordinateSystem','rectangular',...

 'Type','directivity');

1 Alphabetical List

1-526

Power Pattern of Cardioid Microphone in U/V Space

Plot a -cut of the power pattern of a custom cardioid microphone designed to operate in
the frequency range 500-1000 Hz.

Create a cardioid microphone.

sCustMike = phased.CustomMicrophoneElement;

sCustMike.PolarPatternFrequencies = [500 1000];

sCustMike.PolarPattern = mag2db([...

 0.5+0.5*cosd(sCustMike.PolarPatternAngles);...

 0.6+0.4*cosd(sCustMike.PolarPatternAngles)]);

Plot the power pattern.

 pattern

1-527

fc = 500;

pattern(sCustMike,fc,[-1:.01:1],0,...

 'CoordinateSystem','uv',...

 'Type','powerdb');

3-D Pattern of Cardioid Microphone Over Restricted Range of Angles

Plot the 3-D magnitude pattern of a custom cardioid microphone with both the azimuth
and elevation angles restricted to the range -40 to 40 degrees in 0.1 degree increments.

Create a custom microphone element with a cardioid pattern.

sCustMike = phased.CustomMicrophoneElement;

sCustMike.PolarPatternFrequencies = [500 1000];

sCustMike.PolarPattern = mag2db([...

1 Alphabetical List

1-528

 0.5+0.5*cosd(sCustMike.PolarPatternAngles);...

 0.6+0.4*cosd(sCustMike.PolarPatternAngles)]);

Plot the 3-D magnitude pattern.

fc = 500;

pattern(sCustMike,fc,[-40:0.1:40],[-40:0.1:40],...

 'CoordinateSystem','polar',...

 'Type','efield');

See Also
phased.CustomMicrophoneElement.patternAzimuth |
phased.CustomMicrophoneElement.patternElevation

 pattern

1-529

Introduced in R2015a

1 Alphabetical List

1-530

patternAzimuth

System object: phased.CustomMicrophoneElement
Package: phased

Plot custom microphone element directivity or pattern versus azimuth

Syntax

patternAzimuth(sElem,FREQ)

patternAzimuth(sElem,FREQ,EL)

patternAzimuth(sElem,FREQ,EL,Name,Value)

PAT = patternAzimuth(___)

Description

patternAzimuth(sElem,FREQ) plots the 2-D element directivity pattern versus
azimuth (in dBi) for the element sElem at zero degrees elevation angle. The argument
FREQ specifies the operating frequency.

patternAzimuth(sElem,FREQ,EL), in addition, plots the 2-D element directivity
pattern versus azimuth (in dBi) at the elevation angle specified by EL. When EL is a
vector, multiple overlaid plots are created.

patternAzimuth(sElem,FREQ,EL,Name,Value) plots the element pattern with
additional options specified by one or more Name,Value pair arguments.

PAT = patternAzimuth(___) returns the element pattern. PAT is a matrix whose
entries represent the pattern at corresponding sampling points specified by the
'Azimuth' parameter and the EL input argument.

Input Arguments

sElem — Custom microphone element
System object

 patternAzimuth

1-531

Custom microphone element, specified as a phased.CustomMicrophoneElement System
object.
Example: sElem = phased.CustomMicrophoneElement;

FREQ — Frequency for computing directivity and pattern
positive scalar

Frequency for computing directivity and pattern, specified as a positive scalar. Frequency
units are in hertz.

• For an antenna or microphone element, FREQ must lie within the range of values
specified by the FrequencyRange or the FrequencyVector property of the
element. Otherwise, the element produces no response and the directivity is
returned as –Inf. Most elements use the FrequencyRange property except for
phased.CustomAntennaElement and phased.CustomMicrophoneElement, which use
the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements
that make up the array. Otherwise, the array produces no response and the
directivity is returned as –Inf.

Example: 1e8

Data Types: double

EL — Elevation angles
1-by-N real-valued row vector

Elevation angles for computing array directivity and pattern, specified as a 1-by-N real-
valued row vector, where N is the number of requested elevation directions. Angle units
are in degrees. The elevation angle must lie between –90° and 90°.

The elevation angle is the angle between the direction vector and the xy plane. When
measured toward the z-axis, this angle is positive.
Example: [0,10,20]

Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

1 Alphabetical List

1-532

quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Type' — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and
one of

• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed

pattern is for the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field

pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'

Data Types: char

'Azimuth' — Azimuth angles
[-180:180] (default) | 1-by-P real-valued row vector

Azimuth angles, specified as the comma-separated pair consisting of 'Azimuth' and a 1-
by-P real-valued row vector. Azimuth angles define where the array pattern is calculated.
Example: 'Azimuth',[-90:2:90]

Data Types: double

Output Arguments

PAT — Element directivity or pattern
L-by-N real-valued matrix

Element directivity or pattern, returned as an L-by-N real-valued matrix. The dimension
L is the number of azimuth values determined by the 'Azimuth' name-value pair
argument. The dimension N is the number of elevation angles, as determined by the EL
input argument.

 patternAzimuth

1-533

Definitions

Directivity

Directivity describes the directionality of the radiation pattern of a sensor element
or array of sensor elements. Higher directivity is desired when you want to transmit
more radiation in a specific direction. Directivity is the ratio of the transmitted radiant
intensity in a specified direction to the radiant intensity transmitted by an isotropic
radiator with the same total transmitted power

D
U

P
=

()
4p

q jrad

total

,

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal
is the total power transmitted by an isotropic radiator. For a receiving element or array,
directivity measures the sensitivity toward radiation arriving from a specific direction.
The principle of reciprocity shows that the directivity of an element or array used for
reception equals the directivity of the same element or array used for transmission.
When converted to decibels, the directivity is denoted as dBi. For information on
directivity, read the notes on “Element directivity” and “Array directivity”.

Computing directivity requires integrating the far-field transmitted radiant intensity
over all directions in space to obtain the total transmitted power. There is a difference
between how that integration is performed when Antenna Toolbox antennas are used
in a phased array and when Phased Array System Toolbox antennas are used. When
an array contains Antenna Toolbox antennas, the directivity computation is performed
using a triangular mesh created from 500 regularly spaced points over a sphere. For
Phased Array System Toolbox antennas, the integration uses a uniform rectangular
mesh of points spaced 1° apart in azimuth and elevation over a sphere. There may be
significant differences in computed directivity, especially for large arrays.

Examples

Azimuth Pattern of Cardioid Microphone Over Reduced Angular Range

Plot the azimuth directivity pattern of a custom cardioid microphone at both 0 and 30
degrees elevation.

Create a custom microphone element with a cardioid pattern.

1 Alphabetical List

1-534

sCustMike = phased.CustomMicrophoneElement;

sCustMike.PolarPatternFrequencies = [500 1000];

sCustMike.PolarPattern = mag2db([...

 0.5+0.5*cosd(sCustMike.PolarPatternAngles);...

 0.6+0.4*cosd(sCustMike.PolarPatternAngles)]);

Plot the directivity at 500 Hz.

fc = 500;

patternAzimuth(sCustMike,fc,[0 30])

Plot the directivity for a reduced range of azimuth angles using the Azimuth parameter.
Notice the change in scale.

fc = 500;

 patternAzimuth

1-535

patternAzimuth(sCustMike,fc,[0 30],...

 'Azimuth',[-40:.1:40])

See Also
phased.CustomMicrophoneElement.pattern |
phased.CustomMicrophoneElement.patternElevation

Introduced in R2015a

1 Alphabetical List

1-536

patternElevation
System object: phased.CustomMicrophoneElement
Package: phased

Plot custom microphone element directivity or pattern versus elevation

Syntax
patternElevation(sElem,FREQ)

patternElevation(sElem,FREQ,AZ)

patternElevation(sElem,FREQ,AZ,Name,Value)

PAT = patternElevation(___)

Description
patternElevation(sElem,FREQ) plots the 2-D element directivity pattern versus
elevation (in dBi) for the element sElem at zero degrees azimuth angle. The argument
FREQ specifies the operating frequency.

patternElevation(sElem,FREQ,AZ), in addition, plots the 2-D element directivity
pattern versus elevation (in dBi) at the azimuth angle specified by AZ. When AZ is a
vector, multiple overlaid plots are created.

patternElevation(sElem,FREQ,AZ,Name,Value) plots the element pattern with
additional options specified by one or more Name,Value pair arguments.

PAT = patternElevation(___) returns the element pattern. PAT is a matrix
whose entries represent the pattern at corresponding sampling points specified by the
'Elevation' parameter and the AZ input argument.

Input Arguments
sElem — Custom microphone element
System object

Custom microphone element, specified as a phased.CustomMicrophoneElement System
object.

 patternElevation

1-537

Example: sElem = phased.CustomMicrophoneElement;

FREQ — Frequency for computing directivity and pattern
positive scalar

Frequency for computing directivity and pattern, specified as a positive scalar. Frequency
units are in hertz.

• For an antenna or microphone element, FREQ must lie within the range of values
specified by the FrequencyRange or the FrequencyVector property of the
element. Otherwise, the element produces no response and the directivity is
returned as –Inf. Most elements use the FrequencyRange property except for
phased.CustomAntennaElement and phased.CustomMicrophoneElement, which use
the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements
that make up the array. Otherwise, the array produces no response and the
directivity is returned as –Inf.

Example: 1e8

Data Types: double

AZ — Azimuth angles for computing directivity and pattern
1-by-N real-valued row vector

Azimuth angles for computing array directivity and pattern, specified as a 1-by-M real-
valued row vector where N is the number of desired azimuth directions. Angle units are
in degrees. The azimuth angle must lie between –180° and 180°.

The azimuth angle is the angle between the x-axis and the projection of the direction
vector onto the xy plane. This angle is positive when measured from the x-axis toward the
y-axis.
Example: [0,10,20]

Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

1 Alphabetical List

1-538

quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Type' — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and
one of

• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed

pattern is for the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field

pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'

Data Types: char

'Elevation' — Elevation angles
[-90:90] (default) | 1-by-P real-valued row vector

Elevation angles, specified as the comma-separated pair consisting of 'Elevation'
and a 1-by-P real-valued row vector. Elevation angles define where the array pattern is
calculated.
Example: 'Elevation',[-90:2:90]

Data Types: double

Output Arguments

PAT — Element directivity or pattern
L-by-N real-valued matrix

Element directivity or pattern, returned as an L-by-N real-valued matrix. The dimension
L is the number of elevation angles determined by the 'Elevation' name-value pair
argument. The dimension N is the number of azimuth angles determined by the AZ
argument.

 patternElevation

1-539

Definitions

Directivity

Directivity describes the directionality of the radiation pattern of a sensor element
or array of sensor elements. Higher directivity is desired when you want to transmit
more radiation in a specific direction. Directivity is the ratio of the transmitted radiant
intensity in a specified direction to the radiant intensity transmitted by an isotropic
radiator with the same total transmitted power

D
U

P
=

()
4p

q jrad

total

,

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal
is the total power transmitted by an isotropic radiator. For a receiving element or array,
directivity measures the sensitivity toward radiation arriving from a specific direction.
The principle of reciprocity shows that the directivity of an element or array used for
reception equals the directivity of the same element or array used for transmission.
When converted to decibels, the directivity is denoted as dBi. For information on
directivity, read the notes on “Element directivity” and “Array directivity”.

Computing directivity requires integrating the far-field transmitted radiant intensity
over all directions in space to obtain the total transmitted power. There is a difference
between how that integration is performed when Antenna Toolbox antennas are used
in a phased array and when Phased Array System Toolbox antennas are used. When
an array contains Antenna Toolbox antennas, the directivity computation is performed
using a triangular mesh created from 500 regularly spaced points over a sphere. For
Phased Array System Toolbox antennas, the integration uses a uniform rectangular
mesh of points spaced 1° apart in azimuth and elevation over a sphere. There may be
significant differences in computed directivity, especially for large arrays.

Examples

Elevation Pattern of Cardioid Microphone Over Reduced Angular Range

Plot the elevation directivity pattern of a custom cardioid microphone at both 0 and 45
degrees azimuth.

Create a custom microphone element with a cardioid pattern.

1 Alphabetical List

1-540

sCustMike = phased.CustomMicrophoneElement;

sCustMike.PolarPatternFrequencies = [500 1000];

sCustMike.PolarPattern = mag2db([...

 0.5+0.5*cosd(sCustMike.PolarPatternAngles);...

 0.6+0.4*cosd(sCustMike.PolarPatternAngles)]);

Plot the directivity at 500 Hz.

fc = 500;

patternElevation(sCustMike,fc,[0 30])

Plot the directivity for a reduced range of azimuth angles using the Azimuth parameter.
Notice the change in scale.

fc = 500;

 patternElevation

1-541

patternElevation(sCustMike,fc,[0 45],...

 'Elevation',[-40:.1:40])

See Also
phased.CustomMicrophoneElement.pattern |
phased.CustomMicrophoneElement.patternAzimuth

Introduced in R2015a

1 Alphabetical List

1-542

plotResponse
System object: phased.CustomMicrophoneElement
Package: phased

Plot response pattern of microphone

Syntax

plotResponse(H,FREQ)

plotResponse(H,FREQ,Name,Value)

hPlot = plotResponse(___)

Description

plotResponse(H,FREQ) plots the element response pattern along the azimuth cut,
where the elevation angle is 0. The operating frequency is specified in FREQ.

plotResponse(H,FREQ,Name,Value) plots the element response with additional
options specified by one or more Name,Value pair arguments.

hPlot = plotResponse(___) returns handles of the lines or surface in the figure
window, using any of the input arguments in the previous syntaxes.

Input Arguments

H

Element System object

FREQ

Operating frequency in Hertz specified as a scalar or 1–by-K row vector. FREQ must
lie within the range specified by the FrequencyVector property of H. If you set the
'RespCut' property of H to '3D', FREQ must be a scalar. When FREQ is a row vector,
plotResponse draws multiple frequency responses on the same axes.

 plotResponse

1-543

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'CutAngle'

Cut angle specified as a scalar. This argument is applicable only when RespCut is 'Az'
or 'El'. If RespCut is 'Az', CutAngle must be between –90 and 90. If RespCut is
'El', CutAngle must be between –180 and 180.

Default: 0

'Format'

Format of the plot, using one of 'Line', 'Polar', or 'UV'. If you set Format to 'UV',
FREQ must be a scalar.

Default: 'Line'

'NormalizeResponse'

Set this value to true to normalize the response pattern. Set this value to false to plot
the response pattern without normalizing it. This parameter is not applicable when you
set the Unit parameter value to 'dbi'.

Default: true

'OverlayFreq'

Set this value to true to overlay pattern cuts in a 2-D line plot. Set this value to false
to plot pattern cuts against frequency in a 3-D waterfall plot. If this value is false, FREQ
must be a vector with at least two entries.

This parameter applies only when Format is not 'Polar' and RespCut is not '3D'.

Default: true

'Polarization'

Specify the polarization options for plotting the antenna response pattern. The allowable
values are |'None' | 'Combined' | 'H' | 'V' | where

1 Alphabetical List

1-544

• 'None' specifies plotting a nonpolarized response pattern
• 'Combined' specifies plotting a combined polarization response pattern
• 'H' specifies plotting the horizontal polarization response pattern
• 'V' specifies plotting the vertical polarization response pattern

For antennas that do not support polarization, the only allowed value is 'None'. This
parameter is not applicable when you set the Unit parameter value to 'dbi'.

Default: 'None'

'RespCut'

Cut of the response. Valid values depend on Format, as follows:

• If Format is 'Line' or 'Polar', the valid values of RespCut are 'Az', 'El', and
'3D'. The default is 'Az'.

• If Format is 'UV', the valid values of RespCut are 'U' and '3D'. The default is 'U'.

If you set RespCut to '3D', FREQ must be a scalar.

'Unit'

The unit of the plot. Valid values are 'db', 'mag', 'pow', or 'dbi'. This parameter
determines the type of plot that is produced.

Unit value Plot type

db power pattern in dB
scale

mag field pattern
pow power pattern
dbi directivity

Default: 'db'

'AzimuthAngles'

Azimuth angles for plotting element response, specified as a row vector. The
AzimuthAngles parameter sets the display range and resolution of azimuth angles for

 plotResponse

1-545

visualizing the radiation pattern. This parameter is allowed only when the RespCut
parameter is set to 'Az' or '3D' and the Format parameter is set to 'Line' or
'Polar'. The values of azimuth angles should lie between –180° and 180° and must be
in nondecreasing order. When you set the RespCut parameter to '3D', you can set the
AzimuthAngles and ElevationAngles parameters simultaneously.

Default: [-180:180]

'ElevationAngles'

Elevation angles for plotting element response, specified as a row vector. The
ElevationAngles parameter sets the display range and resolution of elevation
angles for visualizing the radiation pattern. This parameter is allowed only when the
RespCut parameter is set to 'El' or '3D' and the Format parameter is set to 'Line'
or 'Polar'. The values of elevation angles should lie between –90° and 90° and must be
in nondecreasing order. When you set the RespCut parameter to '3D', you can set the
ElevationAngles and AzimuthAngles parameters simultaneously.

Default: [-90:90]

'UGrid'

U coordinate values for plotting element response, specified as a row vector. The UGrid
parameter sets the display range and resolution of the U coordinates for visualizing
the radiation pattern in U/V space. This parameter is allowed only when the Format
parameter is set to 'UV' and the RespCut parameter is set to 'U' or '3D'. The values of
UGrid should be between –1 and 1 and should be specified in nondecreasing order. You
can set the UGrid and VGrid parameters simultaneously.

Default: [-1:0.01:1]

'VGrid'

V coordinate values for plotting element response, specified as a row vector. The VGrid
parameter sets the display range and resolution of the V coordinates for visualizing
the radiation pattern in U/V space. This parameter is allowed only when the Format
parameter is set to 'UV' and the RespCut parameter is set to '3D'. The values of VGrid
should be between –1 and 1 and should be specified in nondecreasing order. You can set
the VGrid and UGrid parameters simultaneously.

Default: [-1:0.01:1]

1 Alphabetical List

1-546

Examples

Azimuth Response and Directivity of Cardioid Microphone

Design a cardioid microphone to operate in the frequency range between 500 and 1000
Hz.

h = phased.CustomMicrophoneElement;

h.PolarPatternFrequencies = [500 1000];

h.PolarPattern = mag2db([...

 0.5+0.5*cosd(h.PolarPatternAngles);...

 0.6+0.4*cosd(h.PolarPatternAngles)]);

Display a polar plot of an azimuth cut of the response at 500 Hz and 1000 Hz.

fc = 500;

plotResponse(h,[fc 2*fc],'RespCut','Az','Format','Polar');

 plotResponse

1-547

Plot the directivity as a line plot for the same two frequencies.

plotResponse(h,[fc 2*fc],'RespCut','Az','Format','Line','Unit','dbi');

1 Alphabetical List

1-548

Response of Cardioid Microphone in U/V Space

Plot a -cut of the response of a custom cardioid microphone that is designed to operate
in the frequency range 500-1000 Hz.

Create a cardioid microphone.

h = phased.CustomMicrophoneElement;

h.PolarPatternFrequencies = [500 1000];

h.PolarPattern = mag2db([...

 0.5+0.5*cosd(h.PolarPatternAngles);...

 0.6+0.4*cosd(h.PolarPatternAngles)]);

Plot the response.

 plotResponse

1-549

fc = 500;

plotResponse(h,fc,'Format','UV');

3-D Response of Cardioid Microphone Over Restricted Range of Angles

Plot the 3-D response of a custom cardioid microphone in space but with both the
azimuth and elevation angles restricted to the range -40 to 40 degrees in 0.1 degree
increments.

Create a custom microphone element with a cardioid pattern.

h = phased.CustomMicrophoneElement;

h.PolarPatternFrequencies = [500 1000];

h.PolarPattern = mag2db([...

1 Alphabetical List

1-550

 0.5+0.5*cosd(h.PolarPatternAngles);...

 0.6+0.4*cosd(h.PolarPatternAngles)]);

Plot the 3-D response.

fc = 500;

plotResponse(h,fc,'Format','polar','RespCut','3D',...

 'Unit','mag','AzimuthAngles',[-40:0.1:40],...

 'ElevationAngles',[-40:0.1:40]);

See Also
azel2uv | uv2azel

 release

1-551

release
System object: phased.CustomMicrophoneElement
Package: phased

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

1 Alphabetical List

1-552

step
System object: phased.CustomMicrophoneElement
Package: phased

Output response of microphone

Syntax

RESP = step(H,FREQ,ANG)

Description

RESP = step(H,FREQ,ANG) returns the microphone’s magnitude response, RESP, at
frequencies specified in FREQ and directions specified in ANG.

Note: The object performs an initialization the first time the step method is executed.
This initialization locks nontunable properties and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Input Arguments

H

Microphone object.

FREQ

Frequencies in hertz. FREQ is a row vector of length L.

ANG

Directions in degrees. ANG can be either a 2-by-M matrix or a row vector of length M.

 step

1-553

If ANG is a 2-by-M matrix, each column of the matrix specifies the direction in the
form [azimuth; elevation]. The azimuth angle must be between –180 and 180 degrees,
inclusive. The elevation angle must be between –90 and 90 degrees, inclusive.

If ANG is a row vector of length M, each element specifies a direction’s azimuth angle. In
this case, the corresponding elevation angle is assumed to be 0.

Output Arguments

RESP

Response of microphone. RESP is an M-by-L matrix that contains the responses of the
microphone element at the M angles specified in ANG and the L frequencies specified in
FREQ.

Examples

Custom Microphone Response

Construct a custom cardioid microphone with an operating frequency of 500 Hz. Find the
microphone response in the directions: (0,0) degrees azimuth and elevation and (40,50)
degrees azimuth and elevation.

sCustMic = phased.CustomMicrophoneElement;

sCustMic.PolarPatternFrequencies = [500 1000];

sCustMic.PolarPattern = mag2db([...

 0.5+0.5*cosd(sCustMic.PolarPatternAngles);...

 0.6+0.4*cosd(sCustMic.PolarPatternAngles)]);

fc = 700;

ang = [0 0; 40 50]';

resp = step(sCustMic,fc,ang)

resp =

 1.0000

 0.7424

1 Alphabetical List

1-554

Algorithms

The total response of a custom microphone element is a combination of its frequency
response and spatial response. phased.CustomMicrophoneElement calculates both
responses using nearest neighbor interpolation and then multiplies them to form the
total response. When the PolarPatternFrequencies property value is nonscalar, the
object specifies multiple polar patterns. In this case, the interpolation uses the polar
pattern that is measured closest to the specified frequency.

See Also
phitheta2azel | uv2azel

 phased.DPCACanceller System object

1-555

phased.DPCACanceller System object

Package: phased

Displaced phase center array (DPCA) pulse canceller

Description

The DPCACanceller object implements a displaced phase center array pulse canceller
for a uniform linear array (ULA).

To compute the output signal of the space time pulse canceller:

1 Define and set up your DPCA pulse canceller. See “Construction” on page 1-555.
2 Call step to execute the DPCA algorithm according to the properties of

phased.DPCACanceller. The behavior of step is specific to each object in the
toolbox.

Construction

H = phased.DPCACanceller creates a displaced phase center array (DPCA) canceller
System object, H. The object performs two-pulse DPCA processing on the input data.

H = phased.DPCACanceller(Name,Value) creates a DPCA object, H, with each
specified property Name set to the specified Value. You can specify additional name-
value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties

SensorArray

Uniform linear array

Uniform linear array, specified as a phased.ULA System object.

1 Alphabetical List

1-556

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second, as a positive scalar.

Default: Speed of light

OperatingFrequency

System operating frequency

Specify the operating frequency of the system in hertz as a positive scalar. The default
value corresponds to 300 MHz.

Default: 3e8

PRF

Pulse repetition frequency

Specify the pulse repetition frequency (PRF) of the received signal in hertz as a scalar.

Default: 1

DirectionSource

Source of receiving mainlobe direction

Specify whether the targeting direction for the STAP processor comes from the
Direction property of this object or from an input argument in step. Values of this
property are:

'Property' The Direction property of this object specifies the
targeting direction.

'Input port' An input argument in each invocation of step specifies the
targeting direction.

 phased.DPCACanceller System object

1-557

Default: 'Property'

Direction

Receiving mainlobe direction

Specify the receiving mainlobe direction of the receiving sensor array as
a column vector of length 2. The direction is specified in the format of
[AzimuthAngle;ElevationAngle] (in degrees). The azimuth angle should be between
–180° and 180°. The elevation angle should be between –90° and 90°. This property
applies when you set the DirectionSource property to 'Property'.

Default: [0; 0]

NumPhaseShifterBits

Number of phase shifter quantization bits

The number of bits used to quantize the phase shift component of beamformer or steering
vector weights. Specify the number of bits as a non-negative integer. A value of zero
indicates that no quantization is performed.

Default: 0

DopplerSource

Source of targeting Doppler

Specify whether the targeting Doppler for the STAP processor comes from the Doppler
property of this object or from an input argument in step. Values of this property are:

'Property' The Doppler property of this object specifies the Doppler.
'Input port' An input argument in each invocation of step specifies the

Doppler.

Default: 'Property'

Doppler

Targeting Doppler frequency (hertz)

1 Alphabetical List

1-558

Specify the targeting Doppler of the STAP processor as a scalar. This property applies
when you set the DopplerSource property to 'Property'.

Default: 0

WeightsOutputPort

Output processing weights

To obtain the weights used in the STAP processor, set this property to true and use the
corresponding output argument when invoking step. If you do not want to obtain the
weights, set this property to false.

Default: false

PreDopplerOutput

Output pre-Doppler result

Set this property to true to output the processing result before applying the Doppler
filtering. Set this property to false to output the processing result after the Doppler
filtering.

Default: false

Methods

clone Create DPCA object with same property
values

getNumInputs Number of expected inputs to step method
getNumOutputs Number of outputs from step method
isLocked Locked status for input attributes and

nontunable properties
release Allow property value and input

characteristics changes
step Perform DPCA processing on input data

 phased.DPCACanceller System object

1-559

Examples

Process Data Cube Using DPCA

Process a data cube using a DPCA processor. The weights are calculated for the 71st
cell of the collected data cube. The look direction is (0,0) degrees and the Doppler shift is
12.980 kHz.

load STAPExampleData;

Hs = phased.DPCACanceller('SensorArray',STAPEx_HArray,...

 'PRF',STAPEx_PRF,...

 'PropagationSpeed',STAPEx_PropagationSpeed,...

 'OperatingFrequency',STAPEx_OperatingFrequency,...

 'WeightsOutputPort',true,...

 'DirectionSource','Input port',...

 'DopplerSource','Input port');

[y,w] = step(Hs,STAPEx_ReceivePulse,71,[0;0],12.980e3);

sAngDop = phased.AngleDopplerResponse(...

 'SensorArray',Hs.SensorArray,...

 'OperatingFrequency',Hs.OperatingFrequency,...

 'PRF',Hs.PRF,...

 'PropagationSpeed',Hs.PropagationSpeed);

plotResponse(sAngDop,w)

1 Alphabetical List

1-560

References

[1] Guerci, J. R. Space-Time Adaptive Processing for Radar. Boston: Artech House, 2003.

[2] Ward, J. “Space-Time Adaptive Processing for Airborne Radar Data Systems,”
Technical Report 1015, MIT Lincoln Laboratory, December, 1994.

See Also
phased.ADPCACanceller | phased.AngleDopplerResponse |
phased.STAPSMIBeamformer | phitheta2azel | uv2azel

 phased.DPCACanceller System object

1-561

Introduced in R2012a

1 Alphabetical List

1-562

clone
System object: phased.DPCACanceller
Package: phased

Create DPCA object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates an object, C, having the same property values and same states as
H. If H is locked, so is C.

 getNumInputs

1-563

getNumInputs
System object: phased.DPCACanceller
Package: phased

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of inputs
(not counting the object itself) that you must use when calling the step method. This
value changes when you alter properties that turn inputs on or off.

1 Alphabetical List

1-564

getNumOutputs
System object: phased.DPCACanceller
Package: phased

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value changes when you alter properties that turn outputs on or off.

 isLocked

1-565

isLocked
System object: phased.DPCACanceller
Package: phased

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF, for the DPCACanceller System
object.

isLocked returns a logical value that indicates whether input attributes and
nontunable properties for the object are locked. The object performs an internal
initialization the first time that you execute step. This initialization locks nontunable
properties and input specifications, such as the dimensions, complexity, and data type of
the input data. After locking, isLocked returns a true value.

1 Alphabetical List

1-566

release
System object: phased.DPCACanceller
Package: phased

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

 step

1-567

step
System object: phased.DPCACanceller
Package: phased

Perform DPCA processing on input data

Syntax

Y = step(H,X,CUTIDX)

Y = step(H,X,CUTIDX,ANG)

Y = step(___ ,DOP)

[Y,W] = step(___)

Description

Y = step(H,X,CUTIDX) applies the DPCA pulse cancellation algorithm to the input
data X. The algorithm calculates the processing weights according to the range cell
specified by CUTIDX. This syntax is available when the DirectionSource property
is 'Property' and the DopplerSource property is 'Property'. The receiving
mainlobe direction is the Direction property value. The output Y contains the
result of pulse cancellation either before or after Doppler filtering, depending on the
PreDopplerOutput property value.

Y = step(H,X,CUTIDX,ANG) uses ANG as the receiving mainlobe direction. This
syntax is available when the DirectionSource property is 'Input port' and the
DopplerSource property is 'Property'.

Y = step(___ ,DOP) uses DOP as the targeting Doppler frequency. This syntax is
available when the DopplerSource property is 'Input port'.

[Y,W] = step(___) returns the additional output, W, as the processing weights. This
syntax is available when the WeightsOutputPort property is true.

Note: The object performs an initialization the first time the step method is executed.
This initialization locks nontunable properties and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable

1 Alphabetical List

1-568

property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Input Arguments

H

Pulse canceller object.

X

Input data. X must be a 3-dimensional M-by-N-by-P numeric array whose dimensions are
(range, channels, pulses).

CUTIDX

Range cell.

ANG

Receiving mainlobe direction. ANG must be a 2-by-1 vector in the form [AzimuthAngle;
ElevationAngle], in degrees. The azimuth angle must be between –180 and 180. The
elevation angle must be between –90 and 90.

Default: Direction property of H

DOP

Targeting Doppler frequency in hertz. DOP must be a scalar.

Default: Doppler property of H

Output Arguments

Y

Result of applying pulse cancelling to the input data. The meaning and dimensions of Y
depend on the PreDopplerOutput property of H:

 step

1-569

• If PreDopplerOutput is true, Y contains the pre-Doppler data. Y is an M-by-(P–
1) matrix. Each column in Y represents the result obtained by cancelling the two
successive pulses.

• If PreDopplerOutput is false, Y contains the result of applying an FFT-based
Doppler filter to the pre-Doppler data. The targeting Doppler is the Doppler property
value. Y is a column vector of length M.

W

Processing weights the pulse canceller used to obtain the pre-Doppler data. The
dimensions of W depend on the PreDopplerOutput property of H:

• If PreDopplerOutput is true, W is a 2N-by-(P-1) matrix. The columns in W
correspond to successive pulses in X.

• If PreDopplerOutput is false, W is a column vector of length (N*P).

Examples

Process Data Cube Using DPCA

Process a data cube using a DPCA processor. The weights are calculated for the 71st
cell of the collected data cube. The look direction is (0,0) degrees and the Doppler shift is
12.980 kHz.

load STAPExampleData;

Hs = phased.DPCACanceller('SensorArray',STAPEx_HArray,...

 'PRF',STAPEx_PRF,...

 'PropagationSpeed',STAPEx_PropagationSpeed,...

 'OperatingFrequency',STAPEx_OperatingFrequency,...

 'WeightsOutputPort',true,...

 'DirectionSource','Input port',...

 'DopplerSource','Input port');

[y,w] = step(Hs,STAPEx_ReceivePulse,71,[0;0],12.980e3);

sAngDop = phased.AngleDopplerResponse(...

 'SensorArray',Hs.SensorArray,...

 'OperatingFrequency',Hs.OperatingFrequency,...

 'PRF',Hs.PRF,...

 'PropagationSpeed',Hs.PropagationSpeed);

plotResponse(sAngDop,w)

1 Alphabetical List

1-570

See Also
phitheta2azel | uv2azel

 phased.ElementDelay System object

1-571

phased.ElementDelay System object
Package: phased

Sensor array element delay estimator

Description

The ElementDelay object calculates the signal delay for elements in an array.

To compute the signal delay across the array elements:

1 Define and set up your element delay estimator. See “Construction” on page 1-571.
2 Call step to estimate the delay according to the properties of

phased.ElementDelay. The behavior of step is specific to each object in the
toolbox.

Construction

H = phased.ElementDelay creates an element delay estimator System object, H. The
object calculates the signal delay for elements in an array when the signal arrives the
array from specified directions. By default, a 2-element uniform linear array (ULA) is
used.

H = phased.ElementDelay(Name,Value) creates object, H, with each specified
property Name set to the specified Value. You can specify additional name-value pair
arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties

SensorArray

Handle to sensor array used to calculate the delay

Specify the sensor array as a handle. The sensor array must be an array object in the
phased package. The array cannot contain subarrays.

1 Alphabetical List

1-572

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second, as a positive scalar.

Default: Speed of light

Methods

clone Create element delay object with same
property values

getNumInputs Number of expected inputs to step method
getNumOutputs Number of outputs from step method
isLocked Locked status for input attributes and

nontunable properties
release Allow property value and input

characteristics changes
step Calculate delay for elements

Examples

Element Delay for Uniform Linear Array

Calculate the element delay for a uniform linear array when the input is impinging on
the array from 30 degrees azimuth and 20 degrees elevation.

ha = phased.ULA('NumElements',4);

hed = phased.ElementDelay('SensorArray',ha);

tau = step(hed,[30;20])

References

[1] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002.

 phased.ElementDelay System object

1-573

See Also
phased.ArrayGain | phased.ArrayResponse | phased.SteeringVector

Introduced in R2012a

1 Alphabetical List

1-574

clone
System object: phased.ElementDelay
Package: phased

Create element delay object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates an object, C, having the same property values and same states as
H. If H is locked, so is C.

 getNumInputs

1-575

getNumInputs
System object: phased.ElementDelay
Package: phased

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of inputs
(not counting the object itself) that you must use when calling the step method. This
value changes when you alter properties that turn inputs on or off.

1 Alphabetical List

1-576

getNumOutputs
System object: phased.ElementDelay
Package: phased

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value changes when you alter properties that turn outputs on or off.

 isLocked

1-577

isLocked
System object: phased.ElementDelay
Package: phased

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF, for the ElementDelay System object.

isLocked returns a logical value that indicates whether input attributes and
nontunable properties for the object are locked. The object performs an internal
initialization the first time that you execute step. This initialization locks nontunable
properties and input specifications, such as the dimensions, complexity, and data type of
the input data. After locking, isLocked returns a true value.

1 Alphabetical List

1-578

release
System object: phased.ElementDelay
Package: phased

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

 step

1-579

step
System object: phased.ElementDelay
Package: phased

Calculate delay for elements

Syntax
TAU = step(H,ANG)

Description
TAU = step(H,ANG) returns the delay TAU of each element relative to the array’s phase
center for the signal incident directions specified by ANG.

Note: The object performs an initialization the first time the step method is executed.
This initialization locks nontunable properties and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Input Arguments

H

Element delay object.

ANG

Signal incident directions in degrees. ANG can be either a 2-by-M matrix or a row vector
of length M.

If ANG is a 2-by-M matrix, each column of the matrix specifies the direction in the
form [azimuth; elevation]. The azimuth angle must be between –180 and 180 degrees,
inclusive. The elevation angle must be between –90 and 90 degrees, inclusive.

1 Alphabetical List

1-580

If ANG is a row vector of length M, each element specifies a direction’s azimuth angle. In
this case, the corresponding elevation angle is assumed to be 0.

Output Arguments

TAU

Delay in seconds.TAU is an N-by-M matrix, where N is the number of elements in
the array. Each column of TAU contains the delays of the array elements for the
corresponding direction specified in ANG.

Examples

Element Delay for Uniform Linear Array

Calculate the element delay for a uniform linear array when the input is impinging on
the array from 30 degrees azimuth and 20 degrees elevation.

ha = phased.ULA('NumElements',4);

hed = phased.ElementDelay('SensorArray',ha);

tau = step(hed,[30;20])

See Also
phitheta2azel | uv2azel

 phased.ESPRITEstimator System object

1-581

phased.ESPRITEstimator System object
Package: phased

ESPRIT direction of arrival (DOA) estimator

Description

The ESPRITEstimator object computes a estimation of signal parameters via rotational
invariance (ESPRIT) direction of arrival estimate.

To estimate the direction of arrival (DOA):

1 Define and set up your DOA estimator. See “Construction” on page 1-581.
2 Call step to estimate the DOA according to the properties of

phased.ESPRITEstimator. The behavior of step is specific to each object in the
toolbox.

Construction

H = phased.ESPRITEstimator creates an ESPRIT DOA estimator System object, H.
The object estimates the signal's direction-of-arrival (DOA) using the ESPRIT algorithm
with a uniform linear array (ULA).

H = phased.ESPRITEstimator(Name,Value) creates object, H, with each specified
property Name set to the specified Value. You can specify additional name-value pair
arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties

SensorArray

Handle to sensor array

Specify the sensor array as a handle. The sensor array must be a phased.ULA object.

Default: phased.ULA with default property values

1 Alphabetical List

1-582

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second, as a positive scalar.

Default: Speed of light

OperatingFrequency

System operating frequency

Specify the operating frequency of the system in hertz as a positive scalar. The default
value corresponds to 300 MHz.

Default: 3e8

ForwardBackwardAveraging

Perform forward-backward averaging

Set this property to true to use forward-backward averaging to estimate the covariance
matrix for sensor arrays with conjugate symmetric array manifold.

Default: false

SpatialSmoothing

Spatial smoothing

Specify the number of averaging used by spatial smoothing to estimate the covariance
matrix as a nonnegative integer. Each additional smoothing handles one extra coherent
source, but reduces the effective number of element by 1. The maximum value of this
property is M–2, where M is the number of sensors.

Default: 0, indicating no spatial smoothing

NumSignalsSource

Source of number of signals

Specify the source of the number of signals as one of 'Auto' or 'Property'. If you set
this property to 'Auto', the number of signals is estimated by the method specified by
the NumSignalsMethod property.

 phased.ESPRITEstimator System object

1-583

Default: 'Auto'

NumSignalsMethod

Method to estimate number of signals

Specify the method to estimate the number of signals as one of 'AIC' or 'MDL'. The
'AIC' uses the Akaike Information Criterion and the 'MDL' uses Minimum Description
Length criterion. This property applies when you set the NumSignalsSource property to
'Auto'.

Default: 'AIC'

NumSignals

Number of signals

Specify the number of signals as a positive integer scalar. This property applies when you
set the NumSignalsSource property to 'Property'.

Default: 1

Method

Type of least squares method

Specify the least squares method used for ESPRIT as one of 'TLS' or 'LS'. 'TLS' refers
to total least squares and 'LS'refers to least squares.

Default: 'TLS'

RowWeighting

Row weighting factor

Specify the row weighting factor for signal subspace eigenvectors as a positive integer
scalar. This property controls the weights applied to the selection matrices. In most cases
the higher value the better. However, it can never be greater than (N-1)/2 where N is
the number of elements of the array.

Default: 1

1 Alphabetical List

1-584

Methods

clone Create ESPRIT DOA estimator object with
same property values

getNumInputs Number of expected inputs to step method
getNumOutputs Number of outputs from step method
isLocked Locked status for input attributes and

nontunable properties
release Allow property value and input

characteristics changes
step Perform DOA estimation

Examples

Estimate the DOAs of two signals received by a standard 10-element ULA with element
spacing 1 meter. The antenna operating frequency is 150 MHz. The actual direction of
the first signal is 10 degrees in azimuth and 20 degrees in elevation. The direction of the
second signal is 45 degrees in azimuth and 60 degrees in elevation.

fs = 8000; t = (0:1/fs:1).';

x1 = cos(2*pi*t*300); x2 = cos(2*pi*t*400);

ha = phased.ULA('NumElements',10,'ElementSpacing',1);

ha.Element.FrequencyRange = [100e6 300e6];

fc = 150e6;

x = collectPlaneWave(ha,[x1 x2],[10 20;45 60]',fc);

rng default;

noise = 0.1/sqrt(2)*(randn(size(x))+1i*randn(size(x)));

hdoa = phased.ESPRITEstimator('SensorArray',ha,...

 'OperatingFrequency',fc);

doas = step(hdoa,x+noise);

az = broadside2az(sort(doas),[20 60])

References

[1] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002.

 phased.ESPRITEstimator System object

1-585

See Also
broadside2az

Introduced in R2012a

1 Alphabetical List

1-586

clone
System object: phased.ESPRITEstimator
Package: phased

Create ESPRIT DOA estimator object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates an object, C, having the same property values and same states as
H. If H is locked, so is C.

 getNumInputs

1-587

getNumInputs
System object: phased.ESPRITEstimator
Package: phased

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of inputs
(not counting the object itself) that you must use when calling the step method. This
value changes when you alter properties that turn inputs on or off.

1 Alphabetical List

1-588

getNumOutputs
System object: phased.ESPRITEstimator
Package: phased

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value changes when you alter properties that turn outputs on or off.

 isLocked

1-589

isLocked
System object: phased.ESPRITEstimator
Package: phased

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF, for the ESPRITEstimator System
object.

isLocked returns a logical value that indicates whether input attributes and
nontunable properties for the object are locked. The object performs an internal
initialization the first time that you execute step. This initialization locks nontunable
properties and input specifications, such as the dimensions, complexity, and data type of
the input data. After locking, isLocked returns a true value.

1 Alphabetical List

1-590

release
System object: phased.ESPRITEstimator
Package: phased

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

 step

1-591

step
System object: phased.ESPRITEstimator
Package: phased

Perform DOA estimation

Syntax

ANG = step(H,X)

Description

ANG = step(H,X) estimates the DOAs from X using the DOA estimator, H. X is a matrix
whose columns correspond to channels. ANG is a row vector of the estimated broadside
angles (in degrees).

Note: The object performs an initialization the first time the step method is executed.
This initialization locks nontunable properties and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Examples

Estimate the DOAs of two signals received by a standard 10-element ULA with element
spacing 1 meter. The antenna operating frequency is 150 MHz. The actual direction of
the first signal is 10 degrees in azimuth and 20 degrees in elevation. The direction of the
second signal is 45 degrees in azimuth and 60 degrees in elevation.

fs = 8000; t = (0:1/fs:1).';

x1 = cos(2*pi*t*300); x2 = cos(2*pi*t*400);

ha = phased.ULA('NumElements',10,'ElementSpacing',1);

ha.Element.FrequencyRange = [100e6 300e6];

fc = 150e6;

1 Alphabetical List

1-592

x = collectPlaneWave(ha,[x1 x2],[10 20;45 60]',fc);

rng default;

noise = 0.1/sqrt(2)*(randn(size(x))+1i*randn(size(x)));

hdoa = phased.ESPRITEstimator('SensorArray',ha,...

 'OperatingFrequency',fc);

doas = step(hdoa,x+noise);

az = broadside2az(sort(doas),[20 60])

 phased.FMCWWaveform System object

1-593

phased.FMCWWaveform System object

Package: phased

FMCW waveform

Description

The FMCWWaveform object creates an FMCW (frequency modulated continuous wave)
waveform.

To obtain waveform samples:

1 Define and set up your FMCW waveform. See “Construction” on page 1-593.
2 Call step to generate the FMCW waveform samples according to the properties

of phased.FMCWWaveform. The behavior of step is specific to each object in the
toolbox.

Construction

H = phased.FMCWWaveform creates an FMCW waveform System object, H. The object
generates samples of an FMCW waveform.

H = phased.FMCWWaveform(Name,Value) creates an FMCW waveform object, H,
with additional options specified by one or more Name,Value pair arguments. Name
is a property name, and Value is the corresponding value. Name must appear inside
single quotes (''). You can specify several name-value pair arguments in any order as
Name1,Value1,…,NameN,ValueN.

Properties

SampleRate

Sample rate

1 Alphabetical List

1-594

Specify the same rate, in hertz, as a positive scalar. The default value of this property
corresponds to 1 MHz.

The quantity (SampleRate .* SweepTime) is a scalar or vector that must contain only
integers.

Default: 1e6

SweepTime

Duration of each linear FM sweep

Specify the duration of the upsweep or downsweep, in seconds, as a row vector of positive,
real numbers. The default value corresponds to 100 μs.

If SweepDirection is 'Triangle', the sweep time is half the sweep period because
each period consists of an upsweep and a downsweep. If SweepDirection is 'Up' or
'Down', the sweep time equals the sweep period.

The quantity (SampleRate .* SweepTime) is a scalar or vector that must contain only
integers.

To implement a varying sweep time, specify SweepTime as a nonscalar row vector. The
waveform uses successive entries of the vector as the sweep time for successive periods of
the waveform. If the last element of the vector is reached, the process continues cyclically
with the first entry of the vector.

If SweepTime and SweepBandwidth are both nonscalar, they must have the same
length.

Default: 1e-4

SweepBandwidth

FM sweep bandwidth

Specify the bandwidth of the linear FM sweeping, in hertz, as a row vector of positive,
real numbers. The default value corresponds to 100 kHz.

To implement a varying bandwidth, specify SweepBandwidth as a nonscalar row vector.
The waveform uses successive entries of the vector as the sweep bandwidth for successive
periods of the waveform. If the last element of the SweepBandwidth vector is reached,
the process continues cyclically with the first entry of the vector.

 phased.FMCWWaveform System object

1-595

If SweepTime and SweepBandwidth are both nonscalar, they must have the same
length.

Default: 1e5

SweepDirection

FM sweep direction

Specify the direction of the linear FM sweep as one of 'Up' | 'Down' | 'Triangle'.

Default: 'Up'

SweepInterval

Location of FM sweep interval

If you set this property value to 'Positive', the waveform sweeps in the interval
between 0 and B, where B is the SweepBandwidth property value. If you set this
property value to 'Symmetric', the waveform sweeps in the interval between –B/2 and
B/2.

Default: 'Positive'

OutputFormat

Output signal format

Specify the format of the output signal as one of 'Sweeps' or 'Samples'. When you set
the OutputFormat property to 'Sweeps', the output of the step method is in the form
of multiple sweeps. In this case, the number of sweeps is the value of the NumSweeps
property. If the SweepDirection property is 'Triangle', each sweep is half a period.

When you set the OutputFormat property to 'Samples', the output of the step method
is in the form of multiple samples. In this case, the number of samples is the value of the
NumSamples property.

Default: 'Sweeps'

NumSamples

Number of samples in output

1 Alphabetical List

1-596

Specify the number of samples in the output of the step method as a positive integer.
This property applies only when you set the OutputFormat property to 'Samples'.

Default: 100

NumSweeps

Number of sweeps in output

Specify the number of sweeps in the output of the step method as a positive integer.
This property applies only when you set the OutputFormat property to 'Sweeps'.

Default: 1

Methods

clone Create FMCW waveform object with same
property values

getNumInputs Number of expected inputs to step method
getNumOutputs Number of outputs from step method
isLocked Locked status for input attributes and

nontunable properties
plot Plot FMCW waveform
release Allow property value and input

characteristics changes
reset Reset states of FMCW waveform object
step Samples of FMCW waveform

Definitions

Triangle Sweep

In each period of a triangle sweep, the waveform sweeps up with a slope of B/T and then
down with a slope of –B/T. B is the sweep bandwidth, and T is the sweep time. The sweep
period is 2T.

 phased.FMCWWaveform System object

1-597

Frequency

B

TimeT T

Upsweep

In each period of an upsweep, the waveform sweeps with a slope of B/T. B is the sweep
bandwidth, and T is the sweep time.

Frequency

B

TimeT

Downsweep

In each period of a downsweep, the waveform sweeps with a slope of –B/T. B is the sweep
bandwidth, and T is the sweep time.

Frequency

B

TimeT

Examples

Plot FMCW Waveform

Create and plot an upsweep FMCW waveform.

1 Alphabetical List

1-598

sFMCW = phased.FMCWWaveform('SweepBandwidth',1e5,...

 'OutputFormat','Sweeps','NumSweeps',2);

plot(sFMCW)

Spectrogram of Triangle Sweep FMCW Waveform

Generate samples of a triangle sweep FMCW Waveform. Then, plot the spectrogram of
the sweep. The sweep has a 10 MHz bandwidth.

sFMCW = phased.FMCWWaveform('SweepBandwidth',10.0e6,...

 'SampleRate',20.0e6,'SweepDirection','Triangle',...

 'NumSweeps',2);

sig = step(sFMCW);

windowlength = 32;

 phased.FMCWWaveform System object

1-599

noverlap = 16;

nfft = 32;

spectrogram(sig,windowlength,noverlap,nfft,sFMCW.SampleRate,'yaxis')

• Automotive Adaptive Cruise Control Using FMCW Technology

References

[1] Issakov, Vadim. Microwave Circuits for 24 GHz Automotive Radar in Silicon-based
Technologies. Berlin: Springer, 2010.

[2] Skolnik, M.I. Introduction to Radar Systems. New York: McGraw-Hill, 1980.

../examples/automotive-adaptive-cruise-control-using-fmcw-technology.html

1 Alphabetical List

1-600

See Also
phased.LinearFMWaveform | range2bw | range2time | time2range

Introduced in R2012b

 clone

1-601

clone
System object: phased.FMCWWaveform
Package: phased

Create FMCW waveform object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates an object, C, having the same property values and same states as
H. If H is locked, so is C.

1 Alphabetical List

1-602

getNumInputs
System object: phased.FMCWWaveform
Package: phased

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of inputs
(not counting the object itself) that you must use when calling the step method. This
value changes when you alter properties that turn inputs on or off.

 getNumOutputs

1-603

getNumOutputs
System object: phased.FMCWWaveform
Package: phased

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value changes when you alter properties that turn outputs on or off.

1 Alphabetical List

1-604

isLocked
System object: phased.FMCWWaveform
Package: phased

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF, for the FMCWWaveform System object.

isLocked returns a logical value that indicates whether input attributes and
nontunable properties for the object are locked. The object performs an internal
initialization the first time that you execute step. This initialization locks nontunable
properties and input specifications, such as the dimensions, complexity, and data type of
the input data. After locking, isLocked returns a true value.

 plot

1-605

plot
System object: phased.FMCWWaveform
Package: phased

Plot FMCW waveform

Syntax

plot(Hwav)

plot(Hwav,Name,Value)

plot(Hwav,Name,Value,LineSpec)

h = plot(___)

Description

plot(Hwav) plots the real part of the waveform specified by Hwav.

plot(Hwav,Name,Value) plots the waveform with additional options specified by one
or more Name,Value pair arguments.

plot(Hwav,Name,Value,LineSpec) specifies the same line color, line style, or marker
options as are available in the MATLAB plot function.

h = plot(___) returns the line handle in the figure.

Input Arguments

Hwav

Waveform object. This variable must be a scalar that represents a single waveform
object.

LineSpec

String that specifies the same line color, style, or marker options as are available in the
MATLAB plot function. If you specify a PlotType value of 'complex', then LineSpec
applies to both the real and imaginary subplots.

1 Alphabetical List

1-606

Default: 'b'

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'PlotType'

Specifies whether the function plots the real part, imaginary part, or both parts of the
waveform. Valid values are 'real', 'imag', and 'complex'.

Default: 'real'

'SweepIdx'

Index of the sweep to plot. This value must be a positive integer scalar.

Default: 1

Output Arguments

h

Handle to the line or lines in the figure. For a PlotType value of 'complex', h is a
column vector. The first and second elements of this vector are the handles to the lines in
the real and imaginary subplots, respectively.

Examples

FMCW Waveform Plot

Create and plot an upsweep FMCW waveform.

hw = phased.FMCWWaveform('SweepBandwidth',1e5,...

 'OutputFormat','Sweeps','NumSweeps',2);

plot(hw);

 plot

1-607

1 Alphabetical List

1-608

release
System object: phased.FMCWWaveform
Package: phased

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

 reset

1-609

reset
System object: phased.FMCWWaveform
Package: phased

Reset states of FMCW waveform object

Syntax

reset(H)

Description

reset(H) resets the states of the FMCWWaveform object, H. Afterward, the next call to
step restarts the sweep of the waveform.

1 Alphabetical List

1-610

step
System object: phased.FMCWWaveform
Package: phased

Samples of FMCW waveform

Syntax

Y = step(H)

Description

Y = step(H) returns samples of the FMCW waveform in a column vector, Y.

Note: The object performs an initialization the first time the step method is executed.
This initialization locks nontunable properties and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Input Arguments

H

FMCW waveform object.

Output Arguments

Y

Column vector containing the waveform samples.

 step

1-611

If H.OutputFormat is 'Samples', Y consists of H.NumSamples samples.

If H.OutputFormat is 'Sweeps', Y consists of H.NumSweeps sweeps. Also, if
H.SweepDirection is 'Triangle', each sweep is half a period.

Examples

Spectrogram of Triangle Sweep FMCW Waveform

Generate samples of a triangle sweep FMCW Waveform. Then, plot the spectrogram of
the sweep. The sweep has a 10 MHz bandwidth.

sFMCW = phased.FMCWWaveform('SweepBandwidth',10.0e6,...

 'SampleRate',20.0e6,'SweepDirection','Triangle',...

 'NumSweeps',2);

sig = step(sFMCW);

windowlength = 32;

noverlap = 16;

nfft = 32;

spectrogram(sig,windowlength,noverlap,nfft,sFMCW.SampleRate,'yaxis')

1 Alphabetical List

1-612

 phased.FreeSpace System object

1-613

phased.FreeSpace System object
Package: phased

Free space environment

Description
The phased.FreeSpace System object models narrowband signal propagation from one
point to another in a free-space environment. The object applies range-dependent time
delay, gain and phase shift to the input signal. The object accounts for doppler shift when
either the source or destination is moving. A free-space environment is a boundaryless
medium with a speed of signal propagation independent of position and direction. The
signal propagates along a straight line from source to destination. For example, you can
use this object to model the propagation of a signal from a radar to a target and back to
the radar.

For non-polarized signals, the FreeSpace System object lets you propagate signals from
a single point to multiple points or from multiple points to a single point. Multiple-point
to multiple-point propagation is not supported.

To compute the propagated signal in free space:

1 Define and set up your free space environment. See “Construction” on page 1-613.
2 Call step to propagate the signal through a free space environment according to the

properties of phased.FreeSpace. The behavior of step is specific to each object in
the toolbox.

When propagating a round trip signal in free-space, you can either use one FreeSpace
System object to compute the two-way propagation delay or two separate FreeSpace
System objects to compute one-way propagation delays in each direction. Due to filter
distortion, the total round trip delay when you employ two-way propagation can differ
from the delay when you use two one-way phased.FreeSpace System objects. It is more
accurate to use a single two-way phased.FreeSpace System object. This option is set by
the TwoWayPropagation property.

Construction
H = phased.FreeSpace creates a free space environment System object, H.

1 Alphabetical List

1-614

H = phased.FreeSpace(Name,Value) creates a free space environment object, H,
with each specified property Name set to the specified Value. You can specify additional
name-value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties

PropagationSpeed

Signal propagation speed

Specify signal wave propagation speed in free space as a real positive scalar. Units are
meters per second.

Default: Speed of light

OperatingFrequency

Signal carrier frequency

A scalar containing the carrier frequency of the narrowband signal. Units are hertz.

Default: 3e8

TwoWayPropagation

Perform two-way propagation

Set this property to true to perform round-trip propagation between the origin and
destination that you specify in the step command. Set this property to false to perform
one-way propagation from the origin to the destination.

Default: false

SampleRate

Sample rate

A scalar containing the sample rate. Units of sample rate are hertz. The algorithm uses
this value to determine the propagation delay in number of samples.

Default: 1e6

 phased.FreeSpace System object

1-615

Methods

clone Create free space object with same property
values

getNumInputs Number of expected inputs to step method
getNumOutputs Number of outputs from step method
isLocked Locked status for input attributes and

nontunable properties
release Allow property value and input

characteristics changes
reset Reset internal states of propagation

channel
step Propagate signal from one location to

another

Examples

Signal Propagation from Stationary Radar to Stationary Target

Calculate the amplitude of a signal propagating in free-space from a radar at (1000,0,0)
to a target at (300,200,50). Assume both the radar and the target are stationary. The
sample rate is 8000 Hz while the operating frequency of the radar is 300 MHz. Transmit
five samples of a unit amplitude signal. The signal propagation speed takes the default
value of the speed of light. Examine the amplitude of the signal at the target.

fs = 8e3;

fop = 3e8;

henv = phased.FreeSpace('SampleRate',fs,...

 'OperatingFrequency',fop);

pos1 = [1000;0;0];

pos2 = [300;200;50];

vel1 = [0;0;0];

vel2 = [0;0;0];

Compute the received signal at the target.

x = ones(5,1);

y = step(henv,x,...

1 Alphabetical List

1-616

 pos1,...

 pos2,...

 vel1,...

 vel2);

disp(y)

 1.0e-03 *

 0.0126 - 0.1061i

 0.0129 - 0.1082i

 0.0129 - 0.1082i

 0.0129 - 0.1082i

 0.0129 - 0.1082i

The first sample is zero because the signal has not yet reached the target.

Manually compute the loss using the formula

R = sqrt((pos1-pos2)'*(pos1-pos2));

lambda = physconst('Lightspeed')/fop;

L = (4*pi*R/lambda)^2

L =

 8.4205e+07

Because the transmitted amplitude is unity, the square of the signal at the target equals
the inverse of the loss.

disp(1/abs(y(2))^2)

 8.4205e+07

Signal Propagation from Moving Radar to Moving Target

Calculate the result of propagating a signal in free space from a radar at (1000,0,0) to
a target at (300,200,50). Assume the radar moves at 10 m/s along the x-axis, while the
target moves at 15 m/s along the y-axis. The sample rate is 8000 Hz while the operating

 phased.FreeSpace System object

1-617

frequency of the radar is 300 MHz. The signal propagation speed takes the default value
of the speed of light. Transmit five samples of a unit amplitude signal and examine the
amplitude of the signal at the target.

fs = 8000;

fop = 3e8;

sProp = phased.FreeSpace('SampleRate',fs,...

 'OperatingFrequency',fop);

pos1 = [1000;0;0];

pos2 = [300;200;50];

vel1 = [10;0;0];

vel2 = [0;15;0];

y = step(sProp,ones(5,1),...

 pos1,...

 pos2,...

 vel1,...

 vel2);

disp(y)

 1.0e-03 *

 0.0126 - 0.1061i

 0.0117 - 0.1083i

 0.0105 - 0.1085i

 0.0094 - 0.1086i

 0.0082 - 0.1087i

Because the transmitted amplitude is unity, the square of the signal at the target equals
the inverse of the loss.

disp(1/abs(y(2))^2)

 8.4206e+07

Definitions

Freespace Time Delay and Path Loss

When the origin and destination are stationary relative to each other, the output signal
of a free-space channel can be written as Y(t) = x(t-τ)/Lfsp. The quantity τ is the signal

1 Alphabetical List

1-618

delay and Lfsp is the free-space path loss. The delay τ is given by R/c, where R is the
propagation distance and c is the propagation speed. The free-space path loss is given by

L
R

fsp =
()

,
4 2

2

p

l

where λ is the signal wavelength.

This formula assumes that the target is in the far field of the transmitting element or
array. In the near field, the free-space path loss formula is not valid and can result in a
loss smaller than one, equivalent to a signal gain. For this reason, the loss is set to unity
for range values, R ≤ λ/4π.

When the origin and destination have relative motion, the processing also introduces a
Doppler frequency shift. The frequency shift is v/λ for one-way propagation and 2v/λ for
two-way propagation. The quantity v is the relative speed of the destination with respect
to the origin.

For more details on free space channel propagation, see [2].

References

[1] Proakis, J. Digital Communications. New York: McGraw-Hill, 2001.

[2] Skolnik, M. Introduction to Radar Systems, 3rd Ed. New York: McGraw-Hill, 2001.

See Also
fspl | phased.RadarTarget

Introduced in R2012a

 clone

1-619

clone
System object: phased.FreeSpace
Package: phased

Create free space object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates an object, C, having the same property values and same states as
H. If H is locked, so is C.

1 Alphabetical List

1-620

getNumInputs
System object: phased.FreeSpace
Package: phased

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of inputs
(not counting the object itself) that you must use when calling the step method. This
value changes when you alter properties that turn inputs on or off.

 getNumOutputs

1-621

getNumOutputs
System object: phased.FreeSpace
Package: phased

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value changes when you alter properties that turn outputs on or off.

1 Alphabetical List

1-622

isLocked
System object: phased.FreeSpace
Package: phased

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF, for the FreeSpace System object.

isLocked returns a logical value that indicates whether input attributes and
nontunable properties for the object are locked. The object performs an internal
initialization the first time that you execute step. This initialization locks nontunable
properties and input specifications, such as the dimensions, complexity, and data type of
the input data. After locking, isLocked returns a true value.

 release

1-623

release
System object: phased.FreeSpace
Package: phased

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

1 Alphabetical List

1-624

reset
System object: phased.FreeSpace
Package: phased

Reset internal states of propagation channel

Syntax

reset(H)

Description

reset(H) resets the states of the FreeSpace object, H.

 step

1-625

step
System object: phased.FreeSpace
Package: phased

Propagate signal from one location to another

Syntax

Y = step(SFS,F,origin_pos,dest_pos,origin_vel,dest_vel)

Description

Y = step(SFS,F,origin_pos,dest_pos,origin_vel,dest_vel) returns the
resulting signal Y when the narrowband signal F propagates in free space from the
position or positions specified in origin_pos to the position or positions specified in
dest_pos. For non-polarized signals, either the origin_pos or dest_pos arguments
can specify more than one point. Using both arguments to specify multiple points is not
allowed. The velocity of the signal origin is specified in origin_vel and the velocity
of the signal destination is specified in dest_vel. The dimensions of origin_vel and
dest_vel must agree with the dimensions of origin_pos and dest_pos, respectively.

Note: The object performs an initialization the first time the step method is executed.
This initialization locks nontunable properties and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Input Arguments

SFS — Free-space propagator
System object

Free-space propagator, specified as a System object.

1 Alphabetical List

1-626

F — Narrowband signal
M-element complex-valued column vector, M-by-N complex-valued matrix or structure
containing complex-valued fields.

Narrowband signal, specified as an M-element complex-valued column vector, M-by-N
complex-valued matrix or structure containing complex-valued fields.

Polarization Signal structure

Not enabled The signal X can be a complex-valued 1-
by-M column vector or complex-valued M-
by-N matrix. The quantity M is the number
of sample values of the signal and N is the
number of signals to propagate. When you
specify N signals, you need to specify N
signal origins or N signal destinations.

Enabled The signal X is a MATLAB struct
containing two alternate ways of
representing the polarized signal:

• X.X, X.Y, and X.Z representing the x,
y, and z components of the polarized
signal.

origin_pos

Origin of the signal or signals, specified as a 3-by-1 real-valued column vector or 3-by-N
real-valued matrix. Position units are meters. The quantity N is the number of signals
arriving from N signal origins and matches the dimension specified in the signal X.
If origin_pos is a column vector, it takes the form [x; y; z]. If origin_pos is a
matrix, each column specifies a different signal origin and has the form [x; y; z].
origin_pos and dest_pos cannot both be specified as matrices — at least one must be
a 3-by-1 column vector.

dest_pos

Destination of the signal or signals, specified as a 3-by-1 column vector or 3-by-N
matrix. Position units are meters. The quantity N is the number of signals arriving at
N signal destinations and matches the dimension specified in the signal X. If dest_pos
is a column vector, it takes the form [x; y; z]. If dest_pos is a matrix, each
column specifies a different destination and has the form [x; y; z]. dest_pos and

 step

1-627

origin_pos cannot both be specified as matrices — at least one must be a 3-by-1 column
vector.

origin_vel

Velocity of signal origin, specified as a 3-by-1 column vector or 3-by-N matrix. Velocity
units are meters/second. The dimensions of origin_vel must match the dimensions
of origin_pos. If origin_vel is a column vector, it takes the form [Vx; Vy; Vz]. If
origin_vel is a 3–by-N matrix, each column specifies a different origin velocity and has
the form [Vx; Vy; Vz].

dest_vel

Velocity of signal destinations, specified as a 3-by-1 column vector or 3–by-N matrix.
Velocity units are meters/second. The dimensions of dest_vel must match the
dimensions of dest_pos. If dest_vel is a column vector, it takes the form [Vx; Vy;
Vz]. If dest_vel is a 3–by-N matrix, each column specifies a different destination
velocity and has the form [Vx; Vy; Vz].

Output Arguments

Y

Propagated signal, returned as a M-element complex-valued column vector, M-by-N
complex-valued matrix or MATLAB structure containing complex-valued fields.

If X is a column vector or matrix, Y is also a column vector or matrix with the same
dimensions.

If X is a struct, Y is also a struct with the same fields. Each field in Y contains the
resulting signal of the corresponding field in X.

The output Y contains signal samples arriving at the signal destination within the
current time frame. The current time frame is defined as the time spanned by the
current input. Whenever it takes longer than the current time frame for the signal to
propagate from the origin to the destination, the output contains no contribution from
the input of the current time frame.

1 Alphabetical List

1-628

Examples

Signal Propagation from Stationary Radar to Stationary Target

Calculate the amplitude of a signal propagating in free-space from a radar at (1000,0,0)
to a target at (300,200,50). Assume both the radar and the target are stationary. The
sample rate is 8000 Hz while the operating frequency of the radar is 300 MHz. Transmit
five samples of a unit amplitude signal. The signal propagation speed takes the default
value of the speed of light. Examine the amplitude of the signal at the target.

fs = 8e3;

fop = 3e8;

henv = phased.FreeSpace('SampleRate',fs,...

 'OperatingFrequency',fop);

pos1 = [1000;0;0];

pos2 = [300;200;50];

vel1 = [0;0;0];

vel2 = [0;0;0];

Compute the received signal at the target.

x = ones(5,1);

y = step(henv,x,...

 pos1,...

 pos2,...

 vel1,...

 vel2);

disp(y)

 1.0e-03 *

 0.0126 - 0.1061i

 0.0129 - 0.1082i

 0.0129 - 0.1082i

 0.0129 - 0.1082i

 0.0129 - 0.1082i

The first sample is zero because the signal has not yet reached the target.

Manually compute the loss using the formula

 step

1-629

R = sqrt((pos1-pos2)'*(pos1-pos2));

lambda = physconst('Lightspeed')/fop;

L = (4*pi*R/lambda)^2

L =

 8.4205e+07

Because the transmitted amplitude is unity, the square of the signal at the target equals
the inverse of the loss.

disp(1/abs(y(2))^2)

 8.4205e+07

Signal Propagation from Moving Radar to Moving Target

Calculate the result of propagating a signal in free space from a radar at (1000,0,0) to
a target at (300,200,50). Assume the radar moves at 10 m/s along the x-axis, while the
target moves at 15 m/s along the y-axis. The sample rate is 8000 Hz while the operating
frequency of the radar is 300 MHz. The signal propagation speed takes the default value
of the speed of light. Transmit five samples of a unit amplitude signal and examine the
amplitude of the signal at the target.

fs = 8000;

fop = 3e8;

sProp = phased.FreeSpace('SampleRate',fs,...

 'OperatingFrequency',fop);

pos1 = [1000;0;0];

pos2 = [300;200;50];

vel1 = [10;0;0];

vel2 = [0;15;0];

y = step(sProp,ones(5,1),...

 pos1,...

 pos2,...

 vel1,...

 vel2);

disp(y)

 1.0e-03 *

 0.0126 - 0.1061i

1 Alphabetical List

1-630

 0.0117 - 0.1083i

 0.0105 - 0.1085i

 0.0094 - 0.1086i

 0.0082 - 0.1087i

Because the transmitted amplitude is unity, the square of the signal at the target equals
the inverse of the loss.

disp(1/abs(y(2))^2)

 8.4206e+07

Propagation of Polarized Field from Source to Target

Create a uniform linear array (ULA) consisting of four short-dipole antenna elements
that support polarization. Set the orientation of each dipole to the z-direction. Set the
operating frequency to 300 MHz and the element spacing of the array to 0.4 meters.
While the antenna element supports polarization, you must explicitly enable polarization
in the Radiator System object.

Create the short-dipole antenna element, ULA array, and radiator System objects. Set
the CombineRadiatedSignals property to true to coherently combine the radiated
signals from all antennas and the EnablePolarization property to true to process
polarized waves.

freq = 300e6;

nsensors = 4;

c = physconst('LightSpeed');

sAnt = phased.ShortDipoleAntennaElement('FrequencyRange',[100e6 900e6],...

 'AxisDirection','Z');

sArray = phased.ULA('Element',sAnt,...

 'NumElements',nsensors,...

 'ElementSpacing',0.4);

sRad = phased.Radiator('Sensor',sArray,...

 'PropagationSpeed',c,...

 'OperatingFrequency',freq,...

 'CombineRadiatedSignals',true,...

 'EnablePolarization',true,...

 'WeightsInputPort',true);

Create a signal to be radiated. In this case, the signal consists of one cycle of a 4 kHz
sinusoid. Set the signal amplitude to unity. Set the sampling frequency to 8 kHz. Choose

 step

1-631

a radiating angles of 0 degrees azimuth and 20 degrees elevation. polarization, you must
set a local axes - in this case chosen to coincide with the global axes. Set uniform weights
on the elements of the array.

fsig = 4000;

fs = 8000;

A = 1;

t = [0:0.01:2]/fs;

signal = A*sin(2*pi*fsig*t');

radiatingAngles = [0;20];

laxes = ones(3,3);

y = step(sRad,signal,radiatingAngles,laxes,[1,1,1,1].');

disp(y)

 X: [201x1 double]

 Y: [201x1 double]

 Z: [201x1 double]

The radiated signal is a struct containing the polarized field.

Use a FreeSpace System object to propagate the field from the origin to the destination.

sFree = phased.FreeSpace('PropagationSpeed',c,...

 'OperatingFrequency',freq,...

 'TwoWayPropagation',false,...

 'SampleRate',fs);

Set the signal origin, signal origin velocity, signal destination, and signal destination
velocity.

origin_pos = [0; 0; 0];

dest_pos = [500; 200; 50];

origin_vel = [10; 0; 0];

dest_vel = [0; 15; 0];

Call the FreeSpace object step method to propagate the signals.

yprop = step(sFree,y,origin_pos,dest_pos,...

 origin_vel,dest_vel);

Plot the x-component of the propagated signals.

figure

1 Alphabetical List

1-632

plot(1000*t,real(yprop.X))

xlabel('Time (millisec)')

Propagate Signal to Multiple Destinations

Create a FreeSpace System object to propagate a signal from one point to multiple points
in space. Start by defining a signal origin and three destination points, all at different
ranges.

Compute the propagation direction angles from the source to the destination locations.
The source and destination are stationary.

pos1 = [0,0,0]';

 step

1-633

vel1 = [0,0,0]';

pos2 = [[700;700;100],[1400;1400;200],2*[2100;2100;400]];

vel2 = zeros(size(pos2));

[rngs,radiatingAngles] = rangeangle(pos2,pos1);

Create the cosine antenna element, ULA array, and Radiator System objects.

fs = 8000;

freq = 300e6;

nsensors = 4;

sAnt = phased.CosineAntennaElement;

sArray = phased.ULA('Element',sAnt,'NumElements',nsensors);

sRad = phased.Radiator('Sensor',sArray,...

 'OperatingFrequency',freq,...

 'CombineRadiatedSignals',true,'WeightsInputPort',true);

Create a signal to be one cycle of a sinusoid of amplitude one and having a frequency of 4
kHz.

fsig = 4000;

t = [0:0.01:2]'/fs;

signal = sin(2*pi*fsig*t);

Radiate the signals in the destination directions. Apply a uniform weighting to the array.

y = step(sRad,signal,radiatingAngles,[1,1,1,1].');

Propagate the signals to the destination points.

sFSp = phased.FreeSpace('OperatingFrequency',freq,'SampleRate',fs);

yprop = step(sFSp,y,pos1,pos2,vel1,vel2);

Plot the propagated signal magnitudes for each range.

figure

plot(1000*t,abs(yprop(:,1)),1000*t,abs(yprop(:,2)),1000*t,abs(yprop(:,3)))

ylabel('Signal Magnitude')

xlabel('Time (millisec)')

1 Alphabetical List

1-634

Algorithms

When the origin and destination are stationary relative to each other, the output signal
of a free-space channel can be written as Y(t) = x(t-τ)/Lfsp. The quantity τ is the signal
delay and Lfsp is the free-space path loss. The delay τ is given by R/c, where R is the
propagation distance and c is the propagation speed. The free-space path loss is given by

L
R

fsp =
()

,
4 2

2

p

l

where λ is the signal wavelength.

 step

1-635

This formula assumes that the target is in the far field of the transmitting element or
array. In the near field, the free-space path loss formula is not valid and can result in a
loss smaller than one, equivalent to a signal gain. For this reason, the loss is set to unity
for range values, R ≤ λ/4π.

When the origin and destination have relative motion, the processing also introduces a
Doppler frequency shift. The frequency shift is v/λ for one-way propagation and 2v/λ for
two-way propagation. The quantity v is the relative speed of the destination with respect
to the origin.

For further details, see [2].

References

[1] Proakis, J. Digital Communications. New York: McGraw-Hill, 2001.

[2] Skolnik, M. Introduction to Radar Systems, 3rd Ed. New York: McGraw-Hill, 2001.

See Also
phased.TwoRayChannel.step

1 Alphabetical List

1-636

phased.FrostBeamformer System object
Package: phased

Frost beamformer

Description

The FrostBeamformer object implements a Frost beamformer.

To compute the beamformed signal:

1 Define and set up your Frost beamformer. See “Construction” on page 1-636.
2 Call step to perform the beamforming operation according to the properties of

phased.FrostBeamformer. The behavior of step is specific to each object in the
toolbox.

Construction

H = phased.FrostBeamformer creates a Frost beamformer System object, H. The
object performs Frost beamforming on the received signal.

H = phased.FrostBeamformer(Name,Value) creates a Frost beamformer object, H,
with each specified property Name set to the specified Value. You can specify additional
name-value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties

SensorArray

Handle to sensor array

Specify the sensor array as a handle. The sensor array must be an array object in the
phased package. The array cannot contain subarrays.

Default: phased.ULA with default property values

 phased.FrostBeamformer System object

1-637

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second, as a positive scalar.

Default: Speed of light

SampleRate

Signal sampling rate

Specify the signal sampling rate (in hertz) as a positive scalar.

Default: 1e6

FilterLength

FIR filter length

Specify the length of FIR filter behind each sensor element in the array as a positive
integer.

Default: 2

DiagonalLoadingFactor

Diagonal loading factor

Specify the diagonal loading factor as a positive scalar. Diagonal loading is a technique
used to achieve robust beamforming performance, especially when the sample support is
small. This property is tunable.

Default: 0

TrainingInputPort

Add input to specify training data

To specify additional training data, set this property to true and use the corresponding
input argument when you invoke step. To use the input signal as the training data, set
this property to false.

Default: false

1 Alphabetical List

1-638

DirectionSource

Source of beamforming direction

Specify whether the beamforming direction comes from the Direction property of this
object or from an input argument in step. Values of this property are:

'Property' The Direction property of this object specifies the
beamforming direction.

'Input port' An input argument in each invocation of step
specifies the beamforming direction.

Default: 'Property'

Direction

Beamforming direction

Specify the beamforming direction of the beamformer as a column vector of length 2. The
direction is specified in the format of [AzimuthAngle; ElevationAngle] (in degrees).
The azimuth angle should be between –180 and 180. The elevation angle should be
between –90 and 90. This property applies when you set the DirectionSource property
to 'Property'.

Default: [0;0]

WeightsOutputPort

Output beamforming weights

To obtain the weights used in the beamformer, set this property to true and use the
corresponding output argument when invoking step. If you do not want to obtain the
weights, set this property to false.

Default: false

Methods

clone Create Frost beamformer object with same
property values

 phased.FrostBeamformer System object

1-639

getNumInputs Number of expected inputs to step method
getNumOutputs Number of outputs from step method
isLocked Locked status for input attributes and

nontunable properties
release Allow property value and input

characteristics changes
step Perform Frost beamforming

Examples

Apply Frost Beamforming to ULA

Apply Frost beamforming to an 11-element acoustic ULA array. The incident angle of
the incoming signal is -50 degrees in azimuth and 30 degrees in elevation. The speed of
sound in air is assumed to be 340 m/sec. The signal has added gaussian white noise.

Simulate the signal.

rng default

ha = phased.ULA('NumElements',11,'ElementSpacing',0.04);

ha.Element.FrequencyRange = [20 20000];

fs = 8e3;

t = 0:1/fs:0.3;

x = chirp(t,0,1,500);

c = 340;

hc = phased.WidebandCollector('Sensor',ha,...

 'PropagationSpeed',c,'SampleRate',fs,...

 'ModulatedInput',false,'NumSubbands',8192);

incidentAngle = [-50;30];

x = step(hc,x.',incidentAngle);

noise = 0.2*randn(size(x));

rx = x + noise;

Beamforming the signal.

hbf = phased.FrostBeamformer('SensorArray',ha,...

 'PropagationSpeed',c,'SampleRate',fs,...

 'Direction',incidentAngle,'FilterLength',5);

y = step(hbf,rx);

Plot the beamformed output.

1 Alphabetical List

1-640

plot(t,rx(:,6),'r:',t,y)

xlabel('Time')

ylabel('Amplitude')

legend('Original','Beamformed');

Algorithms

phased.FrostBeamformer uses a beamforming algorithm proposed by Frost. It can be
considered the time-domain counterpart of the minimum variance distortionless response
(MVDR) beamformer. The algorithm does the following:

1 Steers the array to the beamforming direction.

 phased.FrostBeamformer System object

1-641

2 Applies an FIR filter to the output of each sensor to achieve the distortionless
response constraint. The filter is specific to each sensor.

For further details, see [1].

References

[1] Frost, O. “An Algorithm For Linearly Constrained Adaptive Array Processing”,
Proceedings of the IEEE. Vol. 60, Number 8, August, 1972, pp. 926–935.

[2] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002.

See Also
phased.PhaseShiftBeamformer | phased.SubbandPhaseShiftBeamformer
| phased.TimeDelayBeamformer | phased.TimeDelayLCMVBeamformer |
phitheta2azel | uv2azel

Introduced in R2012a

1 Alphabetical List

1-642

clone
System object: phased.FrostBeamformer
Package: phased

Create Frost beamformer object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates an object, C, having the same property values and same states as
H. If H is locked, so is C.

 getNumInputs

1-643

getNumInputs
System object: phased.FrostBeamformer
Package: phased

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of inputs
(not counting the object itself) that you must use when calling the step method. This
value changes when you alter properties that turn inputs on or off.

1 Alphabetical List

1-644

getNumOutputs
System object: phased.FrostBeamformer
Package: phased

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value changes when you alter properties that turn outputs on or off.

 isLocked

1-645

isLocked
System object: phased.FrostBeamformer
Package: phased

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF, for the FrostBeamformer System
object.

isLocked returns a logical value that indicates whether input attributes and
nontunable properties for the object are locked. The object performs an internal
initialization the first time that you execute step. This initialization locks nontunable
properties and input specifications, such as the dimensions, complexity, and data type of
the input data. After locking, isLocked returns a true value.

1 Alphabetical List

1-646

release
System object: phased.FrostBeamformer
Package: phased

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

 step

1-647

step
System object: phased.FrostBeamformer
Package: phased

Perform Frost beamforming

Syntax

Y = step(H,X)

Y = step(H,X,XT)

Y = step(H,X,ANG)

Y = step(H,X,XT,ANG)

[Y,W] = step(___)

Description

Y = step(H,X) performs Frost beamforming on the input, X, and returns the
beamformed output in Y.

Y = step(H,X,XT) uses XT as the training samples to calculate the beamforming
weights. This syntax is available when you set the TrainingInputPort property to
true.

Y = step(H,X,ANG) uses ANG as the beamforming direction. This syntax is available
when you set the DirectionSource property to 'Input port'.

Y = step(H,X,XT,ANG) combines all input arguments. This syntax is available when
you set the TrainingInputPort property to true and set the DirectionSource
property to 'Input port'.

[Y,W] = step(___) returns the beamforming weights, W. This syntax is available
when you set the WeightsOutputPort property to true.

Note: The object performs an initialization the first time the step method is executed.
This initialization locks nontunable properties and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable

1 Alphabetical List

1-648

property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Input Arguments

H

Beamformer object.

X

Input signal, specified as an M-by-N matrix. M must be larger than the FIR filter length
specified in the FilterLength property. N is the number of elements in the sensor
array.

XT

Training samples, specified as an M-by-N matrix. M and N are the same as the
dimensions of X.

ANG

Beamforming directions, specified as a length-2 column vector. The vector has the form
[AzimuthAngle; ElevationAngle], in degrees. The azimuth angle must be between –180
and 180 degrees, and the elevation angle must be between –90 and 90 degrees.

Output Arguments

Y

Beamformed output. Y is a column vector of length M, where M is the number of rows in
X.

W

Beamforming weights. W is a column vector of length L, where L is the degrees
of freedom of the beamformer. For a Frost beamformer, H, L is given by
getNumElements(H.SensorArray)*H.FilterLength.

 step

1-649

Examples

Apply Frost Beamforming to ULA

Apply Frost beamforming to an 11-element acoustic ULA array. The incident angle of
the incoming signal is -50 degrees in azimuth and 30 degrees in elevation. The speed of
sound in air is assumed to be 340 m/sec. The signal has added gaussian white noise.

Simulate the signal.

rng default

ha = phased.ULA('NumElements',11,'ElementSpacing',0.04);

ha.Element.FrequencyRange = [20 20000];

fs = 8e3;

t = 0:1/fs:0.3;

x = chirp(t,0,1,500);

c = 340;

hc = phased.WidebandCollector('Sensor',ha,...

 'PropagationSpeed',c,'SampleRate',fs,...

 'ModulatedInput',false,'NumSubbands',8192);

incidentAngle = [-50;30];

x = step(hc,x.',incidentAngle);

noise = 0.2*randn(size(x));

rx = x + noise;

Beamforming the signal.

hbf = phased.FrostBeamformer('SensorArray',ha,...

 'PropagationSpeed',c,'SampleRate',fs,...

 'Direction',incidentAngle,'FilterLength',5);

y = step(hbf,rx);

Plot the beamformed output.

plot(t,rx(:,6),'r:',t,y)

xlabel('Time')

ylabel('Amplitude')

legend('Original','Beamformed');

1 Alphabetical List

1-650

Algorithms

phased.FrostBeamformer uses a beamforming algorithm proposed by Frost. It can be
considered the time-domain counterpart of the minimum variance distortionless response
(MVDR) beamformer. The algorithm does the following:

1 Steers the array to the beamforming direction.
2 Applies an FIR filter to the output of each sensor to achieve the distortionless

response constraint. The filter is specific to each sensor.

For further details, see [1].

 step

1-651

References

[1] Frost, O. “An Algorithm For Linearly Constrained Adaptive Array Processing”,
Proceedings of the IEEE. Vol. 60, Number 8, August, 1972, pp. 926–935.

[2] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002.

See Also
phitheta2azel | uv2azel

1 Alphabetical List

1-652

phased.gpu.ConstantGammaClutter System object
Package: phased.gpu

Constant gamma clutter simulation on GPU

Description

The phased.gpu.ConstantGammaClutter object simulates clutter, performing the
computations on a GPU.

Note: To use this object, you must install a Parallel Computing Toolbox license and
have access to an appropriate GPU. For more about GPUs, see “GPU Computing” in the
Parallel Computing Toolbox documentation.

To compute the clutter return:

1 Define and set up your clutter simulator. See “Construction” on page 1-653.
2 Call step to simulate the clutter return for your system according to the properties

of phased.gpu.ConstantGammaClutter. The behavior of step is specific to each
object in the toolbox.

The clutter simulation that ConstantGammaClutter provides is based on these
assumptions:

• The radar system is monostatic.
• The propagation is in free space.
• The terrain is homogeneous.
• The clutter patch is stationary during the coherence time. Coherence time indicates

how frequently the software changes the set of random numbers in the clutter
simulation.

• The signal is narrowband. Thus, the spatial response can be approximated by a phase
shift. Similarly, the Doppler shift can be approximated by a phase shift.

• The radar system maintains a constant height during simulation.
• The radar system maintains a constant speed during simulation.

 phased.gpu.ConstantGammaClutter System object

1-653

Construction

H = phased.gpu.ConstantGammaClutter creates a constant gamma clutter
simulation System object, H. This object simulates the clutter return of a monostatic
radar system using the constant gamma model.

H = phased.gpu.ConstantGammaClutter(Name,Value) creates a constant gamma
clutter simulation object, H, with additional options specified by one or more Name,Value
pair arguments. Name is a property name, and Value is the corresponding value.
Name must appear inside single quotes (''). You can specify several name-value pair
arguments in any order as Name1,Value1,…,NameN,ValueN.

Properties

Sensor

Handle of sensor

Specify the sensor as an antenna element object or as an array object whose Element
property value is an antenna element object. If the sensor is an array, it can contain
subarrays.

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second, as a positive scalar.

Default: Speed of light

OperatingFrequency

System operating frequency

Specify the operating frequency of the system in hertz as a positive scalar. The default
value corresponds to 300 MHz.

Default: 3e8

1 Alphabetical List

1-654

SampleRate

Sample rate

Specify the sample rate, in hertz, as a positive scalar. The default value corresponds to 1
MHz.

Default: 1e6

PRF

Pulse repetition frequency

Specify the pulse repetition frequency in hertz as a positive scalar or a row vector. The
default value of this property corresponds to 10 kHz. When PRF is a vector, it represents
a staggered PRF. In this case, the output pulses use elements in the vector as their PRFs,
one after another, in a cycle.

Default: 1e4

Gamma

Terrain gamma value

Specify the g value used in the constant g clutter model, as a scalar in decibels. The g

value depends on both terrain type and the operating frequency.

Default: 0

EarthModel

Earth model

Specify the earth model used in clutter simulation as one of | 'Flat' | 'Curved' |.
When you set this property to 'Flat', the earth is assumed to be a flat plane. When you
set this property to 'Curved', the earth is assumed to be a sphere.

Default: 'Flat'

PlatformHeight

Radar platform height from surface

 phased.gpu.ConstantGammaClutter System object

1-655

Specify the radar platform height (in meters) measured upward from the surface as a
nonnegative scalar.

Default: 300

PlatformSpeed

Radar platform speed

Specify the radar platform’s speed as a nonnegative scalar in meters per second.

Default: 300

PlatformDirection

Direction of radar platform motion

Specify the direction of radar platform motion as a 2-by-1 vector in the form
[AzimuthAngle; ElevationAngle] in degrees. The default value of this property indicates
that the platform moves perpendicular to the radar antenna array’s broadside.

Both azimuth and elevation angle are measured in the local coordinate system of the
radar antenna or antenna array. Azimuth angle must be between –180 and 180 degrees.
Elevation angle must be between –90 and 90 degrees.

Default: [90;0]

BroadsideDepressionAngle

Depression angle of array broadside

Specify the depression angle in degrees of the broadside of the radar antenna array. This
value is a scalar. The broadside is defined as zero degrees azimuth and zero degrees
elevation. The depression angle is measured downward from horizontal.

Default: 0

MaximumRange

Maximum range for clutter simulation

Specify the maximum range in meters for the clutter simulation as a positive scalar.
The maximum range must be greater than the value specified in the PlatformHeight
property.

1 Alphabetical List

1-656

Default: 5000

AzimuthCoverage

Azimuth coverage for clutter simulation

Specify the azimuth coverage in degrees as a positive scalar. The clutter simulation
covers a region having the specified azimuth span, symmetric to 0 degrees azimuth.
Typically, all clutter patches have their azimuth centers within the region, but the
PatchAzimuthWidth value can cause some patches to extend beyond the region.

Default: 60

PatchAzimuthWidth

Azimuth span of each clutter patch

Specify the azimuth span of each clutter patch in degrees as a positive scalar.

Default: 1

TransmitSignalInputPort

Add input to specify transmit signal

Set this property to true to add input to specify the transmit signal in the step syntax.
Set this property to false omit the transmit signal in the step syntax. The false
option is less computationally expensive; to use this option, you must also specify the
TransmitERP property.

Default: false

TransmitERP

Effective transmitted power

Specify the transmitted effective radiated power (ERP) of the radar system
in watts as a positive scalar. This property applies only when you set the
TransmitSignalInputPort property to false.

Default: 5000

CoherenceTime

Clutter coherence time

 phased.gpu.ConstantGammaClutter System object

1-657

Specify the coherence time in seconds for the clutter simulation as a positive scalar. After
the coherence time elapses, the step method updates the random numbers it uses for
the clutter simulation at the next pulse. A value of inf means the random numbers are
never updated.

Default: inf

OutputFormat

Output signal format

Specify the format of the output signal as one of | 'Pulses' | 'Samples' |. When you
set the OutputFormat property to 'Pulses', the output of the step method is in the
form of multiple pulses. In this case, the number of pulses is the value of the NumPulses
property.

When you set the OutputFormat property to 'Samples', the output of the step method
is in the form of multiple samples. In this case, the number of samples is the value of the
NumSamples property. In staggered PRF applications, you might find the 'Samples'
option more convenient because the step output always has the same matrix size.

Default: 'Pulses'

NumPulses

Number of pulses in output

Specify the number of pulses in the output of the step method as a positive integer. This
property applies only when you set the OutputFormat property to 'Pulses'.

Default: 1

NumSamples

Number of samples in output

Specify the number of samples in the output of the step method as a positive integer.
Typically, you use the number of samples in one pulse. This property applies only when
you set the OutputFormat property to 'Samples'.

Default: 100

SeedSource

Source of seed for random number generator

1 Alphabetical List

1-658

Specify how the object generates random numbers. Values of this property are:

'Auto' Random numbers come from the global GPU random number
stream.

'Auto' is appropriate in a variety of situations. In particular,
if you want to use a generator algorithm other than
mrg32k3a, set SeedSource to 'Auto'. Then, configure the
global GPU random number stream to use the generator
of your choice. You can configure the global GPU random
number stream using parallel.gpu.RandStream and
parallel.gpu.RandStream.setGlobalStream.

'Property' Random numbers come from a private stream of random numbers.
The stream uses the mrg32k3a generator algorithm, with a seed
specified in the Seed property of this object.

If you do not want clutter computations to affect the global GPU
random number stream, set SeedSource to 'Property'.

Default: 'Auto'

Seed

Seed for random number generator

Specify the seed for the random number generator as a scalar integer between 0 and 232–
1. This property applies when you set the SeedSource property to 'Property'.

Default: 0

Methods

clone Create GPU constant gamma clutter
simulation object with same property
values

getNumInputs Number of expected inputs to step method
getNumOutputs Number of outputs from step method
isLocked Locked status for input attributes and

nontunable properties

 phased.gpu.ConstantGammaClutter System object

1-659

release Allow property value and input
characteristics changes

reset Reset random numbers and time count for
clutter simulation

step Simulate clutter using constant gamma
model

Examples

Clutter Simulation of System with Known Power

Simulate the clutter return from terrain with a gamma value of 0 dB. The effective
transmitted power of the radar system is 5 kw.

Set up the characteristics of the radar system. This system has a 4-element uniform
linear array (ULA). The sample rate is 1 MHz, and the PRF is 10 kHz. The propagation
speed is 300,000 km/s, and the operating frequency is 300 MHz. The radar platform is
flying 1 km above the ground with a path parallel to the ground along the array axis. The
platform speed is 2000 m/s. The mainlobe has a depression angle of 30 degrees.

Nele = 4;

c = 3e8; fc = 3e8; lambda = c/fc;

ha = phased.ULA('NumElements',Nele,'ElementSpacing',lambda/2);

fs = 1e6; prf = 10e3;

height = 1000; direction = [90; 0];

speed = 2000; depang = 30;

Create the GPU clutter simulation object. The configuration assumes the earth is flat.
The maximum clutter range of interest is 5 km, and the maximum azimuth coverage is
+/– 60 degrees.

Rmax = 5000; Azcov = 120;

tergamma = 0; tpower = 5000;

hclutter = phased.gpu.ConstantGammaClutter('Sensor',ha,...

 'PropagationSpeed',c,'OperatingFrequency',fc,'PRF',prf,...

 'SampleRate',fs,'Gamma',tergamma,'EarthModel','Flat',...

 'TransmitERP',tpower,'PlatformHeight',height,...

 'PlatformSpeed',speed,'PlatformDirection',direction,...

 'BroadsideDepressionAngle',depang,'MaximumRange',Rmax,...

 'AzimuthCoverage',Azcov);

1 Alphabetical List

1-660

Simulate the clutter return for 10 pulses.

Nsamp = fs/prf; Npulse = 10;

csig = zeros(Nsamp,Nele,Npulse);

for m = 1:Npulse

 csig(:,:,m) = step(hclutter);

end

Plot the angle-Doppler response of the clutter at the 20th range bin.

hresp = phased.AngleDopplerResponse('SensorArray',ha,...

 'OperatingFrequency',fc,'PropagationSpeed',c,'PRF',prf);

plotResponse(hresp,shiftdim(csig(20,:,:)),...

 'NormalizeDoppler',true);

 phased.gpu.ConstantGammaClutter System object

1-661

The results do not exactly match those achieved by using
phased.ConstantGammaClutter instead of phased.gpu.ConstantGammaClutter.
This discrepancy occurs because of differences between CPU and GPU computations.

Clutter Simulation Using Known Transmit Signal

Simulate the clutter return from terrain with a gamma value of 0 dB. The step syntax
includes the transmit signal of the radar system as an input argument. In this case, you
do not record the effective transmitted power of the signal in a property.

Set up the characteristics of the radar system. This system has a 4-element uniform
linear array (ULA). The sample rate is 1 MHz, and the PRF is 10 kHz. The propagation
speed is 300,000 km/s, and the operating frequency is 300 MHz. The radar platform is
flying 1 km above the ground with a path parallel to the ground along the array axis. The
platform speed is 2000 m/s. The mainlobe has a depression angle of 30 degrees.

Nele = 4;

c = 3e8; fc = 3e8; lambda = c/fc;

ha = phased.ULA('NumElements',Nele,'ElementSpacing',lambda/2);

fs = 1e6; prf = 10e3;

height = 1000; direction = [90; 0];

speed = 2000; depang = 30;

Create the GPU clutter simulation object and configure it to take a transmit signal as
an input argument to step. The configuration assumes the earth is flat. The maximum
clutter range of interest is 5 km, and the maximum azimuth coverage is +/– 60 degrees.

Rmax = 5000; Azcov = 120;

tergamma = 0;

hclutter = phased.gpu.ConstantGammaClutter('Sensor',ha,...

 'PropagationSpeed',c,'OperatingFrequency',fc,'PRF',prf,...

 'SampleRate',fs,'Gamma',tergamma,'EarthModel','Flat',...

 'TransmitSignalInputPort',true,'PlatformHeight',height,...

 'PlatformSpeed',speed,'PlatformDirection',direction,...

 'BroadsideDepressionAngle',depang,'MaximumRange',Rmax,...

 'AzimuthCoverage',Azcov);

Simulate the clutter return for 10 pulses. At each step, pass the transmit signal as an
input argument. The software automatically computes the effective transmitted power of
the signal. The transmit signal is a rectangular waveform with a pulse width of 2 µs.

tpower = 5000;

1 Alphabetical List

1-662

pw = 2e-6;

X = tpower*ones(floor(pw*fs),1);

Nsamp = fs/prf; Npulse = 10;

csig = zeros(Nsamp,Nele,Npulse);

for m = 1:Npulse

 csig(:,:,m) = step(hclutter,X);

end

Plot the angle-Doppler response of the clutter at the 20th range bin.

hresp = phased.AngleDopplerResponse('SensorArray',ha,...

 'OperatingFrequency',fc,'PropagationSpeed',c,'PRF',prf);

plotResponse(hresp,shiftdim(csig(20,:,:)),...

 'NormalizeDoppler',true);

 phased.gpu.ConstantGammaClutter System object

1-663

The results do not exactly match those achieved by using
phased.ConstantGammaClutter instead of phased.gpu.ConstantGammaClutter.
This discrepancy occurs because of differences between CPU and GPU computations.

Random Number Comparison Between GPU and CPU

In most cases, it does not matter that the GPU and CPU use different random numbers.
Sometimes, you may need to reproduce the same stream on both GPU and CPU. In such
cases, you can set up the two global streams so they produce identical random numbers.
Both GPU and CPU support the combined multiple recursive generator (mrg32k3a) with
the NormalTransform parameter set to 'Inversion'.

Define a seed value to use for the GPU stream and the CPU stream.

seed = 7151;

Create a CPU random number stream that uses the combined multiple recursive
generator and the chosen seed value. Then, use this stream as the global stream for
random number generation on the CPU.

stream_cpu = RandStream('CombRecursive','Seed',seed,...

 'NormalTransform','Inversion');

RandStream.setGlobalStream(stream_cpu);

Create a GPU random number stream that uses the combined multiple recursive
generator and the same seed value. Then, use this stream as the global stream for
random number generation on the GPU.

stream_gpu = parallel.gpu.RandStream('CombRecursive','Seed',seed);

parallel.gpu.RandStream.setGlobalStream(stream_gpu);

Generate clutter on both the CPU and the GPU, using the global stream on each
platform.

h_cpu = phased.ConstantGammaClutter('SeedSource','Auto');

h_gpu = phased.gpu.ConstantGammaClutter('SeedSource','Auto');

y_cpu = step(h_cpu);

y_gpu = step(h_gpu);

Check that the element-wise differences between the CPU and GPU results are
negligible.

maxdiff = max(max(abs(y_cpu - y_gpu)))

1 Alphabetical List

1-664

eps

maxdiff =

 2.9092e-18

ans =

 2.2204e-16

• Acceleration of Clutter Simulation Using GPU and Code Generation
• Ground Clutter Mitigation with Moving Target Indication (MTI) Radar

References

[1] Barton, David. “Land Clutter Models for Radar Design and Analysis,” Proceedings of
the IEEE. Vol. 73, Number 2, February, 1985, pp. 198–204.

[2] Long, Maurice W. Radar Reflectivity of Land and Sea, 3rd Ed. Boston: Artech House,
2001.

[3] Nathanson, Fred E., J. Patrick Reilly, and Marvin N. Cohen. Radar Design Principles,
2nd Ed. Mendham, NJ: SciTech Publishing, 1999.

[4] Ward, J. “Space-Time Adaptive Processing for Airborne Radar Data Systems,”
Technical Report 1015, MIT Lincoln Laboratory, December, 1994.

See Also
phased.BarrageJammer | phased.ConstantGammaClutter | phitheta2azel |
surfacegamma | uv2azel

More About
• “Clutter Modeling”
• “GPU Computing”

Introduced in R2012b

../examples/acceleration-of-clutter-simulation-using-gpu-and-code-generation.html
../examples/ground-clutter-mitigation-with-moving-target-indication-mti-radar.html

 clone

1-665

clone
System object: phased.gpu.ConstantGammaClutter
Package: phased.gpu

Create GPU constant gamma clutter simulation object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates an object, C, having the same property values and same states as
H. If H is locked, so is C.

1 Alphabetical List

1-666

getNumInputs
System object: phased.gpu.ConstantGammaClutter
Package: phased.gpu

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of inputs
(not counting the object itself) that you must use when calling the step method. This
value changes when you alter properties that turn inputs on or off.

 getNumOutputs

1-667

getNumOutputs
System object: phased.gpu.ConstantGammaClutter
Package: phased.gpu

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value changes when you alter properties that turn outputs on or off.

1 Alphabetical List

1-668

isLocked
System object: phased.gpu.ConstantGammaClutter
Package: phased.gpu

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF, for the ConstantGammaClutter
System object.

isLocked returns a logical value that indicates whether input attributes and
nontunable properties for the object are locked. The object performs an internal
initialization the first time that you execute step. This initialization locks nontunable
properties and input specifications, such as the dimensions, complexity, and data type of
the input data. After locking, isLocked returns a true value.

 release

1-669

release
System object: phased.gpu.ConstantGammaClutter
Package: phased.gpu

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

1 Alphabetical List

1-670

reset
System object: phased.gpu.ConstantGammaClutter
Package: phased.gpu

Reset random numbers and time count for clutter simulation

Syntax

reset(H)

Description

reset(H) resets the states of the ConstantGammaClutter object, H. This method resets
the random number generator state if the SeedSource property is set to 'Property'.
This method resets the elapsed coherence time. Also, if the PRF property is a vector, the
next call to step uses the first PRF value in the vector.

 step

1-671

step
System object: phased.gpu.ConstantGammaClutter
Package: phased.gpu

Simulate clutter using constant gamma model

Syntax
Y = step(H)

Y = step(H,X)

Description
Y = step(H) computes the collected clutter return at each sensor. This syntax is
available when you set the TransmitSignalInputPort property to false.

Y = step(H,X) specifies the transmit signal in X. Transmit signal refers to the output
of the transmitter while it is on during a given pulse. This syntax is available when you
set the TransmitSignalInputPort property to true.

Input Arguments
H

Constant gamma clutter object.

X

Transmit signal, specified as a column vector of data type double. The System object
handles data transfer between the CPU and GPU.

Output Arguments
Y

Collected clutter return at each sensor. The data types of X and Y are the same. Y
has dimensions N-by-M matrix. M is the number of subarrays in the radar system if

1 Alphabetical List

1-672

H.Sensor contains subarrays, or the number of sensors, otherwise. When you set the
OutputFormat property to 'Samples', N is specified in the NumSamples property.
When you set the OutputFormat property to 'Pulses', N is the total number of
samples in the next L pulses. In this case, L is specified in the NumPulses property.

Tips

The clutter simulation that ConstantGammaClutter provides is based on these
assumptions:

• The radar system is monostatic.
• The propagation is in free space.
• The terrain is homogeneous.
• The clutter patch is stationary during the coherence time. Coherence time indicates

how frequently the software changes the set of random numbers in the clutter
simulation.

• The signal is narrowband. Thus, the spatial response can be approximated by a phase
shift. Similarly, the Doppler shift can be approximated by a phase shift.

• The radar system maintains a constant height during simulation.
• The radar system maintains a constant speed during simulation.

Examples

Clutter Simulation of System with Known Power

Simulate the clutter return from terrain with a gamma value of 0 dB. The effective
transmitted power of the radar system is 5 kw.

Set up the characteristics of the radar system. This system has a 4-element uniform
linear array (ULA). The sample rate is 1 MHz, and the PRF is 10 kHz. The propagation
speed is 300,000 km/s, and the operating frequency is 300 MHz. The radar platform is
flying 1 km above the ground with a path parallel to the ground along the array axis. The
platform speed is 2000 m/s. The mainlobe has a depression angle of 30 degrees.

Nele = 4;

 step

1-673

c = 3e8; fc = 3e8; lambda = c/fc;

ha = phased.ULA('NumElements',Nele,'ElementSpacing',lambda/2);

fs = 1e6; prf = 10e3;

height = 1000; direction = [90; 0];

speed = 2000; depang = 30;

Create the GPU clutter simulation object. The configuration assumes the earth is flat.
The maximum clutter range of interest is 5 km, and the maximum azimuth coverage is
+/– 60 degrees.

Rmax = 5000; Azcov = 120;

tergamma = 0; tpower = 5000;

hclutter = phased.gpu.ConstantGammaClutter('Sensor',ha,...

 'PropagationSpeed',c,'OperatingFrequency',fc,'PRF',prf,...

 'SampleRate',fs,'Gamma',tergamma,'EarthModel','Flat',...

 'TransmitERP',tpower,'PlatformHeight',height,...

 'PlatformSpeed',speed,'PlatformDirection',direction,...

 'BroadsideDepressionAngle',depang,'MaximumRange',Rmax,...

 'AzimuthCoverage',Azcov);

Simulate the clutter return for 10 pulses.

Nsamp = fs/prf; Npulse = 10;

csig = zeros(Nsamp,Nele,Npulse);

for m = 1:Npulse

 csig(:,:,m) = step(hclutter);

end

Plot the angle-Doppler response of the clutter at the 20th range bin.

hresp = phased.AngleDopplerResponse('SensorArray',ha,...

 'OperatingFrequency',fc,'PropagationSpeed',c,'PRF',prf);

plotResponse(hresp,shiftdim(csig(20,:,:)),...

 'NormalizeDoppler',true);

1 Alphabetical List

1-674

The results do not exactly match those achieved by using
phased.ConstantGammaClutter instead of phased.gpu.ConstantGammaClutter.
This discrepancy occurs because of differences between CPU and GPU computations.

Clutter Simulation Using Known Transmit Signal

Simulate the clutter return from terrain with a gamma value of 0 dB. The step syntax
includes the transmit signal of the radar system as an input argument. In this case, you
do not record the effective transmitted power of the signal in a property.

Set up the characteristics of the radar system. This system has a 4-element uniform
linear array (ULA). The sample rate is 1 MHz, and the PRF is 10 kHz. The propagation
speed is 300,000 km/s, and the operating frequency is 300 MHz. The radar platform is

 step

1-675

flying 1 km above the ground with a path parallel to the ground along the array axis. The
platform speed is 2000 m/s. The mainlobe has a depression angle of 30 degrees.

Nele = 4;

c = 3e8; fc = 3e8; lambda = c/fc;

ha = phased.ULA('NumElements',Nele,'ElementSpacing',lambda/2);

fs = 1e6; prf = 10e3;

height = 1000; direction = [90; 0];

speed = 2000; depang = 30;

Create the GPU clutter simulation object and configure it to take a transmit signal as
an input argument to step. The configuration assumes the earth is flat. The maximum
clutter range of interest is 5 km, and the maximum azimuth coverage is +/– 60 degrees.

Rmax = 5000; Azcov = 120;

tergamma = 0;

hclutter = phased.gpu.ConstantGammaClutter('Sensor',ha,...

 'PropagationSpeed',c,'OperatingFrequency',fc,'PRF',prf,...

 'SampleRate',fs,'Gamma',tergamma,'EarthModel','Flat',...

 'TransmitSignalInputPort',true,'PlatformHeight',height,...

 'PlatformSpeed',speed,'PlatformDirection',direction,...

 'BroadsideDepressionAngle',depang,'MaximumRange',Rmax,...

 'AzimuthCoverage',Azcov);

Simulate the clutter return for 10 pulses. At each step, pass the transmit signal as an
input argument. The software automatically computes the effective transmitted power of
the signal. The transmit signal is a rectangular waveform with a pulse width of 2 µs.

tpower = 5000;

pw = 2e-6;

X = tpower*ones(floor(pw*fs),1);

Nsamp = fs/prf; Npulse = 10;

csig = zeros(Nsamp,Nele,Npulse);

for m = 1:Npulse

 csig(:,:,m) = step(hclutter,X);

end

Plot the angle-Doppler response of the clutter at the 20th range bin.

hresp = phased.AngleDopplerResponse('SensorArray',ha,...

 'OperatingFrequency',fc,'PropagationSpeed',c,'PRF',prf);

plotResponse(hresp,shiftdim(csig(20,:,:)),...

 'NormalizeDoppler',true);

1 Alphabetical List

1-676

The results do not exactly match those achieved by using
phased.ConstantGammaClutter instead of phased.gpu.ConstantGammaClutter.
This discrepancy occurs because of differences between CPU and GPU computations.

• Acceleration of Clutter Simulation Using GPU and Code Generation
• Ground Clutter Mitigation with Moving Target Indication (MTI) Radar

More About
• “Clutter Modeling”
• “GPU Computing”

../examples/acceleration-of-clutter-simulation-using-gpu-and-code-generation.html
../examples/ground-clutter-mitigation-with-moving-target-indication-mti-radar.html

 phased.GCCEstimator System object

1-677

phased.GCCEstimator System object
Package: phased

Wideband direction of arrival estimation

Description

The phased.GCCEstimator System object creates a direction of arrival estimator
for wideband signals. This System object estimates the direction of arrival or time of
arrival among sensor array elements using the generalized cross-correlation with phase
transform algorithm (GCC-PHAT). The algorithm assumes that all signals propagate
from a single source lying in the array far field so the direction of arrival is the same
for all sensors. The System object first estimates the correlations between all specified
sensor pairs using GCC-PHAT and then finds the largest peak in each correlation. The
peak identifies the delay between the signals arriving at each sensor pair. Finally, aleast-
squares estimate is used to derive the direction of arrival from all estimated delays.

To compute the direction of arrival for pairs of element in the array:

1 Define and set up a GCC-PHAT estimator System object, phased.GCCEstimator,
using the “Construction” on page 1-677 procedure.

2 Call step to compute the direction of arrival of a signal using the properties of the
phased.GCCEstimator System object.

The behavior of step is specific to each object in the toolbox.

Construction

sGCC = phased.GCCEstimator creates a GCC direction of arrival estimator System
object, sGCC. This object estimates the direction of arrival or time of arrival between
sensor array elements using the GCC-PHAT algorithm.

sGCC = phased.GCCEstimator(Name,Value) returns a GCC direction of arrival
estimator object, sGCC, with the specified property Name set to the specified Value.
Name must appear inside single quotes (''). You can specify several name-value pair
arguments in any order as Name1,Value1,...,NameN,ValueN.

1 Alphabetical List

1-678

Properties

SensorArray — Sensor array
phased.ULA System object (default) | Phased Array System Toolbox sensor array

Sensor array, specified as a Phased Array System Toolbox System object. The array can
also consist of subarrays. If you do not specify this property, the default sensor array is a
phased.ULA System object with default array property values.
Example: phased.URA

PropagationSpeed — Signal propagation speed
speed of light (default) | positive real-valued scalar

Signal propagation speed, specified as a positive real-valued scalar. Units are in meters
per second.
Example: physconst('LightSpeed')

Data Types: double

SampleRate — Sample rate
1e6 (default) | positive real-valued scalar

Sample rate, specified as a positive real-valued scalar. Units are in hertz.
Example: 1e6
Data Types: double

SensorPairSource — Source of sensor pairs
'Auto' (default) | 'Property'

Source of sensor pairs, specified as either 'Auto' or 'Property'.

• 'Auto' — choose this property value to compute correlations between the first sensor
and all other sensors. The first sensor of the array is the reference channel.

• 'Property' — choose this property value when you want to explicitly specify the
sensor pairs to be used for computing correlations. Set the sensor pair indices using
the SensorPair property. You can view the array indices using the viewArray
method of any array System object.

Example: 'Auto'

 phased.GCCEstimator System object

1-679

Data Types: char

SensorPair — Sensor pairs
[2;1] (default) | 2-by-N positive integer valued matrix

Sensor pairs used to compute correlations, specified as a 2-by-N positive integer-
valued matrix. Each column of the matrix specifies a pair of sensors between which
the correlation is computed. The second row specifies the reference sensors. Each entry
in the matrix must be less than the number of array sensors or subarrays. To use the
SensorPair property, you must also set the SensorPairSource value to 'Property'.

Example: [1,3,5;2,4,6]

Data Types: double

DelayOutputPort — Option to enable delay output
false (default) | true

Option to enable output of time delay values, specified as a Boolean. Set this property to
true to output the delay values as an output argument of the step method. The delays
correspond to the arrival angles of a signal between sensor pairs. Set this property to
false to disable the output of delays.

Example: false

Data Types: logical

CorrelationOutputPort — Option to enable correlation output
false (default) | true

Option to enable output of correlation values, specified as a Boolean. Set this property
to true to output the correlations and lags between sensor pairs as output arguments of
the step method. Set this property to false to disable output of correlations.

Example: false
Data Types: logical

Methods

clone Create GCCEstimator System object with
identical property values

1 Alphabetical List

1-680

getNumInputs Number of expected inputs to step method
getNumOutputs Number of outputs from step method
isLocked Locked status for input attributes and

nontunable properties
release Allow property values and input

characteristics to change
reset Reset states of phased.GCCEstimator

System object
step Estimate direction of arrival using

generalized cross-correlation

Definitions

GCC-PHAT Cross-Correlation Algorithm

You can use generalized cross-correlation to estimate the time difference of arrival of a
signal at two different sensors.

A model of a signal emitted by a source and received at two sensors is given by:

r t s t n t

r t s t D n t

1 1

2 2

() = () + ()

() = -() + ()

where D is the time difference of arrival (TDOA), or time lag, of the signal at one sensor
with respect to the arrival time at a second sensor. You can estimate the time delay by
finding the time lag that maximizes the cross-correlation between the two signals.

From the TDOA, you can estimate the broadside arrival angle of the plane wave with
respect to the line connecting the two sensors. For two sensors separated by distance L,
the broadside arrival angle, “Broadside Angle”, is related to the time lag by

sinb
t

=
c

L

 phased.GCCEstimator System object

1-681

where c is the propagation speed in the medium.

A common method of estimating time delay is to compute the cross-correlation between
signals received at two sensors. To identify the time delay, locate the peak in the cross-
correlation. When the signal-to-noise ratio (SNR) is large, the correlation peak, τ,
corresponds to the actual time delay D.

R E r t r t

D R

() { () ()}

� ()argmax

t t

t

t

= +

=

1 2

When the correlation function is more sharply peaked, performance improves. You can
sharpen a cross correlation peak using a weighting function that whitens the input
signals. This technique is called generalized cross-correlation(GCC). One particular
weighting function normalizes the signal spectral density by the spectrum magnitude,
leading to the generalized cross-correlation phase transform method (GCC-PHAT).

S f R e d

R
S f

S f
e df

D

i f

i f

() ()

()
()

| ()|

ar

=

=

=

-•

• -

-•

• +

Ú

Ú

t t

t

p t

p t

2

2%

% ggmax ()
t

t %R

If you use just two sensor pairs, you can only estimate the broadside angle of arrival.
However, if you use multiple pairs of non-collinear sensors, for example, in a URA, you
can estimate the arrival azimuth and elevation angles of the plane wave using least-
square estimation. For N sensors, you can write the delay time τkj of a signal arriving at
the kth sensor with respect to the jth sensor by

c x x u

u i j k

kj k jt

a q a q q

= - -() ◊

= + +

r r r

r

cos sin � sin sin � cos �

where u is the unit propagation vector of the plane wave. The angles α and θ are the
azimuth and elevation angles of the propagation vector. All angles and vectors are
defined with respect to the local axes. You can solve the first equation using least-

1 Alphabetical List

1-682

squares to yield the three components of the unit propagation vector. Then, you can solve
the second equation for the azimuth and elevation angles.

Examples

GCC Estimate of Direction of Arrival at Microphone Array

Estimate the direction of arrival of a signal using the GCC-PHAT algorithm. The
receiving array is a 5-by-5-element URA microphone array with elements spaced 0.25
meters apart. The arriving signal is a sequence of widebandand chirps. The signal arrives
from 17 degrees azimuth and zero degrees elevation. Assume the speed of sound in air is
340 meters/second.

Load the chirp signal

load chirp;

c = 340.0;

Create the 5-by-5 microphone URA

d = 0.25;

N = 5;

sMic = phased.OmnidirectionalMicrophoneElement;

sURA = phased.URA([N,N],[d,d],'Element',sMic);

Simulate the incoming signal using the WidebandCollector System object™

arrivalAng = [17;0];

sWBC = phased.WidebandCollector('Sensor',sURA,...

 'PropagationSpeed',c,...

 'SampleRate',Fs,...

 'ModulatedInput',false);

signal = step(sWBC,y,arrivalAng);

Estimate the direction of arrival.

gxcorr = phased.GCCEstimator('SensorArray',sURA,...

 'PropagationSpeed',c,'SampleRate',Fs);

ang = step(gxcorr,signal)

ang =

 phased.GCCEstimator System object

1-683

 16.4538

 -0.7145

References

[1] Knapp, C. H. and G.C. Carter, “The Generalized Correlation Method for Estimation of
Time Delay.” IEEE Transactions on Acoustics, Speech and Signal Processing. Vol.
ASSP-24, No. 4, Aug 1976.

[2] G. C. Carter, “Coherence and Time Delay Estimation.” Proceedings of the IEEE. Vol.
75, No. 2, Feb 1987.

See Also
phased.BeamScanEstimator | phased.RootMUSICEstimator | gccphat

Introduced in R2015b

1 Alphabetical List

1-684

clone
System object: phased.GCCEstimator
Package: phased

Create GCCEstimator System object with identical property values

Syntax

C = clone(H)

Description

C = clone(H) creates an object, C, having the same property values and same states as
H. If H is locked, so is C.

Input Arguments

H — GCC-PHAT estimator
phased.GCCEstimator System object

GCC-PHAT estimator, specified as a phased.GCCEstimator System object.
Example: phased.GCCEstimator()

Output Arguments

C — GCC-PHAT estimator
phased.GCCEstimator System object

GCC-PHAT estimator, returned as a phased.GCCEstimator System object.

Introduced in R2015b

 getNumInputs

1-685

getNumInputs
System object: phased.GCCEstimator
Package: phased

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of inputs
(not counting the object itself) that you must use when calling the step method. This
value changes when you alter properties that turn inputs on or off.

Input Arguments

H — GCC-PHAT estimator
phased.GCCEstimator System object

GCC-PHAT estimator, specified as a phased.GCCEstimator System object.
Example: phased.GCCEstimator()

Output Arguments

N — Number of expected inputs to step method
positive integer

Number of expected inputs to the step method, returned as a positive integer. The
number does not include the object itself.

Introduced in R2015b

1 Alphabetical List

1-686

getNumOutputs
System object: phased.GCCEstimator
Package: phased

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value changes when you alter properties that turn outputs on or off.

Input Arguments

H — GCC-PHAT estimator
phased.GCCEstimator System object

GCC-PHAT estimator, specified as a phased.GCCEstimator System object.
Example: phased.GCCEstimator()

Output Arguments

N — Number of expected outputs
positive integer

Number of outputs expected from calling the step method, returned as a positive integer.

Introduced in R2015b

 isLocked

1-687

isLocked

System object: phased.GCCEstimator
Package: phased

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(S)

Description

TF = isLocked(S) returns the locked status, TF, for the GCCEstimator System object

isLocked returns a logical value that indicates whether input attributes and
nontunable properties for the object are locked. The object performs an internal
initialization the first time that you execute step. This initialization locks nontunable
properties and input specifications, such as the dimensions, complexity, and data type of
the input data. After locking, isLocked returns a true value.

Input Arguments

S — GCC-PHAT estimator
phased.GCCEstimator System object

GCC-PHAT estimator, specified as a System object.
Example: phased.GCCEstimator()

Output Arguments

TF — Locked status of phased.GCCEstimator System object
boolean

1 Alphabetical List

1-688

Locked status of phased.GCCEstimator phased.GCCEstimator System object, returned
as the boolean value true when the input attributes and nontunable properties of the
object are locked. Otherwise, the returned value is false.

Introduced in R2015b

 release

1-689

release
System object: phased.GCCEstimator
Package: phased

Allow property values and input characteristics to change

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles, or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

Input Arguments

H — GCC-PHAT estimator
phased.GCCEstimator System object

GCC-PHAT estimator, specified as a phased.GCCEstimator System object.
Example: H = phased.GCCEstimator

Introduced in R2015b

1 Alphabetical List

1-690

reset
System object: phased.GCCEstimator
Package: phased

Reset states of phased.GCCEstimator System object

Syntax

reset(S)

Description

reset(S) resets the internal state of the phased.GCCEstimator object, S. This method
resets the random number generator state if the SeedSource property is applicable and
has the value 'Property'.

Input Arguments

S — GCC-PHAT estimator
phased.GCCEstimator System object

GCC-PHAT estimator, specified as a phased.GCCEstimator System object.
Example: phased.GCCEstimator()

Introduced in R2015b

 step

1-691

step
System object: phased.GCCEstimator
Package: phased

Estimate direction of arrival using generalized cross-correlation

Syntax
ang = step(sGCC,sig)

[ang,tau] = step(sGCC,sig)

[ang,R,lag] = step(sGCC,sig)

[ang,tau,R,lag] = step(sGCC,sig)

Description
ang = step(sGCC,sig) returns the direction of arrival, ang, of an input signal sig.
The argument sig is a matrix specifying the received signals at the elements of the
array specified in the SensorArray property. Signals propagate from a single source.
Each column in sig corresponds to the elements in the array (if an array is used) or the
number of subarrays (if a subarray is used). Each row of sig represents a single time
snapshot.

[ang,tau] = step(sGCC,sig) returns the time delays, tau, estimated from the
correlations between pairs of sensors. To use this syntax, set the DelayOutputPort
property to true. The argument tau is a P-element row vector, where P is the number of
sensor pairs, and where P = N(N-1).

[ang,R,lag] = step(sGCC,sig) returns the estimated correlations, R, between pairs
of sensors, when you set the CorrelationOutputPort property to true. R is a matrix
with P columns where P is the number of sensor pairs. Each column in R contains the
correlation for the corresponding pair of sensors. lag is a column vector containing the
time lags corresponding to the rows of the correlation matrix. The time lags are the same
for all sensor pairs.

You can combine optional input arguments when their enabling properties are
set. Optional inputs must be listed in the same order as their enabling properties.
For example,[ang,tau,R,lag] = step(sGCC,sig) is valid when you set both
DelayOutputPort and CorrelationOutputPort to true.

1 Alphabetical List

1-692

Note: The object performs an initialization the first time the step method is executed.
This initialization locks nontunable properties and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Input Arguments

sGCC — GCC-PHAT estimator
phased.GCCEstimator System object

GCC-PHAT estimator, specified as a phased.GCCEstimator System object.
Example: phased.GCCEstimator

sig — Received signal
M-by-N complex-valued matrix

Received signal, specified as an M-by-N complex-valued matrix. The quantity M is
the number of sample values (snapshots) of the signal and N is the number of sensor
elements in the array. For subarrays, N is the number of subarrays.
Example: [[0;1;2;3;4;3;2;1;0],[1;2;3;4;3;2;1;0;0]]

Data Types: double
Complex Number Support: Yes

Output Arguments

ang — Direction of arrival
2-by-1 real-valued column vector | scalar

Direction of arrival of a signal, returned as a 2-by-1 real-valued column vector in the
form [azimuth;elevation]. If the array is a uniform linear array, ang is a scalar
representing the broadside angle. Angle units are in degrees, defined with respect to the
local coordinate system of the array.

tau — Time delays of arrival
1-by-P real-valued row vector

 step

1-693

Time delays of arrival, returned as 1-by-P real-valued row vector. P is the number of
sensor pairs selected from the array.

• When SensorPairSource is set to 'Auto', P = N - 1. N is the number of elements in
the array.

• When SensorPairSource is set to 'Property', P is the number of sensor pairs
specified by the SensorPair property.

Time units are seconds. This output is enabled when you set the DelayOutputPort
property to true.

R — Estimated cross-correlation
(2M+1)-by-P complex-valued matrix

Estimated cross-correlation between pairs of sensors, returned as a (2M+1)-by-P
complex-valued matrix, where P is the number of sensor pairs selected from the array.

• When SensorPairSource is set to 'Auto', P = N - 1. N is the number of elements in
the array. The columns in R contain the correlations between the first sensor and all
other sensors.

• When SensorPairSource is set to 'Property', P is the number of sensor pairs
specified by the SensorPair property. Each column in R contains the correlation for
the corresponding pair of sensors.

M is the number of time samples in the input signal. This output is enabled when you set
the CorrelationOutputPort property to true.

lag — Time lags
M-by-1 real-valued column vector

Time lags, returned as an (2M+1)-by-1 real-valued column vector. M is the number of
time samples in the input signal. Each time lag applies to the corresponding row in the
cross-correlation matrix.

Examples

Plot Correlations from GCC Estimator

Estimate the direction of arrival of a signal using GCC-PHAT. The receiving array is a 5-
by-5-element URA microphone array with elements spaced 25 centimeters apart. Choose

1 Alphabetical List

1-694

10 element pairs to compute the arrival angle. Assume the speed of sound in air is 340
meters/second. The arriving signal is a sequence of wideband sounds. Assume the signal
arrives from 54 degrees azimuth and five degrees elevation. Estimate the arrival angle,
and then plot the correlation function versus lag for a pair of elements.

Load the signal and extract a small portion for computation.

load gong;

y1 = y(1:100);

Set up the receiving array.

N = 5;

d = 0.25;

sMic = phased.OmnidirectionalMicrophoneElement;

sURA = phased.URA([N,N],[d,d],'Element',sMic);

Simulate the arriving plane wave using the WidebandCollector System object™.

c = 340.0;

arrivalAng = [54;5];

sWBC = phased.WidebandCollector('Sensor',sURA,...

 'PropagationSpeed',c,...

 'SampleRate',Fs,...

 'ModulatedInput',false);

signal = step(sWBC,y1,arrivalAng);

Estimate direction of arrival. Choose 10 sensors to correlate with the first element of the
URA.

sensorpairs = [[2,4,6,8,10,12,14,16,18,20];ones(1,10)];

sGCC = phased.GCCEstimator('SensorArray',sURA,...

 'PropagationSpeed',c,'SampleRate',Fs,...

 'SensorPairSource','Property',...

 'SensorPair',sensorpairs,...

 'DelayOutputPort',true','CorrelationOutputPort',true);

[estimatedAng,taus,R,lags] = step(sGCC,signal);

The estimated angle is:

disp(estimatedAng)

 11.6720

 step

1-695

 4.2189

Plot the correlation between sensor 8 and sensor 1. This pair corresponds to the fourth
column of the correlation matrix. The estimated value of tau (in milliseconds) for this
pair is:

disp(1000*taus(4))

plot(1000*lags,real(R(:,4)))

xlabel('Time lags (msec)')

ylabel('Correlation')

 0.0238

1 Alphabetical List

1-696

References

[1] Charles H. Knapp and Carter, G.C., The Generalized Correlation Method for
Estimation of Time Delay, IEEE Transactions on Acoustics, Speech and Signal
Processing, Vol, ASSP-24, No. 4. August 1976.

[2] G. Clifford Carter Coherence and Time Delay Estimation, Proceedings of the IEEE, vol
75, No 2, Feb 1987.

See Also
phased.BeamScanEstimator.step | phased.RootMUSICEstimator.step | gccphat

 step

1-697

Introduced in R2015b

1 Alphabetical List

1-698

phased.HeterogeneousConformalArray System
object
Package: phased

Heterogeneous conformal array

Description

The HeterogeneousConformalArray object constructs a conformal array from a
heterogeneous set of antenna elements. A heterogeneous array is an array which consists
of different kinds of antenna elements or an array of different kinds of microphone
elements. A conformal array can have elements in any position pointing in any direction.

To compute the response for each element in the array for specified directions:

1 Define and set up your conformal array. See “Construction” on page 1-698.
2 Call step to compute the response according to the properties of

phased.HeterogeneousConformalArray. The behavior of step is specific to each
object in the toolbox.

Construction

H = phased.HeterogeneousConformalArray creates a heterogeneous conformal
array System object, H. This object models a heterogeneous conformal array formed with
different kinds of sensor elements.

H = phased.HeterogeneousConformalArray(Name,Value) creates object, H, with
each specified property Name set to the specified Value. You can specify additional name-
value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties

ElementSet

Set of elements used in the array

 phased.HeterogeneousConformalArray System object

1-699

Specify the set of different elements used in the sensor array as a row MATLAB
cell array. Each member of the cell array contains an element object in the phased
package. Elements specified in the ElementSet property must be either all antennas
or all microphones. In addition, all specified antenna elements must have the same
polarization capability. Specify the element of the sensor array as a handle. The element
must be an element object in the phased package.

Default: One cell containing one isotropic antenna element

ElementIndices

Elements location assignment

This property specifies the mapping of elements in the array. The property assigns
elements to their locations in the array using the indices into the ElementSet property.
The value of ElementIndices must be an length-N row vector. In this vector, N
represents the number of elements in the array. The values in the vector specified
by ElementIndices must be less than or equal to the number of entries in the
ElementSet property.

Default: [1 2 2 1]

ElementPosition

Element positions

ElementPosition specifies the positions of the elements in the conformal array. The
value of the ElementPosition property must be a 3-by-N matrix, where N indicates
the number of elements in the conformal array. Each column of ElementPosition
represents the position, in the form [x; y; z] (in meters), of a single element in the
local coordinate system of the array. The local coordinate system has its origin at an
arbitrary point.

Default: [0; 0; 0]

ElementNormal

Element normal directions

ElementNormal specifies the normal directions of the elements in the conformal array.
Angle units are degrees. The value assigned to ElementNormal must be either a 2-by-N
matrix or a 2-by-1 column vector. The variable N indicates the number of elements in
the array. If the value of ElementNormal is a matrix, each column specifies the normal

1 Alphabetical List

1-700

direction of the corresponding element in the form [azimuth;elevation] with respect
to the local coordinate system. The local coordinate system aligns the positive x-axis with
the direction normal to the conformal array. If the value of ElementNormal is a 2-by-1
column vector, it specifies the pointing direction of all elements in the array.

You can use the ElementPosition and ElementNormal properties to represent
any arrangement in which pairs of elements differ by certain transformations. The
transformations can combine translation, azimuth rotation, and elevation rotation.
However, you cannot use transformations that require rotation about the normal.

Default: [0; 0]

Taper

Element taper or weighting

Element tapering or weighting, specified as a complex-valued scalar, 1-by-N row vector,
or N-by-1 column vector. The quantity N is the number of elements in the array as
determined by the size of the ElementIndices property. Tapers, also known as weights,
are applied to each sensor element in the sensor array and modify both the amplitude
and phase of the received data. If 'Taper' is a scalar, the same taper value is applied
to all elements. If 'Taper' is a vector, each taper value is applied to the corresponding
sensor element.

Default: 1

Methods

clone Create system object with identical values
directivity Directivity of heterogeneous conformal

array
collectPlaneWave Simulate received plane waves
getElementNormal Normal vector to array elements
getElementPosition Positions of array elements
getNumElements Number of elements in array
getNumInputs Number of expected inputs to step method
getNumOutputs Number of outputs from step method

 phased.HeterogeneousConformalArray System object

1-701

getTaper Array element tapers
isLocked Locked status for input attributes and

nontunable properties
isPolarizationCapable Polarization capability
pattern Plot heterogeneous conformal array pattern
patternAzimuth Plot heterogeneous conformal array

directivity or pattern versus azimuth
patternElevation Plot heterogeneous conformal array

directivity or pattern versus elevation
plotResponse Plot response pattern of array
release Allow property value and input

characteristics changes
step Output responses of array elements
viewArray View array geometry

Examples
Heterogeneous Uniform Circular Array

Construct an 8-element heterogeneous uniform circular array (UCA) using the
ConformalArray System object. Four of the elements have a cosine pattern with a power
of 1.6 while the remaining elements have a cosine pattern with a power of 2.0. Plot the 3-
D power response. Assume a 1 GHz operating frequency. The wave propagation speed is
the speed of light.

Construct the array

sElement1 = phased.CosineAntennaElement('CosinePower',1.6);

sElement2 = phased.CosineAntennaElement('CosinePower',2.0);

N = 8;

azang = (0:N-1)*360/N-180;

sArray = phased.HeterogeneousConformalArray(...

 'ElementSet',{sElement1,sElement2},...

 'ElementIndices',[1 1 1 1 2 2 2 2],...

 'ElementPosition',[cosd(azang);sind(azang);zeros(1,N)],...

 'ElementNormal',[azang;zeros(1,N)]);

c = physconst('LightSpeed');

fc = 1e9;

1 Alphabetical List

1-702

Create the 3-D power pattern

pattern(sArray,fc,[-180:180],[-90:90],...

 'CoordinateSystem','polar',...

 'Type','power')

• Phased Array Gallery

References

[1] Josefsson, L. and P. Persson. Conformal Array Antenna Theory and Design.
Piscataway, NJ: IEEE Press, 2006.

../examples/phased-array-gallery.html

 phased.HeterogeneousConformalArray System object

1-703

[2] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002.

See Also
phased.UCA | phased.ConformalArray | phased.CosineAntennaElement
| phased.CustomAntennaElement | phased.HeterogeneousULA |
phased.HeterogeneousURA | phased.IsotropicAntennaElement |
phased.PartitionedArray | phased.ReplicatedSubarray | phased.ULA | phased.URA |
phitheta2azel | uv2azel

Introduced in R2013a

1 Alphabetical List

1-704

clone
System object: phased.HeterogeneousConformalArray
Package: phased

Create system object with identical values

Syntax

C = clone(H)

Description

C = clone(H) creates an object, C, having the same property values and same states as
H. If H is locked, so is C.

 directivity

1-705

directivity
System object: phased.HeterogeneousConformalArray
Package: phased

Directivity of heterogeneous conformal array

Syntax

D = directivity(H,FREQ,ANGLE)

D = directivity(H,FREQ,ANGLE,Name,Value)

Description

D = directivity(H,FREQ,ANGLE) computes the “Directivity” on page 1-708 of a
heterogeneous conformal array of antenna or microphone elements, H, at frequencies
specified by the FREQ and in angles of direction specified by the ANGLE.

D = directivity(H,FREQ,ANGLE,Name,Value) computes the directivity with
additional options specified by one or more Name,Value pair arguments.

Input Arguments

H — Heterogeneous conformal array
System object

Heterogeneous conformal array specified as a phased.HeterogeneousConformalArray
System object.
Example: H = phased.HeterogeneousConformalArray;

FREQ — Frequency for computing directivity and patterns
positive scalar | 1-by-L real-valued row vector

Frequencies for computing directivity and patterns, specified as a positive scalar or 1-
by-L real-valued row vector. Frequency units are in hertz.

1 Alphabetical List

1-706

• For an antenna or microphone element, FREQ must lie within the range of
values specified by the FrequencyRange or FrequencyVector property of the
element. Otherwise, the element produces no response and the directivity is
returned as –Inf. Most elements use the FrequencyRange property except for
phased.CustomAntennaElement and phased.CustomMicrophoneElement, which use
the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements
that make up the array. Otherwise, the array produces no response and the
directivity is returned as –Inf.

Example: [1e8 2e8]

Data Types: double

ANGLE — Angles for computing directivity
1-by-M real-valued row vector | 2-by-M real-valued matrix

Angles for computing directivity, specified as a 1-by-M real-valued row vector or a 2-
by-M real-valued matrix, where M is the number of angular directions. Angle units
are in degrees. If ANGLE is a 2-by-M matrix, then each column specifies a direction in
azimuth and elevation, [az;el]. The azimuth angle must lie between –180° and 180°.
The elevation angle must lie between –90° and 90°.

If ANGLE is a 1-by-M vector, then each entry represents an azimuth angle, with the
elevation angle assumed to be zero.

The azimuth angle is the angle between the x-axis and the projection of the direction
vector onto the xy plane. This angle is positive when measured from the x-axis toward the
y-axis. The elevation angle is the angle between the direction vector and xy plane. This
angle is positive when measured towards the z-axis.
Example: [45 60; 0 10]

Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

 directivity

1-707

'PropagationSpeed' — Signal propagation speed
speed of light (default) | positive scalar

Signal propagation speed, specified as the comma-separated pair consisting of
'PropagationSpeed' and a positive scalar in meters per second.

Example: 'PropagationSpeed',physconst('LightSpeed')

Data Types: double

'Weights' — Array weights
1 (default) | N-by-1 complex-valued column vector | N-by-L complex-valued matrix

Array weights, specified as the comma-separated pair consisting of 'Weights' and an
N-by-1 complex-valued column vector or N-by-L complex-valued matrix. Array weights
are applied to the elements of the array to produce array steering, tapering, or both. The
dimension N is the number of elements in the array. The dimension L is the number of
frequencies specified by FREQ.

Weights Dimension FREQ Dimension Purpose

N-by-1 complex-valued
column vector

Scalar or 1-by-L row vector Applies a set of weights for
the single frequency or for all
L frequencies.

N-by-L complex-valued
matrix

1-by-L row vector Applies each of the L
columns of 'Weights' for
the corresponding frequency
in FREQ.

Note: Use complex weights to steer the array response toward different directions. You
can create weights using the phased.SteeringVector System object or you can compute
your own weights. In general, you apply Hermitian conjugation before using weights in
any Phased Array System Toolbox function or System object such as phased.Radiator
or phased.Collector. However, for the directivity, pattern, patternAzimuth, and
patternElevation methods of any array System object use the steering vector without
conjugation.

Example: 'Weights',ones(N,M)

Data Types: double

1 Alphabetical List

1-708

Complex Number Support: Yes

Output Arguments

D — Directivity
M-by-L matrix

Directivity, returned as an M-by-L matrix whose columns contain the directivities at the
M angles specified by ANGLE. Each column corresponds to one of the L frequency values
specified in FREQ. Directivity units are in dBi.

Definitions

Directivity

Directivity describes the directionality of the radiation pattern of a sensor element
or array of sensor elements. Higher directivity is desired when you want to transmit
more radiation in a specific direction. Directivity is the ratio of the transmitted radiant
intensity in a specified direction to the radiant intensity transmitted by an isotropic
radiator with the same total transmitted power

D
U

P
=

()
4p

q jrad

total

,

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal
is the total power transmitted by an isotropic radiator. For a receiving element or array,
directivity measures the sensitivity toward radiation arriving from a specific direction.
The principle of reciprocity shows that the directivity of an element or array used for
reception equals the directivity of the same element or array used for transmission.
When converted to decibels, the directivity is denoted as dBi. For information on
directivity, read the notes on “Element directivity” and “Array directivity”.

Computing directivity requires integrating the far-field transmitted radiant intensity
over all directions in space to obtain the total transmitted power. There is a difference
between how that integration is performed when Antenna Toolbox antennas are used
in a phased array and when Phased Array System Toolbox antennas are used. When

 directivity

1-709

an array contains Antenna Toolbox antennas, the directivity computation is performed
using a triangular mesh created from 500 regularly spaced points over a sphere. For
Phased Array System Toolbox antennas, the integration uses a uniform rectangular
mesh of points spaced 1° apart in azimuth and elevation over a sphere. There may be
significant differences in computed directivity, especially for large arrays.

Examples

Directivity of Heterogeneous Conformal Array

Compute the directivity of a steered heterogeneous conformal array. Construct a 24-
element heterogeneous disk array using elements having different antenna patterns and
then show how to compute the array's directivity.

Set the signal speed to the speed of light and the signal frequency to 2GHz.

c = physconst('LightSpeed');

freq = 2e9;

Choose two different types of elements - both are cosine antenna elements with different
powers.

myElement1 = phased.CosineAntennaElement('CosinePower',1.5);

myElement2 = phased.CosineAntennaElement('CosinePower',1.8);

Set up a three-ring disk array with 8 elements per ring. The inner ring has different
elements from the outer rings.

N = 8;

azang = (0:N-1)*360/N-180;

p0 = [zeros(1,N);cosd(azang);sind(azang)];

posn = [0.6*p0, 0.4*p0, 0.2*p0];

myArray = phased.HeterogeneousConformalArray;

myArray.ElementPosition = posn;

myArray.ElementNormal = zeros(2,3*N);

myArray.ElementSet = {myElement1,myElement2};

myArray.ElementIndices = [1 1 1 1 1 1 1 1,...

 1 1 1 1 1 1 1 1,...

 2 2 2 2 2 2 2 2];

Set up the steering vector to point at 30 degrees azimuth and compute the directivity in
that direction.

1 Alphabetical List

1-710

lambda = c/freq;

ang = [30;0];

w = steervec(getElementPosition(myArray)/lambda,ang);

d = directivity(myArray,freq,ang,'PropagationSpeed',c,...

 'Weights',w)

d =

 20.9519

See Also
phased.HeterogeneousConformalArray.pattern |
phased.HeterogeneousConformalArray.patternAzimuth |
phased.HeterogeneousConformalArray.patternElevation

 collectPlaneWave

1-711

collectPlaneWave

System object: phased.HeterogeneousConformalArray
Package: phased

Simulate received plane waves

Syntax

Y = collectPlaneWave(H,X,ANG)

Y = collectPlaneWave(H,X,ANG,FREQ)

Y = collectPlaneWave(H,X,ANG,FREQ,C)

Description

Y = collectPlaneWave(H,X,ANG) returns the received signals at the sensor array, H,
when the input signals indicated by X arrive at the array from the directions specified in
ANG.

Y = collectPlaneWave(H,X,ANG,FREQ), in addition, specifies the incoming signal
carrier frequency in FREQ.

Y = collectPlaneWave(H,X,ANG,FREQ,C), in addition, specifies the signal
propagation speed in C.

Input Arguments

H

Array object.

X

Incoming signals, specified as an M-column matrix. Each column of X represents an
individual incoming signal.

1 Alphabetical List

1-712

ANG

Directions from which incoming signals arrive, in degrees. ANG can be either a 2-by-M
matrix or a row vector of length M.

If ANG is a 2-by-M matrix, each column specifies the direction of arrival of the
corresponding signal in X. Each column of ANG is in the form [azimuth; elevation].
The azimuth angle must be between –180° and 180°, inclusive. The elevation angle must
be between –90° and 90°, inclusive.

If ANG is a row vector of length M, each entry in ANG specifies the azimuth angle. In this
case, the corresponding elevation angle is assumed to be 0°.

FREQ

Carrier frequency of signal in hertz. FREQ must be a scalar.

Default: 3e8

C

Propagation speed of signal in meters per second.

Default: Speed of light

Output Arguments

Y

Received signals. Y is an N-column matrix, where N is the number of elements in the
array H. Each column of Y is the received signal at the corresponding array element, with
all incoming signals combined.

Examples

Simulate the received signal at an 8-element uniform circular array

The signals arrive from 10° and 30° azimuth. Both signals have an elevation angle of 0°.
Assume the propagation speed is the speed of light.

 collectPlaneWave

1-713

sElement1 = phased.CosineAntennaElement('CosinePower',1.5);

sElement2 = phased.CosineAntennaElement('CosinePower',1.8);

N = 8; azang = (0:N-1)*360/N-180;

sArray = phased.HeterogeneousConformalArray(...

 'ElementPosition',...

 [cosd(azang);sind(azang);zeros(1,N)],...

 'ElementNormal',[azang;zeros(1,N)],...

 'ElementSet',{sElement1,sElement2},...

 'ElementIndices',[1 1 1 1 2 2 2 2]);

c = physconst('LightSpeed');

y = collectPlaneWave(sArray,randn(4,2),[10 30],c);

disp(y(:,1:2));

 0.3237 + 0.4890i 0.6039 + 0.0301i

 0.6786 - 0.7586i -0.5528 + 1.0947i

 1.8804 + 0.6692i 1.2940 + 1.4305i

 2.4967 + 1.3510i 2.1896 + 1.6319i

Algorithms

collectPlaneWave modulates the input signal with a phase corresponding to the
delay caused by the direction of arrival. The method does not account for the response of
individual elements in the array.

For further details, see Van Trees [1].

References

[1] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002.

See Also
phitheta2azel | uv2azel

1 Alphabetical List

1-714

getElementNormal
System object: phased.HeterogeneousConformalArray
Package: phased

Normal vector to array elements

Syntax

normvec = getElementNormal(sConfArray)

normvec = getElementNormal(sConfArray,elemidx)

Description

normvec = getElementNormal(sConfArray) returns the normal vectors of the
array elements of the phased.sConfArray System object, sConfArray. The output
argument normvec is a 2-by-N matrix, where N is the number of elements in array,
sConfArray. Each column of normvec defines the normal direction of an element in the
local coordinate system in the form[az;el]. Units are degrees. The origin of the local
coordinate system is defined by the phase center of the array.

normvec = getElementNormal(sConfArray,elemidx) returns only the normal
vectors of the elements specified in the element index vector, elemidx. This syntax can
use any of the input arguments in the previous syntax.

Input Arguments

sConfArray — Heterogeneous conformal array
phased.HeterogeneousConformalArray System object

Heterogeneous conformal array, specified as a
phased.HeterogeneousConformalArray System object.

Example: phased.HeterogeneousConformalArray

elemidx — Element indices
all array elements (default) | integer-valued 1-by-M row vector | integer-valued M-by-1
column vector

 getElementNormal

1-715

Element indices, specified as a 1-by-M or M-by-1 vector. Index values lie in the range
1 to N where N is the number of elements of the array. When elemidx is specified,
getElementNormal returns the normal vectors of the elements contained in elemidx.

Example: [1,5,4]

Output Arguments

normvec — Element normal vectors
2-by-P real-valued vector

Element normal vectors, specified as a 2-by-P real-valued vector. Each column of
normvec takes the form [az,el]. When elemidx is not specified, P equals the array
dimension. When elemidx is specified, P equals the length of elemidx, M.

Examples

Display Heterogenous Conformal Array Element Normals

Construct a 5-element acoustic cross array (UCA) composed of two different types of
cosine antenna elements. Use the Phased.HeterogeneousConformalArray System object.
Assume the operating frequency is 4 kHz. A typical value for the speed of sound in
seawater is 1500.0 m/s. Display the array normal vectors.

N = 5;

fc = 4000;

c = 1500.0;

lam = c/fc;

x = zeros(1,N);

y = [-1,0,1,0,0]*lam/2;

z = [0,0,0,-1,1]*lam/2;

sCos1 = phased.CosineAntennaElement('CosinePower',1.5);

sCos2 = phased.CosineAntennaElement('CosinePower',1.8);

sHCA = phased.HeterogeneousConformalArray('ElementSet',{sCos1,sCos2},...

 'ElementIndices',[1,2,2,2,1],...

 'ElementPosition',[x;y;z],...

 'ElementNormal',[[-20,-10,0,10,20];zeros(1,N)]);

pos = getElementPosition(sHCA)

normvec = getElementNormal(sHCA)

1 Alphabetical List

1-716

pos =

 0 0 0 0 0

 -0.1875 0 0.1875 0 0

 0 0 0 -0.1875 0.1875

normvec =

 -20 -10 0 10 20

 0 0 0 0 0

Introduced in R2016a

 getElementPosition

1-717

getElementPosition
System object: phased.HeterogeneousConformalArray
Package: phased

Positions of array elements

Syntax

pos = getElementPosition(sHCA)

pos = getElementPosition(sHCA,elemidx)

Description

pos = getElementPosition(sHCA) returns the element positions of the
HeterogeneousConformalArray System object, sHCA. POS is an 3-by-N matrix where N
is the number of elements in H. Each column of pos defines the position of an element in
the local coordinate system, in meters, in the form [x;y;z].

For details regarding the local coordinate system of the conformal or heterogeneous
conformal array, enter phased.ConformalArray.coordinateSystemInfo.

pos = getElementPosition(sHCA,elemidx) returns the positions of the elements
that are specified in the element index vector elemidx.

Examples

Element Positions of Heterogeneous Conformal Array

Construct an 8-element heterogeneous conformal array with oriented short-dipole
antenna elements. Then, obtain the positions of the first four elements.

sElement1 = phased.ShortDipoleAntennaElement(...

 'FrequencyRange',[100e6 1e9],...

 'AxisDirection','Z');

sElement2 = phased.ShortDipoleAntennaElement(...

 'FrequencyRange',[100e6 1e9],...

1 Alphabetical List

1-718

 'AxisDirection','Y');

N = 8; azang = (0:N-1)*360/N-180;

sArray = phased.HeterogeneousConformalArray(...

 'ElementPosition',...

 [cosd(azang);sind(azang);zeros(1,N)],...

 'ElementNormal',[azang;zeros(1,N)],...

 'ElementSet',{sElement1,sElement2},...

 'ElementIndices',[1 1 1 1 2 2 2 2]);

pos = getElementPosition(sArray);

disp(pos(:,1:4));

 -1.0000 -0.7071 0 0.7071

 0 -0.7071 -1.0000 -0.7071

 0 0 0 0

 getNumElements

1-719

getNumElements
System object: phased.HeterogeneousConformalArray
Package: phased

Number of elements in array

Syntax

N = getNumElements(H)

Description

N = getNumElements(H) returns the number of elements, N, in the conformal array
object H.

Examples

Construct a heterogeneous 8-element uniform circular array and show that
getNumElements returns 8.

sElement1 = phased.ShortDipoleAntennaElement(...

 'FrequencyRange',[100e6 1e9],...

 'AxisDirection','Z');

sElement2 = phased.ShortDipoleAntennaElement(...

 'FrequencyRange',[100e6 1e9],...

 'AxisDirection','Y');

N = 8; azang = (0:N-1)*360/N-180;

sArray = phased.HeterogeneousConformalArray(...

 'ElementPosition',...

 [cosd(azang);sind(azang);zeros(1,N)],...

 'ElementNormal',[azang;zeros(1,N)],...

 'ElementSet',{sElement1,sElement2},...

 'ElementIndices',[1 1 1 1 2 2 2 2]);

N = getNumElements(sArray)

N =

1 Alphabetical List

1-720

 8

 getNumInputs

1-721

getNumInputs
System object: phased.HeterogeneousConformalArray
Package: phased

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of inputs
(not counting the object itself) that you must use when calling the step method. This
value changes when you alter properties that turn inputs on or off.

1 Alphabetical List

1-722

getNumOutputs
System object: phased.HeterogeneousConformalArray
Package: phased

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value changes when you alter properties that turn outputs on or off.

 getTaper

1-723

getTaper
System object: phased.HeterogeneousConformalArray
Package: phased

Array element tapers

Syntax

wts = getTaper(h)

Description

wts = getTaper(h) returns the tapers applied to each element of a conformal array, h.
Tapers are often referred to as weights.

Input Arguments

h — Conformal array
phased.HeterogeneousConformalArray System object

Conformal array specified as a phased.HeterogeneousConformalArray System object.

Output Arguments

wts — Array element tapers
N-by-1 complex-valued vector

Array element tapers returned as an N-by-1, complex-valued vector, where N is the
number of elements in the array.

Examples

Construct a 12-element, 2-ring tapered disk array where the outer ring is more heavily
tapered than the inner ring.

1 Alphabetical List

1-724

sElement1 = phased.ShortDipoleAntennaElement(...

 'FrequencyRange',[100e6 1e9],...

 'AxisDirection','Z');

sElement2 = phased.ShortDipoleAntennaElement(...

 'FrequencyRange',[100e6 1e9],...

 'AxisDirection','Y');

elemAngles = ([0:5]*360/6);

elemPosInner = 0.5*[zeros(size(elemAngles));...

 cosd(elemAngles); sind(elemAngles)];

elemPosOuter = [zeros(size(elemAngles));...

 cosd(elemAngles); sind(elemAngles)];

elemNorms = repmat([0;0],1,12);

taper = [ones(size(elemAngles)),...

 0.3*ones(size(elemAngles))];

sArray = phased.HeterogeneousConformalArray(...

 'ElementSet',{sElement1,sElement2},...

 'ElementIndices',[1 1 1 1 1 1 2 2 2 2 2 2],...

 'ElementPosition',[elemPosInner,elemPosOuter],...

 'ElementNormal',elemNorms,...

 'Taper',taper);

w = getTaper(sArray)

List the taper values.

w =

 1.0000

 1.0000

 1.0000

 1.0000

 1.0000

 1.0000

 0.3000

 0.3000

 0.3000

 0.3000

 0.3000

 0.3000

Draw the array showing taper colors.

viewArray(sArray,'ShowTaper',true,'ShowIndex','all');

 getTaper

1-725

1 Alphabetical List

1-726

isLocked
System object: phased.HeterogeneousConformalArray
Package: phased

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF, for the ConformalArray System
object.

isLocked returns a logical value that indicates whether input attributes and
nontunable properties for the object are locked. The object performs an internal
initialization the first time that you execute step. This initialization locks nontunable
properties and input specifications, such as the dimensions, complexity, and data type of
the input data. After locking, isLocked returns a true value.

 isPolarizationCapable

1-727

isPolarizationCapable

System object: phased.HeterogeneousConformalArray
Package: phased

Polarization capability

Syntax

flag = isPolarizationCapable(h)

Description

flag = isPolarizationCapable(h) returns a Boolean value, flag, indicating
whether the array supports polarization. An array supports polarization if all of its
constituent sensor elements support polarization.

Input Arguments

h — Conformal array

Conformal array specified as a phased.HeterogeneousConformalArray System object.

Output Arguments

flag — Polarization-capability flag

Polarization-capability returned as a Boolean value true if the array supports
polarization or false if it does not.

1 Alphabetical List

1-728

Examples

Conformal Array of Short-dipole Antenna Elements Supports Polarization

Show that a circular conformal array of phased.ShortDipoleAntennaElement antenna
elements supports polarization.

sElement1 = phased.ShortDipoleAntennaElement(...

 'FrequencyRange',[100e6 1e9],...

 'AxisDirection','Z');

sElement2 = phased.ShortDipoleAntennaElement(...

 'FrequencyRange',[100e6 1e9],...

 'AxisDirection','Y');

elemAngles = ([0:5]*360/6);

elemPosInner = 0.5*[zeros(size(elemAngles));...

 cosd(elemAngles); sind(elemAngles)];

elemPosOuter = [zeros(size(elemAngles));...

 cosd(elemAngles); sind(elemAngles)];

elemNorms = repmat([0;0],1,12);

sArray = phased.HeterogeneousConformalArray(...

 'ElementSet',{sElement1,sElement2},...

 'ElementIndices',[1 1 1 1 1 1 2 2 2 2 2 2],...

 'ElementPosition',[elemPosInner,elemPosOuter],...

 'ElementNormal',elemNorms);

isPolarizationCapable(sArray)

ans =

 1

The returned value true (1) shows that this array supports polarization.

 pattern

1-729

pattern

System object: phased.HeterogeneousConformalArray
Package: phased

Plot heterogeneous conformal array pattern

Syntax

pattern(sArray,FREQ)

pattern(sArray,FREQ,AZ)

pattern(sArray,FREQ,AZ,EL)

pattern(___ ,Name,Value)

[PAT,AZ_ANG,EL_ANG] = pattern(___)

Description

pattern(sArray,FREQ) plots the 3-D array directivity pattern (in dBi) for the array
specified in sArray. The operating frequency is specified in FREQ.

pattern(sArray,FREQ,AZ) plots the array directivity pattern at the specified azimuth
angle.

pattern(sArray,FREQ,AZ,EL) plots the array directivity pattern at specified azimuth
and elevation angles.

pattern(___ ,Name,Value) plots the array pattern with additional options specified
by one or more Name,Value pair arguments.

[PAT,AZ_ANG,EL_ANG] = pattern(___) returns the array pattern in PAT. The
AZ_ANG output contains the coordinate values corresponding to the rows of PAT. The
EL_ANG output contains the coordinate values corresponding to the columns of PAT.
If the 'CoordinateSystem' parameter is set to 'uv', then AZ_ANG contains the
U coordinates of the pattern and EL_ANG contains the V coordinates of the pattern.
Otherwise, they are in angular units in degrees. UV units are dimensionless.

1 Alphabetical List

1-730

Note: This method replaces the previous plotResponse method. To replace plots using
plotResponse plots with equivalent plots using pattern, see “Convert plotResponse to
pattern” on page 1-1955

Input Arguments

sArray — Heterogeneous conformal array
System object

Heterogeneous conformal array, specified as a phased.HeterogeneousConformalArray
System object.
Example: sArray= phased.HeterogeneousConformalArray;

FREQ — Frequency for computing directivity and patterns
positive scalar | 1-by-L real-valued row vector

Frequencies for computing directivity and patterns, specified as a positive scalar or 1-
by-L real-valued row vector. Frequency units are in hertz.

• For an antenna or microphone element, FREQ must lie within the range of
values specified by the FrequencyRange or FrequencyVector property of the
element. Otherwise, the element produces no response and the directivity is
returned as –Inf. Most elements use the FrequencyRange property except for
phased.CustomAntennaElement and phased.CustomMicrophoneElement, which use
the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements
that make up the array. Otherwise, the array produces no response and the
directivity is returned as –Inf.

Example: [1e8 2e8]

Data Types: double

AZ — Azimuth angles
[-180:180] (default) | 1-by-M real-valued row vector

Azimuth angles for computing directivity and pattern, specified as a 1-by-M real-
valued row vector where M is the number of azimuth angles. Angle units are in degrees.
Azimuth angles must lie between –180° and 180°.

 pattern

1-731

The azimuth angle is the angle between the x-axis and the projection of the direction
vector onto the xy plane. When measured from the x-axis toward the y-axis, this angle is
positive.
Example: [-45:2:45]

Data Types: double

EL — Elevation angles
[-90:90] (default) | 1-by-N real-valued row vector

Elevation angles for computing directivity and pattern, specified as a 1-by-N real-valued
row vector where N is the number of desired elevation directions. Angle units are in
degrees. The elevation angle must lie between –90° and 90°.

The elevation angle is the angle between the direction vector and xy-plane. When
measured towards the z-axis, this angle is positive.
Example: [-75:1:70]

Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'CoordinateSystem' — Plotting coordinate system
'polar' (default) | 'rectangular' | 'uv'

Plotting coordinate system of the pattern, specified as the comma-separated pair
consisting of 'CoordinateSystem' and one of 'polar', 'rectangular', or
'uv'. When 'CoordinateSystem' is set to 'polar' or 'rectangular', the
AZ and EL arguments specify the pattern azimuth and elevation, respectively. AZ
values must lie between –180° and 180°. EL values must lie between –90° and 90°. If
'CoordinateSystem' is set to 'uv', AZ and EL then specify U and V coordinates,
respectively. AZ and EL must lie between -1 and 1.

Example: 'uv'

Data Types: char

1 Alphabetical List

1-732

'Type' — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and
one of

• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed

pattern is for the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field

pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'

Data Types: char

'Normalize' — Display normalize pattern
true (default) | false

Display normalized pattern, specified as the comma-separated pair consisting of
'Normalize' and a Boolean. Set this parameter to true to display a normalized pattern.
When you set 'Type' to 'directivity', this parameter does not apply. Directivity
patterns are already normalized.
Example:
Data Types: logical

'PlotStyle' — Plotting style
'overlay' (default) | 'waterfall'

Plotting style, specified as the comma-separated pair consisting of 'Plotstyle' and
either 'overlay' or 'waterfall'. This parameter applies when you specify multiple
frequencies in FREQ in 2-D plots. You can draw 2-D plots by setting one of the arguments
AZ or EL to a scalar.

Example:
Data Types: char

'Polarization' — Polarized field component
'combined' (default) | 'H' | 'V'

 pattern

1-733

Polarized field component to display, specified as the comma-separated pair consisting
of 'Polarization' and 'combined', 'H', or 'V'. This parameter applies only when
the sensors are polarization-capable and when the 'Type' parameter is not set to
'directivity'. This table shows the meaning of the display options

'Polarization' Display

'combined' Combined H and V polarization
components

'H' H polarization component
'V' V polarization component

Example: 'V'

Data Types: char

'PropagationSpeed' — Signal propagation speed
speed of light (default) | positive scalar

Signal propagation speed, specified as the comma-separated pair consisting of
'PropagationSpeed' and a positive scalar in meters per second.

Example: 'PropagationSpeed',physconst('LightSpeed')

Data Types: double

'Weights' — Array weights
1 (default) | N-by-1 complex-valued column vector | N-by-L complex-valued matrix

Array weights, specified as the comma-separated pair consisting of 'Weights' and an
N-by-1 complex-valued column vector or N-by-L complex-valued matrix. Array weights
are applied to the elements of the array to produce array steering, tapering, or both. The
dimension N is the number of elements in the array. The dimension L is the number of
frequencies specified by FREQ.

Weights Dimension FREQ Dimension Purpose

N-by-1 complex-valued
column vector

Scalar or 1-by-L row vector Applies a set of weights for
the single frequency or for all
L frequencies.

N-by-L complex-valued
matrix

1-by-L row vector Applies each of the L
columns of 'Weights' for

1 Alphabetical List

1-734

Weights Dimension FREQ Dimension Purpose

the corresponding frequency
in FREQ.

Note: Use complex weights to steer the array response toward different directions. You
can create weights using the phased.SteeringVector System object or you can compute
your own weights. In general, you apply Hermitian conjugation before using weights in
any Phased Array System Toolbox function or System object such as phased.Radiator
or phased.Collector. However, for the directivity, pattern, patternAzimuth, and
patternElevation methods of any array System object use the steering vector without
conjugation.

Example: 'Weights',ones(N,M)

Data Types: double
Complex Number Support: Yes

Output Arguments

PAT — Array pattern
M-by-N real-valued matrix

Array pattern, returned as an M-by-N real-valued matrix. The dimensions of PAT
correspond to the dimensions of the output arguments AZ_ANG and EL_ANG.

AZ_ANG — Azimuth angles
scalar | 1-by-M real-valued row vector

Azimuth angles for displaying directivity or response pattern, returned as a scalar or 1-
by-M real-valued row vector corresponding to the dimension set in AZ. The rows of PAT
correspond to the values in AZ_ANG.

EL_ANG — Elevation angles
scalar | 1-by-N real-valued row vector

Elevation angles for displaying directivity or response, returned as a scalar or 1-by-N
real-valued row vector corresponding to the dimension set in EL. The columns of PAT
correspond to the values in EL_ANG.

 pattern

1-735

More About

Directivity

Directivity describes the directionality of the radiation pattern of a sensor element
or array of sensor elements. Higher directivity is desired when you want to transmit
more radiation in a specific direction. Directivity is the ratio of the transmitted radiant
intensity in a specified direction to the radiant intensity transmitted by an isotropic
radiator with the same total transmitted power

D
U

P
=

()
4p

q jrad

total

,

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal
is the total power transmitted by an isotropic radiator. For a receiving element or array,
directivity measures the sensitivity toward radiation arriving from a specific direction.
The principle of reciprocity shows that the directivity of an element or array used for
reception equals the directivity of the same element or array used for transmission.
When converted to decibels, the directivity is denoted as dBi. For information on
directivity, read the notes on “Element directivity” and “Array directivity”.

Computing directivity requires integrating the far-field transmitted radiant intensity
over all directions in space to obtain the total transmitted power. There is a difference
between how that integration is performed when Antenna Toolbox antennas are used
in a phased array and when Phased Array System Toolbox antennas are used. When
an array contains Antenna Toolbox antennas, the directivity computation is performed
using a triangular mesh created from 500 regularly spaced points over a sphere. For
Phased Array System Toolbox antennas, the integration uses a uniform rectangular
mesh of points spaced 1° apart in azimuth and elevation over a sphere. There may be
significant differences in computed directivity, especially for large arrays.

Convert plotResponse to pattern

For antenna, microphone, and array System objects, the pattern method replaces the
plotResponse method. In addition, two new simplified methods exist just to draw
2-D azimuth and elevation pattern plots. These methods are azimuthPattern and
elevationPattern.

1 Alphabetical List

1-736

The following table is a guide for converting your code from using plotResponse to
pattern. Notice that some of the inputs have changed from input arguments to Name-
Value pairs and conversely. The general pattern method syntax is

pattern(H,FREQ,AZ,EL,'Name1','Value1',...,'NameN','ValueN')

plotResponse Inputs plotResponse Description pattern Inputs

H argument Antenna, microphone, or array
System object.

H argument (no change)

FREQ argument Operating frequency. FREQ argument (no change)
V argument Propagation speed. This

argument is used only for
arrays.

'PropagationSpeed' name-
value pair. This parameter is
only used for arrays.

'Format' and 'RespCut'
name-value pairs

These options work together to
let you create a plot in angle
space (line or polar style) or
UV space. They also determine
whether the plot is 2-D or 3-
D. This table shows you how to
create different types of plots
using plotResponse.

Display space

Angle space
(2D)

Set
'RespCut'

to 'Az' or

'El'. Set
'Format' to
'line' or
'polar'.

Set the display
axis using
either the
the
'AzimuthAngles'

or
'ElevationAngles'

'CoordinateSystem' name-
value pair used together with
the AZ and EL input arguments.

'CoordinateSystem' has
the same options as the
plotResponse method
'Format'name-value pair,
except that 'line' is now
named 'rectangular'. The
table shows how to create
different types of plots using
pattern.

Display space

Angle space
(2D)

Set
'Coordinate

System' to
'rectangular'

or 'polar'.
Specify either
AZ or EL as a
scalar.

Angle space
(3D)

Set
'Coordinate

 pattern

1-737

plotResponse Inputs plotResponse Description pattern Inputs

Display space

name-value
pairs.

Angle space
(3D)

Set
'RespCut'

to '3D'. Set
'Format' to
'line' or
'polar'.

Set the display
axis using
both the
'AzimuthAngles'

and'ElevationAngles'
name-value
pairs.

UV space (2D) Set
'RespCut'

to'U'. Set
'Format'

to 'UV'. Set
the display
range using
the 'UGrid'
name-value
pair.

UV space (3D) Set
'RespCut'

to'3D'. Set
'Format' to
'UV'. Set the
display range
using both
the 'UGrid'
and 'VGrid'

Display space

System' to
'rectangular'

or 'polar'.
Specify both
AZ and EL as
vectors.

UV space (2D) Set
'Coordinate

System' to
'uv'. Use AZ
to specify a U-
space vector.
Use EL to
specify a V-
space scalar.

UV space (3D) Set
'Coordinate

System' to
'uv'. Use AZ
to specify a U-
space vector.
Use EL to
specify a V-
space vector.

If you set CoordinateSystem
to 'uv', enter the UV grid
values using AZ and EL.

1 Alphabetical List

1-738

plotResponse Inputs plotResponse Description pattern Inputs

Display space

name-value
pairs.

'CutAngle' name-value pair Constant angle at to take an
azimuth or elevation cut. When
producing a 2-D plot and when
'RespCut' is set to 'Az' or
'El', use 'CutAngle' to set
the slice across which to view
the plot.

No equivalent name-value pair.
To create a cut, specify either AZ
or EL as a scalar, not a vector.

'NormalizeResponse' name-
value pair

Normalizes the plot.
When 'Unit' is set to
'dbi', you cannot specify
'NormalizeResponse'.

'Normalize' name-value
pair. When 'Type' is set to
'directivity',

you cannot specify
'Normalize'.
.

'OverlayFreq' name-value
pair

Plot multiple frequencies on
the same 2-D plot. Available
only when 'Format' is
set to 'line' or 'uv' and
'RespCut' is not set to '3D'.
The value true produces an
overlay plot and the value
false produces a waterfall
plot.

'PlotStyle' name-value pair
plots multiple frequencies on the
same 2-D plot.

The values 'overlay' and
'waterfall' correspond to
'OverlayFreq' values of
true and false. The option
'waterfall' is allowed only
when 'CoordinateSystem' is
set to 'rectangular' or 'uv'.

'Polarization' name-value
pair

Determines how to plot
polarized fields. Options are
'None', 'Combined', 'H', or
'V'.

'Polarization' name-value
pair determines how to plot
polarized fields. The 'None'
option is removed. The options
'Combined', 'H', or 'V' are
unchanged.

 pattern

1-739

plotResponse Inputs plotResponse Description pattern Inputs

'Unit' name-value pair Determines the plot units.
Choose 'db', 'mag', 'pow',
or 'dbi', where the default is
'db'.

'Type' name-value pair, uses
equivalent options with different
names

plotResponse pattern

'db' 'powerdb'

'mag' 'efield'

'pow' 'power'

'dbi' 'directivity'

'Weights' name-value pair Array element tapers (or
weights).

'Weights' name-value pair (no
change).

'AzimuthAngles' name-value
pair

Azimuth angles used to display
the antenna or array response.

AZ argument

'ElevationAngles' name-
value pair

Elevation angles used to
display the antenna or array
response.

EL argument

'UGrid' name-value pair Contains U coordinates in UV-
space.

AZ argument when
'CoordinateSystem' name-
value pair is set to 'uv'

'VGrid' name-value pair Contains V-coordinates in UV-
space.

EL argument when
'CoordinateSystem' name-
value pair is set to 'uv'

Examples

Plot Power Patterns of 8-Element Heterogeneous Uniform Circular Array

Create an 8-element uniform circular array using the HeterogeneousConformalArray
System object with two different types of short-dipole elements. Then, plot the 3-D and 2-
D power patterns.

Create the array

sElement1 = phased.ShortDipoleAntennaElement('FrequencyRange',[1e9 5e9],...

1 Alphabetical List

1-740

 'AxisDirection','Z');

sElement2 = phased.ShortDipoleAntennaElement('FrequencyRange',[1e9 5e9],...

 'AxisDirection','Y');

N = 8;

azang = (0:N-1)*360/N-180;

sArray = phased.HeterogeneousConformalArray(...

 'ElementPosition',...

 0.4*[zeros(1,N);cosd(azang);sind(azang)],...

 'ElementNormal', zeros(2,N),...

 'ElementSet',{sElement1,sElement2},...

 'ElementIndices',[1 1 1 1 2 2 2 2]);

Plot 3-D power pattern

Assume the operating frequency is 1.5 GHz and the wave propagation speed is the speed
of light.

c = physconst('LightSpeed');

fc = 1.5e9;

pattern(sArray,fc,[-180:180],[-90:90],...

 'PropagationSpeed',c',...

 'CoordinateSystem','polar',...

 'Type','powerdb',...

 'Polarization','combined')

 pattern

1-741

Plot 2-D power pattern

Take a cut of the 3-D power pattern at zero degrees elevation

pattern(sArray,fc,[-180:180],0,...

 'PropagationSpeed',c',...

 'CoordinateSystem','polar',...

 'Type','powerdb',...

 'Polarization','combined')

1 Alphabetical List

1-742

Plot pattern of disk array

Construct a 24-element disk array using elements with two different types of cosine
antennas. Then, plot the array pattern.

Create the array

The array consists of cosine antenna elements with different power exponents.

sElement1 = phased.CosineAntennaElement('CosinePower',1.5);

sElement2 = phased.CosineAntennaElement('CosinePower',1.8);

N = 8;

azang = (0:N-1)*360/N-180;

p0 = [zeros(1,N);cosd(azang);sind(azang)];

 pattern

1-743

posn = [0.6*p0, 0.4*p0, 0.2*p0];

sArray1 = phased.HeterogeneousConformalArray(...

 'ElementPosition',posn,...

 'ElementNormal', zeros(2,3*N),...

 'ElementSet',{sElement1,sElement2},...

 'ElementIndices',[1 1 1 1 1 1 1 1,...

 1 1 1 1 1 1 1 1,...

 2 2 2 2 2 2 2 2]);

View the disk array

viewArray(sArray1)

1 Alphabetical List

1-744

Plot the power pattern

Plot the elevation power pattern of this array two different sets of element weights. The
first set is uniform weights on the elements. The second set is a tapered set of weights set
by the Weights parameter. Restrict the plot of the response from -60 to 60 degrees in 0.1
degree increments. Assume the operating frequency is 1 GHz and the wave propagation
speed is the speed of light.

c = physconst('LightSpeed');

fc = 1e9;

wts1 = ones(3*N,1);

wts1 = wts1/sum(abs(wts1));

wts2 = [0.5*ones(N,1); 0.7*ones(N,1); 1*ones(N,1)];

wts2 = wts2/sum(abs(wts2));

pattern(sArray1,fc,0,[-60:0.1:60],'PropagationSpeed',c,...

 'CoordinateSystem','polar',...

 'Type','powerdb','Weights',[wts1,wts2])

 pattern

1-745

As expected, the tapered weights broaden the mainlobe and reduce the sidelobes.

See Also
phased.HeterogeneousConformalArray.patternAzimuth |
phased.HeterogeneousConformalArray.patternElevation

Introduced in R2015a

1 Alphabetical List

1-746

patternAzimuth
System object: phased.HeterogeneousConformalArray
Package: phased

Plot heterogeneous conformal array directivity or pattern versus azimuth

Syntax
patternAzimuth(sArray,FREQ)

patternAzimuth(sArray,FREQ,EL)

patternAzimuth(sArray,FREQ,EL,Name,Value)

PAT = patternAzimuth(___)

Description
patternAzimuth(sArray,FREQ) plots the 2-D array directivity pattern versus
azimuth (in dBi) for the array sArray at zero degrees elevation angle. The argument
FREQ specifies the operating frequency.

patternAzimuth(sArray,FREQ,EL), in addtion, plots the 2-D array directivity
pattern versus azimuth (in dBi) for the array sArray at the elevation angle specified by
EL. When EL is a vector, multiple overlaid plots are created.

patternAzimuth(sArray,FREQ,EL,Name,Value) plots the array pattern with
additional options specified by one or more Name,Value pair arguments.

PAT = patternAzimuth(___) returns the array pattern. PAT is a matrix whose
entries represent the pattern at corresponding sampling points specified by the
'Azimuth' parameter and the EL input argument.

Input Arguments
sArray — Heterogeneous conformal array
System object

Heterogeneous conformal array, specified as a phased.HeterogeneousConformalArray
System object.

 patternAzimuth

1-747

Example: sArray= phased.HeterogeneousConformalArray;

FREQ — Frequency for computing directivity and pattern
positive scalar

Frequency for computing directivity and pattern, specified as a positive scalar. Frequency
units are in hertz.

• For an antenna or microphone element, FREQ must lie within the range of values
specified by the FrequencyRange or the FrequencyVector property of the
element. Otherwise, the element produces no response and the directivity is
returned as –Inf. Most elements use the FrequencyRange property except for
phased.CustomAntennaElement and phased.CustomMicrophoneElement, which use
the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements
that make up the array. Otherwise, the array produces no response and the
directivity is returned as –Inf.

Example: 1e8

Data Types: double

EL — Elevation angles
1-by-N real-valued row vector

Elevation angles for computing array directivity and pattern, specified as a 1-by-N real-
valued row vector, where N is the number of requested elevation directions. Angle units
are in degrees. The elevation angle must lie between –90° and 90°.

The elevation angle is the angle between the direction vector and the xy plane. When
measured toward the z-axis, this angle is positive.
Example: [0,10,20]

Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

1 Alphabetical List

1-748

'Type' — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and
one of

• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed

pattern is for the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field

pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'

Data Types: char

'PropagationSpeed' — Signal propagation speed
speed of light (default) | positive scalar

Signal propagation speed, specified as the comma-separated pair consisting of
'PropagationSpeed' and a positive scalar in meters per second.

Example: 'PropagationSpeed',physconst('LightSpeed')

Data Types: double

'Weights' — Array weights
M-by-1 complex-valued column vector

Array weights, specified as the comma-separated pair consisting of 'Weights' and an
M-by-1 complex-valued column vector. Array weights are applied to the elements of the
array to produce array steering, tapering, or both. The dimension M is the number of
elements in the array.

Note: Use complex weights to steer the array response toward different directions. You
can create weights using the phased.SteeringVector System object or you can compute
your own weights. In general, you apply Hermitian conjugation before using weights in
any Phased Array System Toolbox function or System object such as phased.Radiator

 patternAzimuth

1-749

or phased.Collector. However, for the directivity, pattern, patternAzimuth, and
patternElevation methods of any array System object use the steering vector without
conjugation.

Example: 'Weights',ones(10,1)

Data Types: double
Complex Number Support: Yes

'Azimuth' — Azimuth angles
[-180:180] (default) | 1-by-P real-valued row vector

Azimuth angles, specified as the comma-separated pair consisting of 'Azimuth' and a 1-
by-P real-valued row vector. Azimuth angles define where the array pattern is calculated.
Example: 'Azimuth',[-90:2:90]

Data Types: double

Output Arguments

PAT — Array directivity or pattern
L-by-N real-valued matrix

Array directivity or pattern, returned as an L-by-N rea-valued matrix. The dimension
L is the number of azimuth values determined by the 'Azimuth' name-value pair
argument. The dimension N is the number of elevation angles, as determined by the EL
input argument.

Definitions

Directivity

Directivity describes the directionality of the radiation pattern of a sensor element
or array of sensor elements. Higher directivity is desired when you want to transmit
more radiation in a specific direction. Directivity is the ratio of the transmitted radiant
intensity in a specified direction to the radiant intensity transmitted by an isotropic
radiator with the same total transmitted power

1 Alphabetical List

1-750

D
U

P
=

()
4p

q jrad

total

,

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal
is the total power transmitted by an isotropic radiator. For a receiving element or array,
directivity measures the sensitivity toward radiation arriving from a specific direction.
The principle of reciprocity shows that the directivity of an element or array used for
reception equals the directivity of the same element or array used for transmission.
When converted to decibels, the directivity is denoted as dBi. For information on
directivity, read the notes on “Element directivity” and “Array directivity”.

Computing directivity requires integrating the far-field transmitted radiant intensity
over all directions in space to obtain the total transmitted power. There is a difference
between how that integration is performed when Antenna Toolbox antennas are used
in a phased array and when Phased Array System Toolbox antennas are used. When
an array contains Antenna Toolbox antennas, the directivity computation is performed
using a triangular mesh created from 500 regularly spaced points over a sphere. For
Phased Array System Toolbox antennas, the integration uses a uniform rectangular
mesh of points spaced 1° apart in azimuth and elevation over a sphere. There may be
significant differences in computed directivity, especially for large arrays.

Examples

Plot azimuthal directivity pattern of disk array

Construct a 24-element disk array using elements with two different types of cosine
antennas. Then, plot the array azimuthal directivity pattern.

Create the array

The array consists of cosine antenna elements with different power exponents.

sElement1 = phased.CosineAntennaElement('CosinePower',1.5);

sElement2 = phased.CosineAntennaElement('CosinePower',1.8);

N = 8;

azang = (0:N-1)*360/N-180;

p0 = [zeros(1,N);cosd(azang);sind(azang)];

posn = [0.6*p0, 0.4*p0, 0.2*p0];

sArray = phased.HeterogeneousConformalArray(...

 'ElementPosition',posn,...

 'ElementNormal', zeros(2,3*N),...

 patternAzimuth

1-751

 'ElementSet',{sElement1,sElement2},...

 'ElementIndices',[1 1 1 1 1 1 1 1,...

 1 1 1 1 1 1 1 1,...

 2 2 2 2 2 2 2 2]);

View the disk array

viewArray(sArray)

Plot the power pattern

Plot the azimuthal power pattern of this array for three different elevation angles: 0, 10
and 25 degrees. Apply radial tapering to the array. Assume the operating frequency is 1
GHz and the wave propagation speed is the speed of light.

1 Alphabetical List

1-752

c = physconst('LightSpeed');

fc = 1e9;

wts = [0.5*ones(N,1); 0.7*ones(N,1); 1.0*ones(N,1)];

wts = wts/sum(abs(wts));

patternAzimuth(sArray,fc,[0,10,25],'PropagationSpeed',c,...

 'Type','directivity','Weights',wts)

See Also
phased.HeterogeneousConformalArray.pattern |
phased.HeterogeneousConformalArray.patternElevation

Introduced in R2015a

 patternElevation

1-753

patternElevation
System object: phased.HeterogeneousConformalArray
Package: phased

Plot heterogeneous conformal array directivity or pattern versus elevation

Syntax

patternElevation(sArray,FREQ)

patternElevation(sArray,FREQ,AZ)

patternElevation(sArray,FREQ,AZ,Name,Value)

PAT = patternElevation(___)

Description

patternElevation(sArray,FREQ) plots the 2-D array directivity pattern versus
elevation (in dBi) for the array sArray at zero degrees azimuth angle. When AZ is a
vector, multiple overlaid plots are created. The argument FREQ specifies the operating
frequency.

patternElevation(sArray,FREQ,AZ), in addition, plots the 2-D element directivity
pattern versus elevation (in dBi) at the azimuth angle specified by AZ. When AZ is a
vector, multiple overlaid plots are created.

patternElevation(sArray,FREQ,AZ,Name,Value) plots the array pattern with
additional options specified by one or more Name,Value pair arguments.

PAT = patternElevation(___) returns the array pattern. PAT is a matrix whose
entries represent the pattern at corresponding sampling points specified by the
'Elevation' parameter and the AZ input argument.

Input Arguments

sArray — Heterogeneous conformal array
System object

1 Alphabetical List

1-754

Heterogeneous conformal array, specified as a phased.HeterogeneousConformalArray
System object.
Example: sArray= phased.HeterogeneousConformalArray;

FREQ — Frequency for computing directivity and pattern
positive scalar

Frequency for computing directivity and pattern, specified as a positive scalar. Frequency
units are in hertz.

• For an antenna or microphone element, FREQ must lie within the range of values
specified by the FrequencyRange or the FrequencyVector property of the
element. Otherwise, the element produces no response and the directivity is
returned as –Inf. Most elements use the FrequencyRange property except for
phased.CustomAntennaElement and phased.CustomMicrophoneElement, which use
the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements
that make up the array. Otherwise, the array produces no response and the
directivity is returned as –Inf.

Example: 1e8

Data Types: double

AZ — Azimuth angles for computing directivity and pattern
1-by-N real-valued row vector

Azimuth angles for computing array directivity and pattern, specified as a 1-by-M real-
valued row vector where N is the number of desired azimuth directions. Angle units are
in degrees. The azimuth angle must lie between –180° and 180°.

The azimuth angle is the angle between the x-axis and the projection of the direction
vector onto the xy plane. This angle is positive when measured from the x-axis toward the
y-axis.
Example: [0,10,20]

Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

 patternElevation

1-755

quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Type' — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and
one of

• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed

pattern is for the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field

pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'

Data Types: char

'PropagationSpeed' — Signal propagation speed
speed of light (default) | positive scalar

Signal propagation speed, specified as the comma-separated pair consisting of
'PropagationSpeed' and a positive scalar in meters per second.

Example: 'PropagationSpeed',physconst('LightSpeed')

Data Types: double

'Weights' — Array weights
M-by-1 complex-valued column vector

Array weights, specified as the comma-separated pair consisting of 'Weights' and an
M-by-1 complex-valued column vector. Array weights are applied to the elements of the
array to produce array steering, tapering, or both. The dimension M is the number of
elements in the array.

Note: Use complex weights to steer the array response toward different directions. You
can create weights using the phased.SteeringVector System object or you can compute
your own weights. In general, you apply Hermitian conjugation before using weights in
any Phased Array System Toolbox function or System object such as phased.Radiator

1 Alphabetical List

1-756

or phased.Collector. However, for the directivity, pattern, patternAzimuth, and
patternElevation methods of any array System object use the steering vector without
conjugation.

Example: 'Weights',ones(10,1)

Data Types: double
Complex Number Support: Yes

'Elevation' — Elevation angles
[-90:90] (default) | 1-by-P real-valued row vector

Elevation angles, specified as the comma-separated pair consisting of 'Elevation'
and a 1-by-P real-valued row vector. Elevation angles define where the array pattern is
calculated.
Example: 'Elevation',[-90:2:90]

Data Types: double

Output Arguments

PAT — Array directivity or pattern
L-by-N real-valued matrix

Array directivity or pattern, returned as an L-by-N real-valued matrix. The dimension
L is the number of elevation angles determined by the 'Elevation' name-value pair
argument. The dimension N is the number of azimuth angles determined by the AZ
argument.

Definitions

Directivity

Directivity describes the directionality of the radiation pattern of a sensor element
or array of sensor elements. Higher directivity is desired when you want to transmit
more radiation in a specific direction. Directivity is the ratio of the transmitted radiant
intensity in a specified direction to the radiant intensity transmitted by an isotropic
radiator with the same total transmitted power

 patternElevation

1-757

D
U

P
=

()
4p

q jrad

total

,

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal
is the total power transmitted by an isotropic radiator. For a receiving element or array,
directivity measures the sensitivity toward radiation arriving from a specific direction.
The principle of reciprocity shows that the directivity of an element or array used for
reception equals the directivity of the same element or array used for transmission.
When converted to decibels, the directivity is denoted as dBi. For information on
directivity, read the notes on “Element directivity” and “Array directivity”.

Computing directivity requires integrating the far-field transmitted radiant intensity
over all directions in space to obtain the total transmitted power. There is a difference
between how that integration is performed when Antenna Toolbox antennas are used
in a phased array and when Phased Array System Toolbox antennas are used. When
an array contains Antenna Toolbox antennas, the directivity computation is performed
using a triangular mesh created from 500 regularly spaced points over a sphere. For
Phased Array System Toolbox antennas, the integration uses a uniform rectangular
mesh of points spaced 1° apart in azimuth and elevation over a sphere. There may be
significant differences in computed directivity, especially for large arrays.

Examples

Plot elevation directivity pattern of disk array

Construct a 24-element disk array using elements with two different types of cosine
antennas. Then, plot the array elevation directivity pattern.

Create the array

The array consists of cosine antenna elements with different power exponents.

sElement1 = phased.CosineAntennaElement('CosinePower',1.5);

sElement2 = phased.CosineAntennaElement('CosinePower',1.8);

N = 8;

azang = (0:N-1)*360/N-180;

p0 = [zeros(1,N);cosd(azang);sind(azang)];

posn = [0.6*p0, 0.4*p0, 0.2*p0];

sArray = phased.HeterogeneousConformalArray(...

 'ElementPosition',posn,...

 'ElementNormal', zeros(2,3*N),...

1 Alphabetical List

1-758

 'ElementSet',{sElement1,sElement2},...

 'ElementIndices',[1 1 1 1 1 1 1 1,...

 1 1 1 1 1 1 1 1,...

 2 2 2 2 2 2 2 2]);

View the disk array

viewArray(sArray)

Plot the power pattern

Plot the elevation power pattern of this array for three different azimuth angles: 0, -20
and 25 degrees. Apply radial tapering to the array. Assume the operating frequency is 1
GHz and the wave propagation speed is the speed of light.

 patternElevation

1-759

c = physconst('LightSpeed');

fc = 1e9;

wts = [0.5*ones(N,1); 0.7*ones(N,1); 1*ones(N,1)];

wts = wts/sum(abs(wts));

patternElevation(sArray,fc,[-20,0,25],'PropagationSpeed',c,...

 'Type','directivity','Weights',wts)

See Also
phased.HeterogeneousConformalArray.pattern |
phased.HeterogeneousConformalArray.patternAzimuth

Introduced in R2015a

1 Alphabetical List

1-760

plotResponse
System object: phased.HeterogeneousConformalArray
Package: phased

Plot response pattern of array

Syntax

plotResponse(H,FREQ,V)

plotResponse(H,FREQ,V,Name,Value)

hPlot = plotResponse(___)

Description

plotResponse(H,FREQ,V) plots the array response pattern along the azimuth cut,
where the elevation angle is 0. The operating frequency is specified in FREQ. The
propagation speed is specified in V.

plotResponse(H,FREQ,V,Name,Value) plots the array response with additional
options specified by one or more Name,Value pair arguments.

hPlot = plotResponse(___) returns handles of the lines or surface in the figure
window, using any of the input arguments in the previous syntaxes.

Input Arguments

H

Array object

FREQ

Operating frequency in Hertz specified as a scalar or 1-by-K row vector. Values must lie
within the range specified by a property of H. That property is named FrequencyRange
or FrequencyVector, depending on the type of element in the array. The element has
no response at frequencies outside that range. If you set the 'RespCut' property of H to

 plotResponse

1-761

'3D', FREQ must be a scalar. When FREQ is a row vector, plotResponse draws multiple
frequency responses on the same axes.

V

Propagation speed in meters per second.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'CutAngle'

Cut angle as a scalar. This argument is applicable only when RespCut is 'Az' or
'El'. If RespCut is 'Az', CutAngle must be between –90 and 90. If RespCut is 'El',
CutAngle must be between –180 and 180.

Default: 0

'Format'

Format of the plot, using one of 'Line', 'Polar', or 'UV'. If you set Format to 'UV',
FREQ must be a scalar.

Default: 'Line'

'NormalizeResponse'

Set this value to true to normalize the response pattern. Set this value to false to plot
the response pattern without normalizing it. This parameter is not applicable when you
set the Unit parameter value to 'dbi'.

Default: true

'OverlayFreq'

Set this value to true to overlay pattern cuts in a 2-D line plot. Set this value to false
to plot pattern cuts against frequency in a 3-D waterfall plot. If this value is false, FREQ
must be a vector with at least two entries.

1 Alphabetical List

1-762

This parameter applies only when Format is not 'Polar' and RespCut is not '3D'.

Default: true

'Polarization'

Specify the polarization options for plotting the array response pattern. The allowable
values are |'None' | 'Combined' | 'H' | 'V' | where

• 'None' specifies plotting a nonpolarized response pattern
• 'Combined' specifies plotting a combined polarization response pattern
• 'H' specifies plotting the horizontal polarization response pattern
• 'V' specifies plotting the vertical polarization response pattern

For arrays that do not support polarization, the only allowed value is 'None'. This
parameter is not applicable when you set the Unit parameter value to 'dbi'.

Default: 'None'

'RespCut'

Cut of the response. Valid values depend on Format, as follows:

• If Format is 'Line' or 'Polar', the valid values of RespCut are 'Az', 'El', and
'3D'. The default is 'Az'.

• If Format is 'UV', the valid values of RespCut are 'U' and '3D'. The default is 'U'.

If you set RespCut to '3D', FREQ must be a scalar.

'Unit'

The unit of the plot. Valid values are 'db', 'mag', 'pow', or 'dbi'. This parameter
determines the type of plot that is produced.

Unit value Plot type

db power pattern in dB
scale

mag field pattern
pow power pattern
dbi directivity

 plotResponse

1-763

Default: 'db'

'Weights'

Weight values applied to the array, specified as a length-N column vector or N-by-M
matrix. The dimension N is the number of elements in the array. The interpretation of M
depends upon whether the input argument FREQ is a scalar or row vector.

Weights Dimensions FREQ Dimension Purpose

N-by-1 column vector Scalar or 1-by-M row vector Apply one set of weights for
the same single frequency or
all M frequencies.

Scalar Apply all of the M different
columns in Weights for the
same single frequency.

N-by-M matrix 1-by-M row vector Apply each of the M different
columns in Weights for the
corresponding frequency in
FREQ.

'AzimuthAngles'

Azimuth angles for plotting array response, specified as a row vector. The
AzimuthAngles parameter sets the display range and resolution of azimuth angles for
visualizing the radiation pattern. This parameter is allowed only when the RespCut
parameter is set to 'Az' or '3D' and the Format parameter is set to 'Line' or
'Polar'. The values of azimuth angles should lie between –180° and 180° and must be
in nondecreasing order. When you set the RespCut parameter to '3D', you can set the
AzimuthAngles and ElevationAngles parameters simultaneously.

Default: [-180:180]

'ElevationAngles'

Elevation angles for plotting array response, specified as a row vector. The
ElevationAngles parameter sets the display range and resolution of elevation
angles for visualizing the radiation pattern. This parameter is allowed only when the
RespCut parameter is set to 'El' or '3D' and the Format parameter is set to 'Line'
or 'Polar'. The values of elevation angles should lie between –90° and 90° and must be

1 Alphabetical List

1-764

in nondecreasing order. When yous set the RespCut parameter to '3D', you can set the
ElevationAngles and AzimuthAngles parameters simultaneously.

Default: [-90:90]

'UGrid'

U coordinate values for plotting array response, specified as a row vector. The UGrid
parameter sets the display range and resolution of the U coordinates for visualizing
the radiation pattern in U/V space. This parameter is allowed only when the Format
parameter is set to 'UV' and the RespCut parameter is set to 'U' or '3D'. The values of
UGrid should be between –1 and 1 and should be specified in nondecreasing order. You
can set the UGrid and VGrid parameters simultaneously.

Default: [-1:0.01:1]

'VGrid'

V coordinate values for plotting array response, specified as a row vector. The VGrid
parameter sets the display range and resolution of the V coordinates for visualizing
the radiation pattern in U/V space. This parameter is allowed only when the Format
parameter is set to 'UV' and the RespCut parameter is set to '3D'. The values of VGrid
should be between –1 and 1 and should be specified in nondecreasing order. You can set
VGrid and UGrid parameters simultaneously.

Default: [-1:0.01:1]

Examples

Plot Response and Directivity of 8-Element Uniform Circular Array

This example shows how to construct an 8-element uniform circular array (UCA) with
two different antenna patterns.

sElement1 = phased.CosineAntennaElement('CosinePower',1.5);

sElement2 = phased.CosineAntennaElement('CosinePower',1.8);

N = 8; azang = (0:N-1)*360/N-180;

sArray = phased.HeterogeneousConformalArray(...

 'ElementPosition',...

 0.4*[zeros(1,N);cosd(azang);sind(azang)],...

 'ElementNormal', zeros(2,N),...

 plotResponse

1-765

 'ElementSet',{sElement1,sElement2},...

 'ElementIndices',[1 1 1 1 2 2 2 2]);

Plot its elevation response. Assume the operating frequency

is 1 GHz and the wave propagation speed is the speed of light.

c = physconst('LightSpeed');

fc = 1e9;

plotResponse(sArray,fc,c,'RespCut','El','Format','Polar');

Plot the directivity.

plotResponse(sArray,fc,c,'RespCut','El','Format','Polar',...

 'Unit','dbi');

1 Alphabetical List

1-766

Plot Response of Disk Array

This example shows how to construct a 24-element disk array using elements with two
different antenna patterns and plot its response.

sElement1 = phased.CosineAntennaElement('CosinePower',1.5);

sElement2 = phased.CosineAntennaElement('CosinePower',1.8);

N = 8; azang = (0:N-1)*360/N-180;

p0 = [zeros(1,N);cosd(azang);sind(azang)];

posn = [0.6*p0, 0.4*p0, 0.2*p0];

sArray1 = phased.HeterogeneousConformalArray(...

 'ElementPosition',posn,...

 'ElementNormal', zeros(2,3*N),...

 'ElementSet',{sElement1,sElement2},...

 plotResponse

1-767

 'ElementIndices',[1 1 1 1 1 1 1 1,...

 1 1 1 1 1 1 1 1,...

 2 2 2 2 2 2 2 2]);

Show the array.

viewArray(sArray1);

Plot the elevation response of this array using uniform weights on the elements and also
a tapered set of weights set by the Weights parameter. Using the ElevationAngles
parameter, restrict the plot of the response from -60 to 60 degrees in 0.1 degree
increments. Assume the operating frequency is 1 GHz and the wave propagation speed is
the speed of light.

1 Alphabetical List

1-768

c = physconst('LightSpeed');

fc = 1e9;

wts1 = ones(3*N,1);

wts1 = wts1/sum(abs(wts1));

wts2 = [0.5*ones(N,1); 0.7*ones(N,1); 1*ones(N,1)];

wts2 = wts2/sum(abs(wts2));

plotResponse(sArray1,fc,c,'RespCut','El',...

 'Format','Polar',...

 'ElevationAngles',[-60:0.1:60],...

 'Weights',...

 [wts1,wts2],...

 'Unit','db');

 plotResponse

1-769

As expected, the tapered weights broaden the mainlobe and reduce the sidelobes.

See Also
azel2uv | uv2azel

1 Alphabetical List

1-770

release
System object: phased.HeterogeneousConformalArray
Package: phased

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

 step

1-771

step
System object: phased.HeterogeneousConformalArray
Package: phased

Output responses of array elements

Syntax

RESP = step(H,FREQ,ANG)

Description

RESP = step(H,FREQ,ANG) returns the array elements’ responses RESP at operating
frequencies specified in FREQ and directions specified in ANG.

Note: The object performs an initialization the first time the step method is executed.
This initialization locks nontunable properties and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Input Arguments

H

Array object

FREQ

Operating frequencies of array in hertz. FREQ is a row vector of length L. Typical values
are within the range specified by a property of H.Element. That property is named
FrequencyRange or FrequencyVector, depending on the type of element in the array.
The element has zero response at frequencies outside that range.

1 Alphabetical List

1-772

ANG

Directions in degrees. ANG is either a 2-by-M matrix or a row vector of length M.

If ANG is a 2-by-M matrix, each column of the matrix specifies the direction in the
form [azimuth; elevation]. The azimuth angle must lie between –180° and 180°,
inclusive. The elevation angle must lie between –90° and 90°, inclusive.

If ANG is a row vector of length M, each element specifies the azimuth angle of the
direction. In this case, the corresponding elevation angle is assumed to be 0°.

Output Arguments

RESP

Voltage responses of the phased array. The output depends on whether the array
supports polarization or not.

• If the array is not capable of supporting polarization, the voltage response, RESP,
has the dimensions N-by-M-by-L. N is the number of elements in the array. The
dimension M is the number of angles specified in ANG. L is the number of frequencies
specified in FREQ. For any element, the columns of RESP contain the responses of the
array elements for the corresponding direction specified in ANG. Each of the L pages
of RESP contains the responses of the array elements for the corresponding frequency
specified in FREQ.

• If the array is capable of supporting polarization, the voltage response, RESP, is a
MATLAB struct containing two fields, RESP.H and RESP.V. The field, RESP.H,
represents the array’s horizontal polarization response, while RESP.V represents the
array’s vertical polarization response. Each field has the dimensions N-by-M-by-L.
N is the number of elements in the array, and M is the number of angles specified in
ANG. L is the number of frequencies specified in FREQ. Each column of RESP contains
the responses of the array elements for the corresponding direction specified in ANG.
Each of the L pages of RESP contains the responses of the array elements for the
corresponding frequency specified in FREQ.

 step

1-773

Examples

Construct an 8-element uniform circular array (UCA). Assume the operating frequency
is 1 GHz. Find the response of each element in this array in the direction of 30° azimuth
and 5°.

sElement1 = phased.CosineAntennaElement('CosinePower',1.5);

sElement2 = phased.CosineAntennaElement('CosinePower',1.8);

N = 8; azang = (0:N-1)*360/N-180;

sArray = phased.HeterogeneousConformalArray(...

 'ElementPosition',...

 [cosd(azang);sind(azang);zeros(1,N)],...

 'ElementNormal', zeros(2,N),...

 'ElementSet',{sElement1,sElement2},...

 'ElementIndices',[1 1 1 1 2 2 2 2]);

fc = 1e9;

ang = [30;5];

resp = step(sArray,fc,ang)

resp =

 0.8013

 0.8013

 0.8013

 0.8013

 0.7666

 0.7666

 0.7666

 0.7666

See Also
phitheta2azel | uv2azel

1 Alphabetical List

1-774

viewArray
System object: phased.HeterogeneousConformalArray
Package: phased

View array geometry

Syntax

viewArray(H)

viewArray(H,Name,Value)

hPlot = viewArray(___)

Description

viewArray(H) plots the geometry of the array specified in H.

viewArray(H,Name,Value) plots the geometry of the array, with additional options
specified by one or more Name,Value pair arguments.

hPlot = viewArray(___) returns the handle of the array elements in the figure
window. All input arguments described for the previous syntaxes also apply here.

Input Arguments

H

Array object

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

 viewArray

1-775

'ShowIndex'

Vector specifying the element indices to show in the figure. Each number in the vector
must be an integer between 1 and the number of elements. You can also specify the
string 'All' to show indices of all elements of the array or 'None' to suppress indices.

Default: 'None'

'ShowNormals'

Set this value to true to show the normal directions of all elements of the array. Set this
value to false to plot the elements without showing normal directions.

Default: false

'ShowTaper'

Set this value to true to specify whether to change the element color brightness in
proportion to the element taper magnitude. When this value is set to false, all elements
are drawn with the same color.

Default: false

'Title'

String specifying the title of the plot.

Default: 'Array Geometry'

Output Arguments
hPlot

Handle of array elements in figure window.

Examples
Positions and Normal Directions in Uniform Circular Array

Display the element positions and normal directions of all elements of an 8-element
heterogeneous uniform circular array.

sElement1 = phased.CosineAntennaElement('CosinePower',1.5);

1 Alphabetical List

1-776

sElement2 = phased.CosineAntennaElement('CosinePower',1.8);

N = 8; azang = (0:N-1)*360/N-180;

sArray = phased.HeterogeneousConformalArray(...

 'ElementPosition',...

 [cosd(azang);sind(azang);zeros(1,N)],...

 'ElementNormal', zeros(2,N),...

 'ElementSet',{sElement1,sElement2},...

 'ElementIndices',[1 1 1 1 2 2 2 2]);

viewArray(sArray,'ShowIndex','all','ShowNormal',true);

 viewArray

1-777

• Phased Array Gallery

See Also
phased.ArrayResponse

../examples/phased-array-gallery.html

1 Alphabetical List

1-778

phased.HeterogeneousULA System object
Package: phased

Heterogeneous uniform linear array

Description

The phased.HeterogeneousULA object creates a uniform linear array from a
heterogeneous set of antenna elements. A heterogeneous array is an array in which the
antenna or microphone elements may be of different kinds or have different properties.
An example would be an array of elements each having different antenna patterns.

To compute the response for each element in the array for specified directions:

1 Define and set up your uniform linear array. See “Construction” on page 1-778.
2 Call step to compute the response according to the properties of

phased.HeterogeneousULA. The behavior of step is specific to each object in the
toolbox.

Construction

H = phased.HeterogeneousULA creates a heterogeneous uniform linear array (ULA)
System object, H. The object models a heterogeneous ULA formed with generally different
sensor elements. The origin of the local coordinate system is the phase center of the
array. The positive x-axis is the direction normal to the array, and the elements of the
array are located along the y-axis.

H = phased.HeterogeneousULA(Name,Value) creates object, H, with each specified
property Name set to the specified Value. You can specify additional name-value pair
arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties

ElementSet

Set of elements used in the array

 phased.HeterogeneousULA System object

1-779

Specify the set of different elements used in the sensor array as a row MATLAB cell
array. Each member of the cell array contains an element object in the phased package.
Elements specified in the ElementSet property must be either all antennas or all
microphones. In addition, all specified antenna elements should have same polarization
capability. Specify the element of the sensor array as a handle. The element must be an
element object in the phased package.

Default: One cell containing one isotropic antenna element

ElementIndices

Elements location assignment

This property specifies the mapping of elements in the array. The property assigns
elements to their locations in the array using indices into the ElementSet property.
ElementIndices must be a 1-by-N row vector where N is greater than 1. N is the
number of elements in the sensor array. The values in ElementIndices should be less
than or equal to the number of entries in the ElementSet property.

Default: [1 1]

ElementSpacing

Element spacing

A scalar containing the spacing (in meters) between two adjacent elements in the array.

Default: 0.5

ArrayAxis

Array axis

Array axis, specified as one of 'x', 'y', or 'z'. ULA array elements are located along
the selected coordinate system axis.

Element normal vectors are determined by the selected array axis

ArrayAxis Property Value Element Normal Direction

'x' azimuth = 90°, elevation = 0° (y-axis)
'y' azimuth = 0°, elevation = 0° (x-axis)
'z' azimuth = 0°, elevation = 0° (x-axis)

1 Alphabetical List

1-780

Default: 'y'

Taper

Element tapering

Element tapering or weighting, specified as a complex-valued scalar, 1-by-N row vector,
or N-by-1 column vector. The quantity N is the number of elements in the array as
determined by the size of the ElementIndices property. Tapers, also known as weights,
are applied to each sensor element in the sensor array and modify both the amplitude
and phase of the received data. If 'Taper' is a scalar, the same taper value is applied
to all elements. If 'Taper' is a vector, each taper value is applied to the corresponding
sensor element.

Default: 1

Methods

clone Create new system object with identical
values

directivity Directivity of heterogeneous uniform linear
array

collectPlaneWave Simulate received plane waves
getElementNormal Normal vector to array elements
getElementPosition Positions of array elements
getNumElements Number of elements in array
getNumInputs Number of expected inputs to step method
getNumOutputs Number of outputs from step method
getTaper Array element tapers
isLocked Locked status for input attributes and

nontunable properties
isPolarizationCapable Polarization capability
pattern Plot heterogeneous ULA pattern
patternAzimuth Plot heterogeneous ULA directivity or

pattern versus azimuth

 phased.HeterogeneousULA System object

1-781

patternElevation Plot heterogeneous ULA directivity or
pattern versus elevation

plotResponse Plot response pattern of array
release Allow property value and input

characteristics
step Output responses of array elements
viewArray View array geometry

Examples
Power pattern of 10-Element Heterogeneous ULA Array

Create a 10-element heterogeneous ULA consisting of cosine antenna elements with
different power exponents. Two elements at each end have power values of 1.5 while
the inside elements have power exponents of 1.8. Find the power pattern in dB of each
element at boresight.

Construct the heterogeneous array and show the element responses at 1 GHz.

sElement1 = phased.CosineAntennaElement('CosinePower',1.5);

sElement2 = phased.CosineAntennaElement('CosinePower',1.8);

sArray = phased.HeterogeneousULA(...

 'ElementSet',{sElement1,sElement2},...

 'ElementIndices',[1 1 2 2 2 2 2 2 1 1]);

fc = 1e9;

ang = [0;0];

resp = step(sArray,fc,ang)

resp =

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

1 Alphabetical List

1-782

Plot an azimuth cut of the array response at 1 GHz.

c = physconst('LightSpeed');

plotResponse(sArray,fc,c,'RespCut','Az','Format','Polar');

pattern(sArray,fc,[-180:180],0,...

 'PropagationSpeed',c,...

 'CoordinateSystem','polar',...

 'Type','powerdb');

Pattern of Array of Polarized Short-Dipole Antennas

Construct a heterogeneous uniform line array of 10 short-dipole sensor elements.
Because short dipoles support polarization, the array should also. Verify that the array

 phased.HeterogeneousULA System object

1-783

supports polarization by looking at the output of isPolarizationCapable. Then, draw
the array, showing the tapering.

Construct the array

Construct the array. Then, verify that it supports polarization by looking at the returned
value of the isPolarizationCapable method.

sElement1 = phased.ShortDipoleAntennaElement(...

 'FrequencyRange',[100e6 1e9],...

 'AxisDirection','Z');

sElement2 = phased.ShortDipoleAntennaElement(...

 'FrequencyRange',[100e6 1e9],...

 'AxisDirection','Y');

sArray = phased.HeterogeneousULA(...

 'ElementSet',{sElement1,sElement2},...

 'ElementIndices',[1 1 2 2 2 2 2 2 1 1],...

 'Taper',taylorwin(10)');

isPolarizationCapable(sArray)

ans =

 1

View the array

viewArray(sArray,'ShowTaper',true,'ShowIndex',...

 'All','ShowTaper',true)

1 Alphabetical List

1-784

Show the response

Show the element horizontal polarization responses at 10 degrees azimuth angle.

fc = 150e6;

ang = [10];

resp = step(sArray,fc,ang)

resp.H

resp =

 H: [10x1 double]

 phased.HeterogeneousULA System object

1-785

 V: [10x1 double]

ans =

 0

 0

 -1.2442

 -1.6279

 -1.8498

 -1.8498

 -1.6279

 -1.2442

 0

 0

Plot the combined polarization response

c = physconst('LightSpeed');

pattern(sArray,fc,[-180:180],0,...

 'PropagationSpeed',c,...

 'CoordinateSystem','polar',...

 'Type','powerdb',...

 'Polarization','combined');

1 Alphabetical List

1-786

• Phased Array Gallery

References

[1] Brookner, E., ed. Radar Technology. Lexington, MA: LexBook, 1996.

[2] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002.

See Also
phased.UCA | phased.CosineAntennaElement | phased.CrossedDipoleAntennaElement
| phased.CustomAntennaElement | phased.HeterogeneousURA

../examples/phased-array-gallery.html

 phased.HeterogeneousULA System object

1-787

| phased.HeterogeneousURA | phased.IsotropicAntennaElement
| phased.PartitionedArray | phased.ReplicatedSubarray |
phased.ShortDipoleAntennaElement | phased.ULA | phased.URA

Introduced in R2013a

1 Alphabetical List

1-788

clone
System object: phased.HeterogeneousULA
Package: phased

Create new system object with identical values

Syntax

C = clone(H)

Description

C = clone(H) creates an object, C, having the same property values and same states as
H. If H is locked, so is C.

 directivity

1-789

directivity
System object: phased.HeterogeneousULA
Package: phased

Directivity of heterogeneous uniform linear array

Syntax

D = directivity(H,FREQ,ANGLE)

D = directivity(H,FREQ,ANGLE,Name,Value)

Description

D = directivity(H,FREQ,ANGLE) computes the “Directivity (dBi)” on page 1-792
of a heterogeneous uniform linear array of antenna or microphone elements, H, at
frequencies specified by the FREQ and in angles of direction specified by the ANGLE.

D = directivity(H,FREQ,ANGLE,Name,Value) computes the directivity with
additional options specified by one or more Name,Value pair arguments.

Input Arguments

H — Heterogeneous uniform linear array
System object

Heterogeneous uniform linear array, specified as a phased.HeterogeneousULA System
object.
Example: H = phased.HeterogeneousULA;

FREQ — Frequency for computing directivity and patterns
positive scalar | 1-by-L real-valued row vector

Frequencies for computing directivity and patterns, specified as a positive scalar or 1-
by-L real-valued row vector. Frequency units are in hertz.

1 Alphabetical List

1-790

• For an antenna or microphone element, FREQ must lie within the range of
values specified by the FrequencyRange or FrequencyVector property of the
element. Otherwise, the element produces no response and the directivity is
returned as –Inf. Most elements use the FrequencyRange property except for
phased.CustomAntennaElement and phased.CustomMicrophoneElement, which use
the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements
that make up the array. Otherwise, the array produces no response and the
directivity is returned as –Inf.

Example: [1e8 2e8]

Data Types: double

ANGLE — Angles for computing directivity
1-by-M real-valued row vector | 2-by-M real-valued matrix

Angles for computing directivity, specified as a 1-by-M real-valued row vector or a 2-
by-M real-valued matrix, where M is the number of angular directions. Angle units
are in degrees. If ANGLE is a 2-by-M matrix, then each column specifies a direction in
azimuth and elevation, [az;el]. The azimuth angle must lie between –180° and 180°.
The elevation angle must lie between –90° and 90°.

If ANGLE is a 1-by-M vector, then each entry represents an azimuth angle, with the
elevation angle assumed to be zero.

The azimuth angle is the angle between the x-axis and the projection of the direction
vector onto the xy plane. This angle is positive when measured from the x-axis toward the
y-axis. The elevation angle is the angle between the direction vector and xy plane. This
angle is positive when measured towards the z-axis.
Example: [45 60; 0 10]

Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

 directivity

1-791

'PropagationSpeed' — Signal propagation speed
speed of light (default) | positive scalar

Signal propagation speed, specified as the comma-separated pair consisting of
'PropagationSpeed' and a positive scalar in meters per second.

Example: 'PropagationSpeed',physconst('LightSpeed')

Data Types: double

'Weights' — Array weights
1 (default) | N-by-1 complex-valued column vector | N-by-L complex-valued matrix

Array weights, specified as the comma-separated pair consisting of 'Weights' and an
N-by-1 complex-valued column vector or N-by-L complex-valued matrix. Array weights
are applied to the elements of the array to produce array steering, tapering, or both. The
dimension N is the number of elements in the array. The dimension L is the number of
frequencies specified by FREQ.

Weights Dimension FREQ Dimension Purpose

N-by-1 complex-valued
column vector

Scalar or 1-by-L row vector Applies a set of weights for
the single frequency or for all
L frequencies.

N-by-L complex-valued
matrix

1-by-L row vector Applies each of the L
columns of 'Weights' for
the corresponding frequency
in FREQ.

Note: Use complex weights to steer the array response toward different directions. You
can create weights using the phased.SteeringVector System object or you can compute
your own weights. In general, you apply Hermitian conjugation before using weights in
any Phased Array System Toolbox function or System object such as phased.Radiator
or phased.Collector. However, for the directivity, pattern, patternAzimuth, and
patternElevation methods of any array System object use the steering vector without
conjugation.

Example: 'Weights',ones(N,M)

Data Types: double

1 Alphabetical List

1-792

Complex Number Support: Yes

Output Arguments

D — Directivity
M-by-L matrix

Directivity, returned as an M-by-L matrix whose columns contain the directivities at the
M angles specified by ANGLE. Each column corresponds to one of the L frequency values
specified in FREQ. Directivity units are in dBi.

Definitions

Directivity (dBi)

Directivity describes the directionality of the radiation pattern of a sensor element
or array of sensor elements. Higher directivity is desired when you want to transmit
more radiation in a specific direction. Directivity is the ratio of the transmitted radiant
intensity in a specified direction to the radiant intensity transmitted by an isotropic
radiator with the same total transmitted power

D
U

P
=

()
4p

q jrad

total

,

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal
is the total power transmitted by an isotropic radiator. For a receiving element or array,
directivity measures the sensitivity toward radiation arriving from a specific direction.
The principle of reciprocity shows that the directivity of an element or array used for
reception equals the directivity of the same element or array used for transmission.
When converted to decibels, the directivity is denoted as dBi. For information on
directivity, read the notes on “Element directivity” and “Array directivity”.

Computing directivity requires integrating the far-field transmitted radiant intensity
over all directions in space to obtain the total transmitted power. There is a difference
between how that integration is performed when Antenna Toolbox antennas are used
in a phased array and when Phased Array System Toolbox antennas are used. When
an array contains Antenna Toolbox antennas, the directivity computation is performed

 directivity

1-793

using a triangular mesh created from 500 regularly spaced points over a sphere. For
Phased Array System Toolbox antennas, the integration uses a uniform rectangular
mesh of points spaced 1° apart in azimuth and elevation over a sphere. There may be
significant differences in computed directivity, especially for large arrays.

Examples

Directivity of Heterogeneous Uniform Linear Array

Compute the directivity of a 10-element heterogeneous ULA consisting of cosine antenna
elements with different power factors. The two elements at each end have power values
of 1.5 while the inner elements have power values of 1.8.

Construct the heterogeneous array. Set the signal frequency to 1 GHz.

c = physconst('LightSpeed');

freq = 1e9;

ang = [30;0];

lambda = c/freq;

Create the cosine antenna elements.

myElement1 = phased.CosineAntennaElement;

myElement1.CosinePower = 1.5;

myElement2 = phased.CosineAntennaElement;

myElement2.CosinePower = 1.8;

Create the Heterogeneous ULA.

myArray = phased.HeterogeneousULA;

myArray.ElementSet = {myElement1,myElement2};

myArray.ElementIndices = [1 1 2 2 2 2 2 2 1 1];

myArray.ElementSpacing = 0.5*lambda;

Create the steering vector and compute the directivity in the same direction as the
steering vector.

w = steervec(getElementPosition(myArray)/lambda,ang);

d = directivity(myArray,freq,ang,'PropagationSpeed',c,...

 'Weights',w)

d =

1 Alphabetical List

1-794

 17.0102

See Also
phased.HeterogeneousULA.pattern | phased.HeterogeneousULA.patternAzimuth |
phased.HeterogeneousULA.patternElevation

 collectPlaneWave

1-795

collectPlaneWave

System object: phased.HeterogeneousULA
Package: phased

Simulate received plane waves

Syntax

Y = collectPlaneWave(H,X,ANG)

Y = collectPlaneWave(H,X,ANG,FREQ)

Y = collectPlaneWave(H,X,ANG,FREQ,C)

Description

Y = collectPlaneWave(H,X,ANG) returns the received signals at the sensor array, H,
when the input signals indicated by X arrive at the array from the directions specified in
ANG.

Y = collectPlaneWave(H,X,ANG,FREQ), in addition, specifies the incoming signal
carrier frequency in FREQ.

Y = collectPlaneWave(H,X,ANG,FREQ,C), in addition, specifies the signal
propagation speed in C.

Input Arguments

H

Array object.

X

Incoming signals, specified as an M-column matrix. Each column of X represents an
individual incoming signal.

1 Alphabetical List

1-796

ANG

Directions from which incoming signals arrive, in degrees. ANG can be either a 2-by-M
matrix or a row vector of length M.

If ANG is a 2-by-M matrix, each column specifies the direction of arrival of the
corresponding signal in X. Each column of ANG is in the form [azimuth; elevation].
The azimuth angle must be between –180° and 180°, inclusive. The elevation angle must
be between –90° and 90°, inclusive.

If ANG is a row vector of length M, each entry in ANG specifies the azimuth angle. In this
case, the corresponding elevation angle is assumed to be 0°.

FREQ

Carrier frequency of signal in hertz. FREQ must be a scalar.

Default: 3e8

C

Propagation speed of signal in meters per second.

Default: Speed of light

Output Arguments

Y

Received signals. Y is an N-column matrix, where N is the number of elements in the
array H. Each column of Y is the received signal at the corresponding array element, with
all incoming signals combined.

Examples

Simulate the received signal at a heterogeneous 4-element ULA.

The signals arrive from 10° and 30° degrees azimuth. Both signals have an elevation
angle of 0°. Assume the propagation speed is the speed of light and the carrier frequency
of the signal is 100 MHz.

 collectPlaneWave

1-797

sElement1 = phased.ShortDipoleAntennaElement(...

 'FrequencyRange',[100e6 1e9],...

 'AxisDirection','Z');

sElement2 = phased.ShortDipoleAntennaElement(...

 'FrequencyRange',[100e6 1e9],...

 'AxisDirection','Y');

sArray = phased.HeterogeneousULA(...

 'ElementSet',{sElement1,sElement2},...

 'ElementIndices',[1 2 2 1]);

y = collectPlaneWave(sArray,randn(4,2),[10 30],1e8,...

 physconst('LightSpeed'));

y(:,1)

ans =

 0.7430 - 0.3705i

 0.8418 + 0.4308i

 -2.4817 + 0.9157i

 1.0724 - 0.4748i

Algorithms

collectPlaneWave modulates the input signal with a phase corresponding to the
delay caused by the direction of arrival. The method does not account for the response of
individual elements in the array.

For further details, see [1].

References

[1] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002.

See Also
phitheta2azel | uv2azel

1 Alphabetical List

1-798

getElementNormal
System object: phased.HeterogeneousULA
Package: phased

Normal vector to array elements

Syntax

normvec = getElementNormal(sULA)

normvec = getElementNormal(sULA,elemidx)

Description

normvec = getElementNormal(sULA) returns the normal vectors of the array
elements of the phased.HeterogeneousULA System object, sULA. The output argument
normvec is a 2-by-N matrix, where N is the number of elements in array, sULA. Each
column of normvec defines the normal direction of an element in the local coordinate
system in the form[az;el]. Units are degrees. The origin of the local coordinate system
is defined by the phase center of the array.

normvec = getElementNormal(sULA,elemidx) returns only the normal vectors of
the elements specified in the element index vector, elemidx. This syntax can use any of
the input arguments in the previous syntax.

Input Arguments

sULA — Uniform line array
phased.HeterogeneousULA System object

Uniform line array, specified as a phased.HeterogeneousULA System object.

Example: sULA = phased.HeterogeneousULA

elemidx — Element indices
all array elements (default) | integer-valued 1-by-M row vector | integer-valued M-by-1
column vector

 getElementNormal

1-799

Element indices , specified as a 1-by-M or M-by-1 vector. Index values lie in the range
1 to N where N is the number of elements of the array. When elemidx is specified,
getElementNormal returns the normal vectors of the elements contained in elemidx.

Example: [1,5,4]

Output Arguments

normvec — Element normal vectors
2-by-P real-valued vector

Element normal vectors, specified as a 2-by-P real-valued vector. Each column of
normvec takes the form [az,el]. When elemidx is not specified, P equals the array
dimension. When elemidx is specified, P equals the length of elemidx, M.

Examples

Heterogeneous ULA Element Normals

Construct three 5-element heterogeneous ULA's with elements along the x-, y-, and z-
axes. Obtain the element normals.

Create two types of cosine antennas.

sCosAnt1 = phased.CosineAntennaElement('CosinePower',[1.5,1.5]);

sCosAnt2 = phased.CosineAntennaElement('CosinePower',[1.8,1.8]);

First, choose the array axis to lie along the x-axis.

sULA1 = phased.HeterogeneousULA('ElementSet',{sCosAnt1,sCosAnt2},...

 'ElementIndices',[1 2 2 2 1],'ArrayAxis','x');

norm = getElementNormal(sULA1)

norm =

 90 90 90 90 90

 0 0 0 0 0

The element normal vectors point along the y-axis.

1 Alphabetical List

1-800

Next, choose the array axis along the y-axis.

sULA2 = phased.HeterogeneousULA('ElementSet',{sCosAnt1,sCosAnt2},...

 'ElementIndices',[1 2 2 2 1],'ArrayAxis','y');

norm = getElementNormal(sULA2)

norm =

 0 0 0 0 0

 0 0 0 0 0

The element normal vectors point along the x-axis.

Finally, set the array axis along the z-axis. Obtain the normal vectors of the odd-
numbered elements.

sULA3 = phased.HeterogeneousULA('ElementSet',{sCosAnt1,sCosAnt2},...

 'ElementIndices',[1 2 2 2 1],'ArrayAxis','z');

norm = getElementNormal(sULA3,[1,3,5])

norm =

 0 0 0

 0 0 0

The element normal vectors also point along the x-axis.

Introduced in R2016a

 getElementPosition

1-801

getElementPosition
System object: phased.HeterogeneousULA
Package: phased

Positions of array elements

Syntax

pos = getElementPosition(sHULA)

pos = getElementPosition(sHULA,elemidx)

Description

pos = getElementPosition(sHULA) returns the element positions of the
phased.HeterogeneousULA System object, sHULA. pos is a 3-by-N matrix, where N is
the number of elements in sHULA. Each column of pos defines the position of an element
in the local coordinate system, in meters, using the form [x;y;z]. The origin of the local
coordinate system is the phase center of the array. The positions of the array elements
depend upon the value of the ArrayAxis property.

pos = getElementPosition(sHULA,elemidx) returns only the positions of the
elements that are specified in the element index vector elemidx. This syntax can use
any of the input arguments in the previous syntax.

Examples

Position of Heterogeneous ULA Elements

Construct a 4-element heterogeneous ULA of different types of short-dipole antenna
elements. Then, obtain the element positions.

sElement1 = phased.ShortDipoleAntennaElement(...

 'FrequencyRange',[100e6 1e9],...

 'AxisDirection','Z');

sElement2 = phased.ShortDipoleAntennaElement(...

 'FrequencyRange',[100e6 1e9],...

1 Alphabetical List

1-802

 'AxisDirection','Y');

sArray = phased.HeterogeneousULA(...

 'ElementSet',{sElement1,sElement2},...

 'ElementIndices',[1 2 2 1]);

pos = getElementPosition(sArray)

pos =

 0 0 0 0

 -0.7500 -0.2500 0.2500 0.7500

 0 0 0 0

 getNumElements

1-803

getNumElements
System object: phased.HeterogeneousULA
Package: phased

Number of elements in array

Syntax

N = getNumElements(H)

Description

N = getNumElements(H) returns the number of elements, N, in the
HeterogeneousULA object H.

Examples

Construct a default ULA, and obtain the number of elements in that array.

sElement1 = phased.ShortDipoleAntennaElement(...

 'FrequencyRange',[100e6 1e9],...

 'AxisDirection','Z');

sElement2 = phased.ShortDipoleAntennaElement(...

 'FrequencyRange',[100e6 1e9],...

 'AxisDirection','Y');

sArray = phased.HeterogeneousULA(...

 'ElementSet',{sElement1,sElement2},...

 'ElementIndices',[1 2 2 1]);

N = getNumElements(sArray)

N =

 4

1 Alphabetical List

1-804

getNumInputs
System object: phased.HeterogeneousULA
Package: phased

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of inputs
(not counting the object itself) that you must use when calling the step method. This
value changes when you alter properties that turn inputs on or off.

 getNumOutputs

1-805

getNumOutputs
System object: phased.HeterogeneousULA
Package: phased

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value changes when you alter properties that turn outputs on or off.

1 Alphabetical List

1-806

getTaper

System object: phased.HeterogeneousULA
Package: phased

Array element tapers

Syntax

wts = getTaper(h)

Description

wts = getTaper(h) returns the tapers, wts, applied to each element of the phased
heterogeneous uniform line array (ULA), h. Tapers are often referred to as weights.

Input Arguments

h — Heterogeneous Uniform line array
phased.HeterogeneousULA System object

Heterogeneous uniform line array specified as a phased.HeterogeneousULA System
object.

Output Arguments

wts — Array element tapers
N-by-1 complex-valued vector

Array element tapers returned as an N-by-1 complex-valued vector, where N is the
number of elements in the array.

 getTaper

1-807

Examples

Heterogeneous ULA with Taylor Window Taper

Construct a 5-element heterogeneous ULA with a Taylor window taper. Then, obtain the
element taper values.

sElement1 = phased.ShortDipoleAntennaElement(...

 'FrequencyRange',[100e6 1e9],...

 'AxisDirection','Z');

sElement2 = phased.ShortDipoleAntennaElement(...

 'FrequencyRange',[100e6 1e9],...

 'AxisDirection','Y');

sArray = phased.HeterogeneousULA(...

 'ElementSet',{sElement1,sElement2},...

 'ElementIndices',[1 2 2 2 1],'Taper',taylorwin(5)');

w = getTaper(sArray)

w =

 0.5181

 1.2029

 1.5581

 1.2029

 0.5181

1 Alphabetical List

1-808

isLocked
System object: phased.HeterogeneousULA
Package: phased

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF, for the HeterogeneousULA System
object.

isLocked returns a logical value that indicates whether input attributes and
nontunable properties for the object are locked. The object performs an internal
initialization the first time that you execute step. This initialization locks nontunable
properties and input specifications, such as the dimensions, complexity, and data type of
the input data. After locking, isLocked returns a true value.

 isPolarizationCapable

1-809

isPolarizationCapable

System object: phased.HeterogeneousULA
Package: phased

Polarization capability

Syntax

flag = isPolarizationCapable(h)

Description

flag = isPolarizationCapable(h) returns a Boolean value, flag, indicating
whether the array supports polarization. An array supports polarization if all of its
constituent sensor elements support polarization.

Input Arguments

h — Uniform line array
phased.HeterogeneousULA System object

Uniform line array specified as a phased.HeterogeneousULA System object.

Output Arguments

flag — Polarization-capability flag

Polarization-capability flag returned as a Boolean value true if the array supports
polarization or false if it does not.

1 Alphabetical List

1-810

Examples

Heterogeneous ULA of Short-Dipole Antenna Elements Supports
Polarization

Show that a heterogeneous array of phased.ShortDipoleAntennaElement antenna
elements supports polarization.

sElement1 = phased.ShortDipoleAntennaElement(...

 'FrequencyRange',[100e6 1e9],...

 'AxisDirection','Z');

sElement2 = phased.ShortDipoleAntennaElement(...

 'FrequencyRange',[100e6 1e9],...

 'AxisDirection','Y');

sArray = phased.HeterogeneousULA(...

 'ElementSet',{sElement1,sElement2},...

 'ElementIndices',[1 2 2 2 1]);

isPolarizationCapable(sArray)

ans =

 1

The returned value true (1) shows that this array supports polarization.

 pattern

1-811

pattern

System object: phased.HeterogeneousULA
Package: phased

Plot heterogeneous ULA pattern

Syntax

pattern(sArray,FREQ)

pattern(sArray,FREQ,AZ)

pattern(sArray,FREQ,AZ,EL)

pattern(___ ,Name,Value)

[PAT,AZ_ANG,EL_ANG] = pattern(___)

Description

pattern(sArray,FREQ) plots the 3-D array directivity pattern (in dBi) for the array
specified in sArray. The operating frequency is specified in FREQ.

pattern(sArray,FREQ,AZ) plots the array directivity pattern at the specified azimuth
angle.

pattern(sArray,FREQ,AZ,EL) plots the array directivity pattern at specified azimuth
and elevation angles.

pattern(___ ,Name,Value) plots the array pattern with additional options specified
by one or more Name,Value pair arguments.

[PAT,AZ_ANG,EL_ANG] = pattern(___) returns the array pattern in PAT. The
AZ_ANG output contains the coordinate values corresponding to the rows of PAT. The
EL_ANG output contains the coordinate values corresponding to the columns of PAT.
If the 'CoordinateSystem' parameter is set to 'uv', then AZ_ANG contains the
U coordinates of the pattern and EL_ANG contains the V coordinates of the pattern.
Otherwise, they are in angular units in degrees. UV units are dimensionless.

1 Alphabetical List

1-812

Note: This method replaces the previous plotResponse method. To replace plots using
plotResponse plots with equivalent plots using pattern, see “Convert plotResponse to
pattern” on page 1-1955

Input Arguments

sArray — Heterogeneous ULA
System object

Heterogeneous conformal array, specified as a phased.HeterogeneousULA System object.
Example: sArray= phased.HeterogeneousULA;

FREQ — Frequency for computing directivity and patterns
positive scalar | 1-by-L real-valued row vector

Frequencies for computing directivity and patterns, specified as a positive scalar or 1-
by-L real-valued row vector. Frequency units are in hertz.

• For an antenna or microphone element, FREQ must lie within the range of
values specified by the FrequencyRange or FrequencyVector property of the
element. Otherwise, the element produces no response and the directivity is
returned as –Inf. Most elements use the FrequencyRange property except for
phased.CustomAntennaElement and phased.CustomMicrophoneElement, which use
the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements
that make up the array. Otherwise, the array produces no response and the
directivity is returned as –Inf.

Example: [1e8 2e8]

Data Types: double

AZ — Azimuth angles
[-180:180] (default) | 1-by-M real-valued row vector

Azimuth angles for computing directivity and pattern, specified as a 1-by-M real-
valued row vector where M is the number of azimuth angles. Angle units are in degrees.
Azimuth angles must lie between –180° and 180°.

 pattern

1-813

The azimuth angle is the angle between the x-axis and the projection of the direction
vector onto the xy plane. When measured from the x-axis toward the y-axis, this angle is
positive.
Example: [-45:2:45]

Data Types: double

EL — Elevation angles
[-90:90] (default) | 1-by-N real-valued row vector

Elevation angles for computing directivity and pattern, specified as a 1-by-N real-valued
row vector where N is the number of desired elevation directions. Angle units are in
degrees. The elevation angle must lie between –90° and 90°.

The elevation angle is the angle between the direction vector and xy-plane. When
measured towards the z-axis, this angle is positive.
Example: [-75:1:70]

Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'CoordinateSystem' — Plotting coordinate system
'polar' (default) | 'rectangular' | 'uv'

Plotting coordinate system of the pattern, specified as the comma-separated pair
consisting of 'CoordinateSystem' and one of 'polar', 'rectangular', or
'uv'. When 'CoordinateSystem' is set to 'polar' or 'rectangular', the
AZ and EL arguments specify the pattern azimuth and elevation, respectively. AZ
values must lie between –180° and 180°. EL values must lie between –90° and 90°. If
'CoordinateSystem' is set to 'uv', AZ and EL then specify U and V coordinates,
respectively. AZ and EL must lie between -1 and 1.

Example: 'uv'

Data Types: char

1 Alphabetical List

1-814

'Type' — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and
one of

• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed

pattern is for the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field

pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'

Data Types: char

'Normalize' — Display normalize pattern
true (default) | false

Display normalized pattern, specified as the comma-separated pair consisting of
'Normalize' and a Boolean. Set this parameter to true to display a normalized pattern.
When you set 'Type' to 'directivity', this parameter does not apply. Directivity
patterns are already normalized.
Example:
Data Types: logical

'PlotStyle' — Plotting style
'overlay' (default) | 'waterfall'

Plotting style, specified as the comma-separated pair consisting of 'Plotstyle' and
either 'overlay' or 'waterfall'. This parameter applies when you specify multiple
frequencies in FREQ in 2-D plots. You can draw 2-D plots by setting one of the arguments
AZ or EL to a scalar.

Example:
Data Types: char

'Polarization' — Polarized field component
'combined' (default) | 'H' | 'V'

 pattern

1-815

Polarized field component to display, specified as the comma-separated pair consisting
of 'Polarization' and 'combined', 'H', or 'V'. This parameter applies only when
the sensors are polarization-capable and when the 'Type' parameter is not set to
'directivity'. This table shows the meaning of the display options

'Polarization' Display

'combined' Combined H and V polarization
components

'H' H polarization component
'V' V polarization component

Example: 'V'

Data Types: char

'PropagationSpeed' — Signal propagation speed
speed of light (default) | positive scalar

Signal propagation speed, specified as the comma-separated pair consisting of
'PropagationSpeed' and a positive scalar in meters per second.

Example: 'PropagationSpeed',physconst('LightSpeed')

Data Types: double

'Weights' — Array weights
1 (default) | N-by-1 complex-valued column vector | N-by-L complex-valued matrix

Array weights, specified as the comma-separated pair consisting of 'Weights' and an
N-by-1 complex-valued column vector or N-by-L complex-valued matrix. Array weights
are applied to the elements of the array to produce array steering, tapering, or both. The
dimension N is the number of elements in the array. The dimension L is the number of
frequencies specified by FREQ.

Weights Dimension FREQ Dimension Purpose

N-by-1 complex-valued
column vector

Scalar or 1-by-L row vector Applies a set of weights for
the single frequency or for all
L frequencies.

N-by-L complex-valued
matrix

1-by-L row vector Applies each of the L
columns of 'Weights' for

1 Alphabetical List

1-816

Weights Dimension FREQ Dimension Purpose

the corresponding frequency
in FREQ.

Note: Use complex weights to steer the array response toward different directions. You
can create weights using the phased.SteeringVector System object or you can compute
your own weights. In general, you apply Hermitian conjugation before using weights in
any Phased Array System Toolbox function or System object such as phased.Radiator
or phased.Collector. However, for the directivity, pattern, patternAzimuth, and
patternElevation methods of any array System object use the steering vector without
conjugation.

Example: 'Weights',ones(N,M)

Data Types: double
Complex Number Support: Yes

Output Arguments

PAT — Array pattern
M-by-N real-valued matrix

Array pattern, returned as an M-by-N real-valued matrix. The dimensions of PAT
correspond to the dimensions of the output arguments AZ_ANG and EL_ANG.

AZ_ANG — Azimuth angles
scalar | 1-by-M real-valued row vector

Azimuth angles for displaying directivity or response pattern, returned as a scalar or 1-
by-M real-valued row vector corresponding to the dimension set in AZ. The rows of PAT
correspond to the values in AZ_ANG.

EL_ANG — Elevation angles
scalar | 1-by-N real-valued row vector

Elevation angles for displaying directivity or response, returned as a scalar or 1-by-N
real-valued row vector corresponding to the dimension set in EL. The columns of PAT
correspond to the values in EL_ANG.

 pattern

1-817

More About

Directivity

Directivity describes the directionality of the radiation pattern of a sensor element
or array of sensor elements. Higher directivity is desired when you want to transmit
more radiation in a specific direction. Directivity is the ratio of the transmitted radiant
intensity in a specified direction to the radiant intensity transmitted by an isotropic
radiator with the same total transmitted power

D
U

P
=

()
4p

q jrad

total

,

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal
is the total power transmitted by an isotropic radiator. For a receiving element or array,
directivity measures the sensitivity toward radiation arriving from a specific direction.
The principle of reciprocity shows that the directivity of an element or array used for
reception equals the directivity of the same element or array used for transmission.
When converted to decibels, the directivity is denoted as dBi. For information on
directivity, read the notes on “Element directivity” and “Array directivity”.

Computing directivity requires integrating the far-field transmitted radiant intensity
over all directions in space to obtain the total transmitted power. There is a difference
between how that integration is performed when Antenna Toolbox antennas are used
in a phased array and when Phased Array System Toolbox antennas are used. When
an array contains Antenna Toolbox antennas, the directivity computation is performed
using a triangular mesh created from 500 regularly spaced points over a sphere. For
Phased Array System Toolbox antennas, the integration uses a uniform rectangular
mesh of points spaced 1° apart in azimuth and elevation over a sphere. There may be
significant differences in computed directivity, especially for large arrays.

Convert plotResponse to pattern

For antenna, microphone, and array System objects, the pattern method replaces the
plotResponse method. In addition, two new simplified methods exist just to draw
2-D azimuth and elevation pattern plots. These methods are azimuthPattern and
elevationPattern.

1 Alphabetical List

1-818

The following table is a guide for converting your code from using plotResponse to
pattern. Notice that some of the inputs have changed from input arguments to Name-
Value pairs and conversely. The general pattern method syntax is

pattern(H,FREQ,AZ,EL,'Name1','Value1',...,'NameN','ValueN')

plotResponse Inputs plotResponse Description pattern Inputs

H argument Antenna, microphone, or array
System object.

H argument (no change)

FREQ argument Operating frequency. FREQ argument (no change)
V argument Propagation speed. This

argument is used only for
arrays.

'PropagationSpeed' name-
value pair. This parameter is
only used for arrays.

'Format' and 'RespCut'
name-value pairs

These options work together to
let you create a plot in angle
space (line or polar style) or
UV space. They also determine
whether the plot is 2-D or 3-
D. This table shows you how to
create different types of plots
using plotResponse.

Display space

Angle space
(2D)

Set
'RespCut'

to 'Az' or

'El'. Set
'Format' to
'line' or
'polar'.

Set the display
axis using
either the
the
'AzimuthAngles'

or
'ElevationAngles'

'CoordinateSystem' name-
value pair used together with
the AZ and EL input arguments.

'CoordinateSystem' has
the same options as the
plotResponse method
'Format'name-value pair,
except that 'line' is now
named 'rectangular'. The
table shows how to create
different types of plots using
pattern.

Display space

Angle space
(2D)

Set
'Coordinate

System' to
'rectangular'

or 'polar'.
Specify either
AZ or EL as a
scalar.

Angle space
(3D)

Set
'Coordinate

 pattern

1-819

plotResponse Inputs plotResponse Description pattern Inputs

Display space

name-value
pairs.

Angle space
(3D)

Set
'RespCut'

to '3D'. Set
'Format' to
'line' or
'polar'.

Set the display
axis using
both the
'AzimuthAngles'

and'ElevationAngles'
name-value
pairs.

UV space (2D) Set
'RespCut'

to'U'. Set
'Format'

to 'UV'. Set
the display
range using
the 'UGrid'
name-value
pair.

UV space (3D) Set
'RespCut'

to'3D'. Set
'Format' to
'UV'. Set the
display range
using both
the 'UGrid'
and 'VGrid'

Display space

System' to
'rectangular'

or 'polar'.
Specify both
AZ and EL as
vectors.

UV space (2D) Set
'Coordinate

System' to
'uv'. Use AZ
to specify a U-
space vector.
Use EL to
specify a V-
space scalar.

UV space (3D) Set
'Coordinate

System' to
'uv'. Use AZ
to specify a U-
space vector.
Use EL to
specify a V-
space vector.

If you set CoordinateSystem
to 'uv', enter the UV grid
values using AZ and EL.

1 Alphabetical List

1-820

plotResponse Inputs plotResponse Description pattern Inputs

Display space

name-value
pairs.

'CutAngle' name-value pair Constant angle at to take an
azimuth or elevation cut. When
producing a 2-D plot and when
'RespCut' is set to 'Az' or
'El', use 'CutAngle' to set
the slice across which to view
the plot.

No equivalent name-value pair.
To create a cut, specify either AZ
or EL as a scalar, not a vector.

'NormalizeResponse' name-
value pair

Normalizes the plot.
When 'Unit' is set to
'dbi', you cannot specify
'NormalizeResponse'.

'Normalize' name-value
pair. When 'Type' is set to
'directivity',

you cannot specify
'Normalize'.
.

'OverlayFreq' name-value
pair

Plot multiple frequencies on
the same 2-D plot. Available
only when 'Format' is
set to 'line' or 'uv' and
'RespCut' is not set to '3D'.
The value true produces an
overlay plot and the value
false produces a waterfall
plot.

'PlotStyle' name-value pair
plots multiple frequencies on the
same 2-D plot.

The values 'overlay' and
'waterfall' correspond to
'OverlayFreq' values of
true and false. The option
'waterfall' is allowed only
when 'CoordinateSystem' is
set to 'rectangular' or 'uv'.

'Polarization' name-value
pair

Determines how to plot
polarized fields. Options are
'None', 'Combined', 'H', or
'V'.

'Polarization' name-value
pair determines how to plot
polarized fields. The 'None'
option is removed. The options
'Combined', 'H', or 'V' are
unchanged.

 pattern

1-821

plotResponse Inputs plotResponse Description pattern Inputs

'Unit' name-value pair Determines the plot units.
Choose 'db', 'mag', 'pow',
or 'dbi', where the default is
'db'.

'Type' name-value pair, uses
equivalent options with different
names

plotResponse pattern

'db' 'powerdb'

'mag' 'efield'

'pow' 'power'

'dbi' 'directivity'

'Weights' name-value pair Array element tapers (or
weights).

'Weights' name-value pair (no
change).

'AzimuthAngles' name-value
pair

Azimuth angles used to display
the antenna or array response.

AZ argument

'ElevationAngles' name-
value pair

Elevation angles used to
display the antenna or array
response.

EL argument

'UGrid' name-value pair Contains U coordinates in UV-
space.

AZ argument when
'CoordinateSystem' name-
value pair is set to 'uv'

'VGrid' name-value pair Contains V-coordinates in UV-
space.

EL argument when
'CoordinateSystem' name-
value pair is set to 'uv'

Examples

Azimuth Power Pattern For Two Frequencies

Create a 5-element hetergeneous ULA from short-dipole antenna elements with
different axis directions. Draw the azimuth power pattern for the horizontal polarization
component at 0 degrees elevation for two frequencies, 300 MHz and 400 MHz.

Construct Heterogeneous ULA

Construct the array from z-directed and y-directed short dipole antenna elements.

1 Alphabetical List

1-822

sElement1 = phased.ShortDipoleAntennaElement(...

 'FrequencyRange',[2e8 5e8],...

 'AxisDirection','Z');

sElement2 = phased.ShortDipoleAntennaElement(...

 'FrequencyRange',[2e8 5e8],...

 'AxisDirection','Y');

sArray = phased.HeterogeneousULA(...

 'ElementSet',{sElement1,sElement2},...

 'ElementIndices',[1 2 2 2 1]);

Plot the patterns

fc = [300e6 400e6];

c = physconst('LightSpeed');

pattern(sArray,fc,[-180:180],0,...

 'PropagationSpeed',c,...

 'CoordinateSystem','polar',...

 'Type','powerdb',...

 'PlotStyle','overlay',...

 'Polarization','H')

 pattern

1-823

Directivity Pattern in UV Space

Create an 11-element hetergeneous ULA from short-dipole antenna elements with
different axis directions. Draw the 3-D power pattern for the horizontal polarization
component at 300 MHz.

Construct Heterogeneous ULA

Construct the array from z-directed and y-directed short dipole antenna elements.

sElement1 = phased.ShortDipoleAntennaElement(...

 'FrequencyRange',[2e8 5e8],...

 'AxisDirection','Z');

sElement2 = phased.ShortDipoleAntennaElement(...

1 Alphabetical List

1-824

 'FrequencyRange',[2e8 5e8],...

 'AxisDirection','Y');

sArray = phased.HeterogeneousULA(...

 'ElementSet',{sElement1,sElement2},...

 'ElementIndices',[1 1 1 2 2 2 2 2 1 1 1]);

Plot the patterns

fc = 300e6;

c = physconst('LightSpeed');

pattern(sArray,fc,[-1:.01:1],[-1:.01:1],...

 'PropagationSpeed',c,...

 'CoordinateSystem','uv',...

 'Type','powerdb',...

 'Polarization','H')

 pattern

1-825

See Also
phased.HeterogeneousULA.patternAzimuth |
phased.HeterogeneousULA.patternElevation

Introduced in R2015a

1 Alphabetical List

1-826

patternAzimuth
System object: phased.HeterogeneousULA
Package: phased

Plot heterogeneous ULA directivity or pattern versus azimuth

Syntax

patternAzimuth(sArray,FREQ)

patternAzimuth(sArray,FREQ,EL)

patternAzimuth(sArray,FREQ,EL,Name,Value)

PAT = patternAzimuth(___)

Description

patternAzimuth(sArray,FREQ) plots the 2-D array directivity pattern versus
azimuth (in dBi) for the array sArray at zero degrees elevation angle. The argument
FREQ specifies the operating frequency.

patternAzimuth(sArray,FREQ,EL), in addtion, plots the 2-D array directivity
pattern versus azimuth (in dBi) for the array sArray at the elevation angle specified by
EL. When EL is a vector, multiple overlaid plots are created.

patternAzimuth(sArray,FREQ,EL,Name,Value) plots the array pattern with
additional options specified by one or more Name,Value pair arguments.

PAT = patternAzimuth(___) returns the array pattern. PAT is a matrix whose
entries represent the pattern at corresponding sampling points specified by the
'Azimuth' parameter and the EL input argument.

Input Arguments

sArray — Heterogeneous ULA
System object

Heterogeneous ULA, specified as a phased.HeterogeneousULA System object.

 patternAzimuth

1-827

Example: sArray= phased.HeterogeneousULA;

FREQ — Frequency for computing directivity and pattern
positive scalar

Frequency for computing directivity and pattern, specified as a positive scalar. Frequency
units are in hertz.

• For an antenna or microphone element, FREQ must lie within the range of values
specified by the FrequencyRange or the FrequencyVector property of the
element. Otherwise, the element produces no response and the directivity is
returned as –Inf. Most elements use the FrequencyRange property except for
phased.CustomAntennaElement and phased.CustomMicrophoneElement, which use
the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements
that make up the array. Otherwise, the array produces no response and the
directivity is returned as –Inf.

Example: 1e8

Data Types: double

EL — Elevation angles
1-by-N real-valued row vector

Elevation angles for computing array directivity and pattern, specified as a 1-by-N real-
valued row vector, where N is the number of requested elevation directions. Angle units
are in degrees. The elevation angle must lie between –90° and 90°.

The elevation angle is the angle between the direction vector and the xy plane. When
measured toward the z-axis, this angle is positive.
Example: [0,10,20]

Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

1 Alphabetical List

1-828

'Type' — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and
one of

• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed

pattern is for the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field

pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'

Data Types: char

'PropagationSpeed' — Signal propagation speed
speed of light (default) | positive scalar

Signal propagation speed, specified as the comma-separated pair consisting of
'PropagationSpeed' and a positive scalar in meters per second.

Example: 'PropagationSpeed',physconst('LightSpeed')

Data Types: double

'Weights' — Array weights
M-by-1 complex-valued column vector

Array weights, specified as the comma-separated pair consisting of 'Weights' and an
M-by-1 complex-valued column vector. Array weights are applied to the elements of the
array to produce array steering, tapering, or both. The dimension M is the number of
elements in the array.

Note: Use complex weights to steer the array response toward different directions. You
can create weights using the phased.SteeringVector System object or you can compute
your own weights. In general, you apply Hermitian conjugation before using weights in
any Phased Array System Toolbox function or System object such as phased.Radiator
or phased.Collector. However, for the directivity, pattern, patternAzimuth, and
patternElevation methods of any array System object use the steering vector without
conjugation.

 patternAzimuth

1-829

Example: 'Weights',ones(10,1)

Data Types: double
Complex Number Support: Yes

'Azimuth' — Azimuth angles
[-180:180] (default) | 1-by-P real-valued row vector

Azimuth angles, specified as the comma-separated pair consisting of 'Azimuth' and a 1-
by-P real-valued row vector. Azimuth angles define where the array pattern is calculated.
Example: 'Azimuth',[-90:2:90]

Data Types: double

Output Arguments

PAT — Array directivity or pattern
L-by-N real-valued matrix

Array directivity or pattern, returned as an L-by-N rea-valued matrix. The dimension
L is the number of azimuth values determined by the 'Azimuth' name-value pair
argument. The dimension N is the number of elevation angles, as determined by the EL
input argument.

Definitions

Directivity

Directivity describes the directionality of the radiation pattern of a sensor element
or array of sensor elements. Higher directivity is desired when you want to transmit
more radiation in a specific direction. Directivity is the ratio of the transmitted radiant
intensity in a specified direction to the radiant intensity transmitted by an isotropic
radiator with the same total transmitted power

D
U

P
=

()
4p

q jrad

total

,

1 Alphabetical List

1-830

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal
is the total power transmitted by an isotropic radiator. For a receiving element or array,
directivity measures the sensitivity toward radiation arriving from a specific direction.
The principle of reciprocity shows that the directivity of an element or array used for
reception equals the directivity of the same element or array used for transmission.
When converted to decibels, the directivity is denoted as dBi. For information on
directivity, read the notes on “Element directivity” and “Array directivity”.

Computing directivity requires integrating the far-field transmitted radiant intensity
over all directions in space to obtain the total transmitted power. There is a difference
between how that integration is performed when Antenna Toolbox antennas are used
in a phased array and when Phased Array System Toolbox antennas are used. When
an array contains Antenna Toolbox antennas, the directivity computation is performed
using a triangular mesh created from 500 regularly spaced points over a sphere. For
Phased Array System Toolbox antennas, the integration uses a uniform rectangular
mesh of points spaced 1° apart in azimuth and elevation over a sphere. There may be
significant differences in computed directivity, especially for large arrays.

Examples

Azimuth Directivity Pattern For Steered Array

Create an 11-element hetergeneous ULA from short-dipole antenna elements with
different axis directions. The element spacing is 0.4 meters. Draw the azimuthal
directivity pattern for 0 degrees elevation at an operating frequency of 300 MHz. Then,
steer the array and draw the azimuthal directivity pattern.

Construct Heterogeneous ULA

Construct the array from z-directed and y-directed short dipole antenna elements.

sElement1 = phased.ShortDipoleAntennaElement(...

 'FrequencyRange',[200e6 500e6],...

 'AxisDirection','Z');

sElement2 = phased.ShortDipoleAntennaElement(...

 'FrequencyRange',[200e6 500e6],...

 'AxisDirection','Y');

sArray = phased.HeterogeneousULA(...

 'ElementSpacing',0.4,...

 'ElementSet',{sElement1,sElement2},...

 'ElementIndices',[1 1 1 2 2 2 2 2 1 1 1]);

 patternAzimuth

1-831

Plot Directivity Pattern

fc = 300e6;

c = physconst('LightSpeed');

lam = c/fc;

patternAzimuth(sArray,fc,0,...

 'PropagationSpeed',c,...

 'Type','directivity')

Steer Array and Plot Directivity Pattern

Steer the array to 30 degrees in azimuth by applying weights to achieve a linear phase
shift.

1 Alphabetical List

1-832

theta = 30;

d = [0:10]*0.4;

ph = 2*pi*d'/lam*sind(theta);

wts = exp(1i*ph);

patternAzimuth(sArray,fc,0,...

 'PropagationSpeed',c,...

 'Type','directivity',....

 'Weights',wts)

See Also
phased.HeterogeneousULA.pattern | phased.HeterogeneousULA.patternElevation

Introduced in R2015a

 patternElevation

1-833

patternElevation
System object: phased.HeterogeneousULA
Package: phased

Plot heterogeneous ULA directivity or pattern versus elevation

Syntax

patternElevation(sArray,FREQ)

patternElevation(sArray,FREQ,AZ)

patternElevation(sArray,FREQ,AZ,Name,Value)

PAT = patternElevation(___)

Description

patternElevation(sArray,FREQ) plots the 2-D array directivity pattern versus
elevation (in dBi) for the array sArray at zero degrees azimuth angle. When AZ is a
vector, multiple overlaid plots are created. The argument FREQ specifies the operating
frequency.

patternElevation(sArray,FREQ,AZ), in addition, plots the 2-D element directivity
pattern versus elevation (in dBi) at the azimuth angle specified by AZ. When AZ is a
vector, multiple overlaid plots are created.

patternElevation(sArray,FREQ,AZ,Name,Value) plots the array pattern with
additional options specified by one or more Name,Value pair arguments.

PAT = patternElevation(___) returns the array pattern. PAT is a matrix whose
entries represent the pattern at corresponding sampling points specified by the
'Elevation' parameter and the AZ input argument.

Input Arguments

sArray — Heterogeneous ULA
System object

1 Alphabetical List

1-834

Heterogeneous ULA array, specified as a phased.HeterogeneousULA System object.
Example: sArray= phased.HeterogeneousULA;

FREQ — Frequency for computing directivity and pattern
positive scalar

Frequency for computing directivity and pattern, specified as a positive scalar. Frequency
units are in hertz.

• For an antenna or microphone element, FREQ must lie within the range of values
specified by the FrequencyRange or the FrequencyVector property of the
element. Otherwise, the element produces no response and the directivity is
returned as –Inf. Most elements use the FrequencyRange property except for
phased.CustomAntennaElement and phased.CustomMicrophoneElement, which use
the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements
that make up the array. Otherwise, the array produces no response and the
directivity is returned as –Inf.

Example: 1e8

Data Types: double

AZ — Azimuth angles for computing directivity and pattern
1-by-N real-valued row vector

Azimuth angles for computing array directivity and pattern, specified as a 1-by-M real-
valued row vector where N is the number of desired azimuth directions. Angle units are
in degrees. The azimuth angle must lie between –180° and 180°.

The azimuth angle is the angle between the x-axis and the projection of the direction
vector onto the xy plane. This angle is positive when measured from the x-axis toward the
y-axis.
Example: [0,10,20]

Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

 patternElevation

1-835

quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Type' — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and
one of

• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed

pattern is for the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field

pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'

Data Types: char

'PropagationSpeed' — Signal propagation speed
speed of light (default) | positive scalar

Signal propagation speed, specified as the comma-separated pair consisting of
'PropagationSpeed' and a positive scalar in meters per second.

Example: 'PropagationSpeed',physconst('LightSpeed')

Data Types: double

'Weights' — Array weights
M-by-1 complex-valued column vector

Array weights, specified as the comma-separated pair consisting of 'Weights' and an
M-by-1 complex-valued column vector. Array weights are applied to the elements of the
array to produce array steering, tapering, or both. The dimension M is the number of
elements in the array.

Note: Use complex weights to steer the array response toward different directions. You
can create weights using the phased.SteeringVector System object or you can compute
your own weights. In general, you apply Hermitian conjugation before using weights in
any Phased Array System Toolbox function or System object such as phased.Radiator

1 Alphabetical List

1-836

or phased.Collector. However, for the directivity, pattern, patternAzimuth, and
patternElevation methods of any array System object use the steering vector without
conjugation.

Example: 'Weights',ones(10,1)

Data Types: double
Complex Number Support: Yes

'Elevation' — Elevation angles
[-90:90] (default) | 1-by-P real-valued row vector

Elevation angles, specified as the comma-separated pair consisting of 'Elevation'
and a 1-by-P real-valued row vector. Elevation angles define where the array pattern is
calculated.
Example: 'Elevation',[-90:2:90]

Data Types: double

Output Arguments

PAT — Array directivity or pattern
L-by-N real-valued matrix

Array directivity or pattern, returned as an L-by-N real-valued matrix. The dimension
L is the number of elevation angles determined by the 'Elevation' name-value pair
argument. The dimension N is the number of azimuth angles determined by the AZ
argument.

Definitions

Directivity

Directivity describes the directionality of the radiation pattern of a sensor element
or array of sensor elements. Higher directivity is desired when you want to transmit
more radiation in a specific direction. Directivity is the ratio of the transmitted radiant
intensity in a specified direction to the radiant intensity transmitted by an isotropic
radiator with the same total transmitted power

 patternElevation

1-837

D
U

P
=

()
4p

q jrad

total

,

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal
is the total power transmitted by an isotropic radiator. For a receiving element or array,
directivity measures the sensitivity toward radiation arriving from a specific direction.
The principle of reciprocity shows that the directivity of an element or array used for
reception equals the directivity of the same element or array used for transmission.
When converted to decibels, the directivity is denoted as dBi. For information on
directivity, read the notes on “Element directivity” and “Array directivity”.

Computing directivity requires integrating the far-field transmitted radiant intensity
over all directions in space to obtain the total transmitted power. There is a difference
between how that integration is performed when Antenna Toolbox antennas are used
in a phased array and when Phased Array System Toolbox antennas are used. When
an array contains Antenna Toolbox antennas, the directivity computation is performed
using a triangular mesh created from 500 regularly spaced points over a sphere. For
Phased Array System Toolbox antennas, the integration uses a uniform rectangular
mesh of points spaced 1° apart in azimuth and elevation over a sphere. There may be
significant differences in computed directivity, especially for large arrays.

Examples

Elevation Power Pattern For Two Azimuth Directions

Create an 11-element hetergeneous ULA from short-dipole antenna elements with
different axis directions. The element spacing is 0.4 meters. Draw the elevation power
pattern for 0 and 30 degrees azimuth for 300 MHz.

Construct Heterogeneous ULA

Construct the array from z-directed and y-directed short dipole antenna elements.

sElement1 = phased.ShortDipoleAntennaElement(...

 'FrequencyRange',[200e6 500e6],...

 'AxisDirection','Z');

sElement2 = phased.ShortDipoleAntennaElement(...

 'FrequencyRange',[200e6 500e6],...

 'AxisDirection','Y');

sArray = phased.HeterogeneousULA(...

1 Alphabetical List

1-838

 'ElementSpacing',0.4,...

 'ElementSet',{sElement1,sElement2},...

 'ElementIndices',[1 1 1 2 2 2 2 2 1 1 1]);

Plot Directivity Pattern

fc = 300e6;

c = physconst('LightSpeed');

patternElevation(sArray,fc,[0,30],...

 'PropagationSpeed',c,...

 'Type','directivity')

See Also
phased.HeterogeneousULA.pattern | phased.HeterogeneousULA.patternAzimuth

 patternElevation

1-839

Introduced in R2015a

1 Alphabetical List

1-840

plotResponse
System object: phased.HeterogeneousULA
Package: phased

Plot response pattern of array

Syntax

plotResponse(H,FREQ,V)

plotResponse(H,FREQ,V,Name,Value)

hPlot = plotResponse(___)

Description

plotResponse(H,FREQ,V) plots the array response pattern along the azimuth cut,
where the elevation angle is 0. The operating frequency is specified in FREQ. The
propagation speed is specified in V.

plotResponse(H,FREQ,V,Name,Value) plots the array response with additional
options specified by one or more Name,Value pair arguments.

hPlot = plotResponse(___) returns handles of the lines or surface in the figure
window, using any of the input arguments in the previous syntaxes.

Input Arguments

H

Array object

FREQ

Operating frequency in Hertz specified as a scalar or 1-by-K row vector. Values must lie
within the range specified by a property of H. That property is named FrequencyRange
or FrequencyVector, depending on the type of element in the array. The element has
no response at frequencies outside that range. If you set the 'RespCut' property of H to

 plotResponse

1-841

'3D', FREQ must be a scalar. When FREQ is a row vector, plotResponse draws multiple
frequency responses on the same axes.

V

Propagation speed in meters per second.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'CutAngle'

Cut angle as a scalar. This argument is applicable only when RespCut is 'Az' or
'El'. If RespCut is 'Az', CutAngle must be between –90 and 90. If RespCut is 'El',
CutAngle must be between –180 and 180.

Default: 0

'Format'

Format of the plot, using one of 'Line', 'Polar', or 'UV'. If you set Format to 'UV',
FREQ must be a scalar.

Default: 'Line'

'NormalizeResponse'

Set this value to true to normalize the response pattern. Set this value to false to plot
the response pattern without normalizing it. This parameter is not applicable when you
set the Unit parameter value to 'dbi'.

Default: true

'OverlayFreq'

Set this value to true to overlay pattern cuts in a 2-D line plot. Set this value to false
to plot pattern cuts against frequency in a 3-D waterfall plot. If this value is false, FREQ
must be a vector with at least two entries.

This parameter applies only when Format is not 'Polar' and RespCut is not '3D'.

1 Alphabetical List

1-842

Default: true

'Polarization'

Specify the polarization options for plotting the array response pattern. The allowable
values are |'None' | 'Combined' | 'H' | 'V' | where

• 'None' specifies plotting a nonpolarized response pattern
• 'Combined' specifies plotting a combined polarization response pattern
• 'H' specifies plotting the horizontal polarization response pattern
• 'V' specifies plotting the vertical polarization response pattern

For arrays that do not support polarization, the only allowed value is 'None'. This
parameter is not applicable when you set the Unit parameter value to 'dbi'.

Default: 'None'

'RespCut'

Cut of the response. Valid values depend on Format, as follows:

• If Format is 'Line' or 'Polar', the valid values of RespCut are 'Az', 'El', and
'3D'. The default is 'Az'.

• If Format is 'UV', the valid values of RespCut are 'U' and '3D'. The default is 'U'.

If you set RespCut to '3D', FREQ must be a scalar.

'Unit'

The unit of the plot. Valid values are 'db', 'mag', 'pow', or 'dbi'. This parameter
determines the type of plot that is produced.

Unit value Plot type

db power pattern in dB
scale

mag field pattern
pow power pattern
dbi directivity

Default: 'db'

 plotResponse

1-843

'Weights'

Weight values applied to the array, specified as a length-N column vector or N-by-M
matrix. The dimension N is the number of elements in the array. The interpretation of M
depends upon whether the input argument FREQ is a scalar or row vector.

Weights Dimensions FREQ Dimension Purpose

N-by-1 column vector Scalar or 1-by-M row vector Apply one set of weights for
the same single frequency or
all M frequencies.

Scalar Apply all of the M different
columns in Weights for the
same single frequency.

N-by-M matrix 1-by-M row vector Apply each of the M different
columns in Weights for the
corresponding frequency in
FREQ.

'AzimuthAngles'

Azimuth angles for plotting array response, specified as a row vector. The
AzimuthAngles parameter sets the display range and resolution of azimuth angles for
visualizing the radiation pattern. This parameter is allowed only when the RespCut
parameter is set to 'Az' or '3D' and the Format parameter is set to 'Line' or
'Polar'. The values of azimuth angles should lie between –180° and 180° and must be
in nondecreasing order. When you set the RespCut parameter to '3D', you can set the
AzimuthAngles and ElevationAngles parameters simultaneously.

Default: [-180:180]

'ElevationAngles'

Elevation angles for plotting array response, specified as a row vector. The
ElevationAngles parameter sets the display range and resolution of elevation
angles for visualizing the radiation pattern. This parameter is allowed only when the
RespCut parameter is set to 'El' or '3D' and the Format parameter is set to 'Line'
or 'Polar'. The values of elevation angles should lie between –90° and 90° and must be
in nondecreasing order. When yous set the RespCut parameter to '3D', you can set the
ElevationAngles and AzimuthAngles parameters simultaneously.

Default: [-90:90]

1 Alphabetical List

1-844

'UGrid'

U coordinate values for plotting array response, specified as a row vector. The UGrid
parameter sets the display range and resolution of the U coordinates for visualizing
the radiation pattern in U/V space. This parameter is allowed only when the Format
parameter is set to 'UV' and the RespCut parameter is set to 'U' or '3D'. The values of
UGrid should be between –1 and 1 and should be specified in nondecreasing order. You
can set the UGrid and VGrid parameters simultaneously.

Default: [-1:0.01:1]

'VGrid'

V coordinate values for plotting array response, specified as a row vector. The VGrid
parameter sets the display range and resolution of the V coordinates for visualizing
the radiation pattern in U/V space. This parameter is allowed only when the Format
parameter is set to 'UV' and the RespCut parameter is set to '3D'. The values of VGrid
should be between –1 and 1 and should be specified in nondecreasing order. You can set
VGrid and UGrid parameters simultaneously.

Default: [-1:0.01:1]

Examples
Line Plot Showing Multiple Frequencies

Using a line plot, show the azimuth cut response of a 5-element heterogeneous uniform
linear array along 0 degrees elevation. The plot shows the responses at operating
frequencies of 200 MHz and 400 MHz.

Construct the array from z-directed and y-directed short dipole antenna elements.

sElement1 = phased.ShortDipoleAntennaElement(...

 'FrequencyRange',[2e8 5e8],...

 'AxisDirection','Z');

sElement2 = phased.ShortDipoleAntennaElement(...

 'FrequencyRange',[2e8 5e8],...

 'AxisDirection','Y');

sArray = phased.HeterogeneousULA(...

 'ElementSet',{sElement1,sElement2},...

 'ElementIndices',[1 2 2 2 1]);

Plot the response.

 plotResponse

1-845

fc = [3e8 4e8];

c = physconst('LightSpeed');

plotResponse(sArray,fc,c);

Plot Response and Directivity for 5-Element Array

Construct a 5-element heterogeneous ULA of short-dipole antenna elements. Using the
plotResponse method, plot the array's azimuth response in polar format. Assume each
element's operating frequency spans 200-500 MHz and the wave propagation speed is the
speed of light.

sElement1 = phased.ShortDipoleAntennaElement(...

 'FrequencyRange',[2e8 5e8],...

 'AxisDirection','Z');

1 Alphabetical List

1-846

sElement2 = phased.ShortDipoleAntennaElement(...

 'FrequencyRange',[2e8 5e8],...

 'AxisDirection','Y');

sArray = phased.HeterogeneousULA(...

 'ElementSet',{sElement1,sElement2},...

 'ElementIndices',[1 2 2 2 1]);

Plot the response at 300 MHz.

fc = 3e8;

c = physconst('LightSpeed');

plotResponse(sArray,fc,c,'RespCut','Az','Format','Polar');

Plot the directivity of the array at 300 MHz.

 plotResponse

1-847

plotResponse(sArray,fc,c,'RespCut','Az','Format','Polar',...

 'Unit','dbi');

Plot Response for 9-Element Array with Two Weight Sets

Construct a 9-element heterogeneous ULA of short-dipole antenna elements having
different orientations. Assume each element response is in the frequency range 200-500
MHz. Using the plotResponse method, plot the array's azimuth response in polar
format. Use the Weights parameter to set two different sets of tapering weights: a
uniform tapering and a Taylor tapering. Use the AzimuthAngles parameter to restrict
the display range from -45 to 45 degrees in 0.1 degree increments.

Construct the array.

1 Alphabetical List

1-848

sElement1 = phased.ShortDipoleAntennaElement(...

 'FrequencyRange',[2e8 5e8],...

 'AxisDirection','Z');

sElement2 = phased.ShortDipoleAntennaElement(...

 'FrequencyRange',[2e8 5e8],...

 'AxisDirection','Y');

sArray = phased.HeterogeneousULA(...

 'ElementSet',{sElement1,sElement2},...

 'ElementIndices',[1 1 2 2 2 2 2 1 1]);

Plot the response at 300 MHz.

fc = 3e8;

wts1 = ones(9,1);

wts2 = taylorwin(9);

c = physconst('LightSpeed');

plotResponse(sArray,fc,c,'RespCut','Az',...

 'AzimuthAngles',[-45:0.1:45],...

 'Weights',[wts1,wts2]);

 plotResponse

1-849

As expected, the tapered weighting broadens the mainlobe and reduces the sidelobes.

See Also
azel2uv | uv2azel

1 Alphabetical List

1-850

release
System object: phased.HeterogeneousULA
Package: phased

Allow property value and input characteristics

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

 step

1-851

step
System object: phased.HeterogeneousULA
Package: phased

Output responses of array elements

Syntax

RESP = step(H,FREQ,ANG)

Description

RESP = step(H,FREQ,ANG) returns the array elements’ responses RESP at operating
frequencies specified in FREQ and directions specified in ANG.

Note: The object performs an initialization the first time the step method is executed.
This initialization locks nontunable properties and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Input Arguments

H

Array object

FREQ

Operating frequencies of array in hertz. FREQ is a row vector of length L. Typical values
are within the range specified by a property of H.Element. That property is named
FrequencyRange or FrequencyVector, depending on the type of element in the array.
The element has zero response at frequencies outside that range.

1 Alphabetical List

1-852

ANG

Directions in degrees. ANG is either a 2-by-M matrix or a row vector of length M.

If ANG is a 2-by-M matrix, each column of the matrix specifies the direction in the
form [azimuth; elevation]. The azimuth angle must lie between –180° and 180°,
inclusive. The elevation angle must lie between –90° and 90°, inclusive.

If ANG is a row vector of length M, each element specifies the azimuth angle of the
direction. In this case, the corresponding elevation angle is assumed to be 0°.

Output Arguments

RESP

Voltage responses of the phased array. The output depends on whether the array
supports polarization or not.

• If the array is not capable of supporting polarization, the voltage response, RESP,
has the dimensions N-by-M-by-L. N is the number of elements in the array. The
dimension M is the number of angles specified in ANG. L is the number of frequencies
specified in FREQ. For any element, the columns of RESP contain the responses of the
array elements for the corresponding direction specified in ANG. Each of the L pages
of RESP contains the responses of the array elements for the corresponding frequency
specified in FREQ.

• If the array is capable of supporting polarization, the voltage response, RESP, is a
MATLAB struct containing two fields, RESP.H and RESP.V. The field, RESP.H,
represents the array’s horizontal polarization response, while RESP.V represents the
array’s vertical polarization response. Each field has the dimensions N-by-M-by-L.
N is the number of elements in the array, and M is the number of angles specified in
ANG. L is the number of frequencies specified in FREQ. Each column of RESP contains
the responses of the array elements for the corresponding direction specified in ANG.
Each of the L pages of RESP contains the responses of the array elements for the
corresponding frequency specified in FREQ.

 step

1-853

Examples

Heterogeneous ULA of Cosine Antenna Elements

Create a 5-element heterogeneous ULA of cosine antenna elements with difference
responses, and find the response of each element at 30° azimuth.

sElement1 = phased.CosineAntennaElement('CosinePower',1.5);

sElement2 = phased.CosineAntennaElement('CosinePower',1.8);

sArray = phased.HeterogeneousULA(...

 'ElementSet',{sElement1,sElement2},...

 'ElementIndices',[1 2 2 2 1]);

fc = 1e9;

c = physconst('LightSpeed');

ang = [30;0];

resp = step(sArray,fc,ang)

resp =

 0.8059

 0.7719

 0.7719

 0.7719

 0.8059

Response of Heterogeneous Microphone ULA Array

Find the response of a heterogeneous ULA array of 7 custom microphone elements with
different responses.

sMic1 = phased.CustomMicrophoneElement(...

 'FrequencyResponse',[20 20e3]);

sMic1.PolarPatternFrequencies = [500 1000];

sMic1.PolarPattern = mag2db([...

 0.5+0.5*cosd(sMic1.PolarPatternAngles);...

 0.6+0.4*cosd(sMic1.PolarPatternAngles)]);

sMic2 = phased.CustomMicrophoneElement(...

 'FrequencyResponse',[20 20e3]);

sMic2.PolarPatternFrequencies = [500 1000];

sMic2.PolarPattern = mag2db([...

 ones(size(sMic2.PolarPatternAngles));...

 ones(size(sMic2.PolarPatternAngles))]);

sArray = phased.HeterogeneousULA(...

 'ElementSet',{sMic1,sMic2},...

1 Alphabetical List

1-854

 'ElementIndices',[1 1 2 2 2 1 1]);

fc = [1500, 2000];

ang = [40 50; 0 0];

resp = step(sArray,fc,ang)

resp(:,:,1) =

 9.0642 8.5712

 9.0642 8.5712

 10.0000 10.0000

 10.0000 10.0000

 10.0000 10.0000

 9.0642 8.5712

 9.0642 8.5712

resp(:,:,2) =

 9.0642 8.5712

 9.0642 8.5712

 10.0000 10.0000

 10.0000 10.0000

 10.0000 10.0000

 9.0642 8.5712

 9.0642 8.5712

See Also
phitheta2azel | uv2azel

 viewArray

1-855

viewArray
System object: phased.HeterogeneousULA
Package: phased

View array geometry

Syntax

viewArray(H)

viewArray(H,Name,Value)

hPlot = viewArray(___)

Description

viewArray(H) plots the geometry of the array specified in H.

viewArray(H,Name,Value) plots the geometry of the array, with additional options
specified by one or more Name,Value pair arguments.

hPlot = viewArray(___) returns the handle of the array elements in the figure
window. All input arguments described for the previous syntaxes also apply here.

Input Arguments

H

Array object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

1 Alphabetical List

1-856

'ShowIndex'

Vector specifying the element indices to show in the figure. Each number in the vector
must be an integer between 1 and the number of elements. You can also specify the
string 'All' to show indices of all elements of the array or 'None' to suppress indices.

Default: 'None'

'ShowNormals'

Set this value to true to show the normal directions of all elements of the array. Set this
value to false to plot the elements without showing normal directions.

Default: false

'ShowTaper'

Set this value to true to specify whether to change the element color brightness in
proportion to the element taper magnitude. When this value is set to false, all elements
are drawn with the same color.

Default: false

'Title'

String specifying the title of the plot.

Default: 'Array Geometry'

Output Arguments

hPlot

Handle of array elements in figure window.

Examples

Geometry and Indices of Heterogeneous ULA Elements

Display the geometry of a 5-element heterogeneous ULA of cosine antenna elements,
showing the indices for the first three elements.

 viewArray

1-857

sElement1 = phased.CosineAntennaElement('CosinePower',1.5);

sElement2 = phased.CosineAntennaElement('CosinePower',1.8);

sArray = phased.HeterogeneousULA(...

 'ElementSet',{sElement1,sElement2},...

 'ElementIndices',[1 2 2 2 1]);

viewArray(sArray,'ShowIndex',[1:3])

• Phased Array Gallery

See Also
phased.ArrayResponse

../examples/phased-array-gallery.html

1 Alphabetical List

1-858

phased.HeterogeneousURA System object
Package: phased

Heterogeneous uniform rectangular array

Description

The HeterogeneousURA object constructs a heterogeneous uniform rectangular array
(URA).

To compute the response for each element in the array for specified directions:

1 Define and set up your uniform rectangular array. See “Construction” on page
1-858.

2 Call step to compute the response according to the properties of
phased.HeterogeneousURA. The behavior of step is specific to each object in the
toolbox.

Construction

H = phased.HeterogeneousURA creates a heterogeneous uniform rectangular
array (URA) System object, H. This object models a heterogeneous URA formed with
sensor elements whose pattern may vary from element to element. Array elements are
distributed in the yz-plane in a rectangular lattice. An M-by-N heterogeneous URA has
M rows and N columns. The array boresight direction is along the positive x-axis. The
default array is a 2-by-2 URA of isotropic antenna elements.

H = phased.HeterogeneousURA(Name,Value) creates the object, H, with each
specified property Name set to the specified Value. You can specify additional name-
value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties

ElementSet

Set of elements used in the array

 phased.HeterogeneousURA System object

1-859

Specify the set of different elements used in the sensor array as a row MATLAB cell
array. Each member of the cell array contains an element object in the phased package.
Elements specified in the ElementSet property must be either all antennas or all
microphones. In addition, all specified antenna elements should have same polarization
capability. Specify the element of the sensor array as a handle. The element must be an
element object in the phased package.

Default: One cell containing one isotropic antenna element

ElementIndices

Elements location assignment

This property specifies the mapping of elements in the array. The property assigns
elements to their locations in the array using the indices into the ElementSet property.
The value of ElementIndices must be an M-by-N matrix. In this matrix, M represents
the number of rows and N represents the number of columns. Rows are along y-axis
and columns are along z-axis of the local coordinate system. The values in the matrix
specified by ElementIndices should be less than or equal to the number of entries in
the ElementSet property.

Default: [1 1;1 1]

ElementSpacing

Element spacing

A 1-by-2 vector or a scalar containing the element spacing (in meters)
of the array. If ElementSpacing is a 1-by-2 vector, it is in the form of
[SpacingBetweenRows,SpacingBetweenColumns]. See “Spacing Between Columns”
on page 1-862 and “Spacing Between Rows” on page 1-862. If ElementSpacing is a
scalar, both spacings are the same.

Default: [0.5 0.5]

Lattice

Element lattice

Specify the element lattice as one of 'Rectangular' | 'Triangular'. When you
set the Lattice property to 'Rectangular', all elements in the heterogeneous URA

1 Alphabetical List

1-860

are aligned in both row and column directions. When you set the Lattice property
to 'Triangular', the elements in even rows are shifted toward the positive row axis
direction by a distance of half the element spacing along the row.

Default: 'Rectangular'

ArrayNormal

Array normal direction

Array normal direction, specified as one of 'x', 'y', or 'z'.

URA elements lie in a plane orthogonal to the selected array normal direction. Element
boresight directions point along the array normal direction

ArrayNormal Property Value Element Positions and Boresight Directions

'x' Array elements lie on the yz-plane. All
element boresight vectors point along the x-
axis.

'y' Array elements lie on the zx-plane. All
element boresight vectors point along the y-
axis.

'z' Array elements lie on the xy-plane. All
element boresight vectors point along the z-
axis.

Default: 'x'

Taper

Element tapers

Element tapers, specified as a complex-valued scalar, or a complex-valued 1-by-MN
row vector, MN-by-1 column vector, or M-by-N matrix. Tapers are applied to each
element in the sensor array. Tapers are often referred to as element weights. M is the
number of elements along the z-axis, and N is the number of elements along y-axis.
M and N correspond to the values of [NumberofRows, NumberOfColumns] in the
Size property. If Taper is a scalar, the same taper value is applied to all elements. If

 phased.HeterogeneousURA System object

1-861

the value of Taper is a vector or matrix, taper values are applied to the corresponding
elements. Tapers are used to modify both the amplitude and phase of the received data.

Default: 1

Methods

clone Create new system object with identical
values

directivity Directivity of heterogeneous uniform
rectangular array

collectPlaneWave Simulate received plane waves
getElementNormal Normal vector to array elements
getElementPosition Positions of array elements
getNumElements Number of elements in array
getNumInputs Number of expected inputs to step method
getNumOutputs Number of outputs from step method
getTaper Array element tapers
isLocked Locked status for input attributes and

nontunable properties
isPolarizationCapable Polarization capability
pattern Plot heterogeneous URA direcivity and

power pattern
patternAzimuth Plot heterogeneous URA directivity or

pattern versus azimuth
patternElevation Plot heterogeneous ULA directivity or

pattern versus elevation
plotResponse Plot response pattern of array
release Allow property value and input

characteristics
step Output responses of array elements
viewArray View array geometry

1 Alphabetical List

1-862

Definitions

Spacing Between Columns

The spacing between columns is the distance between adjacent elements in the same
row.

Spacing Between Rows

The spacing between rows is the distance along the column axis direction between
adjacent rows.

 phased.HeterogeneousURA System object

1-863

Spacing Between

Rows

Spacing Between

Columns

1 Alphabetical List

1-864

Examples

Azimuth Response of a 3-by-2 Heterogeneous URA

Construct a 3-by-2 heterogeneous URA with a rectangular lattice, and find the response
of each element at 30 degrees azimuth and 0 degrees elevation. Assume the operating
frequency is 1 GHz.

sElement1 = phased.CosineAntennaElement('CosinePower',1.5);

sElement2 = phased.CosineAntennaElement('CosinePower',1.8);

sArray = phased.HeterogeneousURA(...

 'ElementSet',{sElement1,sElement2},...

 'ElementIndices',[1 1; 2 2; 1 1]);

fc = 1e9;

ang = [30;0];

resp = step(sArray,fc,ang)

resp =

 0.8059

 0.7719

 0.8059

 0.8059

 0.7719

 0.8059

Plot the azimuth response of the array.

c = physconst('LightSpeed');

pattern(sArray,fc,[-180:180],0,...

 'PropagationSpeed',c,...

 'CoordinateSystem','polar',...

 'Type','powerdb','Normalize',true)

 phased.HeterogeneousURA System object

1-865

Draw Heterogeneous Triangular Lattice Array

Construct a 3-by-3 heterogeneous URA with a triangular lattice. The element spacing is
0.5 meter. Display the array shape.

sElement1 = phased.CosineAntennaElement('CosinePower',1.5);

sElement2 = phased.CosineAntennaElement('CosinePower',1.8);

sArray = phased.HeterogeneousURA(...

 'ElementSet',{sElement1,sElement2},...

 'ElementIndices',[1 1 1; 2 2 2; 1 1 1],...

 'Lattice','Triangular');

viewArray(sArray);

1 Alphabetical List

1-866

• Phased Array Gallery

References

[1] Brookner, E., ed. Radar Technology. Lexington, MA: LexBook, 1996.

[2] Brookner, E., ed. Practical Phased Array Antenna Systems. Boston: Artech House,
1991.

[3] Mailloux, R. J. “Phased Array Theory and Technology,” Proceedings of the IEEE, Vol.,
70, Number 3, 1982, pp. 246–291.

../examples/phased-array-gallery.html

 phased.HeterogeneousURA System object

1-867

[4] Mott, H. Antennas for Radar and Communications, A Polarimetric Approach. New
York: John Wiley & Sons, 1992.

[5] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002.

See Also
phased.UCA | phased.ConformalArray | phased.CosineAntennaElement |
phased.CustomAntennaElement | phased.HeterogeneousConformalArray
| phased.HeterogeneousULA | phased.IsotropicAntennaElement |
phased.PartitionedArray | phased.ReplicatedSubarray | phased.ULA | phased.URA

Introduced in R2013a

1 Alphabetical List

1-868

clone
System object: phased.HeterogeneousURA
Package: phased

Create new system object with identical values

Syntax

C = clone(H)

Description

C = clone(H) creates an object, C, having the same property values and same states as
H. If H is locked, so is C.

 directivity

1-869

directivity

System object: phased.HeterogeneousURA
Package: phased

Directivity of heterogeneous uniform rectangular array

Syntax

D = directivity(H,FREQ,ANGLE)

D = directivity(H,FREQ,ANGLE,Name,Value)

Description

D = directivity(H,FREQ,ANGLE) computes the “Directivity (dBi)” on page 1-872
of a heterogeneous uniform rectangular array of antenna or microphone elements, H, at
frequencies specified by the FREQ and in angles of direction specified by the ANGLE.

D = directivity(H,FREQ,ANGLE,Name,Value) computes the directivity with
additional options specified by one or more Name,Value pair arguments.

Input Arguments

H — Heterogeneous uniform rectangular array
System object

Uniform rectangular array specified as a phased.HeterogeneousURA System object.
Example: H = phased.HeterogeneousURA

FREQ — Frequency for computing directivity and patterns
positive scalar | 1-by-L real-valued row vector

Frequencies for computing directivity and patterns, specified as a positive scalar or 1-
by-L real-valued row vector. Frequency units are in hertz.

1 Alphabetical List

1-870

• For an antenna or microphone element, FREQ must lie within the range of
values specified by the FrequencyRange or FrequencyVector property of the
element. Otherwise, the element produces no response and the directivity is
returned as –Inf. Most elements use the FrequencyRange property except for
phased.CustomAntennaElement and phased.CustomMicrophoneElement, which use
the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements
that make up the array. Otherwise, the array produces no response and the
directivity is returned as –Inf.

Example: [1e8 2e8]

Data Types: double

ANGLE — Angles for computing directivity
1-by-M real-valued row vector | 2-by-M real-valued matrix

Angles for computing directivity, specified as a 1-by-M real-valued row vector or a 2-
by-M real-valued matrix, where M is the number of angular directions. Angle units
are in degrees. If ANGLE is a 2-by-M matrix, then each column specifies a direction in
azimuth and elevation, [az;el]. The azimuth angle must lie between –180° and 180°.
The elevation angle must lie between –90° and 90°.

If ANGLE is a 1-by-M vector, then each entry represents an azimuth angle, with the
elevation angle assumed to be zero.

The azimuth angle is the angle between the x-axis and the projection of the direction
vector onto the xy plane. This angle is positive when measured from the x-axis toward the
y-axis. The elevation angle is the angle between the direction vector and xy plane. This
angle is positive when measured towards the z-axis.
Example: [45 60; 0 10]

Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

 directivity

1-871

'PropagationSpeed' — Signal propagation speed
speed of light (default) | positive scalar

Signal propagation speed, specified as the comma-separated pair consisting of
'PropagationSpeed' and a positive scalar in meters per second.

Example: 'PropagationSpeed',physconst('LightSpeed')

Data Types: double

'Weights' — Array weights
1 (default) | N-by-1 complex-valued column vector | N-by-L complex-valued matrix

Array weights, specified as the comma-separated pair consisting of 'Weights' and an
N-by-1 complex-valued column vector or N-by-L complex-valued matrix. Array weights
are applied to the elements of the array to produce array steering, tapering, or both. The
dimension N is the number of elements in the array. The dimension L is the number of
frequencies specified by FREQ.

Weights Dimension FREQ Dimension Purpose

N-by-1 complex-valued
column vector

Scalar or 1-by-L row vector Applies a set of weights for
the single frequency or for all
L frequencies.

N-by-L complex-valued
matrix

1-by-L row vector Applies each of the L
columns of 'Weights' for
the corresponding frequency
in FREQ.

Note: Use complex weights to steer the array response toward different directions. You
can create weights using the phased.SteeringVector System object or you can compute
your own weights. In general, you apply Hermitian conjugation before using weights in
any Phased Array System Toolbox function or System object such as phased.Radiator
or phased.Collector. However, for the directivity, pattern, patternAzimuth, and
patternElevation methods of any array System object use the steering vector without
conjugation.

Example: 'Weights',ones(N,M)

Data Types: double

1 Alphabetical List

1-872

Complex Number Support: Yes

Output Arguments

D — Directivity
M-by-L matrix

Directivity, returned as an M-by-L matrix whose columns contain the directivities at the
M angles specified by ANGLE. Each column corresponds to one of the L frequency values
specified in FREQ. Directivity units are in dBi.

Definitions

Directivity (dBi)

Directivity describes the directionality of the radiation pattern of a sensor element
or array of sensor elements. Higher directivity is desired when you want to transmit
more radiation in a specific direction. Directivity is the ratio of the transmitted radiant
intensity in a specified direction to the radiant intensity transmitted by an isotropic
radiator with the same total transmitted power

D
U

P
=

()
4p

q jrad

total

,

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal
is the total power transmitted by an isotropic radiator. For a receiving element or array,
directivity measures the sensitivity toward radiation arriving from a specific direction.
The principle of reciprocity shows that the directivity of an element or array used for
reception equals the directivity of the same element or array used for transmission.
When converted to decibels, the directivity is denoted as dBi. For information on
directivity, read the notes on “Element directivity” and “Array directivity”.

Computing directivity requires integrating the far-field transmitted radiant intensity
over all directions in space to obtain the total transmitted power. There is a difference
between how that integration is performed when Antenna Toolbox antennas are used
in a phased array and when Phased Array System Toolbox antennas are used. When

 directivity

1-873

an array contains Antenna Toolbox antennas, the directivity computation is performed
using a triangular mesh created from 500 regularly spaced points over a sphere. For
Phased Array System Toolbox antennas, the integration uses a uniform rectangular
mesh of points spaced 1° apart in azimuth and elevation over a sphere. There may be
significant differences in computed directivity, especially for large arrays.

Examples

Directivity of Heterogeneous Uniform Rectangular Array

Compute the directivity of a 9-element 3-by-3 heterogeneous URA consisting of short-
dipole antenna elements. The three elements on the middle row are Y-directed while all
the remaining elements are Z-directed.

Set the signal frequency to 1 GHz.

c = physconst('LightSpeed');

freq = 1e9;

lambda = c/freq;

Create the array of short-dipole antenna elements. The elements have frequency ranges
from 0 to 10 GHz.

myElement1 = phased.ShortDipoleAntennaElement(...

 'FrequencyRange',[0 10e9],...

 'AxisDirection','Z');

myElement2 = phased.ShortDipoleAntennaElement(...

 'FrequencyRange',[0 10e9],...

 'AxisDirection','Y');

myArray = phased.HeterogeneousURA(...

 'ElementSet',{myElement1,myElement2},...

 'ElementIndices',[1 1 1; 2 2 2; 1 1 1]);

Create the steering vector to point to 30 degrees azimuth and compute the directivity in
the same direction as the steering vector.

ang = [30;0];

w = steervec(getElementPosition(myArray)/lambda,ang);

d = directivity(myArray,freq,ang,'PropagationSpeed',c,...

 'Weights',w)

1 Alphabetical List

1-874

d =

 11.1405

See Also
phased.HeterogeneousURA.pattern | phased.HeterogeneousURA.patternAzimuth |
phased.HeterogeneousURA.patternElevation

 collectPlaneWave

1-875

collectPlaneWave

System object: phased.HeterogeneousURA
Package: phased

Simulate received plane waves

Syntax

Y = collectPlaneWave(H,X,ANG)

Y = collectPlaneWave(H,X,ANG,FREQ)

Y = collectPlaneWave(H,X,ANG,FREQ,C)

Description

Y = collectPlaneWave(H,X,ANG) returns the received signals at the sensor array, H,
when the input signals indicated by X arrive at the array from the directions specified in
ANG.

Y = collectPlaneWave(H,X,ANG,FREQ), in addition, specifies the incoming signal
carrier frequency in FREQ.

Y = collectPlaneWave(H,X,ANG,FREQ,C), in addition, specifies the signal
propagation speed in C.

Input Arguments

H

Array object.

X

Incoming signals, specified as an M-column matrix. Each column of X represents an
individual incoming signal.

1 Alphabetical List

1-876

ANG

Directions from which incoming signals arrive, in degrees. ANG can be either a 2-by-M
matrix or a row vector of length M.

If ANG is a 2-by-M matrix, each column specifies the direction of arrival of the
corresponding signal in X. Each column of ANG is in the form [azimuth; elevation].
The azimuth angle must be between –180° and 180°, inclusive. The elevation angle must
be between –90° and 90°, inclusive.

If ANG is a row vector of length M, each entry in ANG specifies the azimuth angle. In this
case, the corresponding elevation angle is assumed to be 0°.

FREQ

Carrier frequency of signal in hertz. FREQ must be a scalar.

Default: 3e8

C

Propagation speed of signal in meters per second.

Default: Speed of light

Output Arguments

Y

Received signals. Y is an N-column matrix, where N is the number of elements in the
array H. Each column of Y is the received signal at the corresponding array element, with
all incoming signals combined.

Examples

Simulate the received signal at a 2-by-2 element heterogeneous URA with different
cosine antenna patterns. The signals arrive from 10° and 30° azimuth. Both signals have
an elevation angle of 0° degrees.

 collectPlaneWave

1-877

sElement1 = phased.CosineAntennaElement('CosinePower',1.5);

sElement2 = phased.CosineAntennaElement('CosinePower',1.8);

sArray = phased.HeterogeneousURA(...

 'ElementSet',{sElement1,sElement2},...

 'ElementIndices',[1 2; 1 2]);

y = collectPlaneWave(sArray,randn(4,2),[10 30],1e8,...

 physconst('LightSpeed'));

y(:,1)

ans =

 4.2642 - 0.5130i

 2.6971 - 0.2353i

 -0.6539 - 0.0625i

 2.8244 - 0.2227i

Algorithms

collectPlaneWave modulates the input signal with a phase corresponding to the delay
caused by the direction of arrival. This method does not account for the response of
individual elements in the array.

For further details, see [1].

References

[1] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002.

See Also
phitheta2azel | uv2azel

1 Alphabetical List

1-878

getElementNormal
System object: phased.HeterogeneousURA
Package: phased

Normal vector to array elements

Syntax

normvec = getElementNormal(sURA)

normvec = getElementNormal(sURA,elemidx)

Description

normvec = getElementNormal(sURA) returns the normal vectors of the array
elements of the phased.URA System object, sURA. The output argument normvec is
a 2-by-N matrix, where N is the number of elements in array, sURA. Each column of
normvec defines the normal direction of an element in the local coordinate system in the
form[az;el]. Units are degrees. The origin of the local coordinate system is defined by
the phase center of the array.

normvec = getElementNormal(sURA,elemidx) returns only the normal vectors of
the elements specified in the element index vector, elemidx. This syntax can use any of
the input arguments in the previous syntax.

Input Arguments

sURA — Heterogeneous uniform rectangular array
phased.HeterogeneousURA System object

Uniform line array, specified as a phased.HeterogeneousURA System object.

Example: sULA = phased.HeterogeneousURA

elemidx — Element indices
all array elements (default) | integer-valued 1-by-M row vector | integer-valued M-by-1
column vector

 getElementNormal

1-879

Element indices , specified as a 1-by-M or M-by-1 vector. Index values lie in the range
1 to N where N is the number of elements of the array. When elemidx is specified,
getElementNormal returns the normal vectors of the elements contained in elemidx.

Example: [1,5,4]

Output Arguments

normvec — Element normal vectors
2-by-P real-valued vector

Element normal vectors, specified as a 2-by-P real-valued vector. Each column of
normvec takes the form [az,el]. When elemidx is not specified, P equals the array
dimension. When elemidx is specified, P equals the length of elemidx, M. You can
determine element indices using the phased.HeterogeneousURA.viewArray method.

Examples

URA Element Normals

Construct three 2-by-2 URA's with element normals along the x-, y-, and z-axes. Obtain
the element positions and normal directions.

First, choose the array normal along the x-axis.

sURA1 = phased.URA('Size',[2,2],'ArrayNormal','x');

pos = getElementPosition(sURA1)

normvec = getElementNormal(sURA1)

pos =

 0 0 0 0

 -0.2500 -0.2500 0.2500 0.2500

 0.2500 -0.2500 0.2500 -0.2500

normvec =

 0 0 0 0

1 Alphabetical List

1-880

 0 0 0 0

All elements lie in the yz-plane and the element normal vectors point along the x-axis
(0°,0°).

Next, choose the array normal along the y-axis.

sURA2 = phased.URA('Size',[2,2],'ArrayNormal','y');

pos = getElementPosition(sURA2)

normvec = getElementNormal(sURA2)

pos =

 -0.2500 -0.2500 0.2500 0.2500

 0 0 0 0

 0.2500 -0.2500 0.2500 -0.2500

normvec =

 90 90 90 90

 0 0 0 0

All elements lie in the zx-plane and the element normal vectors point along the y-axis
(90°,0°).

Finally, set the array normal along the z-axis. Obtain the normal vectors of the odd-
numbered elements.

sURA3 = phased.URA('Size',[2,2],'ArrayNormal','z');

pos = getElementPosition(sURA3)

normvec = getElementNormal(sURA3,[1,3])

pos =

 -0.2500 -0.2500 0.2500 0.2500

 0.2500 -0.2500 0.2500 -0.2500

 0 0 0 0

normvec =

 getElementNormal

1-881

 0 0

 90 90

All elements lie in the xy-plane and the element normal vectors point along the z-axis
(0°,90°).

Introduced in R2016a

1 Alphabetical List

1-882

getElementPosition
System object: phased.HeterogeneousURA
Package: phased

Positions of array elements

Syntax

POS = getElementPosition(H)

POS = getElementPosition(H,ELEIDX)

Description

POS = getElementPosition(H) returns the element positions of the
HeterogeneousURA System object, H. POS is a 3-by-N matrix where N is the number
of elements in H. Each column of POS defines the position of an element in the local
coordinate system, in meters, using the form [x; y; z].

For details regarding the local coordinate system of the URA or heterogeneous URA,
enter phased.URA.coordinateSystemInfo.

POS = getElementPosition(H,ELEIDX) returns the positions of the elements that
are specified in the element index vector, ELEIDX. The element indices of a URA run
down each column, then to the top of the next column to the right. For example, in a URA
with 4 elements in each row and 3 elements in each column, the element in the third
row and second column has an index value of 6. This syntax can use any of the input
arguments in the previous syntax.

Examples

Element Positions of Heterogeneous URA

Construct a heterogeneous URA with a rectangular lattice, and obtain the element
positions.

 getElementPosition

1-883

sElement1 = phased.ShortDipoleAntennaElement(...

 'FrequencyRange',[100e6 1e9],...

 'AxisDirection','Z');

sElement2 = phased.ShortDipoleAntennaElement(...

 'FrequencyRange',[100e6 1e9],...

 'AxisDirection','Y');

sArray = phased.HeterogeneousURA(...

 'ElementSet',{sElement1,sElement2},...

 'ElementIndices',[1 2; 2 1]);

pos = getElementPosition(sArray);

pos =

 0 0 0 0

 -0.2500 -0.2500 0.2500 0.2500

 0.2500 -0.2500 0.2500 -0.2500

1 Alphabetical List

1-884

getNumElements
System object: phased.HeterogeneousURA
Package: phased

Number of elements in array

Syntax

N = getNumElements(H)

Description

N = getNumElements(H) returns the number of elements, N, in the Heterogeneous
URA object H.

Examples

Construct a Heterogeneous URA, and obtain the number of elements.

sElement1 = phased.ShortDipoleAntennaElement(...

 'FrequencyRange',[100e6 1e9],...

 'AxisDirection','Z');

sElement2 = phased.ShortDipoleAntennaElement(...

 'FrequencyRange',[100e6 1e9],...

 'AxisDirection','Y');

sArray = phased.HeterogeneousURA(...

 'ElementSet',{sElement1,sElement2},...

 'ElementIndices',[1 2; 2 1]);

N = getNumElements(sArray)

N =

 4

 getNumInputs

1-885

getNumInputs
System object: phased.HeterogeneousURA
Package: phased

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of inputs
(not counting the object itself) that you must use when calling the step method. This
value changes when you alter properties that turn inputs on or off.

1 Alphabetical List

1-886

getNumOutputs
System object: phased.HeterogeneousURA
Package: phased

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value changes when you alter properties that turn outputs on or off.

 getTaper

1-887

getTaper

System object: phased.HeterogeneousURA
Package: phased

Array element tapers

Syntax

wts = getTaper(h)

Description

wts = getTaper(h) returns the tapers, wts, applied to each element of the phased
heterogeneous uniform rectangular array (URA), h. Tapers are often referred to as
weights.

Input Arguments

h — Uniform rectangular array
phased.HeterogeneousURA System object

Uniform rectangular array specified as a phased.HeterogeneousURA System object.

Output Arguments

wts — Array element tapers
N-by-1 complex-valued vector

Array element tapers returned as an N-by-1, complex-valued vector. The dimension N is
the number of elements in the array. The array tapers are returned in the same order as
the element indices. The element indices of a URA run down each column, then to the top
of the next column to the right.

1 Alphabetical List

1-888

Examples

Heterogeneous URA Array Element Tapering

Construct a 2-by-5 element heterogeneous URA with a Taylor window taper along each
row. Then, show the array with the element taper shading.

sElement1 = phased.ShortDipoleAntennaElement(...

 'FrequencyRange',[100e6 1e9],...

 'AxisDirection','Z');

sElement2 = phased.ShortDipoleAntennaElement(...

 'FrequencyRange',[100e6 1e9],...

 'AxisDirection','Y');

sArray = phased.HeterogeneousURA(...

 'ElementSet',{sElement1,sElement2},...

 'ElementIndices',[1 2 2 2 1 ; 1 2 2 2 1],...

 'Taper',[taylorwin(5)';taylorwin(5)']);

w = getTaper(sArray)

w =

 0.5181

 0.5181

 1.2029

 1.2029

 1.5581

 1.5581

 1.2029

 1.2029

 0.5181

 0.5181

viewArray(sArray,'ShowTaper',true);

 getTaper

1-889

1 Alphabetical List

1-890

isLocked
System object: phased.HeterogeneousURA
Package: phased

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF, for the HeterogeneousURA System
object.

isLocked returns a logical value that indicates whether input attributes and
nontunable properties for the object are locked. The object performs an internal
initialization the first time that you execute step. This initialization locks nontunable
properties and input specifications, such as the dimensions, complexity, and data type of
the input data. After locking, isLocked returns a true value.

 isPolarizationCapable

1-891

isPolarizationCapable

System object: phased.HeterogeneousURA
Package: phased

Polarization capability

Syntax

flag = isPolarizationCapable(h)

Description

flag = isPolarizationCapable(h) returns a Boolean value, flag, indicating
whether the array supports polarization. An array supports polarization if all of its
constituent sensor elements support polarization.

Input Arguments

h — Uniform rectangular array

Uniform rectangular array specified as phased.HeterogeneousURA System object.

Output Arguments

flag — Polarization-capability flag

Polarization-capability flag returned as a Boolean value true if the array supports
polarization or false if it does not.

1 Alphabetical List

1-892

Examples

Short-dipole Antenna Array Polarization

Show that an array of phased.ShortDipoleAntennaElement short-dipole antenna element
supports polarization.

sElement1 = phased.ShortDipoleAntennaElement(...

 'FrequencyRange',[100e6 1e9],...

 'AxisDirection','Z');

sElement2 = phased.ShortDipoleAntennaElement(...

 'FrequencyRange',[100e6 1e9],...

 'AxisDirection','Y');

sArray = phased.HeterogeneousURA(...

 'ElementSet',{sElement1,sElement2},...

 'ElementIndices',[1 2 2 2 1 ; 1 2 2 2 1]);

isPolarizationCapable(sArray)

ans =

 1

The returned value true (1) shows that this array supports polarization.

 pattern

1-893

pattern

System object: phased.HeterogeneousURA
Package: phased

Plot heterogeneous URA direcivity and power pattern

Syntax

pattern(sArray,FREQ)

pattern(sArray,FREQ,AZ)

pattern(sArray,FREQ,AZ,EL)

pattern(___ ,Name,Value)

[PAT,AZ_ANG,EL_ANG] = pattern(___)

Description

pattern(sArray,FREQ) plots the 3-D array directivity pattern (in dBi) for the array
specified in sArray. The operating frequency is specified in FREQ.

pattern(sArray,FREQ,AZ) plots the array directivity pattern at the specified azimuth
angle.

pattern(sArray,FREQ,AZ,EL) plots the array directivity pattern at specified azimuth
and elevation angles.

pattern(___ ,Name,Value) plots the array pattern with additional options specified
by one or more Name,Value pair arguments.

[PAT,AZ_ANG,EL_ANG] = pattern(___) returns the array pattern in PAT. The
AZ_ANG output contains the coordinate values corresponding to the rows of PAT. The
EL_ANG output contains the coordinate values corresponding to the columns of PAT.
If the 'CoordinateSystem' parameter is set to 'uv', then AZ_ANG contains the
U coordinates of the pattern and EL_ANG contains the V coordinates of the pattern.
Otherwise, they are in angular units in degrees. UV units are dimensionless.

1 Alphabetical List

1-894

Note: This method replaces the previous plotResponse method. To replace plots using
plotResponse plots with equivalent plots using pattern, see “Convert plotResponse to
pattern” on page 1-1955

Input Arguments

sArray — Heterogeneous URA
System object

Heterogeneous conformal array, specified as a phased.HeterogeneousURA System object.
Example: sArray= phased.HeterogeneousURA;

FREQ — Frequency for computing directivity and patterns
positive scalar | 1-by-L real-valued row vector

Frequencies for computing directivity and patterns, specified as a positive scalar or 1-
by-L real-valued row vector. Frequency units are in hertz.

• For an antenna or microphone element, FREQ must lie within the range of
values specified by the FrequencyRange or FrequencyVector property of the
element. Otherwise, the element produces no response and the directivity is
returned as –Inf. Most elements use the FrequencyRange property except for
phased.CustomAntennaElement and phased.CustomMicrophoneElement, which use
the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements
that make up the array. Otherwise, the array produces no response and the
directivity is returned as –Inf.

Example: [1e8 2e8]

Data Types: double

AZ — Azimuth angles
[-180:180] (default) | 1-by-M real-valued row vector

Azimuth angles for computing directivity and pattern, specified as a 1-by-M real-
valued row vector where M is the number of azimuth angles. Angle units are in degrees.
Azimuth angles must lie between –180° and 180°.

 pattern

1-895

The azimuth angle is the angle between the x-axis and the projection of the direction
vector onto the xy plane. When measured from the x-axis toward the y-axis, this angle is
positive.
Example: [-45:2:45]

Data Types: double

EL — Elevation angles
[-90:90] (default) | 1-by-N real-valued row vector

Elevation angles for computing directivity and pattern, specified as a 1-by-N real-valued
row vector where N is the number of desired elevation directions. Angle units are in
degrees. The elevation angle must lie between –90° and 90°.

The elevation angle is the angle between the direction vector and xy-plane. When
measured towards the z-axis, this angle is positive.
Example: [-75:1:70]

Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'CoordinateSystem' — Plotting coordinate system
'polar' (default) | 'rectangular' | 'uv'

Plotting coordinate system of the pattern, specified as the comma-separated pair
consisting of 'CoordinateSystem' and one of 'polar', 'rectangular', or
'uv'. When 'CoordinateSystem' is set to 'polar' or 'rectangular', the
AZ and EL arguments specify the pattern azimuth and elevation, respectively. AZ
values must lie between –180° and 180°. EL values must lie between –90° and 90°. If
'CoordinateSystem' is set to 'uv', AZ and EL then specify U and V coordinates,
respectively. AZ and EL must lie between -1 and 1.

Example: 'uv'

Data Types: char

1 Alphabetical List

1-896

'Type' — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and
one of

• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed

pattern is for the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field

pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'

Data Types: char

'Normalize' — Display normalize pattern
true (default) | false

Display normalized pattern, specified as the comma-separated pair consisting of
'Normalize' and a Boolean. Set this parameter to true to display a normalized pattern.
When you set 'Type' to 'directivity', this parameter does not apply. Directivity
patterns are already normalized.
Example:
Data Types: logical

'PlotStyle' — Plotting style
'overlay' (default) | 'waterfall'

Plotting style, specified as the comma-separated pair consisting of 'Plotstyle' and
either 'overlay' or 'waterfall'. This parameter applies when you specify multiple
frequencies in FREQ in 2-D plots. You can draw 2-D plots by setting one of the arguments
AZ or EL to a scalar.

Example:
Data Types: char

'Polarization' — Polarized field component
'combined' (default) | 'H' | 'V'

 pattern

1-897

Polarized field component to display, specified as the comma-separated pair consisting
of 'Polarization' and 'combined', 'H', or 'V'. This parameter applies only when
the sensors are polarization-capable and when the 'Type' parameter is not set to
'directivity'. This table shows the meaning of the display options

'Polarization' Display

'combined' Combined H and V polarization
components

'H' H polarization component
'V' V polarization component

Example: 'V'

Data Types: char

'PropagationSpeed' — Signal propagation speed
speed of light (default) | positive scalar

Signal propagation speed, specified as the comma-separated pair consisting of
'PropagationSpeed' and a positive scalar in meters per second.

Example: 'PropagationSpeed',physconst('LightSpeed')

Data Types: double

'Weights' — Array weights
1 (default) | N-by-1 complex-valued column vector | N-by-L complex-valued matrix

Array weights, specified as the comma-separated pair consisting of 'Weights' and an
N-by-1 complex-valued column vector or N-by-L complex-valued matrix. Array weights
are applied to the elements of the array to produce array steering, tapering, or both. The
dimension N is the number of elements in the array. The dimension L is the number of
frequencies specified by FREQ.

Weights Dimension FREQ Dimension Purpose

N-by-1 complex-valued
column vector

Scalar or 1-by-L row vector Applies a set of weights for
the single frequency or for all
L frequencies.

N-by-L complex-valued
matrix

1-by-L row vector Applies each of the L
columns of 'Weights' for

1 Alphabetical List

1-898

Weights Dimension FREQ Dimension Purpose

the corresponding frequency
in FREQ.

Note: Use complex weights to steer the array response toward different directions. You
can create weights using the phased.SteeringVector System object or you can compute
your own weights. In general, you apply Hermitian conjugation before using weights in
any Phased Array System Toolbox function or System object such as phased.Radiator
or phased.Collector. However, for the directivity, pattern, patternAzimuth, and
patternElevation methods of any array System object use the steering vector without
conjugation.

Example: 'Weights',ones(N,M)

Data Types: double
Complex Number Support: Yes

Output Arguments

PAT — Array pattern
M-by-N real-valued matrix

Array pattern, returned as an M-by-N real-valued matrix. The dimensions of PAT
correspond to the dimensions of the output arguments AZ_ANG and EL_ANG.

AZ_ANG — Azimuth angles
scalar | 1-by-M real-valued row vector

Azimuth angles for displaying directivity or response pattern, returned as a scalar or 1-
by-M real-valued row vector corresponding to the dimension set in AZ. The rows of PAT
correspond to the values in AZ_ANG.

EL_ANG — Elevation angles
scalar | 1-by-N real-valued row vector

Elevation angles for displaying directivity or response, returned as a scalar or 1-by-N
real-valued row vector corresponding to the dimension set in EL. The columns of PAT
correspond to the values in EL_ANG.

 pattern

1-899

More About

Directivity

Directivity describes the directionality of the radiation pattern of a sensor element
or array of sensor elements. Higher directivity is desired when you want to transmit
more radiation in a specific direction. Directivity is the ratio of the transmitted radiant
intensity in a specified direction to the radiant intensity transmitted by an isotropic
radiator with the same total transmitted power

D
U

P
=

()
4p

q jrad

total

,

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal
is the total power transmitted by an isotropic radiator. For a receiving element or array,
directivity measures the sensitivity toward radiation arriving from a specific direction.
The principle of reciprocity shows that the directivity of an element or array used for
reception equals the directivity of the same element or array used for transmission.
When converted to decibels, the directivity is denoted as dBi. For information on
directivity, read the notes on “Element directivity” and “Array directivity”.

Computing directivity requires integrating the far-field transmitted radiant intensity
over all directions in space to obtain the total transmitted power. There is a difference
between how that integration is performed when Antenna Toolbox antennas are used
in a phased array and when Phased Array System Toolbox antennas are used. When
an array contains Antenna Toolbox antennas, the directivity computation is performed
using a triangular mesh created from 500 regularly spaced points over a sphere. For
Phased Array System Toolbox antennas, the integration uses a uniform rectangular
mesh of points spaced 1° apart in azimuth and elevation over a sphere. There may be
significant differences in computed directivity, especially for large arrays.

Convert plotResponse to pattern

For antenna, microphone, and array System objects, the pattern method replaces the
plotResponse method. In addition, two new simplified methods exist just to draw
2-D azimuth and elevation pattern plots. These methods are azimuthPattern and
elevationPattern.

1 Alphabetical List

1-900

The following table is a guide for converting your code from using plotResponse to
pattern. Notice that some of the inputs have changed from input arguments to Name-
Value pairs and conversely. The general pattern method syntax is

pattern(H,FREQ,AZ,EL,'Name1','Value1',...,'NameN','ValueN')

plotResponse Inputs plotResponse Description pattern Inputs

H argument Antenna, microphone, or array
System object.

H argument (no change)

FREQ argument Operating frequency. FREQ argument (no change)
V argument Propagation speed. This

argument is used only for
arrays.

'PropagationSpeed' name-
value pair. This parameter is
only used for arrays.

'Format' and 'RespCut'
name-value pairs

These options work together to
let you create a plot in angle
space (line or polar style) or
UV space. They also determine
whether the plot is 2-D or 3-
D. This table shows you how to
create different types of plots
using plotResponse.

Display space

Angle space
(2D)

Set
'RespCut'

to 'Az' or

'El'. Set
'Format' to
'line' or
'polar'.

Set the display
axis using
either the
the
'AzimuthAngles'

or
'ElevationAngles'

'CoordinateSystem' name-
value pair used together with
the AZ and EL input arguments.

'CoordinateSystem' has
the same options as the
plotResponse method
'Format'name-value pair,
except that 'line' is now
named 'rectangular'. The
table shows how to create
different types of plots using
pattern.

Display space

Angle space
(2D)

Set
'Coordinate

System' to
'rectangular'

or 'polar'.
Specify either
AZ or EL as a
scalar.

Angle space
(3D)

Set
'Coordinate

 pattern

1-901

plotResponse Inputs plotResponse Description pattern Inputs

Display space

name-value
pairs.

Angle space
(3D)

Set
'RespCut'

to '3D'. Set
'Format' to
'line' or
'polar'.

Set the display
axis using
both the
'AzimuthAngles'

and'ElevationAngles'
name-value
pairs.

UV space (2D) Set
'RespCut'

to'U'. Set
'Format'

to 'UV'. Set
the display
range using
the 'UGrid'
name-value
pair.

UV space (3D) Set
'RespCut'

to'3D'. Set
'Format' to
'UV'. Set the
display range
using both
the 'UGrid'
and 'VGrid'

Display space

System' to
'rectangular'

or 'polar'.
Specify both
AZ and EL as
vectors.

UV space (2D) Set
'Coordinate

System' to
'uv'. Use AZ
to specify a U-
space vector.
Use EL to
specify a V-
space scalar.

UV space (3D) Set
'Coordinate

System' to
'uv'. Use AZ
to specify a U-
space vector.
Use EL to
specify a V-
space vector.

If you set CoordinateSystem
to 'uv', enter the UV grid
values using AZ and EL.

1 Alphabetical List

1-902

plotResponse Inputs plotResponse Description pattern Inputs

Display space

name-value
pairs.

'CutAngle' name-value pair Constant angle at to take an
azimuth or elevation cut. When
producing a 2-D plot and when
'RespCut' is set to 'Az' or
'El', use 'CutAngle' to set
the slice across which to view
the plot.

No equivalent name-value pair.
To create a cut, specify either AZ
or EL as a scalar, not a vector.

'NormalizeResponse' name-
value pair

Normalizes the plot.
When 'Unit' is set to
'dbi', you cannot specify
'NormalizeResponse'.

'Normalize' name-value
pair. When 'Type' is set to
'directivity',

you cannot specify
'Normalize'.
.

'OverlayFreq' name-value
pair

Plot multiple frequencies on
the same 2-D plot. Available
only when 'Format' is
set to 'line' or 'uv' and
'RespCut' is not set to '3D'.
The value true produces an
overlay plot and the value
false produces a waterfall
plot.

'PlotStyle' name-value pair
plots multiple frequencies on the
same 2-D plot.

The values 'overlay' and
'waterfall' correspond to
'OverlayFreq' values of
true and false. The option
'waterfall' is allowed only
when 'CoordinateSystem' is
set to 'rectangular' or 'uv'.

'Polarization' name-value
pair

Determines how to plot
polarized fields. Options are
'None', 'Combined', 'H', or
'V'.

'Polarization' name-value
pair determines how to plot
polarized fields. The 'None'
option is removed. The options
'Combined', 'H', or 'V' are
unchanged.

 pattern

1-903

plotResponse Inputs plotResponse Description pattern Inputs

'Unit' name-value pair Determines the plot units.
Choose 'db', 'mag', 'pow',
or 'dbi', where the default is
'db'.

'Type' name-value pair, uses
equivalent options with different
names

plotResponse pattern

'db' 'powerdb'

'mag' 'efield'

'pow' 'power'

'dbi' 'directivity'

'Weights' name-value pair Array element tapers (or
weights).

'Weights' name-value pair (no
change).

'AzimuthAngles' name-value
pair

Azimuth angles used to display
the antenna or array response.

AZ argument

'ElevationAngles' name-
value pair

Elevation angles used to
display the antenna or array
response.

EL argument

'UGrid' name-value pair Contains U coordinates in UV-
space.

AZ argument when
'CoordinateSystem' name-
value pair is set to 'uv'

'VGrid' name-value pair Contains V-coordinates in UV-
space.

EL argument when
'CoordinateSystem' name-
value pair is set to 'uv'

Examples

Azimuth Pattern and Directivity of Heterogeneous URA

Construct a 3-by-3 heterogeneous URA of short-dipole antenna elements with a
rectangular lattice. Then, plot the array's azimuth pattern at 300 MHz.

sElement1 = phased.ShortDipoleAntennaElement(...

 'FrequencyRange',[2e8 5e8],...

 'AxisDirection','Z');

sElement2 = phased.ShortDipoleAntennaElement(...

 'FrequencyRange',[2e8 5e8],...

1 Alphabetical List

1-904

 'AxisDirection','Y');

sArray = phased.HeterogeneousURA(...

 'ElementSet',{sElement1,sElement2},...

 'ElementIndices',[1 1 1; 2 2 2; 1 1 1]);

fc = 300e6;

c = physconst('LightSpeed');

pattern(sArray,fc,[-180:180],0,...

 'PropagationSpeed',c,...

 'CoordinateSystem','rectangular',...

 'Type','powerdb',...

 'Normalize',true,...

 'Polarization','combined')

Plot the same result in polar form.

 pattern

1-905

pattern(sArray,fc,[-180:180],0,...

 'PropagationSpeed',c,...

 'CoordinateSystem','polar',...

 'Type','powerdb',...

 'Normalize',true,...

 'Polarization','combined')

Finally, plot the directivity.

pattern(sArray,fc,[-180:180],0,...

 'PropagationSpeed',c,...

 'CoordinateSystem','rectangular',...

 'Type','directivity')

1 Alphabetical List

1-906

Azimuth Pattern of Heterogeneous URA For Two Sets of Weights

Construct a square 3-by-3 heterogeneous URA composed of 9 short-dipole antenna
elements with different orientations. Plot the array azimuth pattern from -45 degrees to
45 degrees in 0.1 degree increments. The Weights parameter lets you display the array
pattern simultaneously for different sets of weights: in this case a uniform set of weights
and a tapered set.

sElement1 = phased.ShortDipoleAntennaElement(...

 'FrequencyRange',[2e8 5e8],...

 'AxisDirection','Z');

sElement2 = phased.ShortDipoleAntennaElement(...

 'FrequencyRange',[2e8 5e8],...

 'AxisDirection','Y');

 pattern

1-907

sArray = phased.HeterogeneousURA(...

 'ElementSet',{sElement1,sElement2},...

 'ElementIndices',[1 1 1; 2 2 2; 1 1 1]);

fc = [3e8];

c = physconst('LightSpeed');

wts1 = ones(9,1)/9;

wts2 = [.7,.7,.7,.7,1,.7,.7,.7,.7]';

wts2 = wts2/sum(wts2);

pattern(sArray,fc,[-45:0.1:45],0,...

 'PropagationSpeed',c,...

 'CoordinateSystem','rectangular',...

 'Type','powerdb',...

 'Weights',[wts1,wts2],...

 'Polarization','combined')

1 Alphabetical List

1-908

See Also
phased.HeterogeneousURA.patternAzimuth |
phased.HeterogeneousURA.patternElevation

Introduced in R2015a

 patternAzimuth

1-909

patternAzimuth
System object: phased.HeterogeneousURA
Package: phased

Plot heterogeneous URA directivity or pattern versus azimuth

Syntax

patternAzimuth(sArray,FREQ)

patternAzimuth(sArray,FREQ,EL)

patternAzimuth(sArray,FREQ,EL,Name,Value)

PAT = patternAzimuth(___)

Description

patternAzimuth(sArray,FREQ) plots the 2-D array directivity pattern versus
azimuth (in dBi) for the array sArray at zero degrees elevation angle. The argument
FREQ specifies the operating frequency.

patternAzimuth(sArray,FREQ,EL), in addtion, plots the 2-D array directivity
pattern versus azimuth (in dBi) for the array sArray at the elevation angle specified by
EL. When EL is a vector, multiple overlaid plots are created.

patternAzimuth(sArray,FREQ,EL,Name,Value) plots the array pattern with
additional options specified by one or more Name,Value pair arguments.

PAT = patternAzimuth(___) returns the array pattern. PAT is a matrix whose
entries represent the pattern at corresponding sampling points specified by the
'Azimuth' parameter and the EL input argument.

Input Arguments

sArray — Heterogeneous URA
System object

Heterogeneous URA, specified as a phased.HeterogeneousURA System object.

1 Alphabetical List

1-910

Example: sArray= phased.HeterogeneousURA;

FREQ — Frequency for computing directivity and pattern
positive scalar

Frequency for computing directivity and pattern, specified as a positive scalar. Frequency
units are in hertz.

• For an antenna or microphone element, FREQ must lie within the range of values
specified by the FrequencyRange or the FrequencyVector property of the
element. Otherwise, the element produces no response and the directivity is
returned as –Inf. Most elements use the FrequencyRange property except for
phased.CustomAntennaElement and phased.CustomMicrophoneElement, which use
the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements
that make up the array. Otherwise, the array produces no response and the
directivity is returned as –Inf.

Example: 1e8

Data Types: double

EL — Elevation angles
1-by-N real-valued row vector

Elevation angles for computing array directivity and pattern, specified as a 1-by-N real-
valued row vector, where N is the number of requested elevation directions. Angle units
are in degrees. The elevation angle must lie between –90° and 90°.

The elevation angle is the angle between the direction vector and the xy plane. When
measured toward the z-axis, this angle is positive.
Example: [0,10,20]

Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

 patternAzimuth

1-911

'Type' — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and
one of

• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed

pattern is for the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field

pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'

Data Types: char

'PropagationSpeed' — Signal propagation speed
speed of light (default) | positive scalar

Signal propagation speed, specified as the comma-separated pair consisting of
'PropagationSpeed' and a positive scalar in meters per second.

Example: 'PropagationSpeed',physconst('LightSpeed')

Data Types: double

'Weights' — Array weights
M-by-1 complex-valued column vector

Array weights, specified as the comma-separated pair consisting of 'Weights' and an
M-by-1 complex-valued column vector. Array weights are applied to the elements of the
array to produce array steering, tapering, or both. The dimension M is the number of
elements in the array.

Note: Use complex weights to steer the array response toward different directions. You
can create weights using the phased.SteeringVector System object or you can compute
your own weights. In general, you apply Hermitian conjugation before using weights in
any Phased Array System Toolbox function or System object such as phased.Radiator

1 Alphabetical List

1-912

or phased.Collector. However, for the directivity, pattern, patternAzimuth, and
patternElevation methods of any array System object use the steering vector without
conjugation.

Example: 'Weights',ones(10,1)

Data Types: double
Complex Number Support: Yes

'Azimuth' — Azimuth angles
[-180:180] (default) | 1-by-P real-valued row vector

Azimuth angles, specified as the comma-separated pair consisting of 'Azimuth' and a 1-
by-P real-valued row vector. Azimuth angles define where the array pattern is calculated.
Example: 'Azimuth',[-90:2:90]

Data Types: double

Output Arguments

PAT — Array directivity or pattern
L-by-N real-valued matrix

Array directivity or pattern, returned as an L-by-N rea-valued matrix. The dimension
L is the number of azimuth values determined by the 'Azimuth' name-value pair
argument. The dimension N is the number of elevation angles, as determined by the EL
input argument.

Definitions

Directivity

Directivity describes the directionality of the radiation pattern of a sensor element
or array of sensor elements. Higher directivity is desired when you want to transmit
more radiation in a specific direction. Directivity is the ratio of the transmitted radiant
intensity in a specified direction to the radiant intensity transmitted by an isotropic
radiator with the same total transmitted power

 patternAzimuth

1-913

D
U

P
=

()
4p

q jrad

total

,

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal
is the total power transmitted by an isotropic radiator. For a receiving element or array,
directivity measures the sensitivity toward radiation arriving from a specific direction.
The principle of reciprocity shows that the directivity of an element or array used for
reception equals the directivity of the same element or array used for transmission.
When converted to decibels, the directivity is denoted as dBi. For information on
directivity, read the notes on “Element directivity” and “Array directivity”.

Computing directivity requires integrating the far-field transmitted radiant intensity
over all directions in space to obtain the total transmitted power. There is a difference
between how that integration is performed when Antenna Toolbox antennas are used
in a phased array and when Phased Array System Toolbox antennas are used. When
an array contains Antenna Toolbox antennas, the directivity computation is performed
using a triangular mesh created from 500 regularly spaced points over a sphere. For
Phased Array System Toolbox antennas, the integration uses a uniform rectangular
mesh of points spaced 1° apart in azimuth and elevation over a sphere. There may be
significant differences in computed directivity, especially for large arrays.

Examples

Azimuth Directivity of Heterogeneous URA

Construct a square 4-by-4 heterogeneous URA composed of a mix of crossed-dipole and
short-dipole antenna elements with short dipoles in the center. Plot the array azimuth
directivity for two different elevation angles. Set the operating frequency to 400 MHz.

sElement1 = phased.CrossedDipoleAntennaElement(...

 'FrequencyRange',[200e6 500e6]);

sElement2 = phased.ShortDipoleAntennaElement(...

 'FrequencyRange',[200e6 500e6],...

 'AxisDirection','Z');

elemindices = ones(4,4);

elemindices(2:3,2:3) = 2;

sArray = phased.HeterogeneousURA(...

 'ElementSet',{sElement1,sElement2},...

 'ElementIndices',elemindices);

fc = 400e6;

1 Alphabetical List

1-914

c = physconst('LightSpeed');

patternAzimuth(sArray,fc,[0 30],...

 'PropagationSpeed',c,...

 'Type','directivity')

See Also
phased.HeterogeneousURA.pattern | phased.HeterogeneousURA.patternElevation

Introduced in R2015a

 patternElevation

1-915

patternElevation
System object: phased.HeterogeneousURA
Package: phased

Plot heterogeneous ULA directivity or pattern versus elevation

Syntax

patternElevation(sArray,FREQ)

patternElevation(sArray,FREQ,AZ)

patternElevation(sArray,FREQ,AZ,Name,Value)

PAT = patternElevation(___)

Description

patternElevation(sArray,FREQ) plots the 2-D array directivity pattern versus
elevation (in dBi) for the array sArray at zero degrees azimuth angle. When AZ is a
vector, multiple overlaid plots are created. The argument FREQ specifies the operating
frequency.

patternElevation(sArray,FREQ,AZ), in addition, plots the 2-D element directivity
pattern versus elevation (in dBi) at the azimuth angle specified by AZ. When AZ is a
vector, multiple overlaid plots are created.

patternElevation(sArray,FREQ,AZ,Name,Value) plots the array pattern with
additional options specified by one or more Name,Value pair arguments.

PAT = patternElevation(___) returns the array pattern. PAT is a matrix whose
entries represent the pattern at corresponding sampling points specified by the
'Elevation' parameter and the AZ input argument.

Input Arguments

sArray — Heterogeneous URA
System object

1 Alphabetical List

1-916

Heterogeneous URA array, specified as a phased.HeterogeneousURA System object.
Example: sArray= phased.HeterogeneousURA;

FREQ — Frequency for computing directivity and pattern
positive scalar

Frequency for computing directivity and pattern, specified as a positive scalar. Frequency
units are in hertz.

• For an antenna or microphone element, FREQ must lie within the range of values
specified by the FrequencyRange or the FrequencyVector property of the
element. Otherwise, the element produces no response and the directivity is
returned as –Inf. Most elements use the FrequencyRange property except for
phased.CustomAntennaElement and phased.CustomMicrophoneElement, which use
the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements
that make up the array. Otherwise, the array produces no response and the
directivity is returned as –Inf.

Example: 1e8

Data Types: double

AZ — Azimuth angles for computing directivity and pattern
1-by-N real-valued row vector

Azimuth angles for computing array directivity and pattern, specified as a 1-by-M real-
valued row vector where N is the number of desired azimuth directions. Angle units are
in degrees. The azimuth angle must lie between –180° and 180°.

The azimuth angle is the angle between the x-axis and the projection of the direction
vector onto the xy plane. This angle is positive when measured from the x-axis toward the
y-axis.
Example: [0,10,20]

Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

 patternElevation

1-917

quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Type' — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and
one of

• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed

pattern is for the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field

pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'

Data Types: char

'PropagationSpeed' — Signal propagation speed
speed of light (default) | positive scalar

Signal propagation speed, specified as the comma-separated pair consisting of
'PropagationSpeed' and a positive scalar in meters per second.

Example: 'PropagationSpeed',physconst('LightSpeed')

Data Types: double

'Weights' — Array weights
M-by-1 complex-valued column vector

Array weights, specified as the comma-separated pair consisting of 'Weights' and an
M-by-1 complex-valued column vector. Array weights are applied to the elements of the
array to produce array steering, tapering, or both. The dimension M is the number of
elements in the array.

Note: Use complex weights to steer the array response toward different directions. You
can create weights using the phased.SteeringVector System object or you can compute
your own weights. In general, you apply Hermitian conjugation before using weights in

1 Alphabetical List

1-918

any Phased Array System Toolbox function or System object such as phased.Radiator
or phased.Collector. However, for the directivity, pattern, patternAzimuth, and
patternElevation methods of any array System object use the steering vector without
conjugation.

Example: 'Weights',ones(10,1)

Data Types: double
Complex Number Support: Yes

'Elevation' — Elevation angles
[-90:90] (default) | 1-by-P real-valued row vector

Elevation angles, specified as the comma-separated pair consisting of 'Elevation'
and a 1-by-P real-valued row vector. Elevation angles define where the array pattern is
calculated.
Example: 'Elevation',[-90:2:90]

Data Types: double

Output Arguments

PAT — Array directivity or pattern
L-by-N real-valued matrix

Array directivity or pattern, returned as an L-by-N real-valued matrix. The dimension
L is the number of elevation angles determined by the 'Elevation' name-value pair
argument. The dimension N is the number of azimuth angles determined by the AZ
argument.

Definitions

Directivity

Directivity describes the directionality of the radiation pattern of a sensor element
or array of sensor elements. Higher directivity is desired when you want to transmit
more radiation in a specific direction. Directivity is the ratio of the transmitted radiant

 patternElevation

1-919

intensity in a specified direction to the radiant intensity transmitted by an isotropic
radiator with the same total transmitted power

D
U

P
=

()
4p

q jrad

total

,

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal
is the total power transmitted by an isotropic radiator. For a receiving element or array,
directivity measures the sensitivity toward radiation arriving from a specific direction.
The principle of reciprocity shows that the directivity of an element or array used for
reception equals the directivity of the same element or array used for transmission.
When converted to decibels, the directivity is denoted as dBi. For information on
directivity, read the notes on “Element directivity” and “Array directivity”.

Computing directivity requires integrating the far-field transmitted radiant intensity
over all directions in space to obtain the total transmitted power. There is a difference
between how that integration is performed when Antenna Toolbox antennas are used
in a phased array and when Phased Array System Toolbox antennas are used. When
an array contains Antenna Toolbox antennas, the directivity computation is performed
using a triangular mesh created from 500 regularly spaced points over a sphere. For
Phased Array System Toolbox antennas, the integration uses a uniform rectangular
mesh of points spaced 1° apart in azimuth and elevation over a sphere. There may be
significant differences in computed directivity, especially for large arrays.

Examples

Elevation Directivity of Heterogeneous URA

Construct a square 4-by-4 heterogeneous URA composed of a mix of crossed-dipole and
short-dipole antenna elements with short dipoles in the center. Plot the array elevation
directivity for two different azimuth angles. Set the operating frequency to 400 MHz.

sElement1 = phased.CrossedDipoleAntennaElement(...

 'FrequencyRange',[200e6 500e6]);

sElement2 = phased.ShortDipoleAntennaElement(...

 'FrequencyRange',[200e6 500e6],...

 'AxisDirection','Z');

elemindices = ones(4,4);

elemindices(2:3,2:3) = 2;

sArray = phased.HeterogeneousURA(...

1 Alphabetical List

1-920

 'ElementSet',{sElement1,sElement2},...

 'ElementIndices',elemindices);

fc = 400e6;

c = physconst('LightSpeed');

patternElevation(sArray,fc,[0 75],...

 'PropagationSpeed',c,...

 'Type','directivity')

See Also
phased.HeterogeneousURA.pattern | phased.HeterogeneousURA.patternAzimuth

Introduced in R2015a

 plotResponse

1-921

plotResponse
System object: phased.HeterogeneousURA
Package: phased

Plot response pattern of array

Syntax

plotResponse(H,FREQ,V)

plotResponse(H,FREQ,V,Name,Value)

hPlot = plotResponse(___)

Description

plotResponse(H,FREQ,V) plots the array response pattern along the azimuth cut,
where the elevation angle is 0. The operating frequency is specified in FREQ. The
propagation speed is specified in V.

plotResponse(H,FREQ,V,Name,Value) plots the array response with additional
options specified by one or more Name,Value pair arguments.

hPlot = plotResponse(___) returns handles of the lines or surface in the figure
window, using any of the input arguments in the previous syntaxes.

Input Arguments

H

Array object

FREQ

Operating frequency in Hertz specified as a scalar or 1-by-K row vector. Values must lie
within the range specified by a property of H. That property is named FrequencyRange
or FrequencyVector, depending on the type of element in the array. The element has
no response at frequencies outside that range. If you set the 'RespCut' property of H to

1 Alphabetical List

1-922

'3D', FREQ must be a scalar. When FREQ is a row vector, plotResponse draws multiple
frequency responses on the same axes.

V

Propagation speed in meters per second.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'CutAngle'

Cut angle as a scalar. This argument is applicable only when RespCut is 'Az' or
'El'. If RespCut is 'Az', CutAngle must be between –90 and 90. If RespCut is 'El',
CutAngle must be between –180 and 180.

Default: 0

'Format'

Format of the plot, using one of 'Line', 'Polar', or 'UV'. If you set Format to 'UV',
FREQ must be a scalar.

Default: 'Line'

'NormalizeResponse'

Set this value to true to normalize the response pattern. Set this value to false to plot
the response pattern without normalizing it. This parameter is not applicable when you
set the Unit parameter value to 'dbi'.

Default: true

'OverlayFreq'

Set this value to true to overlay pattern cuts in a 2-D line plot. Set this value to false
to plot pattern cuts against frequency in a 3-D waterfall plot. If this value is false, FREQ
must be a vector with at least two entries.

 plotResponse

1-923

This parameter applies only when Format is not 'Polar' and RespCut is not '3D'.

Default: true

'Polarization'

Specify the polarization options for plotting the array response pattern. The allowable
values are |'None' | 'Combined' | 'H' | 'V' | where

• 'None' specifies plotting a nonpolarized response pattern
• 'Combined' specifies plotting a combined polarization response pattern
• 'H' specifies plotting the horizontal polarization response pattern
• 'V' specifies plotting the vertical polarization response pattern

For arrays that do not support polarization, the only allowed value is 'None'. This
parameter is not applicable when you set the Unit parameter value to 'dbi'.

Default: 'None'

'RespCut'

Cut of the response. Valid values depend on Format, as follows:

• If Format is 'Line' or 'Polar', the valid values of RespCut are 'Az', 'El', and
'3D'. The default is 'Az'.

• If Format is 'UV', the valid values of RespCut are 'U' and '3D'. The default is 'U'.

If you set RespCut to '3D', FREQ must be a scalar.

'Unit'

The unit of the plot. Valid values are 'db', 'mag', 'pow', or 'dbi'. This parameter
determines the type of plot that is produced.

Unit value Plot type

db power pattern in dB
scale

mag field pattern
pow power pattern

1 Alphabetical List

1-924

Unit value Plot type

dbi directivity

Default: 'db'

'Weights'

Weight values applied to the array, specified as a length-N column vector or N-by-M
matrix. The dimension N is the number of elements in the array. The interpretation of M
depends upon whether the input argument FREQ is a scalar or row vector.

Weights Dimensions FREQ Dimension Purpose

N-by-1 column vector Scalar or 1-by-M row vector Apply one set of weights for
the same single frequency or
all M frequencies.

Scalar Apply all of the M different
columns in Weights for the
same single frequency.

N-by-M matrix 1-by-M row vector Apply each of the M different
columns in Weights for the
corresponding frequency in
FREQ.

'AzimuthAngles'

Azimuth angles for plotting array response, specified as a row vector. The
AzimuthAngles parameter sets the display range and resolution of azimuth angles for
visualizing the radiation pattern. This parameter is allowed only when the RespCut
parameter is set to 'Az' or '3D' and the Format parameter is set to 'Line' or
'Polar'. The values of azimuth angles should lie between –180° and 180° and must be
in nondecreasing order. When you set the RespCut parameter to '3D', you can set the
AzimuthAngles and ElevationAngles parameters simultaneously.

Default: [-180:180]

'ElevationAngles'

Elevation angles for plotting array response, specified as a row vector. The
ElevationAngles parameter sets the display range and resolution of elevation

 plotResponse

1-925

angles for visualizing the radiation pattern. This parameter is allowed only when the
RespCut parameter is set to 'El' or '3D' and the Format parameter is set to 'Line'
or 'Polar'. The values of elevation angles should lie between –90° and 90° and must be
in nondecreasing order. When yous set the RespCut parameter to '3D', you can set the
ElevationAngles and AzimuthAngles parameters simultaneously.

Default: [-90:90]

'UGrid'

U coordinate values for plotting array response, specified as a row vector. The UGrid
parameter sets the display range and resolution of the U coordinates for visualizing
the radiation pattern in U/V space. This parameter is allowed only when the Format
parameter is set to 'UV' and the RespCut parameter is set to 'U' or '3D'. The values of
UGrid should be between –1 and 1 and should be specified in nondecreasing order. You
can set the UGrid and VGrid parameters simultaneously.

Default: [-1:0.01:1]

'VGrid'

V coordinate values for plotting array response, specified as a row vector. The VGrid
parameter sets the display range and resolution of the V coordinates for visualizing
the radiation pattern in U/V space. This parameter is allowed only when the Format
parameter is set to 'UV' and the RespCut parameter is set to '3D'. The values of VGrid
should be between –1 and 1 and should be specified in nondecreasing order. You can set
VGrid and UGrid parameters simultaneously.

Default: [-1:0.01:1]

Examples

Azimuth Response and Directivity of Heterogeneous URA

Construct a 3-by-3 heterogeneous URA with a rectangular lattice, then plot the array's
azimuth response at 300 MHz.

sElement1 = phased.ShortDipoleAntennaElement(...

 'FrequencyRange',[2e8 5e8],...

1 Alphabetical List

1-926

 'AxisDirection','Z');

sElement2 = phased.ShortDipoleAntennaElement(...

 'FrequencyRange',[2e8 5e8],...

 'AxisDirection','Y');

sArray = phased.HeterogeneousURA(...

 'ElementSet',{sElement1,sElement2},...

 'ElementIndices',[1 1 1; 2 2 2; 1 1 1]);

fc = [3e8];

c = physconst('LightSpeed');

plotResponse(sArray,fc,c);

Plot the same result in polar form.

plotResponse(sArray,fc,c,'RespCut','Az','Format','Polar');

 plotResponse

1-927

Finally, plot the directivity.

plotResponse(sArray,fc,c,'RespCut','Az','Unit','dbi');

1 Alphabetical List

1-928

Azimuth Responses of a Heterogeneous URA For Two Sets of Weights

Construct a square 3-by-3 heterogeneous URA composed of 9 short-dipole antenna
elements with different orientations. Using the AzimuthAngles parameter, plot the
array's azimuth response in the -45 degrees to 45 degrees in 0.1 degree increments. The
Weights parameter lets you display the array's response simultaneously for different
sets of weights: in this case a uniform set of weights and a tapered set.

sElement1 = phased.ShortDipoleAntennaElement(...

 'FrequencyRange',[2e8 5e8],...

 'AxisDirection','Z');

sElement2 = phased.ShortDipoleAntennaElement(...

 'FrequencyRange',[2e8 5e8],...

 'AxisDirection','Y');

 plotResponse

1-929

sArray = phased.HeterogeneousURA(...

 'ElementSet',{sElement1,sElement2},...

 'ElementIndices',[1 1 1; 2 2 2; 1 1 1]);

fc = [3e8];

c = physconst('LightSpeed');

wts1 = ones(9,1)/9;

wts2 = [.7,.7,.7,.7,1,.7,.7,.7,.7]';

wts2 = wts2/sum(wts2);

plotResponse(sArray,fc,c,'RespCut','Az',...

 'Format','Line',...

 'AzimuthAngles',[-45:0.1:45],...

 'Weights',[wts1,wts2],'Unit','db');

1 Alphabetical List

1-930

See Also
azel2uv | uv2azel

 release

1-931

release
System object: phased.HeterogeneousURA
Package: phased

Allow property value and input characteristics

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

1 Alphabetical List

1-932

step
System object: phased.HeterogeneousURA
Package: phased

Output responses of array elements

Syntax

RESP = step(H,FREQ,ANG)

Description

RESP = step(H,FREQ,ANG) returns the array elements’ responses RESP at operating
frequencies specified in FREQ and directions specified in ANG.

Note: The object performs an initialization the first time the step method is executed.
This initialization locks nontunable properties and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Input Arguments

H

Array object

FREQ

Operating frequencies of array in hertz. FREQ is a row vector of length L. Typical values
are within the range specified by a property of H.Element. That property is named
FrequencyRange or FrequencyVector, depending on the type of element in the array.
The element has zero response at frequencies outside that range.

 step

1-933

ANG

Directions in degrees. ANG is either a 2-by-M matrix or a row vector of length M.

If ANG is a 2-by-M matrix, each column of the matrix specifies the direction in the
form [azimuth; elevation]. The azimuth angle must lie between –180° and 180°,
inclusive. The elevation angle must lie between –90° and 90°, inclusive.

If ANG is a row vector of length M, each element specifies the azimuth angle of the
direction. In this case, the corresponding elevation angle is assumed to be 0°.

Output Arguments

RESP

Voltage responses of the phased array. The output depends on whether the array
supports polarization or not.

• If the array is not capable of supporting polarization, the voltage response, RESP,
has the dimensions N-by-M-by-L. N is the number of elements in the array. The
dimension M is the number of angles specified in ANG. L is the number of frequencies
specified in FREQ. For any element, the columns of RESP contain the responses of the
array elements for the corresponding direction specified in ANG. Each of the L pages
of RESP contains the responses of the array elements for the corresponding frequency
specified in FREQ.

• If the array is capable of supporting polarization, the voltage response, RESP, is a
MATLAB struct containing two fields, RESP.H and RESP.V. The field, RESP.H,
represents the array’s horizontal polarization response, while RESP.V represents the
array’s vertical polarization response. Each field has the dimensions N-by-M-by-L.
N is the number of elements in the array, and M is the number of angles specified in
ANG. L is the number of frequencies specified in FREQ. Each column of RESP contains
the responses of the array elements for the corresponding direction specified in ANG.
Each of the L pages of RESP contains the responses of the array elements for the
corresponding frequency specified in FREQ.

1 Alphabetical List

1-934

Examples

Response of 2-by-2 Heterogeneous URA of Cosine Antennas

Construct a 2-by-2 rectangular lattice heterogeneous URA of cosine antenna elements.
Find the response of each element at 30 degrees azimuth and 0 degrees elevation.
Assume the operating frequency is 1 GHz. Then, plot the array directivity.

sElement1 = phased.CosineAntennaElement('CosinePower',1.5);

sElement2 = phased.CosineAntennaElement('CosinePower',1.8);

sArray = phased.HeterogeneousURA(...

 'ElementSet',{sElement1,sElement2},...

 'ElementIndices',[1 2; 2 1]);

fc = 1e9;

c = physconst('LightSpeed');

ang = [30;0];

resp = step(sArray,fc,ang)

resp =

 0.8059

 0.7719

 0.7719

 0.8059

Show the 3-D directivity pattern.

pattern(sArray,fc,[-180:180],[-90:90],...

 'PropagationSpeed',c,...

 'CoordinateSystem','rectangular',...

 'Type','directivity')

 step

1-935

See Also
phitheta2azel | uv2azel

1 Alphabetical List

1-936

viewArray
System object: phased.HeterogeneousURA
Package: phased

View array geometry

Syntax

viewArray(H)

viewArray(H,Name,Value)

hPlot = viewArray(___)

Description

viewArray(H) plots the geometry of the array specified in H.

viewArray(H,Name,Value) plots the geometry of the array, with additional options
specified by one or more Name,Value pair arguments.

hPlot = viewArray(___) returns the handle of the array elements in the figure
window. All input arguments described for the previous syntaxes also apply here.

Input Arguments

H

Array object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

 viewArray

1-937

'ShowIndex'

Vector specifying the element indices to show in the figure. Each number in the vector
must be an integer between 1 and the number of elements. You can also specify the
string 'All' to show indices of all elements of the array or 'None' to suppress indices.

Default: 'None'

'ShowNormals'

Set this value to true to show the normal directions of all elements of the array. Set this
value to false to plot the elements without showing normal directions.

Default: false

'ShowTaper'

Set this value to true to specify whether to change the element color brightness in
proportion to the element taper magnitude. When this value is set to false, all elements
are drawn with the same color.

Default: false

'Title'

String specifying the title of the plot.

Default: 'Array Geometry'

Output Arguments

hPlot

Handle of array elements in figure window.

Examples

Geometry, Normal Directions, and Indices of Heterogeneous URA Elements

Display the element positions, normal directions, and indices for all elements of a 4-by-4
heterogeneous URA.

1 Alphabetical List

1-938

sElement1 = phased.CosineAntennaElement('CosinePower',1.5);

sElement2 = phased.CosineAntennaElement('CosinePower',1.8);

sArray = phased.HeterogeneousURA(...

 'ElementSet',{sElement1,sElement2},...

 'ElementIndices',[1 1 1 1; 1 2 2 1; 1 2 2 1; 1 1 1 1]);

viewArray(sArray,'ShowIndex','all','ShowNormal',true);

• Phased Array Gallery

See Also
phased.ArrayResponse

../examples/phased-array-gallery.html

 phased.IntensityScope System object

1-939

phased.IntensityScope System object
Package: phased

Range-time-intensity (RTI) or Doppler-time-intensity (DTI) display

Description

The phased.IntensityScope System object creates an intensity scope for viewing
range-time-intensity (RTI) and Doppler-time-intensity (DTI) data. An intensity scope is
a scrolling waterfall of intensity values as a function of time. Scan lines appear at the
bottom of the display window and scroll off at the top. Each scan line represents signal
intensity as a function of a parameter of interest, such as range or speed. You can also
use this object to display angle-time-intensity data and spectral data. This figure shows
an RTI display.

To create an intensity scope:

1 Alphabetical List

1-940

1 Define and set up the phased.IntensityScope System object. You can set any
System object properties at this time or you can leave them at their default values.
See “Construction” on page 1-940 .

2 Call the phased.IntensityScope method to add intensity lines to the bottom of the
display according to the properties of the phased.IntensityScope System object.
Some properties are tunable and can be changed at any time. Non-tunable properties
cannot be changed after the first call to phased.IntensityScope. Subsequent calls to
phased.IntensityScope add more intensity lines.

Construction

sIS = phased.IntensityScope creates an intensity scope System object, sIS, having
default property values.

sIS = phased.IntensityScope(Name,Value) returns an intensity scope System
object, sIS, with each specified property Name set to a specified Value. Name must
appear inside single quotes (''). You can specify several name-value pair arguments in
any order as Name1,Value1,...,NameN,ValueN.

Properties

Name — Window name
'Intensity Scope' (default) | string

Intensity scope window name, specified as a string. Name property and Title are
different properties. The title appears inside the display window, above the data. The
name appears in the title bar of the window.
Example: 'Range Intensity'

Data Types: char

XResolution — X-axis sample spacing
1 (default) | positive real-valued scalar

X-axis sample spacing, specified as a positive real-valued scalar. This quantity
determines the width of each horizontal bin of the scan line. The units depend on the
interpretation of the data. For example, if you are creating an RTI display, then setting
XResolution to 0.5 is interpreted as 0.5 meters.

 phased.IntensityScope System object

1-941

Example: 0.5

Data Types: double

XOffset — X-axis offset
0 (default) | real-valued scalar

X-axis offset, specified as a real-valued scalar. This quantity sets the value of the
lowest bin of the scan line. The values of all other bins are equal to this value plus an
integer multiple of Xresolution. The units depend upon the interpretation of the
data. For example, if you are creating an RTI display, then setting XOffset to 100.0 is
interpreted as 100 meters.
Example: -0.1

Data Types: double

Xlabel — X-axis label
'' (default) | string

X-axis label, specified as a string.
Example: 'Range (km)'

Data Types: char

Title — Title of display
'' (default) | string

Title of the intensity scope display, specified as a character string. Title property and
Name are different properties. The title appears inside the display window, above the
data. The name appears in the title bar of the window.
Example: 'Range vs Time'

Data Types: char

TimeResolution — Time resolution
.001 (default) | positive real-valued scalar

Time resolution of intensity line(s), specified as a positive real-valued scalar. Units are
seconds.
Example: .0001

Data Types: double

1 Alphabetical List

1-942

TimeSpan — Time span of display window
0.1 (default) | positive real-valued scalar

Time span of intensity display, specified as a positive real-valued scalar. Units are
seconds.
Example: 5.0

Data Types: double

IntensityUnits — Intensity units label
'dB' (default) | string

Intensity units label displayed in the color bar, specified as a character string.
Example: 'Watts'

Data Types: char

Position — Location and size of intensity scope window
dependens on display-resolution (default) | 1-by-4 vector of positive values

Location and size of the intensity scope window, specified as a 1-by-4 vector having the
form [left bottom width height]. Units are in pixels.

• left and bottom specify the location of the bottom-left corner of the window.
• width and height specify the width and height of the window.

The default value of this property depends on the resolution of your display. This
property is tunable.
Example: [100 100 500 400]

Data Types: double

Methods

clone Create IntensityScope System object with
identical property values

getNumInputs Number of expected inputs to step method

 phased.IntensityScope System object

1-943

getNumOutputs Number of outputs from step method
hide Hide intensity scope window
isLocked Locked status for input attributes and

nontunable properties
release Enable property values and input

characteristics to change
reset Reset state of intensity scope System object
show Show intensity scope window
step Update intensity scope display

Examples

RTI of Moving Target

Use a phased.IntensityScope System object™ to display the echo intensity of a
moving target as a function of range and time.

Run the simulation for 5 seconds at 0.1 second steps. In the display, each horizontal scan
line shows the intensities of radar echo at each time step.

nsteps = 50;

dt = .1;

timespan = nsteps*dt;

Simulate a target at a range of 320.0 km and a range rate of 2.0 km/s. Echoes are
resolved into range bins of 1 km resolution. The range bins span from 50 to 1000 km.

rngres = 1.0;

rngmin = 50.0;

rngmax = 1000.0;

tgtrange = 320.0;

rangerate = 2.0;

rngscan = [rngmin:rngres:rngmax];

Set up the Intensity Scope using these properties.

• Use the XResolution property to set the width of each scan line bin to the range
resolution of 1 km.

1 Alphabetical List

1-944

• Use the XOffset property to set the value of the lowest range bin to the minimum
range of 50 km.

• Use the TimeResolution property to set the value of the scan line time difference to
0.1 s.

• Use the TimeSpan property to set the height of the display window to the time
duration of the simulation.

• Use the IntensityUnits property to set the display units to Watts.

scope = phased.IntensityScope(...

 'Name','IntensityScope Display',...

 'Title','Range vs. Time',...

 'XLabel','Range (km)', ...

 'XResolution',rngres,'XOffset',rngmin,...

 'TimeResolution',dt,'TimeSpan',timespan, ...

 'IntensityUnits','Watts',...

 'Position',[100,100,800,450]);

Update the current target bin and create entries for two adjacent range bins. Each call to
the step method creates a new scan line.

for k = 1:nsteps

 bin = floor((tgtrange - rngmin)/rngres) + 1;

 scanline = zeros(size(rngscan));

 scanline(bin+[-1:1]) = 1;

 step(scope,scanline.');

 tgtrange = tgtrange + dt*rangerate;

 pause(.1);

end

 phased.IntensityScope System object

1-945

RTI Display of Three Moving Targets

Use the phased.IntensityScope System object™ to display the intensities of the
echoes of three moving targets as functions of range and time.

Create the Radar and Target System Objects

Set up the initial positions and velocities of the three targets. Use the phased.Platform
System object™ to model radar and target motions. The radar is stationary while the
targets undergo constant velocity motion. The simulation runs for 500 steps at 0.1 second
increments, giving a total simulation time of 50 seconds.

nsteps = 500;

dt = .1;

1 Alphabetical List

1-946

timespan = nsteps*dt;

x1 = [60,0,0]';

x2 = [60,-80,40]';

x3 = [300,0,-300]';

v1 = [2,0,0]';

v2 = [10,5,6]';

v3 = [-10,2,-4]';

sRadar = phased.Platform([0,0,0]',[0,0,0]');

sTargets = phased.Platform([x1,x2,x3],[v1,v2,v3]);

Set Up Range Bins

Each echo is put into a range bin. The range bin resolution is 1 meter and the range is
from 50 to 1000 meters.

rngres = 1.0;

rngmin = 50.0;

rngmax = 1000.0;

rngscan = [rngmin:rngres:rngmax];

Create the Gain Function

Define a range-dependent gain function to enhance the display of targets at larger
ranges. The gain function amplifies the returned echo for visualization purposes only.

rangegain = @(rng)(1e12*rng^4);

Create the Intensity Scope

Set up the Intensity Scope using these properties.

• Use the XResolution property to set the width of each scan line bin to the range
resolution of 1 km.

• Use the XOffset property to set the value of the lowest range bin to the minimum
range of 50 km.

• Use the TimeResolution property to set the value of the scan line time difference to
0.1 s.

• Use the TimeSpan property to set the height of the display window to the time
duration of the simulation.

• Use the IntensityUnits property to set the display units to Watts.

rti = phased.IntensityScope(...

 phased.IntensityScope System object

1-947

 'Name','IntensityScope Display',...

 'Title','Ranges vs. Time',...

 'XLabel','Range (m)', ...

 'XResolution',rngres,'XOffset',rngmin,...

 'TimeResolution',dt,'TimeSpan',timespan, ...

 'IntensityUnits','Watts',...

 'Position',[100,100,800,450]);

Run Simulation Loop

1 In this loop, move the targets at constant velocity using the step method of the
phased.Platform System object.

2 Compute the target ranges using the rangeangle function.
3 Compute the target range bins by quantizing the range values in integer multiples of

rangres.
4 Fill each target range bin and neighboring bins with a simulated radar intensity

value.
5 Add the signal from each target to the scan line.
6 Call the step method of the phased.IntensityScope System object to display the

scan lines.

for k = 1:nsteps

 xradar = step(sRadar,dt);

 xtgts = step(sTargets,dt);

 [rngs] = rangeangle(xtgts,xradar);

 scanline = zeros(size(rngscan));

 rngindx = ceil((rngs(1) - rngmin)/rngres);

 scanline(rngindx + [-1:1]) = rangegain(rngs(1))/(rngs(1)^4);

 rngindx = ceil((rngs(2) - rngmin)/rngres);

 scanline(rngindx + [-1:1]) = rangegain(rngs(2))/(rngs(2)^4);

 rngindx = ceil((rngs(3) - rngmin)/rngres);

 scanline(rngindx + [-1:1]) = rangegain(rngs(3))/(rngs(3)^4);

 step(rti,scanline.');

 pause(.1);

end

1 Alphabetical List

1-948

RTI and DTI Displays in Full Radar Simulation

Use the phased.IntensityScope System object™ to display the detection output of
a complete radar system simulation. The radar scenario contains a stationary single-
element monostatic radar and three moving targets.

Set Radar Operating Parameters

Set the probability of detection, probability of false alarm, maximum range, range
resolution, operating frequency, transmitter gain, and target radar cross-section.

pd = 0.9;

pfa = 1e-6;

max_range = 5000;

range_res = 50;

 phased.IntensityScope System object

1-949

fc = 10e9;

tx_gain = 20;

tgt_rcs = 1;

Choose the signal propagation speed to be the speed of light, and compute the signal
wavelength corresponding to the operating frequency.

c = physconst('LightSpeed');

lambda = c/fc;

Compute the pulse bandwith from the range resolution. Set the sampling rate, fs, to
twice the pulse bandwidth. The noise bandwidth is also set to the pulse bandwidth. The
radar integrates a number of pulses set by num_pulse_int. The duration of each pulse
is the inverse of the pulse bandwidth.

pulse_bw = c/(2*range_res);

pulse_length = 1/pulse_bw;

fs = 2*pulse_bw;

noise_bw = pulse_bw;

num_pulse_int = 10;

Set the pulse repetition frequency to match the maximum range of the radar.

prf = c/(2*max_range);

Compute Transmit Power

Use the Albersheim equation to compute the SNR required to meet the desired
probability of detection and probability of false alarm. Then, use the radar equation to
compute the power needed to achieve the required SNR.

snr_min = albersheim(pd, pfa, num_pulse_int);

peak_power = radareqpow(lambda,max_range,snr_min,pulse_length,...

 'RCS',tgt_rcs,'Gain',tx_gain);

Create System Objects for the Model

Choose a rectangular waveform.

sWav = phased.RectangularWaveform('PulseWidth',pulse_length,...

 'PRF',prf,'SampleRate',fs);

Set the receiver amplifier characteristics.

sRcvPreamp = phased.ReceiverPreamp('Gain',20,'NoiseFigure',0,...

 'SampleRate',fs,'EnableInputPort',true,'SeedSource','Property',...

1 Alphabetical List

1-950

 'Seed',2007);

sTransmitter = phased.Transmitter('Gain',tx_gain,'PeakPower',peak_power,...

 'InUseOutputPort',true);

Specify the radar antenna as a single isotropic antenna.

sIsoAnt = phased.IsotropicAntennaElement('FrequencyRange',[5e9 15e9]);

Set up a monostatic radar platform.

sRadarPlatform = phased.Platform('InitialPosition',[0; 0; 0],...

 'Velocity',[0; 0; 0]);

Set up the three target platforms using a single System object.

sTargetPlatforms = phased.Platform(...

 'InitialPosition',[2000.66 3532.63 3845.04; 0 0 0; 0 0 0], ...

 'Velocity',[150 -150 0; 0 0 0; 0 0 0]);

Create the radiator and collector System objects.

sRadiator = phased.Radiator('Sensor',sIsoAnt,'OperatingFrequency',fc);

sCollector = phased.Collector('Sensor',sIsoAnt,'OperatingFrequency',fc);

Set up the three target RCS properties.

sTargets = phased.RadarTarget('MeanRCS',[1.6 2.2 1.05],'OperatingFrequency',fc);

Create System object to model two-way freespace propagation.

sChannels= phased.FreeSpace('SampleRate',fs,'TwoWayPropagation',true,...

 'OperatingFrequency',fc);

Define a matched filter.

MFcoef = getMatchedFilter(sWav);

sMF = phased.MatchedFilter('Coefficients',MFcoef,'GainOutputPort',true);

Create Range and Doppler Bins

Set up the fast-time grid. Fast time is the sampling time of the echoed pulse relative to
the pulse transmission time. The range bins are the ranges corresponding to each bin of
the fast time grid.

fast_time = unigrid(0,1/fs,1/prf,'[)');

range_bins = c*fast_time/2;

 phased.IntensityScope System object

1-951

To compensate for range loss, create a time varying gain System Object™.

sTVG = phased.TimeVaryingGain('RangeLoss',2*fspl(range_bins,lambda),...

 'ReferenceLoss',2*fspl(max_range,lambda));

Set up Doppler bins. Doppler bins are determined by the pulse repetition frequency.
Create an FFT System object for Doppler processing.

DopplerFFTbins = 32;

DopplerRes = prf/DopplerFFTbins;

dopplerFFT = dsp.FFT('FFTLengthSource','Property',...

 'FFTLength',DopplerFFTbins);

Create Data Cube

Set up a reduced data cube. Normally, a data cube has fast-time and slow-time
dimensions and the number of sensors. Because data cube has only one sensor, it is two-
dimensional.

rx_pulses = zeros(numel(fast_time),num_pulse_int);

Create IntensityScope System Objects

Create two IntensityScope System objects, one for Doppler-time-intensity and the other
for range-time-intensity.

DTIscope = phased.IntensityScope('Name','Doppler-Time Display',...

 'XLabel','Velocity (m/sec)', ...

 'XResolution',dop2speed(DopplerRes,c/fc)/2, ...

 'XOffset',dop2speed(-prf/2,c/fc)/2,...

 'TimeResolution',0.05,'TimeSpan',5,'IntensityUnits','dB');

RTIscope = phased.IntensityScope('Name','Range-Time Display',...

 'XLabel','Range (m)', ...

 'XResolution',c/(2*fs), ...

 'TimeResolution',0.05,'TimeSpan',5,'IntensityUnits','dB');

Run the Simulation Loop Over Multiple Radar Transmissions

Transmit 2000 pulses. Coherently process groups of 10 pulses at a time.

For each pulse:

1 Update the radar position and velocity sRadarPlatform
2 Update the target positions and velocities sTargetPlatforms
3 Create the pulses of a single wave train to be transmitted sTransmitter

1 Alphabetical List

1-952

4 Compute the ranges and angles of the targets with respect to the radar
5 Radiate the signals to the targets sRadiator
6 Propagate the pulses to the target and back sChannels
7 Reflect the signals off the target sTargets
8 Receive the signal sCollector
9 Amplify the received signal sRcvPreamp
10 Form data cube

For each set of 10 pulses in the data cube:

1 Match filter each row (fast-time dimension) of the data cube.
2 Compute Doppler shifts of each row (slow-time dimension) of the data cube.

pri = 1/prf;

nsteps = 200;

for k = 1:nsteps

 for m = 1:num_pulse_int

 [ant_pos,ant_vel] = step(sRadarPlatform,pri);

 [tgt_pos,tgt_vel] = step(sTargetPlatforms,pri);

 sig = step(sWav);

 [s,tx_status] = step(sTransmitter,sig);

 [~,tgt_ang] = rangeangle(tgt_pos,ant_pos);

 tsig = step(sRadiator,s,tgt_ang);

 tsig = step(sChannels,tsig,ant_pos,tgt_pos,ant_vel,tgt_vel);

 rsig = step(sTargets,tsig);

 rsig = step(sCollector,rsig,tgt_ang);

 rx_pulses(:,m) = step(sRcvPreamp,rsig,~(tx_status>0));

 end

 rx_pulses = step(sMF,rx_pulses);

 MFdelay = size(MFcoef,1) - 1;

 rx_pulses = buffer(rx_pulses((MFdelay + 1):end), size(rx_pulses,1));

 rx_pulses = step(sTVG,rx_pulses);

 range = pulsint(rx_pulses,'noncoherent');

 step(RTIscope,range);

 dshift = step(dopplerFFT,rx_pulses.');

 dshift = fftshift(abs(dshift),1);

 step(DTIscope,mean(dshift,2));

 step(sRadarPlatform,.05);

 step(sTargetPlatforms,.05);

end

 phased.IntensityScope System object

1-953

1 Alphabetical List

1-954

All of the targets lie on the x-axis. Two targets are moving along the x-axis and one is
stationary. Because the radar is at the origin, you can read the target speed directly from
the Doppler-Time Display window. The values agree with the specified velocities of -150,
150, and 0 m/sec.

• “Measure Intensity Levels Using the Intensity Scope ”

See Also
spectrogram

Introduced in R2016a

 clone

1-955

clone
System object: phased.IntensityScope
Package: phased

Create IntensityScope System object with identical property values

Syntax

sIS2 = clone(sIS)

Description

sIS2 = clone(sIS) creates an object, sIS2, having the same property values and
same states as sIS. If sIS is locked, so is sIS2.

Input Arguments

sIS — Intensity scope
phased.IntensityScope System object

Intensity scope display, specified as a phased.IntensityScope System object.
Example: phased.IntensityScope

Output Arguments

sIS2 — Intensity scope
System object

Clone of input intensity scope, returned as a phased.IntensityScope System object.

Introduced in R2016a

1 Alphabetical List

1-956

getNumInputs
System object: phased.IntensityScope
Package: phased

Number of expected inputs to step method

Syntax

N = getNumInputs(sIS)

Description

N = getNumInputs(sIS) returns a positive integer, N, representing the number of
inputs (not counting the object itself) that you must use when calling the step method.
This value changes when you alter properties that turn inputs on or off.

Input Arguments

sIS — Intensity scope
phased.IntensityScope System object

Intensity scope, specified as a phased.IntensityScope System object.
Example: phased.IntensityScope

Output Arguments

N — Number of expected inputs to step method
positive integer

Number of expected inputs to the step method, returned as a positive integer. The
number does not include the object itself.

Introduced in R2016a

 getNumOutputs

1-957

getNumOutputs
System object: phased.IntensityScope
Package: phased

Number of outputs from step method

Syntax

N = getNumOutputs(sIS)

Description

N = getNumOutputs(sIS) returns the number of outputs, N, from the step method.
This value changes when you alter properties that turn outputs on or off.

Input Arguments

sIS — Intensity scope
phased.IntensityScope System object

Intensity scope, specified as a phased.IntensityScope System object.
Example: phased.IntensityScope

Output Arguments

N — Number of expected outputs from step method
positive integer

Number of expected outputs from the step method, returned as a positive integer.

Introduced in R2016a

1 Alphabetical List

1-958

hide

System object: phased.IntensityScope
Package: phased

Hide intensity scope window

Syntax

hide(sIS)

Description

hide(sIS) hides the display window of the phased.IntensityScope object, sIS.

Input Arguments

sIS — Intensity scope
phased.IntensityScope System object

Intensity scope, specified as a phased.IntensityScope System object.
Example: phased.IntensityScope

Examples

Hide and Show Intensity Scope

Create an angle-time-intensity scope. Use the phased.IntensityScope System
object™ to display simulated intensity as a function of the angular motion of a moving
target. After five steps in the processing loop, use the hide method to hide the scope. At
completion of the loop, use the show method to show the scope.

Simulate data for 5 seconds with a time interval of 0.5 seconds between scan lines.

 hide

1-959

nsteps = 10;

dt = 0.5;

timespan = nsteps*dt;

Set Up IntensityScope System Object

Create an angle-time-intensity scope having azimuth angle bins spanning –180° to 180°
with 1° resolution.

scanline = zeros(361,1);

angres = 1.0;

angmin = -180.0;

angmax = 180.0;

rti = phased.IntensityScope(...

 'Name','IntensityScope Display',...

 'Title','Azimuth vs. Time',...

 'XLabel','Azimuth (deg)', ...

 'XResolution',angres,'XOffset',angmin,...

 'TimeResolution',dt,'TimeSpan',timespan, ...

 'IntensityUnits','Watts',...

 'Position',[100,100,800,450]);

Loop Over Scan Updates

Simulate angular motion and fill the bin containing the current angular position of the
signal. Hide the scope after the 5th step and show the scope at the end of the simulation.

for k = 1:nsteps

 ang = -130.0 + k;

 binindexdx = floor((ang - angmin)/angres) + 1;

 scanline(binindexdx) = 1;

 step(rti,scanline);

 scanline(binindexdx) = 0;

 if k == 5

 hide(rti)

 end

 pause(.1);

end

show(rti)

1 Alphabetical List

1-960

Introduced in R2016a

 isLocked

1-961

isLocked
System object: phased.IntensityScope
Package: phased

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(sIS)

Description

TF = isLocked(sIS) returns the locked status, TF, for the phased.IntensityScope
System object.

isLocked returns a logical value that indicates whether input attributes and
nontunable properties for the object are locked. The object performs an internal
initialization the first time that you execute step. This initialization locks nontunable
properties and input specifications, such as the dimensions, complexity, and data type of
the input data. After locking, isLocked returns a true value.

Input Arguments

sIS — Intensity scope
phased.IntensityScope System object

Intensity scope, specified as a phased.IntensityScope System object.
Example: phased.IntensityScope

Output Arguments

LS — Locked status of phased.IntensityScope System object
true | false

1 Alphabetical List

1-962

Locked status of phased.IntensityScope System object, returned as true when the input
attributes and nontunable properties of the object are locked. Otherwise, the returned
value is false.

Introduced in R2016a

 release

1-963

release
System object: phased.IntensityScope
Package: phased

Enable property values and input characteristics to change

Syntax

release(sIS)

Description

release(sIS) releases system resources (such as memory, file handles, or hardware
connections) and lets you change all properties and input characteristics.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

Input Arguments

sIS — Intensity scope
phased.IntensityScope System object

Intensity scope, specified as a phased.IntensityScope System object.
Example: phased.IntensityScope

Introduced in R2016a

1 Alphabetical List

1-964

reset
System object: phased.IntensityScope
Package: phased

Reset state of intensity scope System object

Syntax

reset(sIS)

Description

reset(sIS) resets the internal state of the phased.IntensityScope System object,
sIS, to its initial value.

Input Arguments

sIS — Intensity scope
phased.IntensityScope System object

Intensity scope, specified as a phased.IntensityScope System object.
Example: phased.IntensityScope

Introduced in R2016a

 show

1-965

show

System object: phased.IntensityScope
Package: phased

Show intensity scope window

Syntax

show(sIS)

Description

show(sIS) shows the display window of the phased.IntensityScope object, sIS.

Input Arguments

sIS — Intensity scope
phased.IntensityScope System object

Intensity scope, specified as a phased.IntensityScope System object.
Example: phased.IntensityScope

Examples

Hide and Show Intensity Scope

Create an angle-time-intensity scope. Use the phased.IntensityScope System
object™ to display simulated intensity as a function of the angular motion of a moving
target. After five steps in the processing loop, use the hide method to hide the scope. At
completion of the loop, use the show method to show the scope.

Simulate data for 5 seconds with a time interval of 0.5 seconds between scan lines.

1 Alphabetical List

1-966

nsteps = 10;

dt = 0.5;

timespan = nsteps*dt;

Set Up IntensityScope System Object

Create an angle-time-intensity scope having azimuth angle bins spanning –180° to 180°
with 1° resolution.

scanline = zeros(361,1);

angres = 1.0;

angmin = -180.0;

angmax = 180.0;

rti = phased.IntensityScope(...

 'Name','IntensityScope Display',...

 'Title','Azimuth vs. Time',...

 'XLabel','Azimuth (deg)', ...

 'XResolution',angres,'XOffset',angmin,...

 'TimeResolution',dt,'TimeSpan',timespan, ...

 'IntensityUnits','Watts',...

 'Position',[100,100,800,450]);

Loop Over Scan Updates

Simulate angular motion and fill the bin containing the current angular position of the
signal. Hide the scope after the 5th step and show the scope at the end of the simulation.

for k = 1:nsteps

 ang = -130.0 + k;

 binindexdx = floor((ang - angmin)/angres) + 1;

 scanline(binindexdx) = 1;

 step(rti,scanline);

 scanline(binindexdx) = 0;

 if k == 5

 hide(rti)

 end

 pause(.1);

end

show(rti)

 show

1-967

Introduced in R2016a

1 Alphabetical List

1-968

step
System object: phased.IntensityScope
Package: phased

Update intensity scope display

Syntax

step(sIS,data)

Description

step(sIS,data) updates the intensity scope display with new scan lines from a real
signal, data.

Note: The object performs an initialization the first time the step method is executed.
This initialization locks nontunable properties and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Input Arguments

sIS — Intensity scope display
phased.IntensityScope System object

Intensity scope display, specified as a phased.IntensityScope System object.
Example: phased.IntensityScope

data — Displayed intensity values
real-valued N-by-M matrix

Displayed intensity values, specified as a real-valued N-by-M matrix. The quantity N
specifies the number of intensity bins in data. The quantity M specifies the number

 step

1-969

of intensity vectors in the data. Each column of the matrix creates a display line.
Units are arbitrary. Specify the time interval between intensity vectors using the
TimeResolution property.

Example: [5.0;5.1;5.0;4.9]

Data Types: double

Examples

RTI Display of Three Moving Targets

Use the phased.IntensityScope System object™ to display the intensities of the
echoes of three moving targets as functions of range and time.

Create the Radar and Target System Objects

Set up the initial positions and velocities of the three targets. Use the phased.Platform
System object™ to model radar and target motions. The radar is stationary while the
targets undergo constant velocity motion. The simulation runs for 500 steps at 0.1 second
increments, giving a total simulation time of 50 seconds.

nsteps = 500;

dt = .1;

timespan = nsteps*dt;

x1 = [60,0,0]';

x2 = [60,-80,40]';

x3 = [300,0,-300]';

v1 = [2,0,0]';

v2 = [10,5,6]';

v3 = [-10,2,-4]';

sRadar = phased.Platform([0,0,0]',[0,0,0]');

sTargets = phased.Platform([x1,x2,x3],[v1,v2,v3]);

Set Up Range Bins

Each echo is put into a range bin. The range bin resolution is 1 meter and the range is
from 50 to 1000 meters.

rngres = 1.0;

rngmin = 50.0;

rngmax = 1000.0;

rngscan = [rngmin:rngres:rngmax];

1 Alphabetical List

1-970

Create the Gain Function

Define a range-dependent gain function to enhance the display of targets at larger
ranges. The gain function amplifies the returned echo for visualization purposes only.

rangegain = @(rng)(1e12*rng^4);

Create the Intensity Scope

Set up the Intensity Scope using these properties.

• Use the XResolution property to set the width of each scan line bin to the range
resolution of 1 km.

• Use the XOffset property to set the value of the lowest range bin to the minimum
range of 50 km.

• Use the TimeResolution property to set the value of the scan line time difference to
0.1 s.

• Use the TimeSpan property to set the height of the display window to the time
duration of the simulation.

• Use the IntensityUnits property to set the display units to Watts.

rti = phased.IntensityScope(...

 'Name','IntensityScope Display',...

 'Title','Ranges vs. Time',...

 'XLabel','Range (m)', ...

 'XResolution',rngres,'XOffset',rngmin,...

 'TimeResolution',dt,'TimeSpan',timespan, ...

 'IntensityUnits','Watts',...

 'Position',[100,100,800,450]);

Run Simulation Loop

1 In this loop, move the targets at constant velocity using the step method of the
phased.Platform System object.

2 Compute the target ranges using the rangeangle function.
3 Compute the target range bins by quantizing the range values in integer multiples of

rangres.
4 Fill each target range bin and neighboring bins with a simulated radar intensity

value.
5 Add the signal from each target to the scan line.

 step

1-971

6 Call the step method of the phased.IntensityScope System object to display the
scan lines.

for k = 1:nsteps

 xradar = step(sRadar,dt);

 xtgts = step(sTargets,dt);

 [rngs] = rangeangle(xtgts,xradar);

 scanline = zeros(size(rngscan));

 rngindx = ceil((rngs(1) - rngmin)/rngres);

 scanline(rngindx + [-1:1]) = rangegain(rngs(1))/(rngs(1)^4);

 rngindx = ceil((rngs(2) - rngmin)/rngres);

 scanline(rngindx + [-1:1]) = rangegain(rngs(2))/(rngs(2)^4);

 rngindx = ceil((rngs(3) - rngmin)/rngres);

 scanline(rngindx + [-1:1]) = rangegain(rngs(3))/(rngs(3)^4);

 step(rti,scanline.');

 pause(.1);

end

1 Alphabetical List

1-972

RTI and DTI Displays in Full Radar Simulation

Use the phased.IntensityScope System object™ to display the detection output of
a complete radar system simulation. The radar scenario contains a stationary single-
element monostatic radar and three moving targets.

Set Radar Operating Parameters

Set the probability of detection, probability of false alarm, maximum range, range
resolution, operating frequency, transmitter gain, and target radar cross-section.

pd = 0.9;

pfa = 1e-6;

max_range = 5000;

range_res = 50;

 step

1-973

fc = 10e9;

tx_gain = 20;

tgt_rcs = 1;

Choose the signal propagation speed to be the speed of light, and compute the signal
wavelength corresponding to the operating frequency.

c = physconst('LightSpeed');

lambda = c/fc;

Compute the pulse bandwith from the range resolution. Set the sampling rate, fs, to
twice the pulse bandwidth. The noise bandwidth is also set to the pulse bandwidth. The
radar integrates a number of pulses set by num_pulse_int. The duration of each pulse
is the inverse of the pulse bandwidth.

pulse_bw = c/(2*range_res);

pulse_length = 1/pulse_bw;

fs = 2*pulse_bw;

noise_bw = pulse_bw;

num_pulse_int = 10;

Set the pulse repetition frequency to match the maximum range of the radar.

prf = c/(2*max_range);

Compute Transmit Power

Use the Albersheim equation to compute the SNR required to meet the desired
probability of detection and probability of false alarm. Then, use the radar equation to
compute the power needed to achieve the required SNR.

snr_min = albersheim(pd, pfa, num_pulse_int);

peak_power = radareqpow(lambda,max_range,snr_min,pulse_length,...

 'RCS',tgt_rcs,'Gain',tx_gain);

Create System Objects for the Model

Choose a rectangular waveform.

sWav = phased.RectangularWaveform('PulseWidth',pulse_length,...

 'PRF',prf,'SampleRate',fs);

Set the receiver amplifier characteristics.

sRcvPreamp = phased.ReceiverPreamp('Gain',20,'NoiseFigure',0,...

 'SampleRate',fs,'EnableInputPort',true,'SeedSource','Property',...

1 Alphabetical List

1-974

 'Seed',2007);

sTransmitter = phased.Transmitter('Gain',tx_gain,'PeakPower',peak_power,...

 'InUseOutputPort',true);

Specify the radar antenna as a single isotropic antenna.

sIsoAnt = phased.IsotropicAntennaElement('FrequencyRange',[5e9 15e9]);

Set up a monostatic radar platform.

sRadarPlatform = phased.Platform('InitialPosition',[0; 0; 0],...

 'Velocity',[0; 0; 0]);

Set up the three target platforms using a single System object.

sTargetPlatforms = phased.Platform(...

 'InitialPosition',[2000.66 3532.63 3845.04; 0 0 0; 0 0 0], ...

 'Velocity',[150 -150 0; 0 0 0; 0 0 0]);

Create the radiator and collector System objects.

sRadiator = phased.Radiator('Sensor',sIsoAnt,'OperatingFrequency',fc);

sCollector = phased.Collector('Sensor',sIsoAnt,'OperatingFrequency',fc);

Set up the three target RCS properties.

sTargets = phased.RadarTarget('MeanRCS',[1.6 2.2 1.05],'OperatingFrequency',fc);

Create System object to model two-way freespace propagation.

sChannels= phased.FreeSpace('SampleRate',fs,'TwoWayPropagation',true,...

 'OperatingFrequency',fc);

Define a matched filter.

MFcoef = getMatchedFilter(sWav);

sMF = phased.MatchedFilter('Coefficients',MFcoef,'GainOutputPort',true);

Create Range and Doppler Bins

Set up the fast-time grid. Fast time is the sampling time of the echoed pulse relative to
the pulse transmission time. The range bins are the ranges corresponding to each bin of
the fast time grid.

fast_time = unigrid(0,1/fs,1/prf,'[)');

range_bins = c*fast_time/2;

 step

1-975

To compensate for range loss, create a time varying gain System Object™.

sTVG = phased.TimeVaryingGain('RangeLoss',2*fspl(range_bins,lambda),...

 'ReferenceLoss',2*fspl(max_range,lambda));

Set up Doppler bins. Doppler bins are determined by the pulse repetition frequency.
Create an FFT System object for Doppler processing.

DopplerFFTbins = 32;

DopplerRes = prf/DopplerFFTbins;

dopplerFFT = dsp.FFT('FFTLengthSource','Property',...

 'FFTLength',DopplerFFTbins);

Create Data Cube

Set up a reduced data cube. Normally, a data cube has fast-time and slow-time
dimensions and the number of sensors. Because data cube has only one sensor, it is two-
dimensional.

rx_pulses = zeros(numel(fast_time),num_pulse_int);

Create IntensityScope System Objects

Create two IntensityScope System objects, one for Doppler-time-intensity and the other
for range-time-intensity.

DTIscope = phased.IntensityScope('Name','Doppler-Time Display',...

 'XLabel','Velocity (m/sec)', ...

 'XResolution',dop2speed(DopplerRes,c/fc)/2, ...

 'XOffset',dop2speed(-prf/2,c/fc)/2,...

 'TimeResolution',0.05,'TimeSpan',5,'IntensityUnits','dB');

RTIscope = phased.IntensityScope('Name','Range-Time Display',...

 'XLabel','Range (m)', ...

 'XResolution',c/(2*fs), ...

 'TimeResolution',0.05,'TimeSpan',5,'IntensityUnits','dB');

Run the Simulation Loop Over Multiple Radar Transmissions

Transmit 2000 pulses. Coherently process groups of 10 pulses at a time.

For each pulse:

1 Update the radar position and velocity sRadarPlatform
2 Update the target positions and velocities sTargetPlatforms
3 Create the pulses of a single wave train to be transmitted sTransmitter

1 Alphabetical List

1-976

4 Compute the ranges and angles of the targets with respect to the radar
5 Radiate the signals to the targets sRadiator
6 Propagate the pulses to the target and back sChannels
7 Reflect the signals off the target sTargets
8 Receive the signal sCollector
9 Amplify the received signal sRcvPreamp
10 Form data cube

For each set of 10 pulses in the data cube:

1 Match filter each row (fast-time dimension) of the data cube.
2 Compute Doppler shifts of each row (slow-time dimension) of the data cube.

pri = 1/prf;

nsteps = 200;

for k = 1:nsteps

 for m = 1:num_pulse_int

 [ant_pos,ant_vel] = step(sRadarPlatform,pri);

 [tgt_pos,tgt_vel] = step(sTargetPlatforms,pri);

 sig = step(sWav);

 [s,tx_status] = step(sTransmitter,sig);

 [~,tgt_ang] = rangeangle(tgt_pos,ant_pos);

 tsig = step(sRadiator,s,tgt_ang);

 tsig = step(sChannels,tsig,ant_pos,tgt_pos,ant_vel,tgt_vel);

 rsig = step(sTargets,tsig);

 rsig = step(sCollector,rsig,tgt_ang);

 rx_pulses(:,m) = step(sRcvPreamp,rsig,~(tx_status>0));

 end

 rx_pulses = step(sMF,rx_pulses);

 MFdelay = size(MFcoef,1) - 1;

 rx_pulses = buffer(rx_pulses((MFdelay + 1):end), size(rx_pulses,1));

 rx_pulses = step(sTVG,rx_pulses);

 range = pulsint(rx_pulses,'noncoherent');

 step(RTIscope,range);

 dshift = step(dopplerFFT,rx_pulses.');

 dshift = fftshift(abs(dshift),1);

 step(DTIscope,mean(dshift,2));

 step(sRadarPlatform,.05);

 step(sTargetPlatforms,.05);

end

 step

1-977

1 Alphabetical List

1-978

All of the targets lie on the x-axis. Two targets are moving along the x-axis and one is
stationary. Because the radar is at the origin, you can read the target speed directly from
the Doppler-Time Display window. The values agree with the specified velocities of -150,
150, and 0 m/sec.

Intensity Scope Display of Target Angular Motion

Use the phased.IntensityScope System object™ to display the angular motions of
moving targets as functions of time. Each horizontal line (scan line) shows the strength of
radar echoes at different azimuth angles. Azimuth space is divided into azimuth bins and
each bin is filled with a simulated value depending upon the position of the targets.

 step

1-979

Create Radar and Target System Objects

Set up the initial positions and velocities of the three targets. Use the phased.Platform
System object™ to model radar and target motions. The radar is stationary while the
targets undergo constant velocity motion. The simulation runs for 200 steps at 0.5 second
intervals, giving a total simulation time of 100 seconds.

nsteps = 200;

dt = 0.5;

timespan = nsteps*dt;

x1 = [60,0,0]';

x2 = [60,-80,40]';

x3 = [300,0,-300]';

x3 = [-300,0,-300]';

v1 = [2,0,0]';

v2 = [10,5,6]';

v3 = [-10,2,-4]';

sRadar = phased.Platform([0,0,0]',[0,0,0]');

sTargets = phased.Platform([x1,x2,x3],[v1,v2,v3]);

Set Up Azimuth Angle Bins

The signal for each echo is put into an angle bin and two adjacent bins. Bin resolution is
1 degree and the angle span is from -180 to 180 degrees.

angres = 1.0;

angmin = -180.0;

angmax = 180.0;

angscan = [angmin:angres:angmax];

na = length(angscan);

Range Gain Function

Define a range-dependent gain function to enhance the display of targets at larger
ranges. The gain function amplifies the returned echo for visualization purposes only.

rangegain = @(rng)(1e12*rng^4);

Set Up Scope Viewer

The XResolution name-value pair specifies the width of each bin of the scan line. The
XOffset sets the value of the lowest azimuth angle bin. The TimeResolution name-
value pair specifies the time difference between scan lines. The TimeSpan name-value

1 Alphabetical List

1-980

pair sets the height of the display window. A scan line is created with each call to the
step method. Intensity units are amplitude units.

rti = phased.IntensityScope(...

 'Name','IntensityScope Display',...

 'Title','Azimuth vs. Time',...

 'XLabel','Azimuth (deg)', ...

 'XResolution',angres,'XOffset',angmin,...

 'TimeResolution',dt,'TimeSpan',timespan, ...

 'IntensityUnits','Watts',...

 'Position',[100,100,800,450]);

Update-Display Loop

1 In this loop, move the targets at constant velocity using the step method of the
phased.Platform System object.

2 Compute the target ranges and azimuth angles using the rangeangle function.
3 Compute the azimuth angle bins by quantizing the azimuth angle values in integer

multiples of angres.
4 Fill each target azimuth bin and neighboring bins with a simulated radar intensity

value.
5 Call the phased.IntensityScope step method to display the scan line.

for k = 1:nsteps

 xradar = step(sRadar,dt);

 xtgts = step(sTargets,dt);

 [rngs,angs] = rangeangle(xtgts,xradar);

 scanline = zeros(size(angscan));

 angindx = ceil((angs(1,1) - angmin)/angres) + 1;

 idx = angindx + [-1:1];

 idx(idx>na)=[];

 idx(idx<1)=[];

 scanline(idx) = rangegain(rngs(1))/(rngs(1)^4);

 angindx = ceil((angs(1,2) - angmin)/angres) + 1;

 idx = angindx + [-1:1];

 idx(idx>na)=[];

 idx(idx<1)=[];

 scanline(idx) = rangegain(rngs(2))/(rngs(2)^4);

 angindx = ceil((angs(1,3) - angmin)/angres) + 1;

 idx = angindx + [-1:1];

 step

1-981

 idx(idx>na)=[];

 idx(idx<1)=[];

 scanline(idx) = rangegain(rngs(3))/(rngs(3)^4);

 step(rti,scanline.');

 pause(.1);

end

Introduced in R2016a

1 Alphabetical List

1-982

phased.IsotropicAntennaElement System object
Package: phased

Isotropic antenna element

Description
The IsotropicAntennaElement object creates an antenna element with an isotropic
response pattern. This antenna object does not support polarization.

To compute the response of the antenna element for specified directions:

1 Define and set up your isotropic antenna element. See “Construction” on page
1-982.

2 Call step to compute the antenna response according to the properties of
phased.IsotropicAntennaElement. The behavior of step is specific to each
object in the toolbox.

Construction
H = phased.IsotropicAntennaElement creates an isotropic antenna system object,
H. The object models an antenna element whose response is 1 in all directions.

H = phased.IsotropicAntennaElement(Name,Value) creates an isotropic
antenna object, H, with each specified property Name set to the specified
Value. You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties

FrequencyRange

Operating frequency range

Specify the antenna element operating frequency range (in Hz) as a 1-by-2 row vector
in the form of [LowerBound HigherBound]. The antenna element has zero response
outside the specified frequency range.

 phased.IsotropicAntennaElement System object

1-983

Default: [0 1e20]

BackBaffled

Baffle the back of antenna element

Set this property to true to baffle the back of the antenna element. In this case, the
antenna responses to all azimuth angles beyond +/– 90 degrees from the broadside (0
degrees azimuth and elevation) are 0.

When the value of this property is false, the back of the antenna element is not baffled.

Default: false

Methods

clone Create isotropic antenna object with same
property values

directivity Directivity of isotropic antenna element
getNumInputs Number of expected inputs to step method
getNumOutputs Number of outputs from step method
isLocked Locked status for input attributes and

nontunable properties
isPolarizationCapable Polarization capability
pattern Plot isotropic antenna element directivity

and patterns
patternAzimuth Plot isotropic antenna element directivity

or pattern versus azimuth
patternElevation Plot isotropic antenna element directivity

or pattern versus elevation
plotResponse Plot response pattern of antenna
release Allow property value and input

characteristics changes
step Output response of antenna element

1 Alphabetical List

1-984

Examples

Construct an isotropic antenna operating over a frequency range from 800 MHz to
1.2 GHz. The operating frequency is 1 GHz. Find the response of the antenna at the
boresight. Then, plot the polar-pattern elevation response of the antenna.

ha = phased.IsotropicAntennaElement(...

 'FrequencyRange',[800e6 1.2e9]);

fc = 1e9;

resp = step(ha,fc,[0; 0]);

plotResponse(ha,fc,'RespCut','El','Format','Polar');

 phased.IsotropicAntennaElement System object

1-985

See Also
phased.ConformalArray | phased.CosineAntennaElement |
phased.CrossedDipoleAntennaElement | phased.CustomAntennaElement |
phased.CustomMicrophoneElement | phased.OmnidirectionalMicrophoneElement |
phased.ShortDipoleAntennaElement | phased.ULA | phased.URA

Introduced in R2012a

1 Alphabetical List

1-986

clone
System object: phased.IsotropicAntennaElement
Package: phased

Create isotropic antenna object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates an object, C, having the same property values and same states as
H. If H is locked, so is C.

 directivity

1-987

directivity

System object: phased.IsotropicAntennaElement
Package: phased

Directivity of isotropic antenna element

Syntax

D = directivity(H,FREQ,ANGLE)

Description

D = directivity(H,FREQ,ANGLE) returns the “Directivity (dBi)” on page 1-989 of
an isotropic antenna element, H, at frequencies specified by FREQ and in direction angles
specified by ANGLE.

Input Arguments

H — Isotropic antenna element
System object

Isotropic antenna element specified as a phased.IsotropicAntennaElement System object.
Example: H = phased.IsotropicAntennaElement;

FREQ — Frequency for computing directivity and patterns
positive scalar | 1-by-L real-valued row vector

Frequencies for computing directivity and patterns, specified as a positive scalar or 1-
by-L real-valued row vector. Frequency units are in hertz.

• For an antenna or microphone element, FREQ must lie within the range of
values specified by the FrequencyRange or FrequencyVector property of the
element. Otherwise, the element produces no response and the directivity is

1 Alphabetical List

1-988

returned as –Inf. Most elements use the FrequencyRange property except for
phased.CustomAntennaElement and phased.CustomMicrophoneElement, which use
the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements
that make up the array. Otherwise, the array produces no response and the
directivity is returned as –Inf.

Example: [1e8 2e8]

Data Types: double

ANGLE — Angles for computing directivity
1-by-M real-valued row vector | 2-by-M real-valued matrix

Angles for computing directivity, specified as a 1-by-M real-valued row vector or a 2-
by-M real-valued matrix, where M is the number of angular directions. Angle units
are in degrees. If ANGLE is a 2-by-M matrix, then each column specifies a direction in
azimuth and elevation, [az;el]. The azimuth angle must lie between –180° and 180°.
The elevation angle must lie between –90° and 90°.

If ANGLE is a 1-by-M vector, then each entry represents an azimuth angle, with the
elevation angle assumed to be zero.

The azimuth angle is the angle between the x-axis and the projection of the direction
vector onto the xy plane. This angle is positive when measured from the x-axis toward the
y-axis. The elevation angle is the angle between the direction vector and xy plane. This
angle is positive when measured towards the z-axis.
Example: [45 60; 0 10]

Data Types: double

Output Arguments

D — Directivity
M-by-L matrix

Directivity, returned as an M-by-L matrix whose columns contain the directivities at the
M angles specified by ANGLE. Each column corresponds to one of the L frequency values
specified in FREQ. Directivity units are in dBi.

 directivity

1-989

Definitions

Directivity (dBi)

Directivity describes the directionality of the radiation pattern of a sensor element
or array of sensor elements. Higher directivity is desired when you want to transmit
more radiation in a specific direction. Directivity is the ratio of the transmitted radiant
intensity in a specified direction to the radiant intensity transmitted by an isotropic
radiator with the same total transmitted power

D
U

P
=

()
4p

q jrad

total

,

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal
is the total power transmitted by an isotropic radiator. For a receiving element or array,
directivity measures the sensitivity toward radiation arriving from a specific direction.
The principle of reciprocity shows that the directivity of an element or array used for
reception equals the directivity of the same element or array used for transmission.
When converted to decibels, the directivity is denoted as dBi. For information on
directivity, read the notes on “Element directivity” and “Array directivity”.

Computing directivity requires integrating the far-field transmitted radiant intensity
over all directions in space to obtain the total transmitted power. There is a difference
between how that integration is performed when Antenna Toolbox antennas are used
in a phased array and when Phased Array System Toolbox antennas are used. When
an array contains Antenna Toolbox antennas, the directivity computation is performed
using a triangular mesh created from 500 regularly spaced points over a sphere. For
Phased Array System Toolbox antennas, the integration uses a uniform rectangular
mesh of points spaced 1° apart in azimuth and elevation over a sphere. There may be
significant differences in computed directivity, especially for large arrays.

Examples

Directivity of Isotropic Antenna Element

Compute the directivity of an isotropic antenna element in different directions.

Create an isotropic antenna element system object.

1 Alphabetical List

1-990

myAnt = phased.IsotropicAntennaElement();

First, select the angles of interest to be constant elevation angle at zero degrees. The
seven azimuth angles are centered around boresight (zero degrees azimuth and zero
degrees elevation). Set the frequency to 1 GHz.

ang = [-30,-20,-10,0,10,20,30; 0,0,0,0,0,0,0];

freq = 1e9;

Compute the directivity along the constant elevation cut.

d = directivity(myAnt,freq,ang)

d =

 1.0e-03 *

 0.1102

 0.1102

 0.1102

 0.1102

 0.1102

 0.1102

 0.1102

Next choose the desired angles of interest to be at constant azimuth angle at zero
degrees. All elevation angles are centered around boresight. The five elevation angles
range from -20 to +20 degrees. Set the desired frequency to 1 GHz.

ang = [0,0,0,0,0; -20,-10,0,10,20];

freq = 1e9;

Compute the directivity along the constant azimuth cut.

d = directivity(myAnt,freq,ang)

d =

 1.0e-03 *

 0.1102

 0.1102

 directivity

1-991

 0.1102

 0.1102

 0.1102

For an isotropic antenna, the directivity is independent of direction.

See Also
phased.IsotropicAntennaElement.plotResponse

1 Alphabetical List

1-992

getNumInputs
System object: phased.IsotropicAntennaElement
Package: phased

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of inputs
(not counting the object itself) that you must use when calling the step method. This
value changes when you alter properties that turn inputs on or off.

 getNumOutputs

1-993

getNumOutputs
System object: phased.IsotropicAntennaElement
Package: phased

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value changes when you alter properties that turn outputs on or off.

1 Alphabetical List

1-994

isLocked
System object: phased.IsotropicAntennaElement
Package: phased

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF, for the IsotropicAntennaElement
System object.

isLocked returns a logical value that indicates whether input attributes and
nontunable properties for the object are locked. The object performs an internal
initialization the first time that you execute step. This initialization locks nontunable
properties and input specifications, such as the dimensions, complexity, and data type of
the input data. After locking, isLocked returns a true value.

 isPolarizationCapable

1-995

isPolarizationCapable

System object: phased.IsotropicAntennaElement
Package: phased

Polarization capability

Syntax

flag = isPolarizationCapable(h)

Description

flag = isPolarizationCapable(h) returns a Boolean value, flag, indicating
whether the phased.IsotropicAntennaElement System object supports polarization. An
antenna element supports polarization if it can create or respond to polarized fields. This
object does not support polarization.

Input Arguments

h — Isotropic antenna element

Isotropic antenna element specified as a phased.IsotropicAntennaElement System object.

Output Arguments

flag — Polarization-capability flag

Polarization-capability returned as a Boolean value true if the antenna element
supports polarization or false if it does not. Since the phased.IsotropicAntennaElement
object does not support polarization, flag is always returned as false.

1 Alphabetical List

1-996

Examples

Isotropic Antenna Does Not Support Polarization

Determine whether a phased.IsotropicAntennaElement antenna element supports
polarization.

h = phased.IsotropicAntennaElement('FrequencyRange',[1.0,10]*1e9);

isPolarizationCapable(h)

ans =

 0

The returned value false (0) shows that the antenna element does not support
polarization.

 pattern

1-997

pattern

System object: phased.IsotropicAntennaElement
Package: phased

Plot isotropic antenna element directivity and patterns

Syntax

pattern(sElem,FREQ)

pattern(sElem,FREQ,AZ)

pattern(sElem,FREQ,AZ,EL)

pattern(___ ,Name,Value)

[PAT,AZ_ANG,EL_ANG] = pattern(___)

Description

pattern(sElem,FREQ) plots the 3-D array directivity pattern (in dBi) for the array
specified in sElem. The operating frequency is specified in FREQ.

pattern(sElem,FREQ,AZ) plots the array directivity pattern at the specified azimuth
angle.

pattern(sElem,FREQ,AZ,EL) plots the array directivity pattern at specified azimuth
and elevation angles.

pattern(___ ,Name,Value) plots the array pattern with additional options specified
by one or more Name,Value pair arguments.

[PAT,AZ_ANG,EL_ANG] = pattern(___) returns the array pattern in PAT. The
AZ_ANG output contains the coordinate values corresponding to the rows of PAT. The
EL_ANG output contains the coordinate values corresponding to the columns of PAT.
If the 'CoordinateSystem' parameter is set to 'uv', then AZ_ANG contains the
U coordinates of the pattern and EL_ANG contains the V coordinates of the pattern.
Otherwise, they are in angular units in degrees. UV units are dimensionless.

1 Alphabetical List

1-998

Note: This method replaces the previous plotResponse method. To replace plots using
plotResponse plots with equivalent plots using pattern, see “Convert plotResponse to
pattern” on page 1-1955

Input Arguments

sElem — Isotropic antenna element
System object

Isotropic antenna element, specified as a phased.IsotropicAntennaElement System
object.
Example: sElem = phased.IsotropicAntennaElement;

FREQ — Frequency for computing directivity and patterns
positive scalar | 1-by-L real-valued row vector

Frequencies for computing directivity and patterns, specified as a positive scalar or 1-
by-L real-valued row vector. Frequency units are in hertz.

• For an antenna or microphone element, FREQ must lie within the range of
values specified by the FrequencyRange or FrequencyVector property of the
element. Otherwise, the element produces no response and the directivity is
returned as –Inf. Most elements use the FrequencyRange property except for
phased.CustomAntennaElement and phased.CustomMicrophoneElement, which use
the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements
that make up the array. Otherwise, the array produces no response and the
directivity is returned as –Inf.

Example: [1e8 2e8]

Data Types: double

AZ — Azimuth angles
[-180:180] (default) | 1-by-M real-valued row vector

Azimuth angles for computing directivity and pattern, specified as a 1-by-M real-
valued row vector where M is the number of azimuth angles. Angle units are in degrees.
Azimuth angles must lie between –180° and 180°.

 pattern

1-999

The azimuth angle is the angle between the x-axis and the projection of the direction
vector onto the xy plane. When measured from the x-axis toward the y-axis, this angle is
positive.
Example: [-45:2:45]

Data Types: double

EL — Elevation angles
[-90:90] (default) | 1-by-N real-valued row vector

Elevation angles for computing directivity and pattern, specified as a 1-by-N real-valued
row vector where N is the number of desired elevation directions. Angle units are in
degrees. The elevation angle must lie between –90° and 90°.

The elevation angle is the angle between the direction vector and xy-plane. When
measured towards the z-axis, this angle is positive.
Example: [-75:1:70]

Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'CoordinateSystem' — Plotting coordinate system
'polar' (default) | 'rectangular' | 'uv'

Plotting coordinate system of the pattern, specified as the comma-separated pair
consisting of 'CoordinateSystem' and one of 'polar', 'rectangular', or
'uv'. When 'CoordinateSystem' is set to 'polar' or 'rectangular', the
AZ and EL arguments specify the pattern azimuth and elevation, respectively. AZ
values must lie between –180° and 180°. EL values must lie between –90° and 90°. If
'CoordinateSystem' is set to 'uv', AZ and EL then specify U and V coordinates,
respectively. AZ and EL must lie between -1 and 1.

Example: 'uv'

Data Types: char

1 Alphabetical List

1-1000

'Type' — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and
one of

• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed

pattern is for the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field

pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'

Data Types: char

'Normalize' — Display normalize pattern
true (default) | false

Display normalized pattern, specified as the comma-separated pair consisting of
'Normalize' and a Boolean. Set this parameter to true to display a normalized pattern.
When you set 'Type' to 'directivity', this parameter does not apply. Directivity
patterns are already normalized.
Example:
Data Types: logical

'PlotStyle' — Plotting style
'overlay' (default) | 'waterfall'

Plotting style, specified as the comma-separated pair consisting of 'Plotstyle' and
either 'overlay' or 'waterfall'. This parameter applies when you specify multiple
frequencies in FREQ in 2-D plots. You can draw 2-D plots by setting one of the arguments
AZ or EL to a scalar.

Example:
Data Types: char

 pattern

1-1001

Output Arguments
PAT — Element pattern
M-by-N real-valued matrix

Element pattern, returned as an M-by-N real-valued matrix. The dimensions of PAT
correspond to the dimensions of the output arguments AZ_ANG and EL_ANG.

AZ_ANG — Azimuth angles
scalar | 1-by-M real-valued row vector

Azimuth angles for displaying directivity or response pattern, returned as a scalar or 1-
by-M real-valued row vector corresponding to the dimension set in AZ. The rows of PAT
correspond to the values in AZ_ANG.

EL_ANG — Elevation angles
scalar | 1-by-N real-valued row vector

Elevation angles for displaying directivity or response, returned as a scalar or 1-by-N
real-valued row vector corresponding to the dimension set in EL. The columns of PAT
correspond to the values in EL_ANG.

More About

Directivity

Directivity describes the directionality of the radiation pattern of a sensor element
or array of sensor elements. Higher directivity is desired when you want to transmit
more radiation in a specific direction. Directivity is the ratio of the transmitted radiant
intensity in a specified direction to the radiant intensity transmitted by an isotropic
radiator with the same total transmitted power

D
U

P
=

()
4p

q jrad

total

,

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal
is the total power transmitted by an isotropic radiator. For a receiving element or array,
directivity measures the sensitivity toward radiation arriving from a specific direction.
The principle of reciprocity shows that the directivity of an element or array used for
reception equals the directivity of the same element or array used for transmission.

1 Alphabetical List

1-1002

When converted to decibels, the directivity is denoted as dBi. For information on
directivity, read the notes on “Element directivity” and “Array directivity”.

Computing directivity requires integrating the far-field transmitted radiant intensity
over all directions in space to obtain the total transmitted power. There is a difference
between how that integration is performed when Antenna Toolbox antennas are used
in a phased array and when Phased Array System Toolbox antennas are used. When
an array contains Antenna Toolbox antennas, the directivity computation is performed
using a triangular mesh created from 500 regularly spaced points over a sphere. For
Phased Array System Toolbox antennas, the integration uses a uniform rectangular
mesh of points spaced 1° apart in azimuth and elevation over a sphere. There may be
significant differences in computed directivity, especially for large arrays.

Convert plotResponse to pattern

For antenna, microphone, and array System objects, the pattern method replaces the
plotResponse method. In addition, two new simplified methods exist just to draw
2-D azimuth and elevation pattern plots. These methods are azimuthPattern and
elevationPattern.

The following table is a guide for converting your code from using plotResponse to
pattern. Notice that some of the inputs have changed from input arguments to Name-
Value pairs and conversely. The general pattern method syntax is

pattern(H,FREQ,AZ,EL,'Name1','Value1',...,'NameN','ValueN')

plotResponse Inputs plotResponse Description pattern Inputs

H argument Antenna, microphone, or array
System object.

H argument (no change)

FREQ argument Operating frequency. FREQ argument (no change)
V argument Propagation speed. This

argument is used only for
arrays.

'PropagationSpeed' name-
value pair. This parameter is
only used for arrays.

'Format' and 'RespCut'
name-value pairs

These options work together to
let you create a plot in angle
space (line or polar style) or
UV space. They also determine
whether the plot is 2-D or 3-
D. This table shows you how to

'CoordinateSystem' name-
value pair used together with
the AZ and EL input arguments.

'CoordinateSystem' has
the same options as the

 pattern

1-1003

plotResponse Inputs plotResponse Description pattern Inputs

create different types of plots
using plotResponse.

Display space

Angle space
(2D)

Set
'RespCut'

to 'Az' or

'El'. Set
'Format' to
'line' or
'polar'.

Set the display
axis using
either the
the
'AzimuthAngles'

or
'ElevationAngles'

name-value
pairs.

Angle space
(3D)

Set
'RespCut'

to '3D'. Set
'Format' to
'line' or
'polar'.

Set the display
axis using
both the
'AzimuthAngles'

and'ElevationAngles'
name-value
pairs.

UV space (2D) Set
'RespCut'

plotResponse method
'Format'name-value pair,
except that 'line' is now
named 'rectangular'. The
table shows how to create
different types of plots using
pattern.

Display space

Angle space
(2D)

Set
'Coordinate

System' to
'rectangular'

or 'polar'.
Specify either
AZ or EL as a
scalar.

Angle space
(3D)

Set
'Coordinate

System' to
'rectangular'

or 'polar'.
Specify both
AZ and EL as
vectors.

UV space (2D) Set
'Coordinate

System' to
'uv'. Use AZ
to specify a U-
space vector.
Use EL to
specify a V-
space scalar.

UV space (3D) Set
'Coordinate

System' to

1 Alphabetical List

1-1004

plotResponse Inputs plotResponse Description pattern Inputs

Display space

to'U'. Set
'Format'

to 'UV'. Set
the display
range using
the 'UGrid'
name-value
pair.

UV space (3D) Set
'RespCut'

to'3D'. Set
'Format' to
'UV'. Set the
display range
using both
the 'UGrid'
and 'VGrid'
name-value
pairs.

Display space

'uv'. Use AZ
to specify a U-
space vector.
Use EL to
specify a V-
space vector.

If you set CoordinateSystem
to 'uv', enter the UV grid
values using AZ and EL.

'CutAngle' name-value pair Constant angle at to take an
azimuth or elevation cut. When
producing a 2-D plot and when
'RespCut' is set to 'Az' or
'El', use 'CutAngle' to set
the slice across which to view
the plot.

No equivalent name-value pair.
To create a cut, specify either AZ
or EL as a scalar, not a vector.

'NormalizeResponse' name-
value pair

Normalizes the plot.
When 'Unit' is set to
'dbi', you cannot specify
'NormalizeResponse'.

'Normalize' name-value
pair. When 'Type' is set to
'directivity',

you cannot specify
'Normalize'.
.

 pattern

1-1005

plotResponse Inputs plotResponse Description pattern Inputs

'OverlayFreq' name-value
pair

Plot multiple frequencies on
the same 2-D plot. Available
only when 'Format' is
set to 'line' or 'uv' and
'RespCut' is not set to '3D'.
The value true produces an
overlay plot and the value
false produces a waterfall
plot.

'PlotStyle' name-value pair
plots multiple frequencies on the
same 2-D plot.

The values 'overlay' and
'waterfall' correspond to
'OverlayFreq' values of
true and false. The option
'waterfall' is allowed only
when 'CoordinateSystem' is
set to 'rectangular' or 'uv'.

'Polarization' name-value
pair

Determines how to plot
polarized fields. Options are
'None', 'Combined', 'H', or
'V'.

'Polarization' name-value
pair determines how to plot
polarized fields. The 'None'
option is removed. The options
'Combined', 'H', or 'V' are
unchanged.

'Unit' name-value pair Determines the plot units.
Choose 'db', 'mag', 'pow',
or 'dbi', where the default is
'db'.

'Type' name-value pair, uses
equivalent options with different
names

plotResponse pattern

'db' 'powerdb'

'mag' 'efield'

'pow' 'power'

'dbi' 'directivity'

'Weights' name-value pair Array element tapers (or
weights).

'Weights' name-value pair (no
change).

'AzimuthAngles' name-value
pair

Azimuth angles used to display
the antenna or array response.

AZ argument

'ElevationAngles' name-
value pair

Elevation angles used to
display the antenna or array
response.

EL argument

1 Alphabetical List

1-1006

plotResponse Inputs plotResponse Description pattern Inputs

'UGrid' name-value pair Contains U coordinates in UV-
space.

AZ argument when
'CoordinateSystem' name-
value pair is set to 'uv'

'VGrid' name-value pair Contains V-coordinates in UV-
space.

EL argument when
'CoordinateSystem' name-
value pair is set to 'uv'

Examples

Plot Pattern and Directivity of Isotropic Antenna

Create an isotropic antenna element. The, plot the power pattern and the directivity.

First, create the antenna.

sIso = phased.IsotropicAntennaElement;

Draw an azimuth cut of the power pattern at 0 degrees elevation. Assume the operating
frequency is 1 GHz.

fc = 1e9;

pattern(sIso,fc,[-180:180],0,...

 'Type','power',...

 'CoordinateSystem','rectangular')

 pattern

1-1007

Draw the same azimuth cut of the antenna directivity.

pattern(sIso,fc,[-180:180],0,...

 'Type','directivity',...

 'CoordinateSystem','rectangular')

1 Alphabetical List

1-1008

Elevation-Cut of Isotropic Antenna Pattern

Construct an isotropic antenna operating in the frequency range from 800 MHz to 1.2
GHz. Compute the response at boresight at 1 GHz. Display the power pattern of the
antenna at 1 GHz.

sIso = phased.IsotropicAntennaElement(...

 'FrequencyRange',[800e6 1.2e9]);

fc = 1e9;

resp = step(sIso,fc,[0;0])

resp =

 pattern

1-1009

 1

Plot the elevation power pattern of the antenna in polar coordinates.

pattern(sIso,fc,0,[-90:90],...

 'Type','powerdb',...

 'CoordinateSystem','polar')

3-D Isotropic Antenna Pattern

Construct an isotropic antenna operating over a frequency range from 800 MHz to 1.2
GHz. Then plot the 3-D antenna field pattern.

Construct the antenna element.

1 Alphabetical List

1-1010

sIso = phased.IsotropicAntennaElement(...

 'FrequencyRange',[800e6 1.2e9]);

Plot the 3-D magnitude pattern of the antenna at 1 GHz from -30 to 30 degrees in both
azimuth and elevation in 0.1 degree increments.

fc = 1e9;

pattern(sIso,fc,[-30:0.1:30],[-30:0.1:30],...

 'Type','efield',...

 'CoordinateSystem','polar')

See Also
phased.IsotropicAntennaElement.patternAzimuth |
phased.IsotropicAntennaElement.patternElevation

 pattern

1-1011

Introduced in R2015a

1 Alphabetical List

1-1012

patternAzimuth

System object: phased.IsotropicAntennaElement
Package: phased

Plot isotropic antenna element directivity or pattern versus azimuth

Syntax

patternAzimuth(sElem,FREQ)

patternAzimuth(sElem,FREQ,EL)

patternAzimuth(sElem,FREQ,EL,Name,Value)

PAT = patternAzimuth(___)

Description

patternAzimuth(sElem,FREQ) plots the 2-D element directivity pattern versus
azimuth (in dBi) for the element sElem at zero degrees elevation angle. The argument
FREQ specifies the operating frequency.

patternAzimuth(sElem,FREQ,EL), in addition, plots the 2-D element directivity
pattern versus azimuth (in dBi) at the elevation angle specified by EL. When EL is a
vector, multiple overlaid plots are created.

patternAzimuth(sElem,FREQ,EL,Name,Value) plots the element pattern with
additional options specified by one or more Name,Value pair arguments.

PAT = patternAzimuth(___) returns the element pattern. PAT is a matrix whose
entries represent the pattern at corresponding sampling points specified by the
'Azimuth' parameter and the EL input argument.

Input Arguments

sElem — Isotropic antenna element
System object

 patternAzimuth

1-1013

Isotropic antenna element, specified as a phased.IsotropicAntennaElement System
object.
Example: sElem = phased.IsotropicAntennaElement;

FREQ — Frequency for computing directivity and pattern
positive scalar

Frequency for computing directivity and pattern, specified as a positive scalar. Frequency
units are in hertz.

• For an antenna or microphone element, FREQ must lie within the range of values
specified by the FrequencyRange or the FrequencyVector property of the
element. Otherwise, the element produces no response and the directivity is
returned as –Inf. Most elements use the FrequencyRange property except for
phased.CustomAntennaElement and phased.CustomMicrophoneElement, which use
the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements
that make up the array. Otherwise, the array produces no response and the
directivity is returned as –Inf.

Example: 1e8

Data Types: double

EL — Elevation angles
1-by-N real-valued row vector

Elevation angles for computing array directivity and pattern, specified as a 1-by-N real-
valued row vector, where N is the number of requested elevation directions. Angle units
are in degrees. The elevation angle must lie between –90° and 90°.

The elevation angle is the angle between the direction vector and the xy plane. When
measured toward the z-axis, this angle is positive.
Example: [0,10,20]

Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

1 Alphabetical List

1-1014

quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Type' — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and
one of

• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed

pattern is for the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field

pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'

Data Types: char

'Azimuth' — Azimuth angles
[-180:180] (default) | 1-by-P real-valued row vector

Azimuth angles, specified as the comma-separated pair consisting of 'Azimuth' and a 1-
by-P real-valued row vector. Azimuth angles define where the array pattern is calculated.
Example: 'Azimuth',[-90:2:90]

Data Types: double

Output Arguments

PAT — Element directivity or pattern
L-by-N real-valued matrix

Element directivity or pattern, returned as an L-by-N real-valued matrix. The dimension
L is the number of azimuth values determined by the 'Azimuth' name-value pair
argument. The dimension N is the number of elevation angles, as determined by the EL
input argument.

 patternAzimuth

1-1015

Definitions

Directivity

Directivity describes the directionality of the radiation pattern of a sensor element
or array of sensor elements. Higher directivity is desired when you want to transmit
more radiation in a specific direction. Directivity is the ratio of the transmitted radiant
intensity in a specified direction to the radiant intensity transmitted by an isotropic
radiator with the same total transmitted power

D
U

P
=

()
4p

q jrad

total

,

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal
is the total power transmitted by an isotropic radiator. For a receiving element or array,
directivity measures the sensitivity toward radiation arriving from a specific direction.
The principle of reciprocity shows that the directivity of an element or array used for
reception equals the directivity of the same element or array used for transmission.
When converted to decibels, the directivity is denoted as dBi. For information on
directivity, read the notes on “Element directivity” and “Array directivity”.

Computing directivity requires integrating the far-field transmitted radiant intensity
over all directions in space to obtain the total transmitted power. There is a difference
between how that integration is performed when Antenna Toolbox antennas are used
in a phased array and when Phased Array System Toolbox antennas are used. When
an array contains Antenna Toolbox antennas, the directivity computation is performed
using a triangular mesh created from 500 regularly spaced points over a sphere. For
Phased Array System Toolbox antennas, the integration uses a uniform rectangular
mesh of points spaced 1° apart in azimuth and elevation over a sphere. There may be
significant differences in computed directivity, especially for large arrays.

Examples

Restricted Azimuth Directivity Pattern of Isotropic Antenna Element

Plot an azimuth cut of the directivity of an isotropic antenna element at 0 and then at 30
degrees elevation. Assume the operating frequency is 500 MHz.

1 Alphabetical List

1-1016

Create the antenna element.

fc = 500e6;

sIso = phased.IsotropicAntennaElement('FrequencyRange',[100,900]*1e6);

patternAzimuth(sIso,fc,0)

Plot a reduced range of azimuth angles using the Azimuth parameter.

patternAzimuth(sIso,fc,30,'Azimuth',[-20:20])

 patternAzimuth

1-1017

See Also
phased.IsotropicAntennaElement.pattern |
phased.IsotropicAntennaElement.patternElevation

Introduced in R2015a

1 Alphabetical List

1-1018

patternElevation
System object: phased.IsotropicAntennaElement
Package: phased

Plot isotropic antenna element directivity or pattern versus elevation

Syntax
patternElevation(sElem,FREQ)

patternElevation(sElem,FREQ,AZ)

patternElevation(sElem,FREQ,AZ,Name,Value)

PAT = patternElevation(___)

Description
patternElevation(sElem,FREQ) plots the 2-D element directivity pattern versus
elevation (in dBi) for the element sElem at zero degrees azimuth angle. The argument
FREQ specifies the operating frequency.

patternElevation(sElem,FREQ,AZ), in addition, plots the 2-D element directivity
pattern versus elevation (in dBi) at the azimuth angle specified by AZ. When AZ is a
vector, multiple overlaid plots are created.

patternElevation(sElem,FREQ,AZ,Name,Value) plots the element pattern with
additional options specified by one or more Name,Value pair arguments.

PAT = patternElevation(___) returns the element pattern. PAT is a matrix
whose entries represent the pattern at corresponding sampling points specified by the
'Elevation' parameter and the AZ input argument.

Input Arguments
sElem — Isotropic antenna element
System object

Isotropic antenna element, specified as a phased.IsotropicAntennaElement System
object.

 patternElevation

1-1019

Example: sElem = phased.IsotropicAntennaElement;

FREQ — Frequency for computing directivity and pattern
positive scalar

Frequency for computing directivity and pattern, specified as a positive scalar. Frequency
units are in hertz.

• For an antenna or microphone element, FREQ must lie within the range of values
specified by the FrequencyRange or the FrequencyVector property of the
element. Otherwise, the element produces no response and the directivity is
returned as –Inf. Most elements use the FrequencyRange property except for
phased.CustomAntennaElement and phased.CustomMicrophoneElement, which use
the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements
that make up the array. Otherwise, the array produces no response and the
directivity is returned as –Inf.

Example: 1e8

Data Types: double

AZ — Azimuth angles for computing directivity and pattern
1-by-N real-valued row vector

Azimuth angles for computing array directivity and pattern, specified as a 1-by-M real-
valued row vector where N is the number of desired azimuth directions. Angle units are
in degrees. The azimuth angle must lie between –180° and 180°.

The azimuth angle is the angle between the x-axis and the projection of the direction
vector onto the xy plane. This angle is positive when measured from the x-axis toward the
y-axis.
Example: [0,10,20]

Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

1 Alphabetical List

1-1020

quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Type' — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and
one of

• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed

pattern is for the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field

pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'

Data Types: char

'Elevation' — Elevation angles
[-90:90] (default) | 1-by-P real-valued row vector

Elevation angles, specified as the comma-separated pair consisting of 'Elevation'
and a 1-by-P real-valued row vector. Elevation angles define where the array pattern is
calculated.
Example: 'Elevation',[-90:2:90]

Data Types: double

Output Arguments

PAT — Element directivity or pattern
L-by-N real-valued matrix

Element directivity or pattern, returned as an L-by-N real-valued matrix. The dimension
L is the number of elevation angles determined by the 'Elevation' name-value pair
argument. The dimension N is the number of azimuth angles determined by the AZ
argument.

 patternElevation

1-1021

Definitions

Directivity

Directivity describes the directionality of the radiation pattern of a sensor element
or array of sensor elements. Higher directivity is desired when you want to transmit
more radiation in a specific direction. Directivity is the ratio of the transmitted radiant
intensity in a specified direction to the radiant intensity transmitted by an isotropic
radiator with the same total transmitted power

D
U

P
=

()
4p

q jrad

total

,

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal
is the total power transmitted by an isotropic radiator. For a receiving element or array,
directivity measures the sensitivity toward radiation arriving from a specific direction.
The principle of reciprocity shows that the directivity of an element or array used for
reception equals the directivity of the same element or array used for transmission.
When converted to decibels, the directivity is denoted as dBi. For information on
directivity, read the notes on “Element directivity” and “Array directivity”.

Computing directivity requires integrating the far-field transmitted radiant intensity
over all directions in space to obtain the total transmitted power. There is a difference
between how that integration is performed when Antenna Toolbox antennas are used
in a phased array and when Phased Array System Toolbox antennas are used. When
an array contains Antenna Toolbox antennas, the directivity computation is performed
using a triangular mesh created from 500 regularly spaced points over a sphere. For
Phased Array System Toolbox antennas, the integration uses a uniform rectangular
mesh of points spaced 1° apart in azimuth and elevation over a sphere. There may be
significant differences in computed directivity, especially for large arrays.

Examples

Restricted Elevation Directivity Pattern of Isotropic Antenna Element

Plot an elevation cut of directivity of an isotropic antenna element at 45 degrees azimuth.
Assume the operating frequency is 500 MHz.

1 Alphabetical List

1-1022

Create the antenna element.

fc = 500e6;

sIso = phased.IsotropicAntennaElement('FrequencyRange',[100,900]*1e6);

patternElevation(sIso,fc,45)

Plot a reduced range of elevation angles using the Elevation parameter.

patternElevation(sIso,fc,45,'Elevation',[-20:20])

 patternElevation

1-1023

See Also
phased.IsotropicAntennaElement.pattern |
phased.IsotropicAntennaElement.patternAzimuth

Introduced in R2015a

1 Alphabetical List

1-1024

plotResponse
System object: phased.IsotropicAntennaElement
Package: phased

Plot response pattern of antenna

Syntax

plotResponse(H,FREQ)

plotResponse(H,FREQ,Name,Value)

hPlot = plotResponse(___)

Description

plotResponse(H,FREQ) plots the element response pattern along the azimuth cut,
where the elevation angle is 0. The operating frequency is specified in FREQ.

plotResponse(H,FREQ,Name,Value) plots the element response with additional
options specified by one or more Name,Value pair arguments.

hPlot = plotResponse(___) returns handles of the lines or surface in the figure
window, using any of the input arguments in the previous syntaxes.

Input Arguments

H

Element System object

FREQ

Operating frequency in Hertz specified as a scalar or 1–by-K row vector. FREQ must
lie within the range specified by the FrequencyVector property of H. If you set the
'RespCut' property of H to '3D', FREQ must be a scalar. When FREQ is a row vector,
plotResponse draws multiple frequency responses on the same axes.

 plotResponse

1-1025

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'CutAngle'

Cut angle specified as a scalar. This argument is applicable only when RespCut is 'Az'
or 'El'. If RespCut is 'Az', CutAngle must be between –90 and 90. If RespCut is
'El', CutAngle must be between –180 and 180.

Default: 0

'Format'

Format of the plot, using one of 'Line', 'Polar', or 'UV'. If you set Format to 'UV',
FREQ must be a scalar.

Default: 'Line'

'NormalizeResponse'

Set this value to true to normalize the response pattern. Set this value to false to plot
the response pattern without normalizing it. This parameter is not applicable when you
set the Unit parameter value to 'dbi'.

Default: true

'OverlayFreq'

Set this value to true to overlay pattern cuts in a 2-D line plot. Set this value to false
to plot pattern cuts against frequency in a 3-D waterfall plot. If this value is false, FREQ
must be a vector with at least two entries.

This parameter applies only when Format is not 'Polar' and RespCut is not '3D'.

Default: true

'Polarization'

Specify the polarization options for plotting the antenna response pattern. The allowable
values are |'None' | 'Combined' | 'H' | 'V' | where

1 Alphabetical List

1-1026

• 'None' specifies plotting a nonpolarized response pattern
• 'Combined' specifies plotting a combined polarization response pattern
• 'H' specifies plotting the horizontal polarization response pattern
• 'V' specifies plotting the vertical polarization response pattern

For antennas that do not support polarization, the only allowed value is 'None'. This
parameter is not applicable when you set the Unit parameter value to 'dbi'.

Default: 'None'

'RespCut'

Cut of the response. Valid values depend on Format, as follows:

• If Format is 'Line' or 'Polar', the valid values of RespCut are 'Az', 'El', and
'3D'. The default is 'Az'.

• If Format is 'UV', the valid values of RespCut are 'U' and '3D'. The default is 'U'.

If you set RespCut to '3D', FREQ must be a scalar.

'Unit'

The unit of the plot. Valid values are 'db', 'mag', 'pow', or 'dbi'. This parameter
determines the type of plot that is produced.

Unit value Plot type

db power pattern in dB
scale

mag field pattern
pow power pattern
dbi directivity

Default: 'db'

'AzimuthAngles'

Azimuth angles for plotting element response, specified as a row vector. The
AzimuthAngles parameter sets the display range and resolution of azimuth angles for

 plotResponse

1-1027

visualizing the radiation pattern. This parameter is allowed only when the RespCut
parameter is set to 'Az' or '3D' and the Format parameter is set to 'Line' or
'Polar'. The values of azimuth angles should lie between –180° and 180° and must be
in nondecreasing order. When you set the RespCut parameter to '3D', you can set the
AzimuthAngles and ElevationAngles parameters simultaneously.

Default: [-180:180]

'ElevationAngles'

Elevation angles for plotting element response, specified as a row vector. The
ElevationAngles parameter sets the display range and resolution of elevation
angles for visualizing the radiation pattern. This parameter is allowed only when the
RespCut parameter is set to 'El' or '3D' and the Format parameter is set to 'Line'
or 'Polar'. The values of elevation angles should lie between –90° and 90° and must be
in nondecreasing order. When you set the RespCut parameter to '3D', you can set the
ElevationAngles and AzimuthAngles parameters simultaneously.

Default: [-90:90]

'UGrid'

U coordinate values for plotting element response, specified as a row vector. The UGrid
parameter sets the display range and resolution of the U coordinates for visualizing
the radiation pattern in U/V space. This parameter is allowed only when the Format
parameter is set to 'UV' and the RespCut parameter is set to 'U' or '3D'. The values of
UGrid should be between –1 and 1 and should be specified in nondecreasing order. You
can set the UGrid and VGrid parameters simultaneously.

Default: [-1:0.01:1]

'VGrid'

V coordinate values for plotting element response, specified as a row vector. The VGrid
parameter sets the display range and resolution of the V coordinates for visualizing
the radiation pattern in U/V space. This parameter is allowed only when the Format
parameter is set to 'UV' and the RespCut parameter is set to '3D'. The values of VGrid
should be between –1 and 1 and should be specified in nondecreasing order. You can set
the VGrid and UGrid parameters simultaneously.

Default: [-1:0.01:1]

1 Alphabetical List

1-1028

Examples

Plot Response and Directivity of Isotropic Antenna

This example shows how to plot the response and the directivity of an isotropic antenna
element.

Draw a line plot of an azimuth cut of the response of an isotropic antenna along 0 degrees
elevation. Assume the operating frequency is 1 GHz.

sIso = phased.IsotropicAntennaElement;

plotResponse(sIso,1e9,'Unit','pow');

Draw an azimuth cut of the antenna directivity.

 plotResponse

1-1029

plotResponse(sIso,1e9,'Unit','dbi');

Plot Elevation-Cut of Isotropic Antenna Response

Construct an isotropic antenna operating in the frequency range from 800 MHz to 1.2
GHz. Find the response of the antenna at boresight at 1 GHz.

sIso = phased.IsotropicAntennaElement(...

 'FrequencyRange',[800e6 1.2e9]);

fc = 1e9;

resp = step(sIso,fc,[0;0])

resp =

1 Alphabetical List

1-1030

 1

Plot the polar-form of the elevation response of the antenna.

plotResponse(sIso,fc,'RespCut','El','Format','Polar');

Plot 3-D Response

This example shows how to construct an isotropic antenna operating over a frequency
range from 800 MHz to 1.2 GHz and how to plot its response.

Construct the antenna element.

 plotResponse

1-1031

sIso = phased.IsotropicAntennaElement(...

 'FrequencyRange',[0.8e9 1.2e9]);

Plot the 3-D response of the antenna at 1 GHz from -30 to 30 degrees in both azimuth
and elevation at 0.1 degree increments.

fc = 1e9;

plotResponse(sIso,fc,'RespCut','3D','Format','Polar',...

 'Unit','mag','AzimuthAngles',[-30:.1:30],...

 'ElevationAngles',[-30:.1:30]);

See Also
azel2uv | uv2azel

1 Alphabetical List

1-1032

release
System object: phased.IsotropicAntennaElement
Package: phased

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

 step

1-1033

step
System object: phased.IsotropicAntennaElement
Package: phased

Output response of antenna element

Syntax

RESP = step(H,FREQ,ANG)

Description

RESP = step(H,FREQ,ANG) returns the antenna’s voltage response RESP at operating
frequencies specified in FREQ and directions specified in ANG.

Note: The object performs an initialization the first time the step method is executed.
This initialization locks nontunable properties and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Input Arguments

H

Antenna element object.

FREQ

Operating frequencies of antenna in hertz. FREQ is a row vector of length L.

ANG

Directions in degrees. ANG can be either a 2-by-M matrix or a row vector of length M.

1 Alphabetical List

1-1034

If ANG is a 2-by-M matrix, each column of the matrix specifies the direction in the
form [azimuth; elevation]. The azimuth angle must be between –180 and 180 degrees,
inclusive. The elevation angle must be between –90 and 90 degrees, inclusive.

If ANG is a row vector of length M, each element specifies a direction’s azimuth angle. In
this case, the corresponding elevation angle is assumed to be 0.

Output Arguments

RESP

Voltage response of antenna element specified as an M-by-L, complex-valued matrix. In
this matrix, M represents the number of angles specified in ANG while L represents the
number of frequencies specified in FREQ.

Examples

Construct an isotropic antenna operating over a frequency range from 800 MHz to
1.2 GHz. The operating frequency is 1 GHz. Find the response of the antenna at the
boresight. Then, plot the polar-pattern elevation response of the antenna.

ha = phased.IsotropicAntennaElement(...

 'FrequencyRange',[800e6 1.2e9]);

fc = 1e9;

resp = step(ha,fc,[0; 0]);

plotResponse(ha,fc,'RespCut','El','Format','Polar');

 step

1-1035

See Also
phitheta2azel | uv2azel

1 Alphabetical List

1-1036

phased.LCMVBeamformer System object
Package: phased

Narrowband LCMV beamformer

Description

The LCMVBeamformer object implements a linear constraint minimum variance
beamformer.

To compute the beamformed signal:

1 Define and set up your LCMV beamformer. See “Construction” on page 1-1036.
2 Call step to perform the beamforming operation according to the properties of

phased.LCMVBeamformer. The behavior of step is specific to each object in the
toolbox.

Construction

H = phased.LCMVBeamformer creates a linear constraint minimum variance (LCMV)
beamformer System object, H. The object performs narrowband LCMV beamforming on
the received signal.

H = phased.LCMVBeamformer(Name,Value) creates an LCMV beamformer object, H,
with each specified property Name set to the specified Value. You can specify additional
name-value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties

Constraint

Constraint matrix

Specify the constraint matrix used for LCMV beamforming as an N-by-K matrix. Each
column of the matrix is a constraint and N is the number of elements in the sensor array.

 phased.LCMVBeamformer System object

1-1037

Default: [1; 1]

DesiredResponse

Desired response vector

Specify the desired response used for LCMV beamforming as a column vector of length
K, where K is the number of constraints in the Constraint property. Each element in
the vector defines the desired response of the constraint specified in the corresponding
column of the Constraint property.

Default: 1, which corresponds to a distortionless response

DiagonalLoadingFactor

Diagonal loading factor

Specify the diagonal loading factor as a positive scalar. Diagonal loading is a technique
used to achieve robust beamforming performance, especially when the sample support is
small. This property is tunable.

Default: 0

TrainingInputPort

Add input to specify training data

To specify additional training data, set this property to true and use the corresponding
input argument when you invoke step. To use the input signal as the training data, set
this property to false.

Default: false

WeightsOutputPort

Output beamforming weights

To obtain the weights used in the beamformer, set this property to true and use the
corresponding output argument when invoking step. If you do not want to obtain the
weights, set this property to false.

Default: false

1 Alphabetical List

1-1038

Methods

clone Create LCMV beamformer object with
same property values

getNumInputs Number of expected inputs to step method
getNumOutputs Number of outputs from step method
isLocked Locked status for input attributes and

nontunable properties
release Allow property value and input

characteristics changes
step Perform LCMV beamforming

Examples

LCMV Beamformer with One Constraint

Apply an LCMV beamformer to a 5-element ULA of isotropic sensor elements, preserving
the signal from a desired direction. The operating frequency is 300 MHz.

Simulate a low-frequency sinusoid signal in gaussian noise.

f = 50;

t = (0:.001:.3)';

x = sin(2*pi*f*t);

c = physconst('LightSpeed');

fc = 300e6;

lambda = c/fc;

incidentAngle = [45;0];

sIso = phased.IsotropicAntennaElement('FrequencyRange',[20 20e8]);

sULA = phased.ULA('NumElements',5,'ElementSpacing',lambda/2,...

 'Element',sIso);

x = collectPlaneWave(sULA,x,incidentAngle,fc,c);

noise = 0.2*(randn(size(x)) + 1j*randn(size(x)));

rx = x + noise;

Beamform the array.

sSV = phased.SteeringVector('SensorArray',sULA,...

 'PropagationSpeed',c);

sLCMV = phased.LCMVBeamformer;

 phased.LCMVBeamformer System object

1-1039

sLCMV.Constraint = step(sSV,fc,incidentAngle);

sLCMV.DesiredResponse = 1;

y = step(sLCMV,rx);

Plot the original and beamformed signals.

plot(t,real(rx(:,3)),'r:',t,real(y),t,real(x(:,3)),'g')

xlabel('Time (sec)'); ylabel('Amplitude')

legend('Signal at Sensor 3','Beamformed Signal','Noise Free Signal')

References

[1] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002.

1 Alphabetical List

1-1040

See Also
phased.MVDRBeamformer | phased.PhaseShiftBeamformer |
phased.TimeDelayLCMVBeamformer

More About
• “Adaptive Beamforming”

Introduced in R2012a

 clone

1-1041

clone
System object: phased.LCMVBeamformer
Package: phased

Create LCMV beamformer object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates an object, C, having the same property values and same states as
H. If H is locked, so is C.

1 Alphabetical List

1-1042

getNumInputs
System object: phased.LCMVBeamformer
Package: phased

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of inputs
(not counting the object itself) that you must use when calling the step method. This
value changes when you alter properties that turn inputs on or off.

 getNumOutputs

1-1043

getNumOutputs
System object: phased.LCMVBeamformer
Package: phased

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value changes when you alter properties that turn outputs on or off.

1 Alphabetical List

1-1044

isLocked
System object: phased.LCMVBeamformer
Package: phased

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF, for the LCMVBeamformer System
object.

isLocked returns a logical value that indicates whether input attributes and
nontunable properties for the object are locked. The object performs an internal
initialization the first time that you execute step. This initialization locks nontunable
properties and input specifications, such as the dimensions, complexity, and data type of
the input data. After locking, isLocked returns a true value.

 release

1-1045

release
System object: phased.LCMVBeamformer
Package: phased

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

1 Alphabetical List

1-1046

step

System object: phased.LCMVBeamformer
Package: phased

Perform LCMV beamforming

Syntax

Y = step(H,X)

Y = step(H,X,XT)

[Y,W] = step(___)

Description

Y = step(H,X) performs LCMV beamforming on the input, X, and returns the
beamformed output in Y. X is an M-by-N matrix where N is the number of elements of the
sensor array. Y is a column vector of length M.

Y = step(H,X,XT) uses XT as the training samples to calculate the beamforming
weights. This syntax is available when you set the TrainingInputPort property to
true. XT is a P-by-N matrix, where N is the number of elements of the sensor array. P
must be greater than N.

[Y,W] = step(___) returns the beamforming weights W. This syntax is available
when you set the WeightsOutputPort property to true. W is a column vector of length
N, where N is the number of elements in the sensor array.

Note: The object performs an initialization the first time the step method is executed.
This initialization locks nontunable properties and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

 step

1-1047

Examples

LCMV Beamformer with One Constraint

Apply an LCMV beamformer to a 5-element ULA of isotropic sensor elements, preserving
the signal from a desired direction. The operating frequency is 300 MHz.

Simulate a low-frequency sinusoid signal in gaussian noise.

f = 50;

t = (0:.001:.3)';

x = sin(2*pi*f*t);

c = physconst('LightSpeed');

fc = 300e6;

lambda = c/fc;

incidentAngle = [45;0];

sIso = phased.IsotropicAntennaElement('FrequencyRange',[20 20e8]);

sULA = phased.ULA('NumElements',5,'ElementSpacing',lambda/2,...

 'Element',sIso);

x = collectPlaneWave(sULA,x,incidentAngle,fc,c);

noise = 0.2*(randn(size(x)) + 1j*randn(size(x)));

rx = x + noise;

Beamform the array.

sSV = phased.SteeringVector('SensorArray',sULA,...

 'PropagationSpeed',c);

sLCMV = phased.LCMVBeamformer;

sLCMV.Constraint = step(sSV,fc,incidentAngle);

sLCMV.DesiredResponse = 1;

y = step(sLCMV,rx);

Plot the original and beamformed signals.

plot(t,real(rx(:,3)),'r:',t,real(y),t,real(x(:,3)),'g')

xlabel('Time (sec)'); ylabel('Amplitude')

legend('Signal at Sensor 3','Beamformed Signal','Noise Free Signal')

1 Alphabetical List

1-1048

 phased.LinearFMWaveform System object

1-1049

phased.LinearFMWaveform System object
Package: phased

Linear FM pulse waveform

Description

The LinearFMWaveform object creates a linear FM pulse waveform.

To obtain waveform samples:

1 Define and set up your linear FM waveform. See “Construction” on page 1-1049.
2 Call step to generate the linear FM waveform samples according to the properties of

phased.LinearFMWaveform. The behavior of step is specific to each object in the
toolbox.

Construction

H = phased.LinearFMWaveform creates a linear FM pulse waveform System object, H.
The object generates samples of a linear FM pulse waveform.

H = phased.LinearFMWaveform(Name,Value) creates a linear FM pulse
waveform object, H, with each specified property Name set to the specified
Value. You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties

SampleRate

Sample rate

Signal sample rate, specified as a positive scalar. Units are Hertz. The ratio of sample
rate to pulse repetition frequency (PRF) must be a positive integer — each pulse must
contain an integer number of samples.

Default: 1e6

1 Alphabetical List

1-1050

DurationSpecification

Method to set pulse duration

Method to set pulse duration (pulse width), specified as 'Pulse width' or 'Duty
cycle'. This property determines how you set the pulse duration. When you set
this property to 'Pulse width', then you set the pulse duration directly using the
PulseWidth property. When you set this property to 'Duty cycle', you set the pulse
duration from the values of the PRF and DutyCycle properties. The pulse width is equal
to the duty cycle divided by the PRF.

Default: 'Pulse width'

PulseWidth

Pulse width

Specify the length of each pulse (in seconds) as a positive scalar. The value must satisfy
PulseWidth <= 1./PRF.

Default: 50e-6

DutyCycle

Waveform duty cycle

Waveform duty cycle, specified as a scalar from 0 through 1, inclusive. This property
applies when you set the DurationSpecification property to 'Duty cycle'. The
pulse width is the value of the DutyCycle property divided by the value of the PRF
property.

Default: 0.5

PRF

Pulse repetition frequency

Pulse repetition frequency (PRF), specified as a scalar or a row vector. Units are hertz.
The pulse repetition interval (PRI) is the inverse of the PRF.

• When PRFSelectionInputPort is false, you can

• implement a constant PRF by specifying PRF as a positive real-valued scalar.

 phased.LinearFMWaveform System object

1-1051

• implement a staggered PRF by specifying PRF as a row vector with positive real-
valued entries. When PRF is a vector, the each call to the step method produces
pulses that use successive elements of the vector as the PRF. If the last element of
the vector is reached, the process continues cyclically with the first element of the
vector.

• When PRFSelectionInputPort is true, you can implement a selectable PRF by
specifying PRF as a row vector with positive real-valued entries. Then in each call to
the step syntax, pass in an index to an entry in the desired PRF vector.

The value of this property must satisfy these constraints:

• The PRF must be less than or equal to 1/PulseWidth. This is equivalent to the
requirement that the pulse width is less than or equal to the PRI. For the phase-coded
waveform, the pulse width is the product of the chip width and number of chips.

• The ratio of sample rate to PRF must be an integer — the number of samples in a
pulse must be an integer

Default: 10e3

PRFSelectionInputPort

Enable PRF selection input

Enable the PRF selection input, specified as true or false. When you set this property
to false, the step method uses the values set in the PRF property in order. When you
set this property to true, you can pass an additional argument into the step method to
select any value from the PRF vector.

Default: false

SweepBandwidth

FM sweep bandwidth

Specify the bandwidth of the linear FM sweeping (in hertz) as a positive scalar. The
default value corresponds to 100 kHz.

Default: 1e5

SweepDirection

FM sweep direction

1 Alphabetical List

1-1052

Specify the direction of the linear FM sweep as one of 'Up' or 'Down'.

Default: 'Up'

SweepInterval

Location of FM sweep interval

If you set this property value to 'Positive', the waveform sweeps in the interval
between 0 and B, where B is the SweepBandwidth property value. If you set this
property value to 'Symmetric', the waveform sweeps in the interval between –B/2 and
B/2.

Default: 'Positive'

Envelope

Envelope function

Specify the envelope function as one of 'Rectangular' or 'Gaussian'.

Default: 'Rectangular'

OutputFormat

Output signal format

Specify the format of the output signal as one of 'Pulses' or 'Samples'. When you
set the OutputFormat property to 'Pulses', the output of the step method is in the
form of multiple pulses. In this case, the number of pulses is the value of the NumPulses
property.

When you set the OutputFormat property to 'Samples', the output of the step method
is in the form of multiple samples. In this case, the number of samples is the value of the
NumSamples property.

Default: 'Pulses'

NumSamples

Number of samples in output

Specify the number of samples in the output of the step method as a positive integer.
This property applies only when you set the OutputFormat property to 'Samples'.

 phased.LinearFMWaveform System object

1-1053

Default: 100

NumPulses

Number of pulses in output

Specify the number of pulses in the output of the step method as a positive integer. This
property applies only when you set the OutputFormat property to 'Pulses'.

Default: 1

Methods
bandwidth Bandwidth of linear FM waveform
clone Create linear FM waveform object with

same property values
getMatchedFilter Matched filter coefficients for waveform
getNumInputs Number of expected inputs to step method
getNumOutputs Number of outputs from step method
getStretchProcessor Create stretch processor for waveform
isLocked Locked status for input attributes and

nontunable properties
plot Plot linear FM pulse waveform
release Allow property value and input

characteristics changes
reset Reset states of the linear FM waveform

object
step Samples of linear FM pulse waveform

Examples

Plot LFM Waveform and Spectrum

Create and plot an upsweep linear FM pulse waveform. The sample rate is 500 kHz, the
sweep bandwidth is 200 kHz and the pulse width is 1 millisecond (equal to the pulse
repetition interval).

1 Alphabetical List

1-1054

fs = 500e3;

sLFM = phased.LinearFMWaveform('SampleRate',fs,...

 'SweepBandwidth',200e3,...

 'PulseWidth',1e-3,'PRF',1e3);

Obtain and then plot the real part of the LFM waveform.

lfmwav = step(sLFM);

nsamp = size(lfmwav,1);

t = [0:(nsamp-1)]/fs;

plot(t*1000,real(lfmwav))

xlabel('Time (millisec)')

ylabel('Amplitude')

grid

 phased.LinearFMWaveform System object

1-1055

Plot the Fourier transform of the complex signal.

nfft = 2^nextpow2(nsamp);

Z = fft(lfmwav,nfft);

fr = [0:(nfft/2-1)]/nfft*fs;

plot(fr/1000,abs(Z(1:nfft/2)),'.-')

xlabel('Frequency (Hz)')

ylabel('Amplitude')

grid

Plot a spectrogram of the function with window size of 64 samples and 50% overlap.

nfft1 = 64;

nov = floor(0.5*nfft1);

1 Alphabetical List

1-1056

spectrogram(lfmwav,hamming(nfft1),nov,nfft1,fs,'centered','yaxis')

This plot shows the increasing frequency of the signal.

• Waveform Analysis Using the Ambiguity Function

References

[1] Levanon, N. and E. Mozeson. Radar Signals. Hoboken, NJ: John Wiley & Sons, 2004.

[2] Richards, M. A. Fundamentals of Radar Signal Processing. New York: McGraw-Hill,
2005.

../examples/waveform-analysis-using-the-ambiguity-function.html

 phased.LinearFMWaveform System object

1-1057

See Also
phased.RectangularWaveform | phased.SteppedFMWaveform |
phased.PhaseCodedWaveform

Introduced in R2012a

1 Alphabetical List

1-1058

bandwidth
System object: phased.LinearFMWaveform
Package: phased

Bandwidth of linear FM waveform

Syntax

BW = bandwidth(H)

Description

BW = bandwidth(H) returns the bandwidth (in hertz) of the pulses for the linear FM
pulse waveform H. The bandwidth equals the value of the SweepBandwidth property.

Input Arguments

H

Linear FM pulse waveform object.

Output Arguments

BW

Bandwidth of the pulses, in hertz.

Examples

Determine the bandwidth of a linear FM pulse waveform.

H = phased.LinearFMWaveform;

bw = bandwidth(H)

 clone

1-1059

clone
System object: phased.LinearFMWaveform
Package: phased

Create linear FM waveform object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates an object, C, having the same property values and same states as
H. If H is locked, so is C.

1 Alphabetical List

1-1060

getMatchedFilter
System object: phased.LinearFMWaveform
Package: phased

Matched filter coefficients for waveform

Syntax

Coeff = getMatchedFilter(H)

Description

Coeff = getMatchedFilter(H) returns the matched filter coefficients for the linear
FM waveform object H. Coeff is a column vector.

Examples

Get the matched filter coefficients for a linear FM pulse.

hwav = phased.LinearFMWaveform('PulseWidth',5e-05,...

 'SweepBandwidth',1e5,'OutputFormat','Pulses');

coeff = getMatchedFilter(hwav);

stem(real(coeff));

title('Matched filter coefficients, real part');

 getNumInputs

1-1061

getNumInputs
System object: phased.LinearFMWaveform
Package: phased

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of inputs
(not counting the object itself) that you must use when calling the step method. This
value changes when you alter properties that turn inputs on or off.

1 Alphabetical List

1-1062

getNumOutputs
System object: phased.LinearFMWaveform
Package: phased

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value changes when you alter properties that turn outputs on or off.

 getStretchProcessor

1-1063

getStretchProcessor
System object: phased.LinearFMWaveform
Package: phased

Create stretch processor for waveform

Syntax

HS = getStretchProcessor(H)

HS = getStretchProcessor(H,refrng)

HS = getStretchProcessor(H,refrng,rngspan)

HS = getStretchProcessor(H,refrng,rngspan,v)

Description

HS = getStretchProcessor(H) returns the stretch processor for the waveform, H. HS
is set up so the reference range corresponds to 1/4 of the maximum unambiguous range of
a pulse. The range span corresponds to 1/10 of the distance traveled by the wave within
the pulse width. The propagation speed is the speed of light.

HS = getStretchProcessor(H,refrng) specifies the reference range.

HS = getStretchProcessor(H,refrng,rngspan) specifies the range span. The
reference interval is centered at refrng.

HS = getStretchProcessor(H,refrng,rngspan,v) specifies the propagation
speed.

Input Arguments

H

Linear FM pulse waveform object.

refrng

Reference range, in meters, as a positive scalar.

1 Alphabetical List

1-1064

Default: 1/4 of the maximum unambiguous range of a pulse

rngspan

Length of the interval of ranges of interest, in meters, as a positive scalar. The center of
the interval is the range value specified in the refrng argument.

Default: 1/10 of the distance traveled by the wave within the pulse width

v

Propagation speed, in meters per second, as a positive scalar.

Default: Speed of light

Output Arguments

HS

Stretch processor as a phased.StretchProcessor System object.

Examples

Detection of Target Using Stretch Processing

Use stretch processing to locate a target at a range of 4950 m.

Simulate the signal.

hwav = phased.LinearFMWaveform;

x = step(hwav);

c = 3e8; r = 4950;

num_sample = r/(c/(2*hwav.SampleRate));

x = circshift(x,num_sample);

Perform stretch processing.

hs = getStretchProcessor(hwav,5000,200,c);

y = step(hs,x);

 getStretchProcessor

1-1065

Plot the spectrum of the resulting signal.

[Pxx,F] = periodogram(y,[],2048,hs.SampleRate,'centered');

plot(F/1000,10*log10(Pxx)); grid;

xlabel('Frequency (kHz)');

ylabel('Power/Frequency (dB/Hz)');

title('Periodogram Power Spectrum Density Estimate');

Detect the range.

[~,rngidx] = findpeaks(pow2db(Pxx/max(Pxx)),...

 'MinPeakHeight',-5);

rngfreq = F(rngidx);

re = stretchfreq2rng(rngfreq,hs.SweepSlope,...

1 Alphabetical List

1-1066

 hs.ReferenceRange,c);

• Range Estimation Using Stretch Processing

See Also
phased.StretchProcessor | stretchfreq2rng

More About
• “Stretch Processing”

../examples/range-estimation-using-stretch-processing.html

 isLocked

1-1067

isLocked
System object: phased.LinearFMWaveform
Package: phased

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF, for the LinearFMWaveform System
object.

isLocked returns a logical value that indicates whether input attributes and
nontunable properties for the object are locked. The object performs an internal
initialization the first time that you execute step. This initialization locks nontunable
properties and input specifications, such as the dimensions, complexity, and data type of
the input data. After locking, isLocked returns a true value.

1 Alphabetical List

1-1068

plot
System object: phased.LinearFMWaveform
Package: phased

Plot linear FM pulse waveform

Syntax

plot(Hwav)

plot(Hwav,Name,Value)

plot(Hwav,Name,Value,LineSpec)

h = plot(___)

Description

plot(Hwav) plots the real part of the waveform specified by Hwav.

plot(Hwav,Name,Value) plots the waveform with additional options specified by one
or more Name,Value pair arguments.

plot(Hwav,Name,Value,LineSpec) specifies the same line color, line style, or marker
options as are available in the MATLAB plot function.

h = plot(___) returns the line handle in the figure.

Input Arguments

Hwav

Waveform object. This variable must be a scalar that represents a single waveform
object.

LineSpec

String that specifies the same line color, style, or marker options as are available in the
MATLAB plot function. If you specify a PlotType value of 'complex', then LineSpec
applies to both the real and imaginary subplots.

 plot

1-1069

Default: 'b'

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'PlotType'

Specifies whether the function plots the real part, imaginary part, or both parts of the
waveform. Valid values are 'real', 'imag', and 'complex'.

Default: 'real'

'PulseIdx'

Index of the pulse to plot. This value must be a scalar.

Default: 1

Output Arguments

h

Handle to the line or lines in the figure. For a PlotType value of 'complex', h is a
column vector. The first and second elements of this vector are the handles to the lines in
the real and imaginary subplots, respectively.

Examples

Create and plot an upsweep linear FM pulse waveform.

hw = phased.LinearFMWaveform('SweepBandwidth',1e5,...

 'PulseWidth',1e-4);

plot(hw);

1 Alphabetical List

1-1070

 release

1-1071

release
System object: phased.LinearFMWaveform
Package: phased

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

1 Alphabetical List

1-1072

reset
System object: phased.LinearFMWaveform
Package: phased

Reset states of the linear FM waveform object

Syntax

reset(H)

Description

reset(H) resets the states of the LinearFMWaveform object, H. Afterward, if the PRF
property is a vector, the next call to step uses the first PRF value in the vector.

 step

1-1073

step

System object: phased.LinearFMWaveform
Package: phased

Samples of linear FM pulse waveform

Syntax

Y = step(sLFM)

Y = step(sLFM,prfidx)

Description

Y = step(sLFM) returns samples of the linear FM pulse in a column vector Y.

Y = step(sLFM,prfidx), uses the prfidx index to select the PRF from the predefined
vector of values specified by in the PRF property. This syntax applies when you set the
PRFSelectionInputPort property to true.

Note: The object performs an initialization the first time the step method is executed.
This initialization locks nontunable properties and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Examples

Create Linear FM Pulses

Construct a linear FM waveform having a sweep bandwidth of 300 kHz, a sample rate
of 1 MHz, a pulse width of 50 microseconds, and a pulse repetition frequency of 10 kHz.
Generate two pulses.

1 Alphabetical List

1-1074

sLFM = phased.LinearFMWaveform('SweepBandwidth',3e5,...

 'OutputFormat','Pulses','SampleRate',1e6,...

 'PulseWidth',50e-6,'PRF',10e3,'NumPulses',2);

Obtain and plot the linear FM waveform.

wav = step(sLFM);

numpulses = size(wav,1);

t = [0:(numpulses-1)]/sLFM.SampleRate;

plot(t*1e6,real(wav))

xlabel('Time (\mu sec)')

ylabel('Amplitude')

 step

1-1075

Create Linear FM Pulses with Variable PRF

Construct six linear FM waveform pulses having a sweep bandwidth of 300 kHz, a
sample rate of 1 MHz, a pulse width of 50 microseconds, and a duty cycle of 20%. Vary
the pulse repetition frequency.

Set the sample rate and PRF. The ratio of sample rate to PRF must be an integer.

fs = 1e6;

PRF = [10000,25000];

sLFM = phased.LinearFMWaveform('SweepBandwidth',3e5,...

 'OutputFormat','Pulses','SampleRate',fs,...

 'DurationSpecification','Duty Cycle','DutyCycle',.2,...

 'PRF',PRF,'NumPulses',1,'PRFSelectionInputPort',true);

1 Alphabetical List

1-1076

Obtain and plot the linear FM waveforms. For the first three calls to the step method, set
the PRF to 10kHz using the PRF index. For the next three calls, set the PRF to 25 kHz.

wav = [];

for n = 1:6

 idx = floor((n-1)/3)+1;

 wav1 = step(sLFM,idx);

 wav = [wav;wav1];

end

nsamps = size(wav,1);

t = [0:(nsamps-1)]/sLFM.SampleRate;

plot(t*1e6,real(wav))

xlabel('Time (\mu sec)')

ylabel('Amplitude')

 phased.LOSChannel System object

1-1077

phased.LOSChannel System object
Package: phased

Narrowband LOS propagation channel

Description

The phased.LOSChannel models the propagation of narrowband electromagnetic
signals through a line-of-sight (LOS) channel from a source to a destination. In an LOS
channel, propagation paths are straight lines from point to point. The propagation model
in the LOS channel includes free-space attenuation in addition to attenuation due to
atmospheric gases, rain, fog, and clouds. You can use phased.LOSChannel to model
the propagation of signals between multiple points simultaneously. The System object
works for all frequencies. However, the attenuation models for atmospheric gases and
rain are valid for electromagnetic signals in the frequency range 1–1000 GHz only. The
attenuation model for fog and clouds is valid for 10–1000 GHz. Outside these frequency
ranges, the System object uses the nearest valid value.

The phased.LOSChannel System object applies range-dependent time delays to the
signals, as well as gains or losses. When either the source or destination is moving, the
System object applies Doppler shifts.

Like the phased.FreeSpace System object, the phased.LOSChannel System object
supports two-way propagation.

To compute the propagation delay for specified source and receiver points:

1 Define and set up your LOS channel using the “Construction” on page 1-1077
procedure. You can set the System object properties during construction or leave
them at their default values. Some properties are tunable and can be changed at any
time.

2 Call the phased.LOSChannel.step method to compute the propagated signal using
the properties of the phased.LOSChannel System object.

Construction

1 Alphabetical List

1-1078

sLOS = phased.LOSChannel creates an LOS attenuating propagation channel System
object, sLOS.

sLOS = phased.LOSChannel(Name,Value) creates a System object, sLOS, with each
specified property Name set to the specified Value. You can specify additional name and
value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties

PropagationSpeed — Signal propagation speed
speed of light (default) | positive real-valued scalar

Signal propagation speed, specified as a positive real-valued scalar. Units are in m/s.
Example: 3e8

OperatingFrequency — Signal carrier frequency
300e6 (default) | positive real-valued scalar

Signal carrier frequency, specified as a positive real-valued scalar. Units are in Hz.
Example: 1e9

Data Types: double

SpecifyAtmosphere — Enable atmospheric attenuation model
false (default) | true

Option to enable the atmospheric attenuation model, specified as a logical scalar. Set
this property to true to add signal attenuation caused by atmospheric gases, rain,
fog, or clouds. Set this property to false to ignore atmosphere effects in propagation.
When SpecifyAtmosphere is set to true, the Temperature, DryAirPressure,
WaterVapourDensity, LiquidWaterDensity, and RainRate properties are used. You
can set these properties or use their default values.
Example: true

Temperature — Ambient temperature
15 (default) | real-valued scalar

Ambient temperature, specified as a real-valued scalar. Units are in degrees Celsius.
This property applies only when you set SpecifyAtmosphere to true.

 phased.LOSChannel System object

1-1079

Example: 20.0

Data Types: double

DryAirPressure — Atmospheric dry air pressure
101.325e3 (default) | positive real-valued scalar

Atmospheric dry air pressure, specified as a positive real-valued scalar. Units are in
pascals (Pa). The default value of this property corresponds to one standard atmosphere.
This property applies only when you set SpecifyAtmosphere to true.

Example: 101.0e3

Data Types: double

WaterVapourDensity — Atmospheric water vapor density
7.5 (default) | positive real-valued scalar

Atmospheric water vapor density, specified as a positive real-valued scalar. Units are in
g/m3. This property applies only when you set SpecifyAtmosphere to true.

Example: 7.4

Data Types: double

LiquidWaterDensity — Liquid water density
0.0 (default) | nonnegative real-valued scalar

Liquid water density of fog or clouds, specified as a nonnegative real-valued scalar. Units
are in g/m3. Typical values for liquid water density are 0.05 for medium fog and 0.5 for
thick fog. This property only applies when you set SpecifyAtmosphere to true.

Example: 0.1

Data Types: double

RainRate — Rainfall rate
0.0 (default) | non-negative real-valued scalar

Rainfall rate, specified as a nonnegative real-valued scalar. Units are in mm/hr. This
property applies only when you set SpecifyAtmosphere to true.

Example: 10.0

Data Types: double

1 Alphabetical List

1-1080

TwoWayPropagation — Enable two-way propagation
false (default) | true

Enable two-way propagation, specified as a logical true or false. Set this property
to true to perform round-trip propagation between the signal origin and destination
specified in step. Set this property to false to perform only one-way propagation from
the origin to the destination.
Example: true

Data Types: logical

SampleRate — Signal sample rate
1e6 (default) | positive real-valued scalar

Signal sample rate, specified as a positive real-valued scalar. Units are in Hz. The
System object uses this quantity to calculate the propagation delay in multiples of
samples.
Example: 1.5e6

Data Types: double

MaximumDistanceSource — Source of maximum distance value
'Auto' (default) | 'Property'

Source of maximum distance value, specified as 'Auto' or 'Property'. This choice
determines how the maximum one-way propagation distance is calculated. The
maximum one-way propagation distance is used to allocate the memory needed to
compute the delay. When you set this property to 'Auto, the System object allocates
memory automatically. When you set this property to 'Property', you specify the
maximum one-way propagation distance using the value of the MaximumDistance
property.
Example: 'Property'

Data Types: char

MaximumDistance — Maximum one-way propagation distance
10000 (default) | positive real-valued scalar

Maximum one-way propagation distance, specified as a positive real-valued scalar.
Units are in meters. This property applies when you set MaximumDistanceSource to
'Property'. Any signal that propagates more than the maximum one-way distance is

 phased.LOSChannel System object

1-1081

ignored. The maximum distance must be greater than or equal to the largest propagation
distance.
Example: 5000

Data Types: double

Methods

clone Create System object with identical
property values

getNumInputs Number of expected inputs to step method
getNumOutputs Number of outputs from step method
isLocked Locked status for input attributes and

nontunable properties
release Enable property values and input

characteristics to change
reset Reset states of System object
step Propagate signal in LOS channel

Definitions

Attenuation or path loss in the LOS channel consists of four components. L = LfspLgLcLr,
where

• Lfsp is the free space path attenuation
• Lg is the atmospheric path attenuation
• Lc is the fog and cloud path attenuation
• Lr is the rain path attenuation

Each path attenuation is in magnitude units, not in dB.

Free-space Time Delay and Path Loss

When the origin and destination are stationary relative to each other, the output signal
of a free-space channel can be written as Y(t) = x(t-τ)/Lfsp. The quantity τ is the signal

1 Alphabetical List

1-1082

delay and Lfsp is the free-space path loss. The delay τ is given by R/c, where R is the
propagation distance and c is the propagation speed. The free-space path loss is given by

L
R

fsp =
()

,
4 2

2

p

l

where λ is the signal wavelength.

This formula assumes that the target is in the far field of the transmitting element or
array. In the near field, the free-space path loss formula is not valid and can result in a
loss smaller than one, equivalent to a signal gain. For this reason, the loss is set to unity
for range values, R ≤ λ/4π.

When the origin and destination have relative motion, the processing also introduces a
Doppler frequency shift. The frequency shift is v/λ for one-way propagation and 2v/λ for
two-way propagation. The quantity v is the relative speed of the destination with respect
to the origin.

For more details on free-space channel propagation, see [5].

Atmospheric Gas Attenuation Model

This model calculates the attenuation of signals that propagate through atmospheric
gases.

Electromagnetic signals are attenuated when they propagate through the atmosphere.
This effect is primarily due to the absorption resonance lines of oxygen and water
vapor, with smaller contributions coming from nitrogen gas. The model also includes
a continuous absorption spectrum below 10 GHz. Phased Array System Toolbox uses
the ITU model Recommendation ITU-R P.676-10: Attenuation by atmospheric gases.
The model computes specific attenuation (attenuation per kilometer) as a function of
temperature, pressure, water vapor density, and signal frequency. The model applies to
polarized and nonpolarized fields.

The formula for specific attenuation at each frequency is

g g g= + = ¢¢o wf f fN f() () . ().0 1820

 phased.LOSChannel System object

1-1083

The quantity N"(f) is the imaginary part of the complex atmospheric refractivity and
consists of a spectral line component and a continuous component:

¢¢ = + ¢¢ÂN f S F N fi i D
i

() ()

The spectral component consists of a sum of discrete spectrum terms composed of a
localized frequency bandwidth function, F(f)i, multiplied by a spectral line strength, Si.
For atmospheric oxygen, each spectral line strength is given by

S a
T

a
T

Pi = ¥ Ê
Ë
Á

ˆ
¯
˜ -Ê

Ë
Á

ˆ
¯
˜

È

Î
Í

˘

˚
˙

-
1

7
3

210
300

1
300

exp (.

For atmospheric water vapor, each spectral line strength is given by

S b
T

b
T

Wi = ¥ Ê
Ë
Á

ˆ
¯
˜ - Ê

Ë
Á

ˆ
¯
˜

È

Î
Í

˘

˚
˙

-
1

1
3 5

210
300

1
300

.

exp (.

P is the atmospheric pressure, W is the water vapor density, and T is the ambient
temperature.

For each oxygen line, Si depends on constants a1 and a2. Similarly, each water vapor
line has constants b1 and b2. You can find these constants tabulated in the ITU
documentation. The atmospheric gas model is valid for frequencies at 1–1000 GHz.

The localized frequency bandwidth functions Fi(f) are complicated functions of frequency
described in the reference cited previously. They depend upon empirical model
parameters that are also tabulated in the reference.

To compute the total attenuation for narrowband signals along a path, the function
multiplies the specific attenuation by the path length, R. Then, the total attenuation is
Lg= R(γo + γw).

You can apply the attenuation model to wideband signals. First, divide the wideband
signal into frequency subbands, and apply attenuation to each subband. Then, sum all
attenuated subband signals into the total attenuated signal.

1 Alphabetical List

1-1084

Fog and Cloud Attenuation Model

This model calculates the attenuation of signals that propagate through fog or clouds.

Fog and cloud attenuation are the same atmospheric phenomenon. Phased Array System
Toolbox uses the ITU model, Recommendation ITU-R P.840-6: Attenuation due to clouds
and fog. The model computes the specific attenuation (attenuation per kilometer), of
a signal as a function of liquid water density, signal frequency, and temperature. The
model applies to polarized and nonpolarized fields. The formula for specific attenuation
at each frequency is

g c lK f M= () ,

where M is the liquid water density in gm/m3. The quantity Kl(f) is the specific
attenuation coefficient and depends on frequency. The cloud and fog attenuation model is
valid for frequencies 10–1000 GHz. Units for the specific attenuation coefficient are (dB/
km)/(g/m3).

To compute the total attenuation for narrowband signals along a path, the function
multiplies the specific attenuation by the path length R. Total attenuation is Lc = Rγc.

You can apply the attenuation model to wideband signals. First, divide the wideband
signal into frequency subbands, and apply narrowband attenuation to each subband.
Then, sum all attenuated subband signals into the total attenuated signal.

Rainfall Attenuation Model

This model calculates the attenuation of signals that propagate through regions of
rainfall.

Electromagnetic signals are attenuated when propagating through a region of rainfall.
Rainfall attenuation is computed according to the ITU rainfall model Recommendation
ITU-R P.838-3: Specific attenuation model for rain for use in prediction methods. The
model computes the specific attenuation (attenuation per kilometer) of a signal as a
function of rainfall rate, signal frequency, polarization, and path elevation angle, using

g
a

r kr= ,

 phased.LOSChannel System object

1-1085

where r is the rain rate in mm/hr. The parameter k and exponent α depend on frequency,
polarization state, and the elevation angle of the signal path. The specific attenuation
model is valid for frequencies 1–1000 GHz.

To compute the total attenuation for narrowband signals along a path, the function
multiplies the specific attenuation by the path length R. Then, total attenuation is Lr =
Rγr.

You can apply the attenuation model to wideband signals. First, divide the wideband
signal into frequency subbands and apply attenuation to each subband. Then, sum all
attenuated subband signals into the total attenuated signal.

Examples

Propagate Polarized Wave in LOS Channel

Propagate a polarized electromagnetic wave radiating from a short-dipole antenna
element. The dipole is rotated 30° around the y-axis. Set the orientation of the local axis
to coincide with the dipole. Assume the dipole radiates at 30.0 GHz. Propagate the signal
toward a target approximately 10 km away.

Create the short-dipole antenna element and radiator System objects. Set the
EnablePolarization property to true to generate polarized waves.

freq = 30.0e9;

c = physconst('LightSpeed');

sAnt = phased.ShortDipoleAntennaElement('FrequencyRange',[100e6 40e9],...

 'AxisDirection','Z');

sRad = phased.Radiator('Sensor',sAnt,...

 'PropagationSpeed',c,...

 'OperatingFrequency',freq,...

 'EnablePolarization',true,...

 'WeightsInputPort',false);

Create a signal to radiate. The signal envelope consists of several cycles of a 4 kHz
sinusoid with amplitude set to unity. Set the sampling frequency to 1 MHz.

fsig = 4.0e3;

fs = 1.0e6;

t = [1:1000]/fs;

signal = sin(2*pi*fsig*t');

laxes = roty(30)*eye(3,3);

1 Alphabetical List

1-1086

Use a phased.FreeSpace System object to propagate the field from the origin to the
destination in free space.

sFSP = phased.FreeSpace('PropagationSpeed',c,...

 'OperatingFrequency',freq,...

 'TwoWayPropagation',false,...

 'SampleRate',fs);

Use a phased.LOSChannel System object to propagate the field from the origin to the
destination in the LOS channel. Attenuation is due to atmospheric gases and fog.

sLOS = phased.LOSChannel('PropagationSpeed',c,...

 'OperatingFrequency',freq,...

 'TwoWayPropagation',false,...

 'SampleRate',fs,'SpecifyAtmosphere',true,'LiquidWaterDensity',0.5);

Set the signal origin, signal origin velocity, signal destination, and signal destination
velocity.

source_pos = [0;0;0];

target_pos = [10000;200;0];

source_vel = [0;0;0];

target_vel = [0;0;0];

[rng,radiatingAngles] = rangeangle(target_pos,source_pos,laxes);

Radiate the signal towards the target. The radiated signal is a struct containing the
polarized field.

rad_sig = step(sRad,signal,radiatingAngles,laxes);

Propagate the signals to the target in free space.

prop_sig = step(sFSP,rad_sig,source_pos,target_pos,...

 source_vel,target_vel);

Propagate the signals to the target in the LOS channel.

prop_att_sig = step(sLOS,rad_sig,source_pos,target_pos,...

 source_vel,target_vel);

Plot the z-components of both the free-space and LOS-channel-propagated signals.

plot(1e6*t,real(prop_sig.Z),1e6*t,real(prop_att_sig.Z))

grid

xlabel('Time (\mu sec)')

 phased.LOSChannel System object

1-1087

legend('z_{fsp}','z_{los}')

The LOS channel signal is attenuated as compared to the free-space signal.

References

[1] Radiocommunication Sector of the International Telecommunication Union.
Recommendation ITU-R P.676-10: Attenuation by atmospheric gases. 2013.

[2] Radiocommunication Sector of the International Telecommunication Union.
Recommendation ITU-R P.840-6: Attenuation due to clouds and fog. 2013.

1 Alphabetical List

1-1088

[3] Radiocommunication Sector of the International Telecommunication Union.
Recommendation ITU-R P.838-3: Specific attenuation model for rain for use in
prediction methods. 2005.

[4] Seybold, J. Introduction to RF Propagation. New York: Wiley & Sons, 2005.

[5] Skolnik, M. Introduction to Radar Systems, 3rd Ed. New York: McGraw-Hill, 2001.

See Also
phased.FreeSpace | phased.RadarTarget | phased.BackscatterRadarTarget |
phased.TwoRayChannel | | | fogpl | fspl | gaspl | rainpl | rangeangle

Introduced in R2016a

 clone

1-1089

clone
System object: phased.LOSChannel
Package: phased

Create System object with identical property values

Syntax

sLOS2 = clone(sLOS)

Description

sLOS2 = clone(sLOS) creates a System object, sLOS2, having the same property
values and same states as sLOS. If sLOS is locked, so is sLOS2.

Input Arguments

sLOS — LOS channel
phased.LOSChannel System object

LOS channel, specified as a phased.LOSChannel System object.
Example: phased.LOSChannel

Output Arguments

sLOS2 — LOS channel
phased.LOSChannel System object

LOS channel, returned as a phased.LOSChannel System object.

Introduced in R2016a

1 Alphabetical List

1-1090

getNumInputs
System object: phased.LOSChannel
Package: phased

Number of expected inputs to step method

Syntax

N = getNumInputs(sLOS)

Description

N = getNumInputs(sLOS) returns a positive integer, N, representing the number of
inputs (not counting the object itself) that you must use when calling the step method.
This value changes when you alter properties that turn inputs on or off.

Input Arguments

sLOS — LOS channel
phased.LOSChannel System object

LOS channel, specified as a phased.LOSChannel System object.
Example: phased.LOSChannel

Output Arguments

N — Number of expected inputs to step method
positive integer

Number of expected inputs to the step method, returned as a positive integer. The
number does not include the object itself.

Introduced in R2016a

 getNumOutputs

1-1091

getNumOutputs
System object: phased.LOSChannel
Package: phased

Number of outputs from step method

Syntax

N = getNumOutputs(sLOS)

Description

N = getNumOutputs(sLOS) returns the number of outputs, N, from the step method.
This value changes when you alter properties that turn outputs on or off.

Input Arguments

sLOS — LOS Channel
phased.LOSChannel System object System object

LOS channel, specified as a phased.LOSChannel System object.
Example: phased.LOSChannel

Output Arguments

N — Number of expected outputs
positive integer

Number of outputs expected from calling the step method, returned as a positive integer.

Introduced in R2016a

1 Alphabetical List

1-1092

isLocked
System object: phased.LOSChannel
Package: phased

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(sLOS)

Description

TF = isLocked(sLOS) returns the locked status, TF, for the phased.LOSChannel
System object

isLocked returns a logical value that indicates whether input attributes and
nontunable properties for the object are locked. The object performs an internal
initialization the first time that you execute step. This initialization locks nontunable
properties and input specifications, such as the dimensions, complexity, and data type of
the input data. After locking, isLocked returns a true value.

Input Arguments

sLOS — LOS Channel
phased.LOSChannel System object

LOS channel, specified as a phased.LOSChannel System object.
Example: phased.LOSChannel

Output Arguments

TF — Locked status
true | false

 isLocked

1-1093

Locked status of the input phased.LOSChannel System object, returned as the true
when the input attributes and nontunable properties of the object are locked. Otherwise,
the returned value is false.

Introduced in R2016a

1 Alphabetical List

1-1094

release
System object: phased.LOSChannel
Package: phased

Enable property values and input characteristics to change

Syntax

release(sLOS)

Description

release(sLOS) releases system resources (such as memory, file handles, or hardware
connections) and enables you to change properties and input characteristics.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

Input Arguments

sLOS — LOS channel
phased.LOSChannel System object

LOS channel, specified as a phased.LOSChannel System object.
Example: phased.LOSChannel

Introduced in R2016a

 reset

1-1095

reset
System object: phased.LOSChannel
Package: phased

Reset states of System object

Syntax

reset(sLOS)

Description

reset(sLOS) resets the internal state of the phased.LOSChannel System object, sLOS.
If SeedSource is a property of this System object and has the value 'Property', then
this method resets the random number generator state.

Input Arguments

sLOS — LOS channel
phased.LOSChannel System object

LOS channel, specified as a phased.LOSChannel System object.
Example: phased.LOSChannel

Introduced in R2016a

1 Alphabetical List

1-1096

step

System object: phased.LOSChannel
Package: phased

Propagate signal in LOS channel

Syntax

prop_sig = step(sLOS,sig,origin_pos,dest_pos,origin_vel,dest_vel)

Description

prop_sig = step(sLOS,sig,origin_pos,dest_pos,origin_vel,dest_vel)

returns the resulting signal, prop_sig, when a narrowband signal, sig, propagates
through a line-of-sight (LOS) channel from a source located at the origin_pos position
to a destination at the dest_pos position. Only one of the origin_pos or dest_pos
arguments can specify multiple positions. The other must contain a single position. The
velocity of the signal origin is specified in origin_vel and the velocity of the signal
destination is specified in dest_vel. The dimensions of origin_vel and dest_vel
must match the dimensions of origin_pos and dest_pos, respectively.

Electromagnetic fields propagating through an LOS channel can be polarized or
nonpolarized. For nonpolarized fields, the propagating signal field, sig, is a vector
or matrix. For polarized fields, sig is an array of structures. The structure elements
represent an electric field vector in Cartesian form.

Note: The object performs an initialization the first time the step method is executed.
This initialization locks nontunable properties and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

 step

1-1097

Input Arguments

sLOS — LOS channel
phased.LOSChannel System object

LOS channel, specified as a phased.LOSChannel System object.
Example: phased.LOSChannel

sig — Narrowband signal
M-by-N complex-valued matrix | 1-by-N struct array containing complex-valued fields

Narrowband signal, specified as a matrix or struct array, depending on whether is
signal or polarized or nonpolarized. The quantity M is the number of samples in the
signal, and N is the number of LOS channels. Each channel corresponds to a source-
destination pair.

• Narrowband nonpolarized scalar signal. Specify sig as an M-by-N complex-valued
matrix. Each column contains one signal propagated along the line-of-sight path.

• Narrowband polarized signal. Specify sig as a 1-by-N struct array containing
complex-valued fields. Each struct represents a polarized signal propagated along
the line-of-sight path. Each struct element contains three M-by-1 complex-valued
column vectors, sig.X, sig.Y, and sig.Z. These vectors represent the x, y, and z
Cartesian components of the polarized signal.

Example: [1,1;j,1;0.5,0]

Data Types: double
Complex Number Support: Yes

origin_pos — Signal origins
3-by-1 real-valued column vector | 3-by-N real-valued matrix

Origin of signals, specified as a 3-by-1 real-valued column vector or 3-by-N real-valued
matrix. The quantity N is the number of LOS channels. If origin_pos is a column
vector, it takes the form [x;y;z]. If origin_pos is a matrix, each column specifies a
different signal origin and has the form [x;y;z]. Units are in meters.

You cannot specify both origin_pos and dest_pos as matrices. At least one must be a
3-by-1 column vector.
Example: [1000;100;500]

1 Alphabetical List

1-1098

Data Types: double

dest_pos — Signal destinations
3-by-1 real-valued column vector | 3-by-N real-valued matrix

Destination position of the signal or signals, specified as a 3-by-1 real-valued column
vector or 3-by-N real-valued matrix. The quantity N is the number of LOS channels
propagating from or to N signal origins. If dest_pos is a 3-by-1 column vector, it takes
the form [x;y;z]. If dest_pos is a matrix, each column specifies a different signal
destination and takes the form [x;y;z] Position units are in meters.

You cannot specify both origin_pos and dest_pos as matrices. At least one must be a
3-by-1 column vector.
Example: [0;0;0]

Data Types: double

origin_vel — Velocities of signal origins
3-by-1 real-valued column vector | 3-by-N real-valued matrix

Velocity of signal origin, specified as a 3-by-1 real-valued column vector or 3-by-N
real-valued matrix. The dimensions of origin_vel must match the dimensions of
origin_pos. If origin_vel is a column vector, it takes the form [Vx;Vy;Vz]. If
origin_vel is a 3-by-N matrix, each column specifies a different origin velocity and has
the form [Vx;Vy;Vz]. Velocity units are in meters per second.

Example: [10;0;5]

Data Types: double

dest_vel — Velocities of signal destinations
3-by-1 real-valued column vector | 3-by-N real-valued matrix

Velocity of signal destinations, specified as a 3-by-1 real-valued column vector or 3-
by-N real-valued matrix. The dimensions of dest_vel must match the dimensions of
dest_pos. If dest_vel is a column vector, it takes the form [Vx;Vy;Vz]. If dest_vel
is a 3-by-N matrix, each column specifies a different destination velocity and has the
form [Vx;Vy;Vz] Velocity units are in meters per second.

Example: [0;0;0]

Data Types: double

 step

1-1099

Output Arguments

prop_sig — Narrowband propagated signal
M-by-N complex-valued matrix | 1-by-N struct array containing complex-valued fields

Narrowband signal, returned as a matrix or struct array, depending on whether signal
is polarized or nonpolarized. The quantity M is the number of samples in the signal and
N is the number of narrowband LOS channels. Each channel corresponds to a source-
destination pair.

• Narrowband nonpolarized scalar signal. prop_sig is an M-by-N complex-valued
matrix.

• Narrowband polarized scalar signal. prop_sig is a 1-by-N struct array containing
complex-valued fields. Each struct element contains three M-by-1 complex-valued
column vectors, sig.X, sig.Y, and sig.Z. These vectors represent the x, y, and z
Cartesian components of the polarized signal.

The prop_sig output contains signal samples arriving at the signal destination within
the current time frame. The current time frame is the time frame of the input signals to
step. Whenever it takes longer than the current time frame for the signal to propagate
from the origin to the destination, the output might not contain all contributions from the
input of the current time frame. The remaining output appears in the next call to step.

Examples

Propagate Signal in LOS Channel

Propagate a sinusoidal signal in a line of sight (LOS) channel from a radar at (1000,0,0)
meters to a target at (10000,4000,500) meters in medium fog specified by the liquid water
density of 0.05 . Assume that the radar and the target are stationary. The signal
carrier frequency is 10 GHz. The signal frequency is 500 Hz and the sample rate is 8.0
kHz.

Set up the transmitted signal.

fs = 8.0e3;

dt = 1/fs;

fsig = 500.0;

1 Alphabetical List

1-1100

fc = 10.0e9;

t = [0:dt:.01];

sig = sin(2*pi*fsig*t);

Set the liquid water density and specify the LOS channel System object™.

lwd = 0.05;

sLOS = phased.LOSChannel('SampleRate',fs,'SpecifyAtmosphere',true,...

 'LiquidWaterDensity',lwd,'OperatingFrequency',fc);

Set the origin and destination of the signal.

xradar = [1000,0,0].';

vradar = [0,0,0].';

xtgt = [10000,4000,500].';

vtgt = [0,0,0].';

Propagate the signal from origin to destination and plot the result.

prog_sig = step(sLOS,sig.',xradar,xtgt,vradar,vtgt);

plot(t*1000,real(prog_sig))

grid

xlabel('Time (milliseconds)')

ylabel('Amplitude')

 step

1-1101

References

[1] Radiocommunication Sector of the International Telecommunication Union.
Recommendation ITU-R P.676-10: Attenuation by atmospheric gases. 2013.

[2] Radiocommunication Sector of the International Telecommunication Union.
Recommendation ITU-R P.840-6: Attenuation due to clouds and fog. 2013.

[3] Radiocommunication Sector of the International Telecommunication Union.
Recommendation ITU-R P.838-3: Specific attenuation model for rain for use in
prediction methods. 2005.

1 Alphabetical List

1-1102

[4] Seybold, J. Introduction to RF Propagation. New York: Wiley & Sons, 2005.

See Also
phased.FreeSpace.step | phased.WidebandFreeSpace.step |
phased.WidebandLOSChannel.step

Introduced in R2016a

 phased.MatchedFilter System object

1-1103

phased.MatchedFilter System object
Package: phased

Matched filter

Description

The MatchedFilter object implements matched filtering of an input signal.

To compute the matched filtered signal:

1 Define and set up your matched filter. See “Construction” on page 1-1103.
2 Call step to perform the matched filtering according to the properties of

phased.MatchedFilter. The behavior of step is specific to each object in the
toolbox.

Construction

H = phased.MatchedFilter creates a matched filter System object, H. The object
performs matched filtering on the input data.

H = phased.MatchedFilter(Name,Value) creates a matched filter object, H, with
each specified property Name set to the specified Value. You can specify additional name-
value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties

CoefficientsSource

Source of matched filter coefficients

Specify whether the matched filter coefficients come from the Coefficients property of
this object or from an input argument in step. Values of this property are:

'Property' The Coefficients property of this object specifies
the coefficients.

1 Alphabetical List

1-1104

'Input port' An input argument in each invocation of step
specifies the coefficients.

Default: 'Property'

Coefficients

Matched filter coefficients

Specify the matched filter coefficients as a column vector. This property applies when you
set the CoefficientsSource property to 'Property'. This property is tunable.

Default: [1;1]

SpectrumWindow

Window for spectrum weighting

Specify the window used for spectrum weighting using one of 'None', 'Hamming',
'Chebyshev', 'Hann', 'Kaiser', 'Taylor', or 'Custom'. Spectrum weighting is
often used with linear FM waveform to reduce the sidelobes in the time domain. The
object computes the window length internally, to match the FFT length.

Default: 'None'

CustomSpectrumWindow

User-defined window for spectrum weighting

Specify the user-defined window for spectrum weighting using a function handle or a cell
array. This property applies when you set the SpectrumWindow property to 'Custom'.

If CustomSpectrumWindow is a function handle, the specified function takes the window
length as the input and generates appropriate window coefficients.

If CustomSpectrumWindow is a cell array, then the first cell must be a function handle.
The specified function takes the window length as the first input argument, with other
additional input arguments if necessary, and generates appropriate window coefficients.
The remaining entries in the cell array are the additional input arguments to the
function, if any.

Default: @hamming

 phased.MatchedFilter System object

1-1105

SpectrumRange

Spectrum window coverage region

Specify the spectrum region on which the spectrum window is applied as a 1-by-2 vector
in the form of [StartFrequency EndFrequency] (in hertz). This property applies
when you set the SpectrumWindow property to a value other than 'None'.

Note that both StartFrequency and EndFrequency are measured in baseband. That
is, they are within [-Fs/2 Fs/2], where Fs is the sample rate that you specify in the
SampleRate property. StartFrequency cannot be larger than EndFrequency.

Default: [0 1e5]

SampleRate

Coefficient sample rate

Specify the matched filter coefficients sample rate (in hertz) as a positive scalar. This
property applies when you set the SpectrumWindow property to a value other than
'None'.

Default: 1e6

SidelobeAttenuation

Window sidelobe attenuation level

Specify the sidelobe attenuation level (in decibels) of a Chebyshev or Taylor window as
a positive scalar. This property applies when you set the SpectrumWindow property to
'Chebyshev' or 'Taylor'.

Default: 30

Beta

Kaiser window parameter

Specify the parameter that affects the Kaiser window sidelobe attenuation as a
nonnegative scalar. Please refer to kaiser for more details. This property applies when
you set the SpectrumWindow property to 'Kaiser'.

Default: 0.5

1 Alphabetical List

1-1106

Nbar

Number of nearly constant sidelobes in Taylor window

Specify the number of nearly constant level sidelobes adjacent to the mainlobe
in a Taylor window as a positive integer. This property applies when you set the
SpectrumWindow property to 'Taylor'.

Default: 4

GainOutputPort

Output gain

To obtain the matched filter gain, set this property to true and use the corresponding
output argument when invoking step. If you do not want to obtain the matched filter
gain, set this property to false.

Default: false

Methods

clone Create matched filter object with same
property values

getNumInputs Number of expected inputs to step method
getNumOutputs Number of outputs from step method
isLocked Locked status for input attributes and

nontunable properties
release Allow property value and input

characteristics changes
step Perform matched filtering

Examples

Construct a matched filter for a linear FM waveform.

hw = phased.LinearFMWaveform('PulseWidth',1e-4,'PRF',5e3);

x = step(hw);

 phased.MatchedFilter System object

1-1107

hmf = phased.MatchedFilter(...

 'Coefficients',getMatchedFilter(hw));

y = step(hmf,x);

subplot(211),plot(real(x));

xlabel('Samples'); ylabel('Amplitude');

title('Input Signal');

subplot(212),plot(real(y));

xlabel('Samples'); ylabel('Amplitude');

title('Matched Filter Output');

1 Alphabetical List

1-1108

Apply the matched filter, using a Hamming window to do spectrum weighting.

hw = phased.LinearFMWaveform('PulseWidth',1e-4,'PRF',5e3);

x = step(hw);

hmf = phased.MatchedFilter(...

 'Coefficients',getMatchedFilter(hw),...

 'SpectrumWindow','Hamming');

y = step(hmf,x);

subplot(211),plot(real(x));

xlabel('Samples'); ylabel('Amplitude');

title('Input Signal');

subplot(212),plot(real(y));

xlabel('Samples'); ylabel('Amplitude');

title('Matched Filter Output');

 phased.MatchedFilter System object

1-1109

Apply the matched filter, using a custom Gaussian window for spectrum weighting.

hw = phased.LinearFMWaveform('PulseWidth',1e-4,'PRF',5e3);

x = step(hw);

hmf = phased.MatchedFilter(...

 'Coefficients',getMatchedFilter(hw),...

 'SpectrumWindow','Custom',...

 'CustomSpectrumWindow',{@gausswin,2.5});

y = step(hmf,x);

1 Alphabetical List

1-1110

subplot(211),plot(real(x));

xlabel('Samples'); ylabel('Amplitude');

title('Input Signal');

subplot(212),plot(real(y));

xlabel('Samples'); ylabel('Amplitude');

title('Matched Filter Output');

 phased.MatchedFilter System object

1-1111

Algorithms

The filtering operation uses the overlap-add method.

Spectrum weighting produces a transfer function

H F w F H F’() () ()=

where w(F) is the window and H(F) is the original transfer function.

For further details on matched filter theory, see [1]or [2].

References

[1] Richards, M. A. Fundamentals of Radar Signal Processing. New York: McGraw-Hill,
2005.

[2] Skolnik, M. Introduction to Radar Systems, 3rd Ed. New York: McGraw-Hill, 2001.

See Also
phased.CFARDetector | phased.StretchProcessor | phased.TimeVaryingGain | pulsint
| taylorwin

Introduced in R2012a

1 Alphabetical List

1-1112

clone
System object: phased.MatchedFilter
Package: phased

Create matched filter object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates an object, C, having the same property values and same states as
H. If H is locked, so is C.

 getNumInputs

1-1113

getNumInputs
System object: phased.MatchedFilter
Package: phased

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of inputs
(not counting the object itself) that you must use when calling the step method. This
value changes when you alter properties that turn inputs on or off.

1 Alphabetical List

1-1114

getNumOutputs
System object: phased.MatchedFilter
Package: phased

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value changes when you alter properties that turn outputs on or off.

 isLocked

1-1115

isLocked
System object: phased.MatchedFilter
Package: phased

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF, for the MatchedFilter System
object.

isLocked returns a logical value that indicates whether input attributes and
nontunable properties for the object are locked. The object performs an internal
initialization the first time that you execute step. This initialization locks nontunable
properties and input specifications, such as the dimensions, complexity, and data type of
the input data. After locking, isLocked returns a true value.

1 Alphabetical List

1-1116

release
System object: phased.MatchedFilter
Package: phased

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

 step

1-1117

step
System object: phased.MatchedFilter
Package: phased

Perform matched filtering

Syntax
Y = step(H,X)

Y = step(H,X,COEFF)

[Y,GAIN] = step(___)

Description
Y = step(H,X) applies the matched filtering to the input X and returns the filtered
result in Y. The filter is applied along the first dimension. Y and X have the same
dimensions. The initial transient is removed from the filtered result.

Y = step(H,X,COEFF) uses the input COEFF as the matched filter coefficients. This
syntax is available when you set the CoefficientsSource property to 'Input port'.

[Y,GAIN] = step(___) returns additional output GAIN as the gain (in decibels) of the
matched filter. This syntax is available when you set the GainOutputPort property to
true.

Note: The object performs an initialization the first time the step method is executed.
This initialization locks nontunable properties and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Examples
Construct a linear FM waveform with a sweep bandwidth of 300 kHz and a pulse width
of 50 microseconds. Obtain the matched filter coefficients using the getMatchedFilter

1 Alphabetical List

1-1118

method. Use the step method for phased.MatchedFilter to obtain the matched filter
output.

hfmwav = phased.LinearFMWaveform('SweepBandwidth',3e5,...

 'OutputFormat','Pulses','SampleRate',1e6,...

 'PulseWidth',50e-6,'PRF',1e4);

% use step method of phased.LinearFMWaveform

% to obtain the linear FM waveform

wav = step(hfmwav);

% get matched filter coefficients for linear FM waveform

mfcoeffs = getMatchedFilter(hfmwav);

hmf = phased.MatchedFilter('Coefficients',mfcoeffs);

% use step method of phased.MatchedFilter to obtain matched filter

% output

mfoutput = step(hmf,wav);

 phased.MFSKWaveform System object

1-1119

phased.MFSKWaveform System object
Package: phased

MFSK waveform

Description

The multiple frequency shift keying (MFSK) waveform is used in automotive radar
to improve simultaneous range and Doppler estimation of multiple targets. The
MFSKWaveform System object creates the baseband representation of an MFSK
waveform. An MFSK waveform consists of two interleaved sequences of increasing
frequencies, as described in “Algorithms” on page 1-1123.

To obtain waveform samples:

1 Define and set up the MFSK waveform. See “Construction” on page 1-1119.
2 Call step to generate the MFSK waveform samples according to the properties

of phased.MFSKWaveform. The behavior of step is specific to each object in the
toolbox. The output of the step method is controlled by the OutputFormat property,
which has no effect on the properties of the waveform.

Construction

sMFSK = phased.MFSKWaveform creates an MFSK waveform System object, sMFSK.

sMFSK = phased.MFSKWaveform(Name,Value) creates an MFSK waveform
object, sMFSK, with additional properties specified by one or more Name-Value pair
arguments. Name must appear inside single quotes (''). You can specify several name-
value pair arguments in any order as Name1,Value1,…,NameN,ValueN.

Properties

SampleRate — Sample rate
1e6 (default) | positive scalar

1 Alphabetical List

1-1120

Sample rate of the signal, specified as a positive scalar. Units are hertz.
Example: 96e6
Data Types: double

SweepBandwidth — MFSK sweep bandwidth
1e5 (default) | positive scalar

MFSK sweep bandwidth, specified as a positive scalar. Units are in hertz. The sweep
bandwidth is the difference between the highest and lowest frequencies of either
sequence.
Example: 9e7
Data Types: double

StepTime — Duration of frequency step
1e-4 (default) | positive scalar

Time duration of each frequency step, specified as a positive scalar in seconds.
Example: 0.2e-3
Data Types: double

StepsPerSweep — Total number of frequency steps
64 (default) | even positive integer

Total number of frequency steps in a sweep, specified as an even positive integer.
Example: 16
Data Types: double

FrequencyOffset — Chirp offset frequency
1000 (default) | real scalar

Chirp offset frequency, specified as a real scalar. Units are in hertz. The offset
determines the frequency translation between the two sequences.
Example: 500
Data Types: double

OutputFormat — Output signal grouping
'Steps' (default) | 'Sweeps' | 'Samples'

 phased.MFSKWaveform System object

1-1121

Output signal grouping, specified as one of 'Steps', 'Sweeps', or 'Samples'. This
property has no effect on the waveform but determines the output form of the step
method.

• 'Steps' — The output consists of all samples contained in an integer number of
frequency steps, NumSteps.

• 'Samples' — The output consists of an integer number of samples, NumSamples.
• 'Sweeps' — The output consists of all samples contained in an integer number of

sweeps, NumSweeps.

Example: 'Samples'

Data Types: char

NumSamples — Number of samples in output
1 (default) | positive integer

Number of samples in output, specified as a positive integer. This property applies only
when you set OutputFormat to 'Samples'.

Example: 200
Data Types: double

NumSteps — Number of frequency steps in output
1 (default) | positive integer

Number of frequency steps in output, specified as a positive integer. This property
applies only when you set OutputFormat to 'Steps'.

Example: 10
Data Types: double

NumSweeps — Number of sweeps in output
1 (default) | positive integer

Number of sweeps in output, specified as a positive integer. This property applies only
when you set OutputFormat to 'Sweeps'.

Example: 5
Data Types: double

1 Alphabetical List

1-1122

Methods

clone Create MFSK object with identical property
values

getNumInputs Number of expected inputs to step method
getNumOutputs Number of outputs from step method
isLocked Locked status for input attributes and

nontunable properties
plot Plot continuous MFSK waveform
release Allow property values and input

characteristics to change
reset Reset states of the MFSK waveform object
step Samples of continuous MFSK waveform

Examples

Plot MFSK Waveform

Construct an MFSK waveform with a sample rate of 1 MHz and a sweep bandwidth of
0.1 MHz. Assume 52 steps with a step time of 4 milliseconds. Set the frequency offset to 1
kHz. There are 4000 samples per step.

fs = 1e6;

fsweep = 1e5;

tstep = 4e-3;

numsteps = 52;

foffset = 1000;

noutputsteps = 4;

sMFSK = phased.MFSKWaveform('SampleRate',fs,...

 'SweepBandwidth',fsweep,...

 'StepTime',tstep,...

 'StepsPerSweep',numsteps,...

 'FrequencyOffset',foffset,...

 'OutputFormat','Steps',...

 'NumSteps',noutputsteps);

Plot the real and imaginary components of the second step of the waveform using the
plot method. Set the plot color to red.

 phased.MFSKWaveform System object

1-1123

plot(sMFSK,'PlotType','complex','StepIdx',2,'r')

• “Simultaneous Range and Speed Estimation Using MFSK Waveform”

Algorithms

An MFSK waveform consists of two interleaved stepped-frequency sequences, as shown
in this time-frequency diagram.

1 Alphabetical List

1-1124

Each sequence is a set of continuous waveform (CW) signals increasing in frequency.
The offset, Foffset, between the two sequences is constant and can be positive or negative.
A complete waveform consists of an even number of steps, N, of equal duration, Tstep.
Then, each sequence consists of N/2 steps. The sweep frequency, Fsweep, is the difference
between the lowest and highest frequency of either sequence. Fsweep is always positive,
indicating increasing frequency. The frequency difference between successive steps of
each sequence is given by
Fstep = Fsweep/(N/2–1).
The lowest frequency of the first sequence is always 0 hertz and corresponds to the
carrier frequency of the bandpass signal. The lowest frequency of the second sequence
can be positive or negative and is equal to Foffset. Negative frequencies correspond to
bandpass frequencies that are lower than the carrier frequency. The duration of the
waveform is given by Tsweep = N *Tstep. The System object properties corresponding to the
signal parameters are

Signal Parameter Property

Fsweep 'SweepBandwidth'

 phased.MFSKWaveform System object

1-1125

Signal Parameter Property

Tstep 'StepTime'

N 'StepsPerSweep'

Foffset 'FrequencyOffset'

References

[1] Meinecke, Marc-Michale, and Hermann Rohling, “Combination of LFMCW and
FSK Modulation Principles for Automotive Radar Systems.” German Radar
Symposium GRS2000. 2000.

[2] Rohling, Hermann, and Marc-Michale Meinecke. “Waveform Design Principles for
Automotive Radar Systems”. CIE International Conference on Radar. 2001.

See Also
phased.FMCWWaveform | phased.LinearFMWaveform | phased.MatchedFilter
| phased.PhaseCodedWaveform | phased.RectangularWaveform |
phased.SteppedFMWaveform

Introduced in R2015a

1 Alphabetical List

1-1126

clone
System object: phased.MFSKWaveform
Package: phased

Create MFSK object with identical property values

Syntax

C = clone(H)

Description

C = clone(H) creates an object, C, having the same property values and same states as
H. If H is locked, so is C.

Input Arguments

H — MFSK waveform
System object

MFSK waveform, specified as a phased.MFSKWaveform System object.
Example: phased.MFSKWaveform()

Output Arguments

C — MFSK Waveform
System object

Clone of input MFSK waveform, returned as a phased.MFSKWaveform System object.

Introduced in R2015a

 getNumInputs

1-1127

getNumInputs
System object: phased.MFSKWaveform
Package: phased

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of inputs
(not counting the object itself) that you must use when calling the step method. This
value changes when you alter properties that turn inputs on or off.

Input Arguments

H — MFSK waveform
phased.MFSKWaveform System object

MFSK waveform, specified as a phased.MFSKWaveform System object.
Example: phased.MFSKWaveform;

Output Arguments

N — Number of expected inputs to step method
positive integer

Number of expected inputs to the step method, returned as a positive integer. This
number does not include the object itself.

Introduced in R2015a

1 Alphabetical List

1-1128

getNumOutputs
System object: phased.MFSKWaveform
Package: phased

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value changes when you alter properties that turn outputs on or off.

Input Arguments

H — MFSK waveform
phased.MFSKWaveform System object

MFSK waveform, specified as a phased.MFSKWaveform System object.
Example: phased.MFSKWaveform

Output Arguments

N — Number of expected outputs from step method
positive integer

Number of expected outputs from the step method, returned as a positive integer.

Introduced in R2015a

 isLocked

1-1129

isLocked
System object: phased.MFSKWaveform
Package: phased

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF, for the MFSKWaveform System object.

isLocked returns a logical value that indicates whether input attributes and
nontunable properties for the object are locked. The object performs an internal
initialization the first time that you execute step. This initialization locks nontunable
properties and input specifications, such as the dimensions, complexity, and data type of
the input data. After locking, isLocked returns a true value.

Input Arguments

H — MFSK waveform
phased.MFSKWaveform System object

MFSK waveform, specified as a phased.MFSKWaveform System object.
Example: phased.MFSKWaveform

Output Arguments

TF — Locked status of MFSKWaveform System object
boolean

1 Alphabetical List

1-1130

Locked status of phased.MFSKWaveform System object, returned as the boolean value
true when the input attributes and nontunable properties of the object are locked.
Otherwise, the returned value is false.

Introduced in R2015a

 plot

1-1131

plot
System object: phased.MFSKWaveform
Package: phased

Plot continuous MFSK waveform

Syntax

plot(sMFSK)

plot(sMFSK,Name,Value)

plot(sMFSK,Name,Value,LineSpec)

h = plot(___)

Description

plot(sMFSK) plots the real part of the waveform specified by sMFSK.

plot(sMFSK,Name,Value) plots the waveform with additional options specified by one
or more Name,Value pair arguments.

plot(sMFSK,Name,Value,LineSpec) specifies the same line color, line style, or
marker options that are available in the MATLAB plot function.

h = plot(___) returns the line handle in the figure.

Input Arguments

sMFSK — MFSK waveform
MFSK waveform System object

MFSK waveform, specified as a phased.MFSKWaveform System object.
Example: sMFSK = phased.MFSKWaveform;

LineSpec — Plot style
'b' (default) | string

1 Alphabetical List

1-1132

Plot style, specified as a string. You can specify the same line color, style, or marker
options that are available in the MATLAB plot function. If you specify a PlotType
value of 'complex', then LineSpec applies to both the real and imaginary subplots.

Example: 'k.'

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'PlotType' — Waveform component to plot
'real' (default) | 'imag' | 'complex'

Waveform component to plot, specified as the comma-separated pair consisting of
'PlotType' and one of the following:

• 'real' — Plots the real part of the waveform
• 'imag' — Plots the imaginary part of the waveform
• 'complex' — Plots both parts of the waveform

Example: 'PlotType','complex'

'StepIdx' — Index of step
1 (default) | positive integer

Index of the step to plot, specified as the comma-separated pair consisting
of 'StepIdx' and a positive integer. If you specify a 'StepIdx' value
greater than 'StepsPerSweep', the frequency corresponds to the
mod('StepIdx','StepsPerSweep') value.

Output Arguments
h — Plot handle
double

Plot handle(s) to the line or lines in the figure, returned as a double. When PlotType
is set to 'complex', h is a 2-by-1 column vector. The first and second elements of this
vector are the handles to the lines in the real and imaginary subplots, respectively.

 plot

1-1133

Examples

Plot MFSK Waveform

Construct an MFSK waveform with a sample rate of 1 MHz and a sweep bandwidth of
0.1 MHz. Assume 52 steps with a step time of 4 milliseconds. Set the frequency offset to 1
kHz. There are 4000 samples per step.

fs = 1e6;

fsweep = 1e5;

tstep = 4e-3;

numsteps = 52;

foffset = 1000;

noutputsteps = 4;

sMFSK = phased.MFSKWaveform('SampleRate',fs,...

 'SweepBandwidth',fsweep,...

 'StepTime',tstep,...

 'StepsPerSweep',numsteps,...

 'FrequencyOffset',foffset,...

 'OutputFormat','Steps',...

 'NumSteps',noutputsteps);

Plot the real and imaginary components of the second step of the waveform using the
plot method. Set the plot color to red.

plot(sMFSK,'PlotType','complex','StepIdx',2,'r')

1 Alphabetical List

1-1134

Introduced in R2015a

 release

1-1135

release
System object: phased.MFSKWaveform
Package: phased

Allow property values and input characteristics to change

Syntax

release(sMFSK)

Description

release(sMFSK) releases system resources (such as memory, file handles, or hardware
connections) and allows you to change all properties and input characteristics.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

Input Arguments

sMFSK — MFSK waveform
phased.MFSKWaveform System object

MFSK waveform, specified as a phased.MFSKWaveform System object.
Example: sMFSK = phased.MFSKWaveform;

Introduced in R2015a

1 Alphabetical List

1-1136

reset
System object: phased.MFSKWaveform
Package: phased

Reset states of the MFSK waveform object

Syntax

reset(sMFSK)

Description

reset(sMFSK) resets the internal states of the phased.MFSKWaveform object, sMFSK,
to their initial values.

Input Arguments

sMFSK — MFSK waveform
System object

MFSK waveform, specified as a phased.MFSKWaveform System object.
Example: sMFSK= phased.MFSKWaveform;

Introduced in R2015a

 step

1-1137

step
System object: phased.MFSKWaveform
Package: phased

Samples of continuous MFSK waveform

Syntax
Y = step(sMFSK)

Description
Y = step(sMFSK) returns samples of the MFSK waveform in a N-by-1 complex valued
column vector, Y.

Note: The object performs an initialization the first time the step method is executed.
This initialization locks nontunable properties and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Input Arguments
sMFSK — MFSK waveform
System object

MFSK waveform, specified as a phased.MFSKWaveform System object.
Example: sMFSK= phased.MFSKWaveform;

Output Arguments
Y — Output samples
N-by-1 complex valued vector

1 Alphabetical List

1-1138

Output samples of MFSK waveform, returned as an N-by-1 complex valued vector. When
the step method reaches the end of the waveform, the output samples wrap around from
the start of the waveform, yielding a periodic waveform.

Examples

Construct MFSK Step Output

Construct an MFSK waveform with a sample rate of 1 MHz and a sweep bandwidth of
0.1 MHz. Assume 52 steps, with a step time of 4 milliseconds. Set the frequency offset to
1 kHz. There are 4000 samples per step.

fs = 1e6;

fsweep = 1e5;

tstep = 40e-4;

numsteps = 52;

foffset = 1000;

noutputsteps = 4;

sMFSK = phased.MFSKWaveform('SampleRate',fs,...

 'SweepBandwidth',fsweep,...

 'StepTime',tstep,...

 'StepsPerSweep',numsteps,...

 'FrequencyOffset',foffset,...

 'OutputFormat','Steps',...

 'NumSteps',noutputsteps);

Call the step method to retrieve the samples for the four steps.

z = step(sMFSK);

Plot the real and imaginary parts of the first two steps.

samplesperstep = fs*tstep;

disp(samplesperstep)

idx = [1:2*samplesperstep]';

time = idx/fs*1000;

plot(time,real(z(idx)),'b',time,imag(z(idx)),'k');

xlabel('Time (millisec)')

 4000

 step

1-1139

Compute the FFT of all the data.

n = size(z,1);

nfft = 2^ceil(log2(n));

Y = fftshift(fft(z,nfft));

Plot the magnitudes of the spectrum.

fmax = fs/2;

ft = [-nfft/2:nfft/2-1]*fmax/(nfft/2);

figure(2);

hp = plot(ft/1000,abs(Y));

axis([-2,8,-1,4000]);

xlabel('Frequency (kHz)')

1 Alphabetical List

1-1140

grid

The plot shows two pairs of peaks. The first pair lies at 0 Hz and 1000 Hz. The second
pair lies at 4000 Hz and 5000 Hz. The frequency offset is 1000 Hz.

Compute the frequency increase to the second pair off peaks.

fdelta = fsweep/(numsteps/2-1);

disp(fdelta)

 4000

 step

1-1141

The increase agrees with the location of the second pair of peaks in the FFT spectrum.

MFSK Samples per Sweep

Construct an MFSK waveform with a sample rate of 1 MHz and a sweep bandwidth of
0.1 MHz. Assume 52 steps with a step time of 400 microseconds. Set the frequency offset
to 1 kHz. Find the number of samples returned when the OutputFormat property is set
to return the samples for one sweep.

fs = 1e6;

fsweep = 1e5;

tstep = 40e-4;

numsteps = 52;

foffset = 1000;

noutputsweeps = 1;

sMFSK = phased.MFSKWaveform('SampleRate',fs,...

 'SweepBandwidth',fsweep,...

 'StepTime',tstep,...

 'StepsPerSweep',numsteps,...

 'FrequencyOffset',foffset,...

 'OutputFormat','Sweeps',...

 'NumSweeps',noutputsweeps);

Call the step method to retrieve the samples for the four steps.

z = step(sMFSK);

Count the number of samples in a sweep.

samplespersweep = fs*tstep*numsteps;

disp(samplespersweep)

 208000

Verify that this value agrees with the number of samples returned by the step method.

disp(size(z))

 208000 1

Introduced in R2015a

1 Alphabetical List

1-1142

phased.MVDRBeamformer System object
Package: phased

Narrowband MVDR (Capon) beamformer

Description

The MVDRBeamformer object implements a minimum variance distortionless response
beamformer. This is also referred to as a Capon beamformer.

To compute the beamformed signal:

1 Define and set up your MVDR beamformer. See “Construction” on page 1-1142.
2 Call step to perform the beamforming operation according to the properties of

phased.MVDRBeamformer. The behavior of step is specific to each object in the
toolbox.

Construction

H = phased.MVDRBeamformer creates a minimum variance distortionless response
(MVDR) beamformer System object, H. The object performs MVDR beamforming on the
received signal.

H = phased.MVDRBeamformer(Name,Value) creates an MVDR beamformer object, H,
with each specified property Name set to the specified Value. You can specify additional
name-value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties

SensorArray

Sensor array

Sensor array specified as an array System object belonging to the phased package. A
sensor array can contain subarrays.

 phased.MVDRBeamformer System object

1-1143

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second, as a positive scalar.

Default: Speed of light

OperatingFrequency

System operating frequency

Specify the operating frequency of the beamformer in hertz as a positive scalar. The
default value corresponds to 300 MHz.

Default: 3e8

DiagonalLoadingFactor

Diagonal loading factor

Specify the diagonal loading factor as a positive scalar. Diagonal loading is a technique
used to achieve robust beamforming performance, especially when the sample support is
small. This property is tunable.

Default: 0

TrainingInputPort

Add input to specify training data

To specify additional training data, set this property to true and use the corresponding
input argument when you invoke step. To use the input signal as the training data, set
this property to false.

Default: false

DirectionSource

Source of beamforming direction

1 Alphabetical List

1-1144

Specify whether the beamforming direction for the beamformer comes from the
Direction property of this object or from an input argument in step. Values of this
property are:

'Property' The Direction property of this object specifies the
beamforming direction.

'Input port' An input argument in each invocation of step
specifies the beamforming direction.

Default: 'Property'

Direction

Beamforming directions

Specify the beamforming directions of the beamformer as a two-row matrix. Each column
of the matrix has the form [AzimuthAngle; ElevationAngle] (in degrees). Each azimuth
angle must be between –180 and 180 degrees, and each elevation angle must be between
–90 and 90 degrees. This property applies when you set the DirectionSource property
to 'Property'.

Default: [0; 0]

NumPhaseShifterBits

Number of phase shifter quantization bits

The number of bits used to quantize the phase shift component of beamformer or steering
vector weights. Specify the number of bits as a non-negative integer. A value of zero
indicates that no quantization is performed.

Default: 0

WeightsOutputPort

Output beamforming weights

To obtain the weights used in the beamformer, set this property to true and use the
corresponding output argument when invoking step. If you do not want to obtain the
weights, set this property to false.

 phased.MVDRBeamformer System object

1-1145

Default: false

Methods

clone Create MVDR beamformer object with
same property values

getNumInputs Number of expected inputs to step method
getNumOutputs Number of outputs from step method
isLocked Locked status for input attributes and

nontunable properties
release Allow property value and input

characteristics changes
step Perform MVDR beamforming

Examples

MVDR Beamforming

Apply an MVDR beamformer to a 5-element ULA. The incident angle of the signal is 45
degrees in azimuth and 0 degree in elevation. The signal frequency is 1/100 hertz. The
carrier frequency is 300 MHz.

t = [0:.1:200]';

fr = .01;

xm = sin(2*pi*fr*t);

c = physconst('LightSpeed');

fc = 300e6;

rng('default');

incidentAngle = [45;0];

sULA = phased.ULA('NumElements',5,'ElementSpacing',0.5);

x = collectPlaneWave(sULA,xm,incidentAngle,fc,c);

noise = 0.1*(randn(size(x)) + 1j*randn(size(x)));

rx = x + noise;

Compute the beamforming weights

sMVDR = phased.MVDRBeamformer('SensorArray',sULA,...

1 Alphabetical List

1-1146

 'PropagationSpeed',c,'OperatingFrequency',fc,...

 'Direction',incidentAngle,'WeightsOutputPort',true);

[y,w] = step(sMVDR,rx);

Plot the signals

plot(t,real(rx(:,3)),'r:',t,real(y))

xlabel('Time')

ylabel('Amplitude')

legend('Original','Beamformed');

Plot the array response pattern using the MVDR weights

pattern(sULA,fc,[-180:180],0,'PropagationSpeed',c,...

 phased.MVDRBeamformer System object

1-1147

 'Weights',w,'CoordinateSystem','rectangular',...

 'Type','powerdb');

References

[1] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002.

See Also
phased.FrostBeamformer | phased.LCMVBeamformer | phased.PhaseShiftBeamformer
| phitheta2azel | uv2azel

1 Alphabetical List

1-1148

Introduced in R2012a

 clone

1-1149

clone
System object: phased.MVDRBeamformer
Package: phased

Create MVDR beamformer object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates an object, C, having the same property values and same states as
H. If H is locked, so is C.

1 Alphabetical List

1-1150

getNumInputs
System object: phased.MVDRBeamformer
Package: phased

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of inputs
(not counting the object itself) that you must use when calling the step method. This
value changes when you alter properties that turn inputs on or off.

 getNumOutputs

1-1151

getNumOutputs
System object: phased.MVDRBeamformer
Package: phased

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value changes when you alter properties that turn outputs on or off.

1 Alphabetical List

1-1152

isLocked
System object: phased.MVDRBeamformer
Package: phased

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF, for the MVDRBeamformer System
object.

isLocked returns a logical value that indicates whether input attributes and
nontunable properties for the object are locked. The object performs an internal
initialization the first time that you execute step. This initialization locks nontunable
properties and input specifications, such as the dimensions, complexity, and data type of
the input data. After locking, isLocked returns a true value.

 release

1-1153

release
System object: phased.MVDRBeamformer
Package: phased

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

1 Alphabetical List

1-1154

step
System object: phased.MVDRBeamformer
Package: phased

Perform MVDR beamforming

Syntax
Y = step(H,X)

Y = step(H,X,XT)

Y = step(H,X,ANG)

Y = step(H,X,XT,ANG)

[Y,W] = step(___)

Description
Y = step(H,X) performs MVDR beamforming on the input, X, and returns the
beamformed output in Y. This syntax uses X as the training samples to calculate the
beamforming weights.

Y = step(H,X,XT) uses XT as the training samples to calculate the beamforming
weights. This syntax is available when you set the TrainingInputPort property to
true.

Y = step(H,X,ANG) uses ANG as the beamforming direction. This syntax is available
when you set the DirectionSource property to 'Input port'.

Y = step(H,X,XT,ANG) combines all input arguments. This syntax is available when
you set the TrainingInputPort property to true and set the DirectionSource
property to 'Input port'.

[Y,W] = step(___) returns the beamforming weights, W. This syntax is available
when you set the WeightsOutputPort property to true.

Note: The object performs an initialization the first time the step method is executed.
This initialization locks nontunable properties and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable

 step

1-1155

property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Input Arguments
H

Beamformer object.

X

Input signal, specified as an M-by-N matrix. If the sensor array contains subarrays,
N is the number of subarrays; otherwise, N is the number of elements. If you set the
TrainingInputPort to false, M must be larger than N; otherwise, M can be any
positive integer.

XT

Training samples, specified as a P-by-N matrix. If the sensor array contains subarrays,
N is the number of subarrays; otherwise, N is the number of elements. P must be larger
than N.

ANG

Beamforming directions, specified as a two-row matrix. Each column has the form
[AzimuthAngle; ElevationAngle], in degrees. Each azimuth angle must be between –180
and 180 degrees, and each elevation angle must be between –90 and 90 degrees.

Output Arguments
Y

Beamformed output. Y is an M-by-L matrix, where M is the number of rows of X and L is
the number of beamforming directions.

W

Beamforming weights. W is an N-by-L matrix, where L is the number of beamforming
directions. If the sensor array contains subarrays, N is the number of subarrays;
otherwise, N is the number of elements.

1 Alphabetical List

1-1156

Examples

MVDR Beamforming

Apply an MVDR beamformer to a 5-element ULA. The incident angle of the signal is 45
degrees in azimuth and 0 degree in elevation. The signal frequency is 1/100 hertz. The
carrier frequency is 300 MHz.

t = [0:.1:200]';

fr = .01;

xm = sin(2*pi*fr*t);

c = physconst('LightSpeed');

fc = 300e6;

rng('default');

incidentAngle = [45;0];

sULA = phased.ULA('NumElements',5,'ElementSpacing',0.5);

x = collectPlaneWave(sULA,xm,incidentAngle,fc,c);

noise = 0.1*(randn(size(x)) + 1j*randn(size(x)));

rx = x + noise;

Compute the beamforming weights

sMVDR = phased.MVDRBeamformer('SensorArray',sULA,...

 'PropagationSpeed',c,'OperatingFrequency',fc,...

 'Direction',incidentAngle,'WeightsOutputPort',true);

[y,w] = step(sMVDR,rx);

Plot the signals

plot(t,real(rx(:,3)),'r:',t,real(y))

xlabel('Time')

ylabel('Amplitude')

legend('Original','Beamformed');

 step

1-1157

Plot the array response pattern using the MVDR weights

pattern(sULA,fc,[-180:180],0,'PropagationSpeed',c,...

 'Weights',w,'CoordinateSystem','rectangular',...

 'Type','powerdb');

1 Alphabetical List

1-1158

See Also
phitheta2azel | uv2azel

 phased.MVDREstimator System object

1-1159

phased.MVDREstimator System object

Package: phased

MVDR (Capon) spatial spectrum estimator for ULA

Description

The MVDREstimator object computes a minimum variance distortionless response
(MVDR) spatial spectrum estimate for a uniform linear array. This DOA estimator is also
referred to as a Capon DOA estimator.

To estimate the spatial spectrum:

1 Define and set up your MVDR spatial spectrum estimator. See “Construction” on
page 1-1159.

2 Call step to estimate the spatial spectrum according to the properties of
phased.MVDREstimator. The behavior of step is specific to each object in the
toolbox.

Construction

H = phased.MVDREstimator creates an MVDR spatial spectrum estimator
System object, H. The object estimates the incoming signal's spatial spectrum using a
narrowband MVDR beamformer for a uniform linear array (ULA).

H = phased.MVDREstimator(Name,Value) creates object, H, with each specified
property Name set to the specified Value. You can specify additional name-value pair
arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties

SensorArray

Handle to sensor array

1 Alphabetical List

1-1160

Specify the sensor array as a handle. The sensor array must be a phased.ULA object.

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second, as a positive scalar.

Default: Speed of light

OperatingFrequency

System operating frequency

Specify the operating frequency of the system in hertz as a positive scalar. The default
value corresponds to 300 MHz.

Default: 3e8

NumPhaseShifterBits

Number of phase shifter quantization bits

The number of bits used to quantize the phase shift component of beamformer or steering
vector weights. Specify the number of bits as a non-negative integer. A value of zero
indicates that no quantization is performed.

Default: 0

ForwardBackwardAveraging

Perform forward-backward averaging

Set this property to true to use forward-backward averaging to estimate the covariance
matrix for sensor arrays with conjugate symmetric array manifold.

Default: false

SpatialSmoothing

Spatial smoothing

 phased.MVDREstimator System object

1-1161

Specify the number of averaging used by spatial smoothing to estimate the covariance
matrix as a nonnegative integer. Each additional smoothing handles one extra coherent
source, but reduces the effective number of element by 1. The maximum value of this
property is M–2, where M is the number of sensors.

Default: 0, indicating no spatial smoothing

ScanAngles

Scan angles

Specify the scan angles (in degrees) as a real vector. The angles are broadside angles and
must be between –90 and 90, inclusive. You must specify the angles in ascending order.

Default: -90:90

DOAOutputPort

Enable DOA output

To obtain the signal's direction of arrival (DOA), set this property to true and use the
corresponding output argument when invoking step. If you do not want to obtain the
DOA, set this property to false.

Default: false

NumSignals

Number of signals

Specify the number of signals for DOA estimation as a positive scalar integer. This
property applies when you set the DOAOutputPort property to true.

Default: 1

Methods

clone Create MVDR spatial spectrum estimator
object with same property values

1 Alphabetical List

1-1162

getNumInputs Number of expected inputs to step method
getNumOutputs Number of outputs from step method
isLocked Locked status for input attributes and

nontunable properties
plotSpectrum Plot spatial spectrum
release Allow property value and input

characteristics changes
reset Reset states of MVDR spatial spectrum

estimator object
step Perform spatial spectrum estimation

Examples

Estimate the DOAs of two signals received by a standard 10-element ULA with element
spacing of 1 meter. The antenna operating frequency is 150 MHz. The actual direction
of the first signal is 10 degrees in azimuth and 20 degrees in elevation. The direction of
the second signal is 60 degrees in azimuth and –5 degrees in elevation. This example also
plots the spatial spectrum.

fs = 8000; t = (0:1/fs:1).';

x1 = cos(2*pi*t*300); x2 = cos(2*pi*t*400);

ha = phased.ULA('NumElements',10,'ElementSpacing',1);

ha.Element.FrequencyRange = [100e6 300e6];

fc = 150e6;

x = collectPlaneWave(ha,[x1 x2],[10 20;60 -5]',fc);

% additive noise

noise = 0.1*(randn(size(x))+1i*randn(size(x)));

% construct MVDR estimator object

hdoa = phased.MVDREstimator('SensorArray',ha,...

 'OperatingFrequency',fc,...

 'DOAOutputPort',true,'NumSignals',2);

% use the MVDREstimator step method to obtain the DOA estimates

[y,doas] = step(hdoa,x+noise);

doas = broadside2az(sort(doas),[20 -5]);

plotSpectrum(hdoa);

 phased.MVDREstimator System object

1-1163

References

[1] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002.

See Also
broadside2az | phased.MVDREstimator2D

1 Alphabetical List

1-1164

Introduced in R2012a

 clone

1-1165

clone
System object: phased.MVDREstimator
Package: phased

Create MVDR spatial spectrum estimator object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates an object, C, having the same property values and same states as
H. If H is locked, so is C.

1 Alphabetical List

1-1166

getNumInputs
System object: phased.MVDREstimator
Package: phased

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of inputs
(not counting the object itself) that you must use when calling the step method. This
value changes when you alter properties that turn inputs on or off.

 getNumOutputs

1-1167

getNumOutputs
System object: phased.MVDREstimator
Package: phased

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value changes when you alter properties that turn outputs on or off.

1 Alphabetical List

1-1168

isLocked
System object: phased.MVDREstimator
Package: phased

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF, for the MVDREstimator System
object.

isLocked returns a logical value that indicates whether input attributes and
nontunable properties for the object are locked. The object performs an internal
initialization the first time that you execute step. This initialization locks nontunable
properties and input specifications, such as the dimensions, complexity, and data type of
the input data. After locking, isLocked returns a true value.

 plotSpectrum

1-1169

plotSpectrum
System object: phased.MVDREstimator
Package: phased

Plot spatial spectrum

Syntax

plotSpectrum(H)

plotSpectrum(H,Name,Value)

h = plotSpectrum(___)

Description

plotSpectrum(H) plots the spatial spectrum resulting from the last call of the step
method.

plotSpectrum(H,Name,Value) plots the spatial spectrum with additional options
specified by one or more Name,Value pair arguments.

h = plotSpectrum(___) returns the line handle in the figure.

Input Arguments

H

Spatial spectrum estimator object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

1 Alphabetical List

1-1170

'NormalizeResponse'

Set this value to true to plot the normalized spectrum. Set this value to false to plot
the spectrum without normalizing it.

Default: false

'Title'

String to use as title of figure.

Default: Empty string

'Unit'

The unit of the plot. Valid values are 'db', 'mag', and 'pow'.

Default: 'db'

Examples

Estimate the DOAs of two signals received by a standard 10-element ULA with element
spacing of 1 meter. The antenna operating frequency is 150 MHz. The actual direction of
the first signal is 10 degrees in azimuth and 20 degrees in elevation. The direction of the
second signal is 60 degrees in azimuth and –5 degrees in elevation.

fs = 8000; t = (0:1/fs:1).';

x1 = cos(2*pi*t*300); x2 = cos(2*pi*t*400);

ha = phased.ULA('NumElements',10,'ElementSpacing',1);

ha.Element.FrequencyRange = [100e6 300e6];

fc = 150e6;

x = collectPlaneWave(ha,[x1 x2],[10 20;60 -5]',fc);

% additive noise

noise = 0.1*(randn(size(x))+1i*randn(size(x)));

% construct MVDR estimator object

hdoa = phased.MVDREstimator('SensorArray',ha,...

 'OperatingFrequency',fc,...

 'DOAOutputPort',true,'NumSignals',2);

% use the MVDREstimator step method to obtain the DOA estimates

[y,doas] = step(hdoa,x+noise);

doas = broadside2az(sort(doas),[20 -5]);

plotSpectrum(hdoa);

 plotSpectrum

1-1171

1 Alphabetical List

1-1172

release
System object: phased.MVDREstimator
Package: phased

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

 reset

1-1173

reset
System object: phased.MVDREstimator
Package: phased

Reset states of MVDR spatial spectrum estimator object

Syntax

reset(H)

Description

reset(H) resets the states of the MVDREstimator object, H.

1 Alphabetical List

1-1174

step
System object: phased.MVDREstimator
Package: phased

Perform spatial spectrum estimation

Syntax

Y = step(H,X)

[Y,ANG] = step(H,X)

Description

Y = step(H,X) estimates the spatial spectrum from X using the estimator H. X is a
matrix whose columns correspond to channels. Y is a column vector representing the
magnitude of the estimated spatial spectrum.

[Y,ANG] = step(H,X) returns additional output ANG as the signal’s direction of arrival
(DOA) when the DOAOutputPort property is true. ANG is a row vector of the estimated
broadside angles (in degrees).

Note: The object performs an initialization the first time the step method is executed.
This initialization locks nontunable properties and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Examples

Estimate the DOAs of two signals received by a standard 10-element ULA with element
spacing of 1 meter. The antenna operating frequency is 150 MHz. The actual direction of
the first signal is 10 degrees in azimuth and 20 degrees in elevation. The direction of the
second signal is 60 degrees in azimuth and –5 degrees in elevation.

 step

1-1175

fs = 8000; t = (0:1/fs:1).';

x1 = cos(2*pi*t*300); x2 = cos(2*pi*t*400);

ha = phased.ULA('NumElements',10,'ElementSpacing',1);

ha.Element.FrequencyRange = [100e6 300e6];

fc = 150e6;

x = collectPlaneWave(ha,[x1 x2],[10 20;60 -5]',fc);

% additive noise

noise = 0.1*(randn(size(x))+1i*randn(size(x)));

% construct MVDR estimator object

hdoa = phased.MVDREstimator('SensorArray',ha,...

 'OperatingFrequency',fc,...

 'DOAOutputPort',true,'NumSignals',2);

% use the MVDREstimator step method to obtain the DOA estimates

[y,doas] = step(hdoa,x+noise);

doas = broadside2az(sort(doas),[20 -5]);

1 Alphabetical List

1-1176

phased.MVDREstimator2D System object

Package: phased

2-D MVDR (Capon) spatial spectrum estimator

Description

The MVDREstimator2D object computes a 2-D minimum variance distortionless response
(MVDR) spatial spectrum estimate. This DOA estimator is also referred to as a Capon
estimator.

To estimate the spatial spectrum:

1 Define and set up your 2-D MVDR spatial spectrum estimator. See “Construction” on
page 1-1176.

2 Call step to estimate the spatial spectrum according to the properties of
phased.MVDREstimator2D. The behavior of step is specific to each object in the
toolbox.

Construction

H = phased.MVDREstimator2D creates a 2-D MVDR spatial spectrum estimator
System object, H. The object estimates the signal’s spatial spectrum using a narrowband
MVDR beamformer.

H = phased.MVDREstimator2D(Name,Value) creates object, H, with each specified
property Name set to the specified Value. You can specify additional name-value pair
arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties

SensorArray

Handle to sensor array

 phased.MVDREstimator2D System object

1-1177

Specify the sensor array as a handle. The sensor array must be an array object in the
phased package. The array cannot contain subarrays.

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second, as a positive scalar.

Default: Speed of light

OperatingFrequency

System operating frequency

Specify the operating frequency of the system in hertz as a positive scalar. The default
value corresponds to 300 MHz.

Default: 3e8

NumPhaseShifterBits

Number of phase shifter quantization bits

The number of bits used to quantize the phase shift component of beamformer or steering
vector weights. Specify the number of bits as a non-negative integer. A value of zero
indicates that no quantization is performed.

Default: 0

ForwardBackwardAveraging

Perform forward-backward averaging

Set this property to true to use forward-backward averaging to estimate the covariance
matrix for sensor arrays with conjugate symmetric array manifold.

Default: false

AzimuthScanAngles

Azimuth scan angles (degrees)

1 Alphabetical List

1-1178

Specify the azimuth scan angles (in degrees) as a real vector. The angles must be
between –180 and 180, inclusive. You must specify the angles in ascending order.

Default: -90:90

ElevationScanAngles

Elevation scan angles

Specify the elevation scan angles (in degrees) as a real vector or scalar. The angles must
be between –90 and 90, inclusive. You must specify the angles in ascending order.

Default: 0

DOAOutputPort

Enable DOA output

To obtain the signal's direction of arrival (DOA), set this property to true and use the
corresponding output argument when invoking step. If you do not want to obtain the
DOA, set this property to false.

Default: false

NumSignals

Number of signals

Specify the number of signals for DOA estimation as a positive scalar integer. This
property applies when you set the DOAOutputPort property to true.

Default: 1

Methods

clone Create 2-D MVDR spatial spectrum
estimator object with same property values

getNumInputs Number of expected inputs to step method

 phased.MVDREstimator2D System object

1-1179

getNumOutputs Number of outputs from step method
isLocked Locked status for input attributes and

nontunable properties
plotSpectrum Plot spatial spectrum
release Allow property value and input

characteristics changes
reset Reset states of 2-D MVDR spatial spectrum

estimator object
step Perform spatial spectrum estimation

Examples

Estimate the DOAs of two signals received by a 50-element URA with a rectangular
lattice. The antenna operating frequency is 150 MHz. The actual direction of the first
signal is –37 degrees in azimuth and 0 degrees in elevation. The direction of the second
signal is 17 degrees in azimuth and 20 degrees in elevation. This example also plots the
spatial spectrum.

fs = 8000; t = (0:1/fs:1).';

x1 = cos(2*pi*t*300); x2 = cos(2*pi*t*400);

ha = phased.URA('Size',[5 10],'ElementSpacing',[1 0.6]);

ha.Element.FrequencyRange = [100e6 300e6];

fc = 150e6;

x = collectPlaneWave(ha,[x1 x2],[-37 0;17 20]',fc);

% additive noise

noise = 0.1*(randn(size(x))+1i*randn(size(x)));

% construct MVDR DOA estimator for URA

hdoa = phased.MVDREstimator2D('SensorArray',ha,...

 'OperatingFrequency',fc,...

 'DOAOutputPort',true,'NumSignals',2,...

 'AzimuthScanAngles',-50:50,...

 'ElevationScanAngles',-30:30);

% use the step method to obtain the output and DOA estimates

[~,doas] = step(hdoa,x+noise);

plotSpectrum(hdoa);

1 Alphabetical List

1-1180

References

[1] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002.

See Also
phased.MVDREstimator | phitheta2azel | uv2azel

 phased.MVDREstimator2D System object

1-1181

Introduced in R2012a

1 Alphabetical List

1-1182

clone
System object: phased.MVDREstimator2D
Package: phased

Create 2-D MVDR spatial spectrum estimator object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates an object, C, having the same property values and same states as
H. If H is locked, so is C.

 getNumInputs

1-1183

getNumInputs
System object: phased.MVDREstimator2D
Package: phased

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of inputs
(not counting the object itself) that you must use when calling the step method. This
value changes when you alter properties that turn inputs on or off.

1 Alphabetical List

1-1184

getNumOutputs
System object: phased.MVDREstimator2D
Package: phased

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value changes when you alter properties that turn outputs on or off.

 isLocked

1-1185

isLocked
System object: phased.MVDREstimator2D
Package: phased

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF, for the MVDREstimator2D System
object.

isLocked returns a logical value that indicates whether input attributes and
nontunable properties for the object are locked. The object performs an internal
initialization the first time that you execute step. This initialization locks nontunable
properties and input specifications, such as the dimensions, complexity, and data type of
the input data. After locking, isLocked returns a true value.

1 Alphabetical List

1-1186

plotSpectrum
System object: phased.MVDREstimator2D
Package: phased

Plot spatial spectrum

Syntax

plotSpectrum(H)

plotSpectrum(H,Name,Value)

h = plotSpectrum(___)

Description

plotSpectrum(H) plots the spatial spectrum resulting from the last call of the step
method.

plotSpectrum(H,Name,Value) plots the spatial spectrum with additional options
specified by one or more Name,Value pair arguments.

h = plotSpectrum(___) returns the line handle in the figure.

Input Arguments

H

Spatial spectrum estimator object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

 plotSpectrum

1-1187

'NormalizeResponse'

Set this value to true to plot the normalized spectrum. Set this value to false to plot
the spectrum without normalizing it.

Default: false

'Title'

String to use as title of figure.

Default: Empty string

'Unit'

The unit of the plot. Valid values are 'db', 'mag', and 'pow'.

Default: 'db'

Examples

Estimate the DOAs of two signals received by a 50-element URA with a rectangular
lattice. The antenna operating frequency is 150 MHz. The actual direction of the first
signal is –37 degrees in azimuth and 0 degrees in elevation. The direction of the second
signal is 17 degrees in azimuth and 20 degrees in elevation.

fs = 8000; t = (0:1/fs:1).';

x1 = cos(2*pi*t*300); x2 = cos(2*pi*t*400);

ha = phased.URA('Size',[5 10],'ElementSpacing',[1 0.6]);

ha.Element.FrequencyRange = [100e6 300e6];

fc = 150e6;

x = collectPlaneWave(ha,[x1 x2],[-37 0;17 20]',fc);

% additive noise

noise = 0.1*(randn(size(x))+1i*randn(size(x)));

% construct MVDR DOA estimator for URA

hdoa = phased.MVDREstimator2D('SensorArray',ha,...

 'OperatingFrequency',fc,...

 'DOAOutputPort',true,'NumSignals',2,...

 'AzimuthScanAngles',-50:50,...

 'ElevationScanAngles',-30:30);

% use the step method to obtain the output and DOA estimates

[~,doas] = step(hdoa,x+noise);

1 Alphabetical List

1-1188

plotSpectrum(hdoa);

 release

1-1189

release
System object: phased.MVDREstimator2D
Package: phased

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

1 Alphabetical List

1-1190

reset
System object: phased.MVDREstimator2D
Package: phased

Reset states of 2-D MVDR spatial spectrum estimator object

Syntax

reset(H)

Description

reset(H) resets the states of the MVDREstimator2D object, H.

 step

1-1191

step
System object: phased.MVDREstimator2D
Package: phased

Perform spatial spectrum estimation

Syntax

Y = step(H,X)

[Y,ANG] = step(H,X)

Description

Y = step(H,X) estimates the spatial spectrum from X using the estimator H. X is a
matrix whose columns correspond to channels. Y is a matrix representing the magnitude
of the estimated 2-D spatial spectrum. The row dimension of Y is equal to the number
of angles in the ElevationScanAngles and the column dimension of Y is equal to the
number of angles in the AzimuthScanAngles property.

[Y,ANG] = step(H,X) returns additional output ANG as the signal’s direction of arrival
(DOA) when the DOAOutputPort property is true. ANG is a two-row matrix where
the first row represents estimated azimuth and the second row represents estimated
elevation (in degrees).

Note: The object performs an initialization the first time the step method is executed.
This initialization locks nontunable properties and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Examples

Estimate the DOAs of two signals received by a 50-element URA with a rectangular
lattice. The antenna operating frequency is 150 MHz. The actual direction of the first

1 Alphabetical List

1-1192

signal is –37 degrees in azimuth and 0 degrees in elevation. The direction of the second
signal is 17 degrees in azimuth and 20 degrees in elevation.

fs = 8000; t = (0:1/fs:1).';

x1 = cos(2*pi*t*300); x2 = cos(2*pi*t*400);

ha = phased.URA('Size',[5 10],'ElementSpacing',[1 0.6]);

ha.Element.FrequencyRange = [100e6 300e6];

fc = 150e6;

x = collectPlaneWave(ha,[x1 x2],[-37 0;17 20]',fc);

% additive noise

noise = 0.1*(randn(size(x))+1i*randn(size(x)));

% construct MVDR DOA estimator for URA

hdoa = phased.MVDREstimator2D('SensorArray',ha,...

 'OperatingFrequency',fc,...

 'DOAOutputPort',true,'NumSignals',2,...

 'AzimuthScanAngles',-50:50,...

 'ElevationScanAngles',-30:30);

% use the step method to obtain the output and DOA estimates

[~,doas] = step(hdoa,x+noise);

See Also
azel2phitheta | azel2uv

 phased.OmnidirectionalMicrophoneElement System object

1-1193

phased.OmnidirectionalMicrophoneElement System
object
Package: phased

Omnidirectional microphone

Description

The OmnidirectionalMicrophoneElement object models an omnidirectional
microphone with an equal response in all directions.

To compute the response of the microphone element for specified directions:

1 Define and set up your omnidirectional microphone element. See “Construction” on
page 1-1193.

2 Call step to estimate the microphone response according to the properties of
phased.OmnidirectionalMicrophoneElement. The behavior of step is specific
to each object in the toolbox.

Construction

H = phased.OmnidirectionalMicrophoneElement creates an omnidirectional
microphone system object, H, that models an omnidirectional microphone element whose
response is 1 in all directions.

H = phased.OmnidirectionalMicrophoneElement(Name,Value) creates
an omnidirectional microphone object, H, with each specified property set to the
specified value. You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties

FrequencyRange

Operating frequency range

1 Alphabetical List

1-1194

Specify the operating frequency range (in Hz) of the microphone element as a 1x2 row
vector in the form of [LowerBound HigherBound]. The microphone element has no
response outside the specified frequency range.

Default: [0 1e20]

BackBaffled

Baffle the back of microphone element

Set this property to true to baffle the back of the microphone element. In this case, the
microphone responses to all azimuth angles beyond +/– 90 degrees from the broadside (0
degree azimuth and elevation) are 0.

When the value of this property is false, the back of the microphone element is not
baffled.

Default: false

Methods

clone Create omnidirectional microphone object
with same property values

directivity Directivity of omnidirectional microphone
element

getNumInputs Number of expected inputs to step method
getNumOutputs Number of outputs from step method
isLocked Locked status for input attributes and

nontunable properties
isPolarizationCapable Polarization capability
pattern Plot omnidirectional microphone element

directivity and patterns
patternAzimuth Plot omnidirectional microphone element

directivity or pattern versus azimuth
patternElevation Plot omnidirectional microphone element

directivity or pattern versus elevation

 phased.OmnidirectionalMicrophoneElement System object

1-1195

plotResponse Plot response pattern of microphone
release Allow property value and input

characteristics changes
step Output response of microphone

Examples

Create an omnidirectional microphone. Find the microphone response at 200, 300, and
400 Hz for the incident angle [0;0]. Plot the azimuth response of the microphone.

h = phased.OmnidirectionalMicrophoneElement(...

 'FrequencyRange',[20 2e3]);

fc = [200 300 400];

ang = [0;0];

resp = step(h,fc,ang);

plotResponse(h,200,'RespCut','Az','Format','Polar');

1 Alphabetical List

1-1196

See Also
phased.ConformalArray | phased.CustomMicrophoneElement | phased.ULA |
phased.URA

Introduced in R2012a

 clone

1-1197

clone
System object: phased.OmnidirectionalMicrophoneElement
Package: phased

Create omnidirectional microphone object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates an object, C, having the same property values and same states as
H. If H is locked, so is C.

1 Alphabetical List

1-1198

directivity
System object: phased.OmnidirectionalMicrophoneElement
Package: phased

Directivity of omnidirectional microphone element

Syntax

D = directivity(H,FREQ,ANGLE)

Description

D = directivity(H,FREQ,ANGLE) returns the “Directivity (dBi)” on page 1-1200
of an omnidirectional microphone element, H, at frequencies specified by FREQ and in
direction angles specified by ANGLE.

Input Arguments

H — Omnidirectional Microphone Element
System object

Omnidirectional microphone element specified as a
phased.OmnidirectionalMicrophoneElement System object.
Example: H = phased.OmnidirectionalMicrophoneElement

FREQ — Frequency for computing directivity and patterns
positive scalar | 1-by-L real-valued row vector

Frequencies for computing directivity and patterns, specified as a positive scalar or 1-
by-L real-valued row vector. Frequency units are in hertz.

• For an antenna or microphone element, FREQ must lie within the range of
values specified by the FrequencyRange or FrequencyVector property of the
element. Otherwise, the element produces no response and the directivity is

 directivity

1-1199

returned as –Inf. Most elements use the FrequencyRange property except for
phased.CustomAntennaElement and phased.CustomMicrophoneElement, which use
the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements
that make up the array. Otherwise, the array produces no response and the
directivity is returned as –Inf.

Example: [1e8 2e8]

Data Types: double

ANGLE — Angles for computing directivity
1-by-M real-valued row vector | 2-by-M real-valued matrix

Angles for computing directivity, specified as a 1-by-M real-valued row vector or a 2-
by-M real-valued matrix, where M is the number of angular directions. Angle units
are in degrees. If ANGLE is a 2-by-M matrix, then each column specifies a direction in
azimuth and elevation, [az;el]. The azimuth angle must lie between –180° and 180°.
The elevation angle must lie between –90° and 90°.

If ANGLE is a 1-by-M vector, then each entry represents an azimuth angle, with the
elevation angle assumed to be zero.

The azimuth angle is the angle between the x-axis and the projection of the direction
vector onto the xy plane. This angle is positive when measured from the x-axis toward the
y-axis. The elevation angle is the angle between the direction vector and xy plane. This
angle is positive when measured towards the z-axis.
Example: [45 60; 0 10]

Data Types: double

Output Arguments

D — Directivity
M-by-L matrix

Directivity, returned as an M-by-L matrix whose columns contain the directivities at the
M angles specified by ANGLE. Each column corresponds to one of the L frequency values
specified in FREQ. Directivity units are in dBi.

1 Alphabetical List

1-1200

Definitions

Directivity (dBi)

Directivity describes the directionality of the radiation pattern of a sensor element
or array of sensor elements. Higher directivity is desired when you want to transmit
more radiation in a specific direction. Directivity is the ratio of the transmitted radiant
intensity in a specified direction to the radiant intensity transmitted by an isotropic
radiator with the same total transmitted power

D
U

P
=

()
4p

q jrad

total

,

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal
is the total power transmitted by an isotropic radiator. For a receiving element or array,
directivity measures the sensitivity toward radiation arriving from a specific direction.
The principle of reciprocity shows that the directivity of an element or array used for
reception equals the directivity of the same element or array used for transmission.
When converted to decibels, the directivity is denoted as dBi. For information on
directivity, read the notes on “Element directivity” and “Array directivity”.

Computing directivity requires integrating the far-field transmitted radiant intensity
over all directions in space to obtain the total transmitted power. There is a difference
between how that integration is performed when Antenna Toolbox antennas are used
in a phased array and when Phased Array System Toolbox antennas are used. When
an array contains Antenna Toolbox antennas, the directivity computation is performed
using a triangular mesh created from 500 regularly spaced points over a sphere. For
Phased Array System Toolbox antennas, the integration uses a uniform rectangular
mesh of points spaced 1° apart in azimuth and elevation over a sphere. There may be
significant differences in computed directivity, especially for large arrays.

Examples

Directivity of Omnidirectional Microphone Element

Compute the directivity of an omnidirectional microphone element for several different
directions.

 directivity

1-1201

Create the omnidirectional microphone element system object.

myMic = phased.OmnidirectionalMicrophoneElement();

Select the angles of interest at constant elevation angle set equal to zero degrees. Select
seven azimuth angles centered at boresight (zero degrees azimuth and zero degrees
elevation). Finally, set the desired frequency to 1 kHz.

ang = [-30,-20,-10,0,10,20,30; 0,0,0,0,0,0,0];

freq = 1000;

Compute the directivity along the constant elevation cut.

d = directivity(myMic,freq,ang)

d =

 1.0e-03 *

 0.1102

 0.1102

 0.1102

 0.1102

 0.1102

 0.1102

 0.1102

Next select the angles of interest to be at constant azimuth angle at zero degrees. All
elevation angles are centered around boresight. The five elevation angles range from -20
to +20 degrees. Set the desired frequency to 1 GHz.

ang = [0,0,0,0,0; -20,-10,0,10,20];

freq = 1000;

Compute the directivity along the constant azimuth cut.

d = directivity(myMic,freq,ang)

d =

 1.0e-03 *

1 Alphabetical List

1-1202

 0.1102

 0.1102

 0.1102

 0.1102

 0.1102

For an omnidirectional microphone, the directivity is independent of direction.

See Also
phased.OmnidirectionalMicrophoneElement.plotResponse

 getNumInputs

1-1203

getNumInputs
System object: phased.OmnidirectionalMicrophoneElement
Package: phased

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of inputs
(not counting the object itself) that you must use when calling the step method. This
value changes when you alter properties that turn inputs on or off.

1 Alphabetical List

1-1204

getNumOutputs
System object: phased.OmnidirectionalMicrophoneElement
Package: phased

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value changes when you alter properties that turn outputs on or off.

 isLocked

1-1205

isLocked
System object: phased.OmnidirectionalMicrophoneElement
Package: phased

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the
OmnidirectionalMicrophoneElement System object.

isLocked returns a logical value that indicates whether input attributes and
nontunable properties for the object are locked. The object performs an internal
initialization the first time that you execute step. This initialization locks nontunable
properties and input specifications, such as the dimensions, complexity, and data type of
the input data. After locking, isLocked returns a true value.

1 Alphabetical List

1-1206

isPolarizationCapable

System object: phased.OmnidirectionalMicrophoneElement
Package: phased

Polarization capability

Syntax

flag = isPolarizationCapable(h)

Description

flag = isPolarizationCapable(h) returns a Boolean value, flag, indicating
whether the phased.OmnidirectionalMicrophoneElement supports polarization. An
element supports polarization if it can create or respond to polarized fields. This
microphone element, as all microphone elements, does not support polarization.

Input Arguments

h — Omni-directional microphone element

Omni-directional microphone element specified as a
phased.OmnidirectionalMicrophoneElement System object

Output Arguments

flag — Polarization-capability flag

Polarization-capability returned as a Boolean value true if the microphone
element supports polarization or false if it does not. Because the
phased.OmnidirectionalMicrophoneElement object does not support polarization, flag is
always returned as false.

 isPolarizationCapable

1-1207

Examples

Omnidirectional Microphone Element does not Support Polarization

Determine whether a phased.OmnidirectionalMicrophoneElement microphone element
supports polarization.

h = phased.OmnidirectionalMicrophoneElement;

isPolarizationCapable(h)

ans =

 0

The returned value false (0) shows that the omnidirectional microphone element does
not support polarization.

1 Alphabetical List

1-1208

pattern

System object: phased.OmnidirectionalMicrophoneElement
Package: phased

Plot omnidirectional microphone element directivity and patterns

Syntax

pattern(sElem,FREQ)

pattern(sElem,FREQ,AZ)

pattern(sElem,FREQ,AZ,EL)

pattern(___ ,Name,Value)

[PAT,AZ_ANG,EL_ANG] = pattern(___)

Description

pattern(sElem,FREQ) plots the 3-D array directivity pattern (in dBi) for the array
specified in sElem. The operating frequency is specified in FREQ.

pattern(sElem,FREQ,AZ) plots the array directivity pattern at the specified azimuth
angle.

pattern(sElem,FREQ,AZ,EL) plots the array directivity pattern at specified azimuth
and elevation angles.

pattern(___ ,Name,Value) plots the array pattern with additional options specified
by one or more Name,Value pair arguments.

[PAT,AZ_ANG,EL_ANG] = pattern(___) returns the array pattern in PAT. The
AZ_ANG output contains the coordinate values corresponding to the rows of PAT. The
EL_ANG output contains the coordinate values corresponding to the columns of PAT.
If the 'CoordinateSystem' parameter is set to 'uv', then AZ_ANG contains the
U coordinates of the pattern and EL_ANG contains the V coordinates of the pattern.
Otherwise, they are in angular units in degrees. UV units are dimensionless.

 pattern

1-1209

Note: This method replaces the previous plotResponse method. To replace plots using
plotResponse plots with equivalent plots using pattern, see “Convert plotResponse to
pattern” on page 1-1955

Input Arguments

sElem — Omnidirectional microphone element
System object

Omnidirectional microphone element, specified as a
phased.OmnidirectionalMicrophoneElement System object.
Example: sElem = phased.OmnidirectionalMicrophoneElement;

FREQ — Frequency for computing directivity and patterns
positive scalar | 1-by-L real-valued row vector

Frequencies for computing directivity and patterns, specified as a positive scalar or 1-
by-L real-valued row vector. Frequency units are in hertz.

• For an antenna or microphone element, FREQ must lie within the range of
values specified by the FrequencyRange or FrequencyVector property of the
element. Otherwise, the element produces no response and the directivity is
returned as –Inf. Most elements use the FrequencyRange property except for
phased.CustomAntennaElement and phased.CustomMicrophoneElement, which use
the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements
that make up the array. Otherwise, the array produces no response and the
directivity is returned as –Inf.

Example: [1e8 2e8]

Data Types: double

AZ — Azimuth angles
[-180:180] (default) | 1-by-M real-valued row vector

Azimuth angles for computing directivity and pattern, specified as a 1-by-M real-
valued row vector where M is the number of azimuth angles. Angle units are in degrees.
Azimuth angles must lie between –180° and 180°.

1 Alphabetical List

1-1210

The azimuth angle is the angle between the x-axis and the projection of the direction
vector onto the xy plane. When measured from the x-axis toward the y-axis, this angle is
positive.
Example: [-45:2:45]

Data Types: double

EL — Elevation angles
[-90:90] (default) | 1-by-N real-valued row vector

Elevation angles for computing directivity and pattern, specified as a 1-by-N real-valued
row vector where N is the number of desired elevation directions. Angle units are in
degrees. The elevation angle must lie between –90° and 90°.

The elevation angle is the angle between the direction vector and xy-plane. When
measured towards the z-axis, this angle is positive.
Example: [-75:1:70]

Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'CoordinateSystem' — Plotting coordinate system
'polar' (default) | 'rectangular' | 'uv'

Plotting coordinate system of the pattern, specified as the comma-separated pair
consisting of 'CoordinateSystem' and one of 'polar', 'rectangular', or
'uv'. When 'CoordinateSystem' is set to 'polar' or 'rectangular', the
AZ and EL arguments specify the pattern azimuth and elevation, respectively. AZ
values must lie between –180° and 180°. EL values must lie between –90° and 90°. If
'CoordinateSystem' is set to 'uv', AZ and EL then specify U and V coordinates,
respectively. AZ and EL must lie between -1 and 1.

Example: 'uv'

Data Types: char

 pattern

1-1211

'Type' — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and
one of

• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed

pattern is for the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field

pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'

Data Types: char

'Normalize' — Display normalize pattern
true (default) | false

Display normalized pattern, specified as the comma-separated pair consisting of
'Normalize' and a Boolean. Set this parameter to true to display a normalized pattern.
When you set 'Type' to 'directivity', this parameter does not apply. Directivity
patterns are already normalized.
Example:
Data Types: logical

'PlotStyle' — Plotting style
'overlay' (default) | 'waterfall'

Plotting style, specified as the comma-separated pair consisting of 'Plotstyle' and
either 'overlay' or 'waterfall'. This parameter applies when you specify multiple
frequencies in FREQ in 2-D plots. You can draw 2-D plots by setting one of the arguments
AZ or EL to a scalar.

Example:
Data Types: char

1 Alphabetical List

1-1212

Output Arguments
PAT — Element pattern
M-by-N real-valued matrix

Element pattern, returned as an M-by-N real-valued matrix. The dimensions of PAT
correspond to the dimensions of the output arguments AZ_ANG and EL_ANG.

AZ_ANG — Azimuth angles
scalar | 1-by-M real-valued row vector

Azimuth angles for displaying directivity or response pattern, returned as a scalar or 1-
by-M real-valued row vector corresponding to the dimension set in AZ. The rows of PAT
correspond to the values in AZ_ANG.

EL_ANG — Elevation angles
scalar | 1-by-N real-valued row vector

Elevation angles for displaying directivity or response, returned as a scalar or 1-by-N
real-valued row vector corresponding to the dimension set in EL. The columns of PAT
correspond to the values in EL_ANG.

More About

Directivity

Directivity describes the directionality of the radiation pattern of a sensor element
or array of sensor elements. Higher directivity is desired when you want to transmit
more radiation in a specific direction. Directivity is the ratio of the transmitted radiant
intensity in a specified direction to the radiant intensity transmitted by an isotropic
radiator with the same total transmitted power

D
U

P
=

()
4p

q jrad

total

,

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal
is the total power transmitted by an isotropic radiator. For a receiving element or array,
directivity measures the sensitivity toward radiation arriving from a specific direction.
The principle of reciprocity shows that the directivity of an element or array used for
reception equals the directivity of the same element or array used for transmission.

 pattern

1-1213

When converted to decibels, the directivity is denoted as dBi. For information on
directivity, read the notes on “Element directivity” and “Array directivity”.

Computing directivity requires integrating the far-field transmitted radiant intensity
over all directions in space to obtain the total transmitted power. There is a difference
between how that integration is performed when Antenna Toolbox antennas are used
in a phased array and when Phased Array System Toolbox antennas are used. When
an array contains Antenna Toolbox antennas, the directivity computation is performed
using a triangular mesh created from 500 regularly spaced points over a sphere. For
Phased Array System Toolbox antennas, the integration uses a uniform rectangular
mesh of points spaced 1° apart in azimuth and elevation over a sphere. There may be
significant differences in computed directivity, especially for large arrays.

Convert plotResponse to pattern

For antenna, microphone, and array System objects, the pattern method replaces the
plotResponse method. In addition, two new simplified methods exist just to draw
2-D azimuth and elevation pattern plots. These methods are azimuthPattern and
elevationPattern.

The following table is a guide for converting your code from using plotResponse to
pattern. Notice that some of the inputs have changed from input arguments to Name-
Value pairs and conversely. The general pattern method syntax is

pattern(H,FREQ,AZ,EL,'Name1','Value1',...,'NameN','ValueN')

plotResponse Inputs plotResponse Description pattern Inputs

H argument Antenna, microphone, or array
System object.

H argument (no change)

FREQ argument Operating frequency. FREQ argument (no change)
V argument Propagation speed. This

argument is used only for
arrays.

'PropagationSpeed' name-
value pair. This parameter is
only used for arrays.

'Format' and 'RespCut'
name-value pairs

These options work together to
let you create a plot in angle
space (line or polar style) or
UV space. They also determine
whether the plot is 2-D or 3-
D. This table shows you how to

'CoordinateSystem' name-
value pair used together with
the AZ and EL input arguments.

'CoordinateSystem' has
the same options as the

1 Alphabetical List

1-1214

plotResponse Inputs plotResponse Description pattern Inputs

create different types of plots
using plotResponse.

Display space

Angle space
(2D)

Set
'RespCut'

to 'Az' or

'El'. Set
'Format' to
'line' or
'polar'.

Set the display
axis using
either the
the
'AzimuthAngles'

or
'ElevationAngles'

name-value
pairs.

Angle space
(3D)

Set
'RespCut'

to '3D'. Set
'Format' to
'line' or
'polar'.

Set the display
axis using
both the
'AzimuthAngles'

and'ElevationAngles'
name-value
pairs.

UV space (2D) Set
'RespCut'

plotResponse method
'Format'name-value pair,
except that 'line' is now
named 'rectangular'. The
table shows how to create
different types of plots using
pattern.

Display space

Angle space
(2D)

Set
'Coordinate

System' to
'rectangular'

or 'polar'.
Specify either
AZ or EL as a
scalar.

Angle space
(3D)

Set
'Coordinate

System' to
'rectangular'

or 'polar'.
Specify both
AZ and EL as
vectors.

UV space (2D) Set
'Coordinate

System' to
'uv'. Use AZ
to specify a U-
space vector.
Use EL to
specify a V-
space scalar.

UV space (3D) Set
'Coordinate

System' to

 pattern

1-1215

plotResponse Inputs plotResponse Description pattern Inputs

Display space

to'U'. Set
'Format'

to 'UV'. Set
the display
range using
the 'UGrid'
name-value
pair.

UV space (3D) Set
'RespCut'

to'3D'. Set
'Format' to
'UV'. Set the
display range
using both
the 'UGrid'
and 'VGrid'
name-value
pairs.

Display space

'uv'. Use AZ
to specify a U-
space vector.
Use EL to
specify a V-
space vector.

If you set CoordinateSystem
to 'uv', enter the UV grid
values using AZ and EL.

'CutAngle' name-value pair Constant angle at to take an
azimuth or elevation cut. When
producing a 2-D plot and when
'RespCut' is set to 'Az' or
'El', use 'CutAngle' to set
the slice across which to view
the plot.

No equivalent name-value pair.
To create a cut, specify either AZ
or EL as a scalar, not a vector.

'NormalizeResponse' name-
value pair

Normalizes the plot.
When 'Unit' is set to
'dbi', you cannot specify
'NormalizeResponse'.

'Normalize' name-value
pair. When 'Type' is set to
'directivity',

you cannot specify
'Normalize'.
.

1 Alphabetical List

1-1216

plotResponse Inputs plotResponse Description pattern Inputs

'OverlayFreq' name-value
pair

Plot multiple frequencies on
the same 2-D plot. Available
only when 'Format' is
set to 'line' or 'uv' and
'RespCut' is not set to '3D'.
The value true produces an
overlay plot and the value
false produces a waterfall
plot.

'PlotStyle' name-value pair
plots multiple frequencies on the
same 2-D plot.

The values 'overlay' and
'waterfall' correspond to
'OverlayFreq' values of
true and false. The option
'waterfall' is allowed only
when 'CoordinateSystem' is
set to 'rectangular' or 'uv'.

'Polarization' name-value
pair

Determines how to plot
polarized fields. Options are
'None', 'Combined', 'H', or
'V'.

'Polarization' name-value
pair determines how to plot
polarized fields. The 'None'
option is removed. The options
'Combined', 'H', or 'V' are
unchanged.

'Unit' name-value pair Determines the plot units.
Choose 'db', 'mag', 'pow',
or 'dbi', where the default is
'db'.

'Type' name-value pair, uses
equivalent options with different
names

plotResponse pattern

'db' 'powerdb'

'mag' 'efield'

'pow' 'power'

'dbi' 'directivity'

'Weights' name-value pair Array element tapers (or
weights).

'Weights' name-value pair (no
change).

'AzimuthAngles' name-value
pair

Azimuth angles used to display
the antenna or array response.

AZ argument

'ElevationAngles' name-
value pair

Elevation angles used to
display the antenna or array
response.

EL argument

 pattern

1-1217

plotResponse Inputs plotResponse Description pattern Inputs

'UGrid' name-value pair Contains U coordinates in UV-
space.

AZ argument when
'CoordinateSystem' name-
value pair is set to 'uv'

'VGrid' name-value pair Contains V-coordinates in UV-
space.

EL argument when
'CoordinateSystem' name-
value pair is set to 'uv'

Examples

Magnitude and Directivity Patterns of Omnidirectional Microphone

Construct an omnidirectional microphone and plot the magnitude and directivity
patterns. The microphone operating frequency spans the range 20 to 20000 Hz.

Construct the omnidirectional microphone.

sOmni = phased.OmnidirectionalMicrophoneElement(...

 'FrequencyRange',[20 20e3]);

Plot the microphone magnitude pattern at 200 Hz.

fc = 200;

pattern(sOmni,fc,[-180:180],0,...

 'CoordinateSystem','rectangular',...

 'Type','efield')

1 Alphabetical List

1-1218

Plot the microphone directivity.

pattern(sOmni,fc,[-180:180],0,...

 'CoordinateSystem','rectangular',...

 'Type','directivity')

 pattern

1-1219

The directivity is 0 dbi as expected for an omnidimensional element.

3-D Magnitude Pattern of Omnidirectional Microphone

Construct an omnidirection microphone with response in the frequency range 20-20000
Hz. Then, plot the 3-D magnitude pattern over a range of angles.

Construct the microphone element.

sOmin = phased.OmnidirectionalMicrophoneElement(...

 'FrequencyRange',[20 20e3]);

Plot the 3-D pattern at 500 Hz between -30 to 30 degrees in both azimuth and elevation
in 0.1 degree increments.

1 Alphabetical List

1-1220

fc = 500;

pattern(sOmin,fc,[-30:0.1:30],[-30:0.1:30],...

 'CoordinateSystem','polar',...

 'Type','efield')

Directivity of Crossed-Dipole Antenna

Create a crossed-dipole antenna. Assume the antenna works between 1 and 2 GHz and
its operating frequency is 1.5 GHz. Then, plot an elevation cut of its directivity.

sCD = phased.CrossedDipoleAntennaElement('FrequencyRange',[1e9 2e9]);

fc = 1.5e9;

pattern(sCD,fc,0,[-90:90],...

 'Type','directivity',...

 pattern

1-1221

 'CoordinateSystem','rectangular')

The directivity is maximum at 0 degrees elevation and attains a value of approximately
1.75 dB.

See Also
phased.OmnidirectionalMicrophoneElement.patternAzimuth |
phased.OmnidirectionalMicrophoneElement.patternElevation

Introduced in R2015a

1 Alphabetical List

1-1222

patternAzimuth

System object: phased.OmnidirectionalMicrophoneElement
Package: phased

Plot omnidirectional microphone element directivity or pattern versus azimuth

Syntax

patternAzimuth(sElem,FREQ)

patternAzimuth(sElem,FREQ,EL)

patternAzimuth(sElem,FREQ,EL,Name,Value)

PAT = patternAzimuth(___)

Description

patternAzimuth(sElem,FREQ) plots the 2-D element directivity pattern versus
azimuth (in dBi) for the element sElem at zero degrees elevation angle. The argument
FREQ specifies the operating frequency.

patternAzimuth(sElem,FREQ,EL), in addition, plots the 2-D element directivity
pattern versus azimuth (in dBi) at the elevation angle specified by EL. When EL is a
vector, multiple overlaid plots are created.

patternAzimuth(sElem,FREQ,EL,Name,Value) plots the element pattern with
additional options specified by one or more Name,Value pair arguments.

PAT = patternAzimuth(___) returns the element pattern. PAT is a matrix whose
entries represent the pattern at corresponding sampling points specified by the
'Azimuth' parameter and the EL input argument.

Input Arguments

sElem — Omnidirectional microphone element
System object

 patternAzimuth

1-1223

Omnidirectional microphone element, specified as a
phased.OmnidirectionalMicrophoneElement System object.
Example: sElem = phased.OmnidirectionalMicrophoneElement;

FREQ — Frequency for computing directivity and pattern
positive scalar

Frequency for computing directivity and pattern, specified as a positive scalar. Frequency
units are in hertz.

• For an antenna or microphone element, FREQ must lie within the range of values
specified by the FrequencyRange or the FrequencyVector property of the
element. Otherwise, the element produces no response and the directivity is
returned as –Inf. Most elements use the FrequencyRange property except for
phased.CustomAntennaElement and phased.CustomMicrophoneElement, which use
the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements
that make up the array. Otherwise, the array produces no response and the
directivity is returned as –Inf.

Example: 1e8

Data Types: double

EL — Elevation angles
1-by-N real-valued row vector

Elevation angles for computing array directivity and pattern, specified as a 1-by-N real-
valued row vector, where N is the number of requested elevation directions. Angle units
are in degrees. The elevation angle must lie between –90° and 90°.

The elevation angle is the angle between the direction vector and the xy plane. When
measured toward the z-axis, this angle is positive.
Example: [0,10,20]

Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

1 Alphabetical List

1-1224

quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Type' — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and
one of

• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed

pattern is for the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field

pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'

Data Types: char

'Azimuth' — Azimuth angles
[-180:180] (default) | 1-by-P real-valued row vector

Azimuth angles, specified as the comma-separated pair consisting of 'Azimuth' and a 1-
by-P real-valued row vector. Azimuth angles define where the array pattern is calculated.
Example: 'Azimuth',[-90:2:90]

Data Types: double

Output Arguments

PAT — Element directivity or pattern
L-by-N real-valued matrix

Element directivity or pattern, returned as an L-by-N real-valued matrix. The dimension
L is the number of azimuth values determined by the 'Azimuth' name-value pair
argument. The dimension N is the number of elevation angles, as determined by the EL
input argument.

 patternAzimuth

1-1225

Definitions

Directivity

Directivity describes the directionality of the radiation pattern of a sensor element
or array of sensor elements. Higher directivity is desired when you want to transmit
more radiation in a specific direction. Directivity is the ratio of the transmitted radiant
intensity in a specified direction to the radiant intensity transmitted by an isotropic
radiator with the same total transmitted power

D
U

P
=

()
4p

q jrad

total

,

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal
is the total power transmitted by an isotropic radiator. For a receiving element or array,
directivity measures the sensitivity toward radiation arriving from a specific direction.
The principle of reciprocity shows that the directivity of an element or array used for
reception equals the directivity of the same element or array used for transmission.
When converted to decibels, the directivity is denoted as dBi. For information on
directivity, read the notes on “Element directivity” and “Array directivity”.

Computing directivity requires integrating the far-field transmitted radiant intensity
over all directions in space to obtain the total transmitted power. There is a difference
between how that integration is performed when Antenna Toolbox antennas are used
in a phased array and when Phased Array System Toolbox antennas are used. When
an array contains Antenna Toolbox antennas, the directivity computation is performed
using a triangular mesh created from 500 regularly spaced points over a sphere. For
Phased Array System Toolbox antennas, the integration uses a uniform rectangular
mesh of points spaced 1° apart in azimuth and elevation over a sphere. There may be
significant differences in computed directivity, especially for large arrays.

Examples

Azimuth Pattern of Omnidirectional Microphone Element

Create an omnidirectional microphone element. Plot an azimuth cut of the directivity at
0 and 30 degrees elevation. Assume an operating frequency of 500 Hz.

1 Alphabetical List

1-1226

Create the microphone element.

sOmni = phased.OmnidirectionalMicrophoneElement('FrequencyRange',[100,900]);

fc = 500;

Plot the azimuth pattern.

patternAzimuth(sOmni,fc,[0 30])

Because of the omnidirectionality of the microphone, the two patterns coincide.

Plot a reduced range of azimuth angles using the Azimuth parameter.

patternAzimuth(sOmni,fc,[0 30],'Azimuth',[-20:20])

 patternAzimuth

1-1227

See Also
phased.OmnidirectionalMicrophoneElement.pattern |
phased.OmnidirectionalMicrophoneElement.patternElevation

Introduced in R2015a

1 Alphabetical List

1-1228

patternElevation
System object: phased.OmnidirectionalMicrophoneElement
Package: phased

Plot omnidirectional microphone element directivity or pattern versus elevation

Syntax
patternElevation(sElem,FREQ)

patternElevation(sElem,FREQ,AZ)

patternElevation(sElem,FREQ,AZ,Name,Value)

PAT = patternElevation(___)

Description
patternElevation(sElem,FREQ) plots the 2-D element directivity pattern versus
elevation (in dBi) for the element sElem at zero degrees azimuth angle. The argument
FREQ specifies the operating frequency.

patternElevation(sElem,FREQ,AZ), in addition, plots the 2-D element directivity
pattern versus elevation (in dBi) at the azimuth angle specified by AZ. When AZ is a
vector, multiple overlaid plots are created.

patternElevation(sElem,FREQ,AZ,Name,Value) plots the element pattern with
additional options specified by one or more Name,Value pair arguments.

PAT = patternElevation(___) returns the element pattern. PAT is a matrix
whose entries represent the pattern at corresponding sampling points specified by the
'Elevation' parameter and the AZ input argument.

Input Arguments
sElem — Omnidirectional microphone element
System object

Omnidirectional microphone element, specified as a
phased.OmnidirectionalMicrophoneElement System object.

 patternElevation

1-1229

Example: sElem = phased.OmnidirectionalMicrophoneElement;

FREQ — Frequency for computing directivity and pattern
positive scalar

Frequency for computing directivity and pattern, specified as a positive scalar. Frequency
units are in hertz.

• For an antenna or microphone element, FREQ must lie within the range of values
specified by the FrequencyRange or the FrequencyVector property of the
element. Otherwise, the element produces no response and the directivity is
returned as –Inf. Most elements use the FrequencyRange property except for
phased.CustomAntennaElement and phased.CustomMicrophoneElement, which use
the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements
that make up the array. Otherwise, the array produces no response and the
directivity is returned as –Inf.

Example: 1e8

Data Types: double

AZ — Azimuth angles for computing directivity and pattern
1-by-N real-valued row vector

Azimuth angles for computing array directivity and pattern, specified as a 1-by-M real-
valued row vector where N is the number of desired azimuth directions. Angle units are
in degrees. The azimuth angle must lie between –180° and 180°.

The azimuth angle is the angle between the x-axis and the projection of the direction
vector onto the xy plane. This angle is positive when measured from the x-axis toward the
y-axis.
Example: [0,10,20]

Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

1 Alphabetical List

1-1230

quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Type' — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and
one of

• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed

pattern is for the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field

pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'

Data Types: char

'Elevation' — Elevation angles
[-90:90] (default) | 1-by-P real-valued row vector

Elevation angles, specified as the comma-separated pair consisting of 'Elevation'
and a 1-by-P real-valued row vector. Elevation angles define where the array pattern is
calculated.
Example: 'Elevation',[-90:2:90]

Data Types: double

Output Arguments

PAT — Element directivity or pattern
L-by-N real-valued matrix

Element directivity or pattern, returned as an L-by-N real-valued matrix. The dimension
L is the number of elevation angles determined by the 'Elevation' name-value pair
argument. The dimension N is the number of azimuth angles determined by the AZ
argument.

 patternElevation

1-1231

Definitions

Directivity

Directivity describes the directionality of the radiation pattern of a sensor element
or array of sensor elements. Higher directivity is desired when you want to transmit
more radiation in a specific direction. Directivity is the ratio of the transmitted radiant
intensity in a specified direction to the radiant intensity transmitted by an isotropic
radiator with the same total transmitted power

D
U

P
=

()
4p

q jrad

total

,

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal
is the total power transmitted by an isotropic radiator. For a receiving element or array,
directivity measures the sensitivity toward radiation arriving from a specific direction.
The principle of reciprocity shows that the directivity of an element or array used for
reception equals the directivity of the same element or array used for transmission.
When converted to decibels, the directivity is denoted as dBi. For information on
directivity, read the notes on “Element directivity” and “Array directivity”.

Computing directivity requires integrating the far-field transmitted radiant intensity
over all directions in space to obtain the total transmitted power. There is a difference
between how that integration is performed when Antenna Toolbox antennas are used
in a phased array and when Phased Array System Toolbox antennas are used. When
an array contains Antenna Toolbox antennas, the directivity computation is performed
using a triangular mesh created from 500 regularly spaced points over a sphere. For
Phased Array System Toolbox antennas, the integration uses a uniform rectangular
mesh of points spaced 1° apart in azimuth and elevation over a sphere. There may be
significant differences in computed directivity, especially for large arrays.

Examples

Elevation Pattern of Omnidirectional Microphone Element

Contstruct an omnidirectional microphone element. Plot an elevation cut of the power 45
and 55 degrees azimuth. Assume the operating frequency is 500 Hz.

1 Alphabetical List

1-1232

Create the microphone element.

fc = 500;

sOmni = phased.OmnidirectionalMicrophoneElement('FrequencyRange',[100,900]);

Display the power pattern.

patternElevation(sOmni,fc,[45 55],'Type','powerdb')

Because of the omnidirectionality, the two plots coincide.

Plot a reduced range of elevation angles using the Elevation parameter.

patternElevation(sOmni,fc,[45 55],...

 patternElevation

1-1233

 'Elevation',[-20:20],...

 'Type','powerdb')

See Also
phased.OmnidirectionalMicrophoneElement.pattern |
phased.OmnidirectionalMicrophoneElement.patternAzimuth

Introduced in R2015a

1 Alphabetical List

1-1234

plotResponse
System object: phased.OmnidirectionalMicrophoneElement
Package: phased

Plot response pattern of microphone

Syntax

plotResponse(H,FREQ)

plotResponse(H,FREQ,Name,Value)

hPlot = plotResponse(___)

Description

plotResponse(H,FREQ) plots the element response pattern along the azimuth cut,
where the elevation angle is 0. The operating frequency is specified in FREQ.

plotResponse(H,FREQ,Name,Value) plots the element response with additional
options specified by one or more Name,Value pair arguments.

hPlot = plotResponse(___) returns handles of the lines or surface in the figure
window, using any of the input arguments in the previous syntaxes.

Input Arguments

H

Element System object

FREQ

Operating frequency in Hertz specified as a scalar or 1–by-K row vector. FREQ must
lie within the range specified by the FrequencyVector property of H. If you set the
'RespCut' property of H to '3D', FREQ must be a scalar. When FREQ is a row vector,
plotResponse draws multiple frequency responses on the same axes.

 plotResponse

1-1235

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'CutAngle'

Cut angle specified as a scalar. This argument is applicable only when RespCut is 'Az'
or 'El'. If RespCut is 'Az', CutAngle must be between –90 and 90. If RespCut is
'El', CutAngle must be between –180 and 180.

Default: 0

'Format'

Format of the plot, using one of 'Line', 'Polar', or 'UV'. If you set Format to 'UV',
FREQ must be a scalar.

Default: 'Line'

'NormalizeResponse'

Set this value to true to normalize the response pattern. Set this value to false to plot
the response pattern without normalizing it. This parameter is not applicable when you
set the Unit parameter value to 'dbi'.

Default: true

'OverlayFreq'

Set this value to true to overlay pattern cuts in a 2-D line plot. Set this value to false
to plot pattern cuts against frequency in a 3-D waterfall plot. If this value is false, FREQ
must be a vector with at least two entries.

This parameter applies only when Format is not 'Polar' and RespCut is not '3D'.

Default: true

'Polarization'

Specify the polarization options for plotting the antenna response pattern. The allowable
values are |'None' | 'Combined' | 'H' | 'V' | where

1 Alphabetical List

1-1236

• 'None' specifies plotting a nonpolarized response pattern
• 'Combined' specifies plotting a combined polarization response pattern
• 'H' specifies plotting the horizontal polarization response pattern
• 'V' specifies plotting the vertical polarization response pattern

For antennas that do not support polarization, the only allowed value is 'None'. This
parameter is not applicable when you set the Unit parameter value to 'dbi'.

Default: 'None'

'RespCut'

Cut of the response. Valid values depend on Format, as follows:

• If Format is 'Line' or 'Polar', the valid values of RespCut are 'Az', 'El', and
'3D'. The default is 'Az'.

• If Format is 'UV', the valid values of RespCut are 'U' and '3D'. The default is 'U'.

If you set RespCut to '3D', FREQ must be a scalar.

'Unit'

The unit of the plot. Valid values are 'db', 'mag', 'pow', or 'dbi'. This parameter
determines the type of plot that is produced.

Unit value Plot type

db power pattern in dB
scale

mag field pattern
pow power pattern
dbi directivity

Default: 'db'

'AzimuthAngles'

Azimuth angles for plotting element response, specified as a row vector. The
AzimuthAngles parameter sets the display range and resolution of azimuth angles for

 plotResponse

1-1237

visualizing the radiation pattern. This parameter is allowed only when the RespCut
parameter is set to 'Az' or '3D' and the Format parameter is set to 'Line' or
'Polar'. The values of azimuth angles should lie between –180° and 180° and must be
in nondecreasing order. When you set the RespCut parameter to '3D', you can set the
AzimuthAngles and ElevationAngles parameters simultaneously.

Default: [-180:180]

'ElevationAngles'

Elevation angles for plotting element response, specified as a row vector. The
ElevationAngles parameter sets the display range and resolution of elevation
angles for visualizing the radiation pattern. This parameter is allowed only when the
RespCut parameter is set to 'El' or '3D' and the Format parameter is set to 'Line'
or 'Polar'. The values of elevation angles should lie between –90° and 90° and must be
in nondecreasing order. When you set the RespCut parameter to '3D', you can set the
ElevationAngles and AzimuthAngles parameters simultaneously.

Default: [-90:90]

'UGrid'

U coordinate values for plotting element response, specified as a row vector. The UGrid
parameter sets the display range and resolution of the U coordinates for visualizing
the radiation pattern in U/V space. This parameter is allowed only when the Format
parameter is set to 'UV' and the RespCut parameter is set to 'U' or '3D'. The values of
UGrid should be between –1 and 1 and should be specified in nondecreasing order. You
can set the UGrid and VGrid parameters simultaneously.

Default: [-1:0.01:1]

'VGrid'

V coordinate values for plotting element response, specified as a row vector. The VGrid
parameter sets the display range and resolution of the V coordinates for visualizing
the radiation pattern in U/V space. This parameter is allowed only when the Format
parameter is set to 'UV' and the RespCut parameter is set to '3D'. The values of VGrid
should be between –1 and 1 and should be specified in nondecreasing order. You can set
the VGrid and UGrid parameters simultaneously.

Default: [-1:0.01:1]

1 Alphabetical List

1-1238

Examples

Plot Response and Directivity of Omnidirectional Microphone

This example shows how to construct an omnidirectional microphone and how to plot
its response and directivity. The microphone operating frequency spans the range 20 to
20000 Hz.

Construct the omnidirectional microphone.

sOmni = phased.OmnidirectionalMicrophoneElement(...

 'FrequencyRange',[20 20e3]);

Plot the microphone response at 200 Hz.

fc = 200;

plotResponse(sOmni,fc,'Unit','mag');

 plotResponse

1-1239

Plot the microphone directivity.

plotResponse(sOmni,fc,'Unit','dbi');

1 Alphabetical List

1-1240

Plot 3-D Response of Omnidirectional Microphone

This example shows how to construct an omnidirection microphone with response in the
frequency range 20 - 20000 Hz and how to plot its 3-D response over a range of angles.

Construct the microphone element.

sOmin = phased.OmnidirectionalMicrophoneElement(...

 'FrequencyRange',[20 20e3]);

Plot the 3-D response at 500 Hz. Show the response between -30 to 30 degrees in both
azimuth and elevation in 0.1 degree increments.

plotResponse(sOmin,500,'Format','Polar',...

 plotResponse

1-1241

 'RespCut','3D','Unit','mag',...

 'AzimuthAngles',[-30:0.1:30],...

 'ElevationAngles',[-30:0.1:30]);

See Also
azel2uv | uv2azel

1 Alphabetical List

1-1242

release
System object: phased.OmnidirectionalMicrophoneElement
Package: phased

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

 step

1-1243

step
System object: phased.OmnidirectionalMicrophoneElement
Package: phased

Output response of microphone

Syntax

RESP = step(H,FREQ,ANG)

Description

RESP = step(H,FREQ,ANG) returns the microphone’s magnitude response, RESP, at
frequencies specified in FREQ and directions specified in ANG.

Note: The object performs an initialization the first time the step method is executed.
This initialization locks nontunable properties and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Input Arguments

H

Microphone object.

FREQ

Frequencies in hertz. FREQ is a row vector of length L.

ANG

Directions in degrees. ANG can be either a 2-by-M matrix or a row vector of length M.

1 Alphabetical List

1-1244

If ANG is a 2-by-M matrix, each column of the matrix specifies the direction in the
form [azimuth; elevation]. The azimuth angle must be between –180 and 180 degrees,
inclusive. The elevation angle must be between –90 and 90 degrees, inclusive.

If ANG is a row vector of length M, each element specifies a direction’s azimuth angle. In
this case, the corresponding elevation angle is assumed to be 0.

Output Arguments

RESP

Response of microphone. RESP is an M-by-L matrix that contains the responses of the
microphone element at the M angles specified in ANG and the L frequencies specified in
FREQ.

Examples

Create an omnidirectional microphone. Find the microphone response at 200, 300, and
400 Hz for the incident angle [0;0]. Plot the azimuth response of the microphone.

h = phased.OmnidirectionalMicrophoneElement(...

 'FrequencyRange',[20 2e3]);

fc = [200 300 400];

ang = [0;0];

resp = step(h,fc,ang);

plotResponse(h,200,'RespCut','Az','Format','Polar');

 step

1-1245

See Also
phitheta2azel | uv2azel

1 Alphabetical List

1-1246

phased.PartitionedArray System object

Package: phased

Phased array partitioned into subarrays

Description

The PartitionedArray object represents a phased array that is partitioned into one or
more subarrays.

To obtain the response of the subarrays in a partitioned array:

1 Define and set up your partitioned array. See “Construction” on page 1-1246.
2 Call step to compute the response of the subarrays according to the properties of

phased.PartitionedArray. The behavior of step is specific to each object in the
toolbox.

You can also specify a PartitionedArray object as the value of the SensorArray or
Sensor property of objects that perform beamforming, steering, and other operations.

Construction

H = phased.PartitionedArray creates a partitioned array System object, H. This
object represents an array that is partitioned into subarrays.

H = phased.PartitionedArray(Name,Value) creates a partitioned array object, H,
with each specified property Name set to the specified Value. You can specify additional
name-value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties

Array

Array aperture

 phased.PartitionedArray System object

1-1247

Specify a phased array as a phased.ULA, phased.URA, or phased.ConformalArray
object.

Default: phased.ULA('NumElements',4)

SubarraySelection

Subarray definition matrix

Specify the subarray selection as an M-by-N matrix. M is the number of subarrays and
N is the total number of elements in the array. Each row of the matrix indicates which
elements belong to the corresponding subarray. Each entry in the matrix is 1 or 0, where
1 indicates that the element appears in the subarray and 0 indicates the opposite. Each
row must contain at least one 1.

The phase center of each subarray is at the subarray geometric center. The
SubarraySelection and Array properties determine the geometric center.

Default: [1 1 0 0; 0 0 1 1]

SubarraySteering

Subarray steering method

Specify the method of steering the subarray as one of 'None' | 'Phase' | 'Time'.

Default: 'None'

PhaseShifterFrequency

Subarray phase shifter frequency

Specify the operating frequency of phase shifters that perform subarray steering. The
property value is a positive scalar in hertz. This property applies when you set the
SubarraySteering property to 'Phase'.

Default: 300e6

NumPhaseShifterBits

Number of phase shifter quantization bits

1 Alphabetical List

1-1248

The number of bits used to quantize the phase shift component of beamformer or steering
vector weights. Specify the number of bits as a non-negative integer. A value of zero
indicates that no quantization is performed.

Default: 0

Methods

clone Create partitioned array with same
property values

directivity Directivity of partitioned array
collectPlaneWave Simulate received plane waves
getElementPosition Positions of array elements
getNumElements Number of elements in array
getNumInputs Number of expected inputs to step method
getNumOutputs Number of outputs from step method
getNumSubarrays Number of subarrays in array
getSubarrayPosition Positions of subarrays in array
isLocked Locked status for input attributes and

nontunable properties
isPolarizationCapable Polarization capability
pattern Plot partitioned array directivity, field, and

power patterns
patternAzimuth Plot partitioned array directivity or pattern

versus azimuth
patternElevation Plot partitioned array directivity or pattern

versus elevation
plotResponse Plot response pattern of array
release Allow property value and input

characteristics changes
step Output responses of subarrays
viewArray View array geometry

 phased.PartitionedArray System object

1-1249

Examples

Azimuth Response of Partitioned ULA

Plot the azimuth response of a 4-element ULA partitioned into two 2-element ULA's. The
element spacing is one-half wavelength.

Create the ULA, and partition it into two 2-element ULA's.

sULA = phased.ULA('NumElements',4,'ElementSpacing',0.5);

sPA = phased.PartitionedArray('Array',sULA,...

 'SubarraySelection',[1 1 0 0;0 0 1 1]);

Plot the azimuth response of the array. Assume the operating frequency is 1 GHz and the
propagation speed is the speed of light.

fc = 1e9;

pattern(sPA,fc,[-180:180],0,'Type','powerdb',...

 'CoordinateSystem','polar',...

 'Normalize',true)

1 Alphabetical List

1-1250

Response of Subarrays of Partitioned ULA

Create a 4-element ULA. Then partition the ULA into two 2-element ULAs. Then,
calculate the response at boresight of a 4-element ULA partitioned into two 2-element
ULAs.

sULA = phased.ULA('NumElements',4,'ElementSpacing',0.5);

sPA = phased.PartitionedArray('Array',sULA,...

 'SubarraySelection',[1 1 0 0;0 0 1 1]);

Calculate the response at 1 GHz. The signal propagation speed is the speed of light.

fc = 1e9;

resp = step(sPA,fc,[0;0],physconst('LightSpeed'))

 phased.PartitionedArray System object

1-1251

resp =

 2

 2

• Subarrays in Phased Array Antennas
• Phased Array Gallery

References

[1] Van Trees, H.L. Optimum Array Processing. New York: Wiley-Interscience, 2002.

See Also
phased.ULA | phased.URA | phased.UCA | phased.ConformalArray |
phased.ReplicatedSubarray

More About
• “Subarrays Within Arrays”

Introduced in R2012a

../examples/subarrays-in-phased-array-antennas.html
../examples/phased-array-gallery.html

1 Alphabetical List

1-1252

clone
System object: phased.PartitionedArray
Package: phased

Create partitioned array with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates an object, C, having the same property values and same states as
H. If H is locked, so is C.

 directivity

1-1253

directivity
System object: phased.PartitionedArray
Package: phased

Directivity of partitioned array

Syntax

D = directivity(H,FREQ,ANGLE)

D = directivity(H,FREQ,ANGLE,Name,Value)

Description

D = directivity(H,FREQ,ANGLE) returns the “Directivity” on page 1-1256 of a
partitioned array of antenna or microphone elements, H, at frequencies specified by FREQ
and in angles of direction specified by ANGLE.

D = directivity(H,FREQ,ANGLE,Name,Value) returns the directivity with
additional options specified by one or more Name,Value pair arguments.

Input Arguments

H — Partitioned array
System object

Partitioned array, specified as a phased.PartitionedArray System object.
Example: H = phased.PartitionedArray;

FREQ — Frequency for computing directivity and patterns
positive scalar | 1-by-L real-valued row vector

Frequencies for computing directivity and patterns, specified as a positive scalar or 1-
by-L real-valued row vector. Frequency units are in hertz.

• For an antenna or microphone element, FREQ must lie within the range of
values specified by the FrequencyRange or FrequencyVector property of the

1 Alphabetical List

1-1254

element. Otherwise, the element produces no response and the directivity is
returned as –Inf. Most elements use the FrequencyRange property except for
phased.CustomAntennaElement and phased.CustomMicrophoneElement, which use
the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements
that make up the array. Otherwise, the array produces no response and the
directivity is returned as –Inf.

Example: [1e8 2e8]

Data Types: double

ANGLE — Angles for computing directivity
1-by-M real-valued row vector | 2-by-M real-valued matrix

Angles for computing directivity, specified as a 1-by-M real-valued row vector or a 2-
by-M real-valued matrix, where M is the number of angular directions. Angle units
are in degrees. If ANGLE is a 2-by-M matrix, then each column specifies a direction in
azimuth and elevation, [az;el]. The azimuth angle must lie between –180° and 180°.
The elevation angle must lie between –90° and 90°.

If ANGLE is a 1-by-M vector, then each entry represents an azimuth angle, with the
elevation angle assumed to be zero.

The azimuth angle is the angle between the x-axis and the projection of the direction
vector onto the xy plane. This angle is positive when measured from the x-axis toward the
y-axis. The elevation angle is the angle between the direction vector and xy plane. This
angle is positive when measured towards the z-axis.
Example: [45 60; 0 10]

Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'PropagationSpeed' — Signal propagation speed
speed of light (default) | positive scalar

 directivity

1-1255

Signal propagation speed, specified as the comma-separated pair consisting of
'PropagationSpeed' and a positive scalar in meters per second.

Example: 'PropagationSpeed',physconst('LightSpeed')

Data Types: double

'Weights' — Subarray weights
1 (default) | N-by-1 complex-valued column vector | N-by-L complex-valued matrix

Subarray weights, specified as the comma-separated pair consisting of 'Weights' and an
N-by-1 complex-valued column vector or N-by-M complex-valued matrix. The dimension
N is the number of subarrays in the array. The dimension L is the number of frequencies
specified by the FREQ argument.

Weights dimension FREQ dimension Purpose

N-by-1 complex-valued
column vector

Scalar or 1-by-L row vector Applies a set of weights for
the single frequency or for all
L frequencies.

N-by-L complex-valued
matrix

1-by-L row vector Applies each of the L
columns of ‘Weights’ for
the corresponding frequency
in the FREQ argument.

Example: 'Weights',ones(N,M)

Data Types: double

'SteerAngle' — Subarray steering angle
[0;0] (default) | scalar | 2-element column vector

Subarray steering angle, specified as the comma-separated pair consisting of
'SteerAngle' and a scalar or a 2-by-1 column vector.

If 'SteerAngle' is a 2-by-1 column vector, it has the form [azimuth; elevation].
The azimuth angle must be between –180° and 180°, inclusive. The elevation angle must
be between –90° and 90°, inclusive.

If 'SteerAngle' is a scalar, it specifies the azimuth angle only. In this case, the
elevation angle is assumed to be 0.

This option applies only when the 'SubarraySteering' property of the System object
is set to 'Phase' or 'Time'.

1 Alphabetical List

1-1256

Example: 'SteerAngle',[20;30]

Data Types: double

Output Arguments

D — Directivity
M-by-L matrix

Directivity, returned as an M-by-L matrix whose columns contain the directivities at the
M angles specified by ANGLE. Each column corresponds to one of the L frequency values
specified in FREQ. Directivity units are in dBi.

Definitions

Directivity

Directivity describes the directionality of the radiation pattern of a sensor element
or array of sensor elements. Higher directivity is desired when you want to transmit
more radiation in a specific direction. Directivity is the ratio of the transmitted radiant
intensity in a specified direction to the radiant intensity transmitted by an isotropic
radiator with the same total transmitted power

D
U

P
=

()
4p

q jrad

total

,

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal
is the total power transmitted by an isotropic radiator. For a receiving element or array,
directivity measures the sensitivity toward radiation arriving from a specific direction.
The principle of reciprocity shows that the directivity of an element or array used for
reception equals the directivity of the same element or array used for transmission.
When converted to decibels, the directivity is denoted as dBi. For information on
directivity, read the notes on “Element directivity” and “Array directivity”.

Computing directivity requires integrating the far-field transmitted radiant intensity
over all directions in space to obtain the total transmitted power. There is a difference
between how that integration is performed when Antenna Toolbox antennas are used

 directivity

1-1257

in a phased array and when Phased Array System Toolbox antennas are used. When
an array contains Antenna Toolbox antennas, the directivity computation is performed
using a triangular mesh created from 500 regularly spaced points over a sphere. For
Phased Array System Toolbox antennas, the integration uses a uniform rectangular
mesh of points spaced 1° apart in azimuth and elevation over a sphere. There may be
significant differences in computed directivity, especially for large arrays.

Examples

Directivity of Partitioned Array

Compute the directivity of a partitioned array formed from a single 20-element ULA with
elements spaced one-quarter wavelength apart. The subarrays are then phase-steered
towards 30 degrees azimuth. The directivities are computed at azimuth angles from 0 to
60 degrees.

c = physconst('LightSpeed');

fc = 3e8;

lambda = c/fc;

angsteer = [30;0];

ang = [0:10:60;0,0,0,0,0,0,0];

Create a partitioned ULA array using the SubarraySelection property.

myArray = phased.PartitionedArray('Array',...

 phased.ULA(20,lambda/4),'SubarraySelection',...

 [ones(1,10) zeros(1,10);zeros(1,10) ones(1,10)],...

 'SubarraySteering','Phase','PhaseShifterFrequency',fc);

Create the steering vector and compute the directivity.

myStv = phased.SteeringVector('SensorArray',myArray,...

 'PropagationSpeed',c);

d = directivity(myArray,fc,ang,'PropagationSpeed',c,'Weights',...

 step(myStv,fc,angsteer),'SteerAngle',angsteer)

d =

 -7.5778

 -4.7676

 -2.0211

1 Alphabetical List

1-1258

 10.0996

 0.9714

 -3.5575

 -10.8439

See Also
phased.PartitionedArray.pattern | phased.PartitionedArray.patternAzimuth |
phased.PartitionedArray.patternElevation

 collectPlaneWave

1-1259

collectPlaneWave

System object: phased.PartitionedArray
Package: phased

Simulate received plane waves

Syntax

Y = collectPlaneWave(H,X,ANG)

Y = collectPlaneWave(H,X,ANG,FREQ)

Y = collectPlaneWave(H,X,ANG,FREQ,C)

Description

Y = collectPlaneWave(H,X,ANG) returns the received signals at the sensor array, H,
when the input signals indicated by X arrive at the array from the directions specified in
ANG.

Y = collectPlaneWave(H,X,ANG,FREQ), in addition, specifies the incoming signal
carrier frequency in FREQ.

Y = collectPlaneWave(H,X,ANG,FREQ,C), in addition, specifies the signal
propagation speed in C.

Input Arguments

H

Array object.

X

Incoming signals, specified as an M-column matrix. Each column of X represents an
individual incoming signal.

1 Alphabetical List

1-1260

ANG

Directions from which incoming signals arrive, in degrees. ANG can be either a 2-by-M
matrix or a row vector of length M.

If ANG is a 2-by-M matrix, each column specifies the direction of arrival of the
corresponding signal in X. Each column of ANG is in the form [azimuth; elevation].
The azimuth angle must be between –180° and 180°, inclusive. The elevation angle must
be between –90° and 90°, inclusive.

If ANG is a row vector of length M, each entry in ANG specifies the azimuth angle. In this
case, the corresponding elevation angle is assumed to be 0°.

FREQ

Carrier frequency of signal in hertz. FREQ must be a scalar.

Default: 3e8

C

Propagation speed of signal in meters per second.

Default: Speed of light

Output Arguments

Y

Received signals. Y is an N-column matrix, where N is the number of subarrays in the
array H. Each column of Y is the received signal at the corresponding subarray, with all
incoming signals combined.

Examples

Plane Waves Received at Array Containing Subarrays

Simulate the received signal at a 16-element ULA partitioned into four 4-element ULAs.

Create a 16-element ULA, and partition it into 4-element ULAs.

 collectPlaneWave

1-1261

ha = phased.ULA('NumElements',16);

hpa = phased.PartitionedArray('Array',ha,...

 'SubarraySelection',....

 [1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0;...

 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0;...

 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0;...

 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1]);

Simulate receiving signals from 10 degrees and 30 degrees azimuth. Both signals have an
elevation angle of 0 degrees. Assume the propagation speed is the speed of light and the
carrier frequency of the signal is 100 MHz.

Y = collectPlaneWave(hpa,randn(4,2),[10 30],...

 1e8,physconst('LightSpeed'));

Algorithms

collectPlaneWave modulates the input signal with a phase corresponding to the
delay caused by the direction of arrival. This method does not account for the response
of individual elements in the array and only models the array factor among subarrays.
Therefore, the result does not depend on whether the subarray is steered.

See Also
phitheta2azel | uv2azel

1 Alphabetical List

1-1262

getElementPosition
System object: phased.PartitionedArray
Package: phased

Positions of array elements

Syntax

POS = getElementPosition(H)

Description

POS = getElementPosition(H) returns the element positions in the array H.

Input Arguments

H

Partitioned array object.

Output Arguments

POS

Element positions in array. POS is a 3-by-N matrix, where N is the number of elements in
H. Each column of POS defines the position of an element in the local coordinate system,
in meters, using the form [x; y; z].

Examples

Positions of Elements in Partitioned Array

Obtain the positions of the six elements in a partitioned array.

 getElementPosition

1-1263

H = phased.PartitionedArray('Array',phased.URA('Size',[2 3]),...

 'SubarraySelection',[1 0 1 0 1 0; 0 1 0 1 0 1]);

POS = getElementPosition(H);

See Also
getSubarrayPosition

1 Alphabetical List

1-1264

getNumElements
System object: phased.PartitionedArray
Package: phased

Number of elements in array

Syntax

N = getNumElements(H)

Description

N = getNumElements(H) returns the number of elements in the array object H.

Input Arguments

H

Partitioned array object.

Examples

Number of Elements in Partitioned Array

Obtain the number of elements in an array that is partitioned into subarrays.

H = phased.PartitionedArray('Array',phased.URA('Size',[2 3]),...

 'SubarraySelection',[1 0 1 0 1 0; 0 1 0 1 0 1]);

N = getNumElements(H);

See Also
getNumSubarrays

 getNumInputs

1-1265

getNumInputs
System object: phased.PartitionedArray
Package: phased

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of inputs
(not counting the object itself) that you must use when calling the step method. This
value changes when you alter properties that turn inputs on or off.

1 Alphabetical List

1-1266

getNumOutputs
System object: phased.PartitionedArray
Package: phased

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value changes when you alter properties that turn outputs on or off.

 getNumSubarrays

1-1267

getNumSubarrays
System object: phased.PartitionedArray
Package: phased

Number of subarrays in array

Syntax

N = getNumSubarrays(H)

Description

N = getNumSubarrays(H) returns the number of subarrays in the array object H. This
number matches the number of rows in the SubarraySelection property of H.

Input Arguments

H

Partitioned array object.

Examples

Number of Subarrays in Partitioned Array

Obtain the number of subarrays in a partitioned array.

H = phased.PartitionedArray('Array',...

 phased.ULA('NumElements',5),...

 'SubarraySelection',[1 1 1 0 0; 0 0 1 1 1]);

N = getNumSubarrays(H);

See Also
getNumElements

1 Alphabetical List

1-1268

getSubarrayPosition
System object: phased.PartitionedArray
Package: phased

Positions of subarrays in array

Syntax

POS = getSubarrayPosition(H)

Description

POS = getSubarrayPosition(H) returns the subarray positions in the array H.

Input Arguments

H

Partitioned array object.

Output Arguments

POS

Subarrays positions in array. POS is a 3-by-N matrix, where N is the number of
subarrays in H. Each column of POS defines the position of a subarray in the local
coordinate system, in meters, using the form [x; y; z].

Examples

Positions of Subarrays in Partitioned Array

Obtain the positions of the two subarrays in a partitioned array.

 getSubarrayPosition

1-1269

H = phased.PartitionedArray('Array',phased.URA('Size',[2 3]),...

 'SubarraySelection',[1 0 1 0 1 0; 0 1 0 1 0 1]);

POS = getSubarrayPosition(H);

See Also
getElementPosition

1 Alphabetical List

1-1270

isLocked
System object: phased.PartitionedArray
Package: phased

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF, for the PartitionedArray System
object.

isLocked returns a logical value that indicates whether input attributes and
nontunable properties for the object are locked. The object performs an internal
initialization the first time that you execute step. This initialization locks nontunable
properties and input specifications, such as the dimensions, complexity, and data type of
the input data. After locking, isLocked returns a true value.

 isPolarizationCapable

1-1271

isPolarizationCapable

System object: phased.PartitionedArray
Package: phased

Polarization capability

Syntax

flag = isPolarizationCapable(h)

Description

flag = isPolarizationCapable(h) returns a Boolean value, flag, indicating
whether the array supports polarization. An array supports polarization if all its
constituent sensor elements support polarization.

Input Arguments

h — Partitioned array

Partitioned array specified as a phased.PartitionedArray System object.

Output Arguments

flag — Polarization-capability flag

Polarization-capability flag returned as a Boolean value. This value is true, if the array
supports polarization or false, if it does not.

1 Alphabetical List

1-1272

Examples

Partitioned Array of Short-Dipole Antenna Elements Supports Polarization

Determine whether a partitioned array of phased.ShortDipoleAntennaElement short-
dipole antenna elements supports polarization.

hsd = phased.ShortDipoleAntennaElement(...

 'FrequencyRange',[1e9 10e9]);

ha = phased.ULA(4,'Element',hsd);

hp = phased.PartitionedArray('Array',ha,...

 'SubarraySelection',[1 1 0 0; 0 0 1 1]);

isPolarizationCapable(hp)

ans =

 1

The returned value true (1) shows that this array supports polarization.

 pattern

1-1273

pattern

System object: phased.PartitionedArray
Package: phased

Plot partitioned array directivity, field, and power patterns

Syntax

pattern(sArray,FREQ)

pattern(sArray,FREQ,AZ)

pattern(sArray,FREQ,AZ,EL)

pattern(___ ,Name,Value)

[PAT,AZ_ANG,EL_ANG] = pattern(___)

Description

pattern(sArray,FREQ) plots the 3-D array directivity pattern (in dBi) for the array
specified in sArray. The operating frequency is specified in FREQ.

pattern(sArray,FREQ,AZ) plots the array directivity pattern at the specified azimuth
angle.

pattern(sArray,FREQ,AZ,EL) plots the array directivity pattern at specified azimuth
and elevation angles.

pattern(___ ,Name,Value) plots the array pattern with additional options specified
by one or more Name,Value pair arguments.

[PAT,AZ_ANG,EL_ANG] = pattern(___) returns the array pattern in PAT. The
AZ_ANG output contains the coordinate values corresponding to the rows of PAT. The
EL_ANG output contains the coordinate values corresponding to the columns of PAT.
If the 'CoordinateSystem' parameter is set to 'uv', then AZ_ANG contains the
U coordinates of the pattern and EL_ANG contains the V coordinates of the pattern.
Otherwise, they are in angular units in degrees. UV units are dimensionless.

1 Alphabetical List

1-1274

Note: This method replaces the previous plotResponse method. To replace plots using
plotResponse plots with equivalent plots using pattern, see “Convert plotResponse to
pattern” on page 1-1955

Input Arguments

sArray — Partitioned array
System object

Partitioned array, specified as a phased.PartitionedArray System object.
Example: sArray= phased.PartitionedArray;

FREQ — Frequency for computing directivity and patterns
positive scalar | 1-by-L real-valued row vector

Frequencies for computing directivity and patterns, specified as a positive scalar or 1-
by-L real-valued row vector. Frequency units are in hertz.

• For an antenna or microphone element, FREQ must lie within the range of
values specified by the FrequencyRange or FrequencyVector property of the
element. Otherwise, the element produces no response and the directivity is
returned as –Inf. Most elements use the FrequencyRange property except for
phased.CustomAntennaElement and phased.CustomMicrophoneElement, which use
the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements
that make up the array. Otherwise, the array produces no response and the
directivity is returned as –Inf.

Example: [1e8 2e8]

Data Types: double

AZ — Azimuth angles
[-180:180] (default) | 1-by-M real-valued row vector

Azimuth angles for computing directivity and pattern, specified as a 1-by-M real-
valued row vector where M is the number of azimuth angles. Angle units are in degrees.
Azimuth angles must lie between –180° and 180°.

 pattern

1-1275

The azimuth angle is the angle between the x-axis and the projection of the direction
vector onto the xy plane. When measured from the x-axis toward the y-axis, this angle is
positive.
Example: [-45:2:45]

Data Types: double

EL — Elevation angles
[-90:90] (default) | 1-by-N real-valued row vector

Elevation angles for computing directivity and pattern, specified as a 1-by-N real-valued
row vector where N is the number of desired elevation directions. Angle units are in
degrees. The elevation angle must lie between –90° and 90°.

The elevation angle is the angle between the direction vector and xy-plane. When
measured towards the z-axis, this angle is positive.
Example: [-75:1:70]

Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'CoordinateSystem' — Plotting coordinate system
'polar' (default) | 'rectangular' | 'uv'

Plotting coordinate system of the pattern, specified as the comma-separated pair
consisting of 'CoordinateSystem' and one of 'polar', 'rectangular', or
'uv'. When 'CoordinateSystem' is set to 'polar' or 'rectangular', the
AZ and EL arguments specify the pattern azimuth and elevation, respectively. AZ
values must lie between –180° and 180°. EL values must lie between –90° and 90°. If
'CoordinateSystem' is set to 'uv', AZ and EL then specify U and V coordinates,
respectively. AZ and EL must lie between -1 and 1.

Example: 'uv'

Data Types: char

1 Alphabetical List

1-1276

'Type' — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and
one of

• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed

pattern is for the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field

pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'

Data Types: char

'Normalize' — Display normalize pattern
true (default) | false

Display normalized pattern, specified as the comma-separated pair consisting of
'Normalize' and a Boolean. Set this parameter to true to display a normalized pattern.
When you set 'Type' to 'directivity', this parameter does not apply. Directivity
patterns are already normalized.
Example:
Data Types: logical

'PlotStyle' — Plotting style
'overlay' (default) | 'waterfall'

Plotting style, specified as the comma-separated pair consisting of 'Plotstyle' and
either 'overlay' or 'waterfall'. This parameter applies when you specify multiple
frequencies in FREQ in 2-D plots. You can draw 2-D plots by setting one of the arguments
AZ or EL to a scalar.

Example:
Data Types: char

'Polarization' — Polarized field component
'combined' (default) | 'H' | 'V'

 pattern

1-1277

Polarized field component to display, specified as the comma-separated pair consisting
of 'Polarization' and 'combined', 'H', or 'V'. This parameter applies only when
the sensors are polarization-capable and when the 'Type' parameter is not set to
'directivity'. This table shows the meaning of the display options

'Polarization' Display

'combined' Combined H and V polarization
components

'H' H polarization component
'V' V polarization component

Example: 'V'

Data Types: char

'PropagationSpeed' — Signal propagation speed
speed of light (default) | positive scalar

Signal propagation speed, specified as the comma-separated pair consisting of
'PropagationSpeed' and a positive scalar in meters per second.

Example: 'PropagationSpeed',physconst('LightSpeed')

Data Types: double

'Weights' — Subarray weights
1 (default) | N-by-1 complex-valued column vector | N-by-L complex-valued matrix

Subarray weights, specified as the comma-separated pair consisting of 'Weights' and an
N-by-1 complex-valued column vector or N-by-M complex-valued matrix. The dimension
N is the number of subarrays in the array. The dimension L is the number of frequencies
specified by the FREQ argument.

Weights dimension FREQ dimension Purpose

N-by-1 complex-valued
column vector

Scalar or 1-by-L row vector Applies a set of weights for
the single frequency or for all
L frequencies.

N-by-L complex-valued
matrix

1-by-L row vector Applies each of the L
columns of ‘Weights’ for
the corresponding frequency
in the FREQ argument.

1 Alphabetical List

1-1278

Example: 'Weights',ones(N,M)

Data Types: double

'SteerAngle' — Subarray steering angle
[0;0] (default) | scalar | 2-element column vector

Subarray steering angle, specified as the comma-separated pair consisting of
'SteerAngle' and a scalar or a 2-by-1 column vector.

If 'SteerAngle' is a 2-by-1 column vector, it has the form [azimuth; elevation].
The azimuth angle must be between –180° and 180°, inclusive. The elevation angle must
be between –90° and 90°, inclusive.

If 'SteerAngle' is a scalar, it specifies the azimuth angle only. In this case, the
elevation angle is assumed to be 0.

This option applies only when the 'SubarraySteering' property of the System object
is set to 'Phase' or 'Time'.

Example: 'SteerAngle',[20;30]

Data Types: double

Output Arguments

PAT — Array pattern
M-by-N real-valued matrix

Array pattern, returned as an M-by-N real-valued matrix. The dimensions of PAT
correspond to the dimensions of the output arguments AZ_ANG and EL_ANG.

AZ_ANG — Azimuth angles
scalar | 1-by-M real-valued row vector

Azimuth angles for displaying directivity or response pattern, returned as a scalar or 1-
by-M real-valued row vector corresponding to the dimension set in AZ. The rows of PAT
correspond to the values in AZ_ANG.

EL_ANG — Elevation angles
scalar | 1-by-N real-valued row vector

 pattern

1-1279

Elevation angles for displaying directivity or response, returned as a scalar or 1-by-N
real-valued row vector corresponding to the dimension set in EL. The columns of PAT
correspond to the values in EL_ANG.

More About

Directivity

Directivity describes the directionality of the radiation pattern of a sensor element
or array of sensor elements. Higher directivity is desired when you want to transmit
more radiation in a specific direction. Directivity is the ratio of the transmitted radiant
intensity in a specified direction to the radiant intensity transmitted by an isotropic
radiator with the same total transmitted power

D
U

P
=

()
4p

q jrad

total

,

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal
is the total power transmitted by an isotropic radiator. For a receiving element or array,
directivity measures the sensitivity toward radiation arriving from a specific direction.
The principle of reciprocity shows that the directivity of an element or array used for
reception equals the directivity of the same element or array used for transmission.
When converted to decibels, the directivity is denoted as dBi. For information on
directivity, read the notes on “Element directivity” and “Array directivity”.

Computing directivity requires integrating the far-field transmitted radiant intensity
over all directions in space to obtain the total transmitted power. There is a difference
between how that integration is performed when Antenna Toolbox antennas are used
in a phased array and when Phased Array System Toolbox antennas are used. When
an array contains Antenna Toolbox antennas, the directivity computation is performed
using a triangular mesh created from 500 regularly spaced points over a sphere. For
Phased Array System Toolbox antennas, the integration uses a uniform rectangular
mesh of points spaced 1° apart in azimuth and elevation over a sphere. There may be
significant differences in computed directivity, especially for large arrays.

Convert plotResponse to pattern

For antenna, microphone, and array System objects, the pattern method replaces the
plotResponse method. In addition, two new simplified methods exist just to draw

1 Alphabetical List

1-1280

2-D azimuth and elevation pattern plots. These methods are azimuthPattern and
elevationPattern.

The following table is a guide for converting your code from using plotResponse to
pattern. Notice that some of the inputs have changed from input arguments to Name-
Value pairs and conversely. The general pattern method syntax is

pattern(H,FREQ,AZ,EL,'Name1','Value1',...,'NameN','ValueN')

plotResponse Inputs plotResponse Description pattern Inputs

H argument Antenna, microphone, or array
System object.

H argument (no change)

FREQ argument Operating frequency. FREQ argument (no change)
V argument Propagation speed. This

argument is used only for
arrays.

'PropagationSpeed' name-
value pair. This parameter is
only used for arrays.

'Format' and 'RespCut'
name-value pairs

These options work together to
let you create a plot in angle
space (line or polar style) or
UV space. They also determine
whether the plot is 2-D or 3-
D. This table shows you how to
create different types of plots
using plotResponse.

Display space

Angle space
(2D)

Set
'RespCut'

to 'Az' or

'El'. Set
'Format' to
'line' or
'polar'.

Set the display
axis using
either the
the
'AzimuthAngles'

'CoordinateSystem' name-
value pair used together with
the AZ and EL input arguments.

'CoordinateSystem' has
the same options as the
plotResponse method
'Format'name-value pair,
except that 'line' is now
named 'rectangular'. The
table shows how to create
different types of plots using
pattern.

Display space

Angle space
(2D)

Set
'Coordinate

System' to
'rectangular'

or 'polar'.
Specify either

 pattern

1-1281

plotResponse Inputs plotResponse Description pattern Inputs

Display space

or
'ElevationAngles'

name-value
pairs.

Angle space
(3D)

Set
'RespCut'

to '3D'. Set
'Format' to
'line' or
'polar'.

Set the display
axis using
both the
'AzimuthAngles'

and'ElevationAngles'
name-value
pairs.

UV space (2D) Set
'RespCut'

to'U'. Set
'Format'

to 'UV'. Set
the display
range using
the 'UGrid'
name-value
pair.

UV space (3D) Set
'RespCut'

to'3D'. Set
'Format' to
'UV'. Set the
display range
using both
the 'UGrid'

Display space

AZ or EL as a
scalar.

Angle space
(3D)

Set
'Coordinate

System' to
'rectangular'

or 'polar'.
Specify both
AZ and EL as
vectors.

UV space (2D) Set
'Coordinate

System' to
'uv'. Use AZ
to specify a U-
space vector.
Use EL to
specify a V-
space scalar.

UV space (3D) Set
'Coordinate

System' to
'uv'. Use AZ
to specify a U-
space vector.
Use EL to
specify a V-
space vector.

If you set CoordinateSystem
to 'uv', enter the UV grid
values using AZ and EL.

1 Alphabetical List

1-1282

plotResponse Inputs plotResponse Description pattern Inputs

Display space

and 'VGrid'
name-value
pairs.

'CutAngle' name-value pair Constant angle at to take an
azimuth or elevation cut. When
producing a 2-D plot and when
'RespCut' is set to 'Az' or
'El', use 'CutAngle' to set
the slice across which to view
the plot.

No equivalent name-value pair.
To create a cut, specify either AZ
or EL as a scalar, not a vector.

'NormalizeResponse' name-
value pair

Normalizes the plot.
When 'Unit' is set to
'dbi', you cannot specify
'NormalizeResponse'.

'Normalize' name-value
pair. When 'Type' is set to
'directivity',

you cannot specify
'Normalize'.
.

'OverlayFreq' name-value
pair

Plot multiple frequencies on
the same 2-D plot. Available
only when 'Format' is
set to 'line' or 'uv' and
'RespCut' is not set to '3D'.
The value true produces an
overlay plot and the value
false produces a waterfall
plot.

'PlotStyle' name-value pair
plots multiple frequencies on the
same 2-D plot.

The values 'overlay' and
'waterfall' correspond to
'OverlayFreq' values of
true and false. The option
'waterfall' is allowed only
when 'CoordinateSystem' is
set to 'rectangular' or 'uv'.

'Polarization' name-value
pair

Determines how to plot
polarized fields. Options are
'None', 'Combined', 'H', or
'V'.

'Polarization' name-value
pair determines how to plot
polarized fields. The 'None'
option is removed. The options
'Combined', 'H', or 'V' are
unchanged.

 pattern

1-1283

plotResponse Inputs plotResponse Description pattern Inputs

'Unit' name-value pair Determines the plot units.
Choose 'db', 'mag', 'pow',
or 'dbi', where the default is
'db'.

'Type' name-value pair, uses
equivalent options with different
names

plotResponse pattern

'db' 'powerdb'

'mag' 'efield'

'pow' 'power'

'dbi' 'directivity'

'Weights' name-value pair Array element tapers (or
weights).

'Weights' name-value pair (no
change).

'AzimuthAngles' name-value
pair

Azimuth angles used to display
the antenna or array response.

AZ argument

'ElevationAngles' name-
value pair

Elevation angles used to
display the antenna or array
response.

EL argument

'UGrid' name-value pair Contains U coordinates in UV-
space.

AZ argument when
'CoordinateSystem' name-
value pair is set to 'uv'

'VGrid' name-value pair Contains V-coordinates in UV-
space.

EL argument when
'CoordinateSystem' name-
value pair is set to 'uv'

Examples

Azimuth Response of Partitioned ULA

Plot the azimuth response of a 4-element ULA partitioned into two 2-element ULA's. The
element spacing is one-half wavelength.

Create the ULA, and partition it into two 2-element ULA's.

sULA = phased.ULA('NumElements',4,'ElementSpacing',0.5);

sPA = phased.PartitionedArray('Array',sULA,...

1 Alphabetical List

1-1284

 'SubarraySelection',[1 1 0 0;0 0 1 1]);

Plot the azimuth response of the array. Assume the operating frequency is 1 GHz and the
propagation speed is the speed of light.

fc = 1e9;

pattern(sPA,fc,[-180:180],0,'Type','powerdb',...

 'CoordinateSystem','polar',...

 'Normalize',true)

Plot Pattern and Directivity of Partitioned URA Over Restricted Range of Angles

Convert a 2-by-6 URA of isotropic antenna elements into a 1-by-3 partitioned array so
that each subarray of the partitioned array is a 2-by-2 URA. Assume that the frequency

 pattern

1-1285

response of the elements lies between 1 and 6 GHz. The elements are spaced one-half
wavelength apart corresponding to the highest frequency of the element response. Plot
an azimuth cut from -50 to 50 degrees for different two sets of weights. For partitioned
arrays, weights are applied to the subarrays instead of the elements.

Create partitioned array

fmin = 1e9;

fmax = 6e9;

c = physconst('LightSpeed');

lam = c/fmax;

sIso = phased.IsotropicAntennaElement(...

 'FrequencyRange',[fmin,fmax],...

 'BackBaffled',false);

sURA = phased.URA('Element',sIso,'Size',[2,6],...

 'ElementSpacing',[lam/2,lam/2]);

subarraymap = [[1,1,1,1,0,0,0,0,0,0,0,0];...

 [0,0,0,0,1,1,1,1,0,0,0,0];...

 [0,0,0,0,0,0,0,0,1,1,1,1]];

sPA = phased.PartitionedArray('Array',sURA,...

 'SubarraySelection',subarraymap);

Plot power pattern

Plot the response of the array at 5 GHz over the restricted range of azimuth angles.

fc = 5e9;

wts = [[1,1,1]',[.862,1.23,.862]'];

pattern(sPA,fc,[-50:0.1:50],0,...

 'Type','powerdb',...

 'CoordinateSystem','polar',...

 'Weights',wts)

1 Alphabetical List

1-1286

The plot of the response shows the broadening of the main lobe and the reduction of the
strength of the sidelobes caused by the weight tapering.

Plot directivity

Plot an azimuth cut of the directivity of the array at 5 GHz over the restricted range of
azimuth angles for the two different sets of weights.

fc = 5e9;

wts = [[1,1,1]',[.862,1.23,.862]'];

pattern(sPA,fc,[-50:0.1:50],0,...

 'Type','directivity',...

 'CoordinateSystem','rectangular',...

 'Weights',wts)

 pattern

1-1287

See Also
phased.PartitionedArray.patternAzimuth | phased.PartitionedArray.patternElevation

Introduced in R2015a

1 Alphabetical List

1-1288

patternAzimuth
System object: phased.PartitionedArray
Package: phased

Plot partitioned array directivity or pattern versus azimuth

Syntax
patternAzimuth(sArray,FREQ)

patternAzimuth(sArray,FREQ,EL)

patternAzimuth(sArray,FREQ,EL,Name,Value)

PAT = patternAzimuth(___)

Description
patternAzimuth(sArray,FREQ) plots the 2-D array directivity pattern versus
azimuth (in dBi) for the array sArray at zero degrees elevation angle. The argument
FREQ specifies the operating frequency.

patternAzimuth(sArray,FREQ,EL), in addtion, plots the 2-D array directivity
pattern versus azimuth (in dBi) for the array sArray at the elevation angle specified by
EL. When EL is a vector, multiple overlaid plots are created.

patternAzimuth(sArray,FREQ,EL,Name,Value) plots the array pattern with
additional options specified by one or more Name,Value pair arguments.

PAT = patternAzimuth(___) returns the array pattern. PAT is a matrix whose
entries represent the pattern at corresponding sampling points specified by the
'Azimuth' parameter and the EL input argument.

Input Arguments
sArray — Partitioned array
System object

Partitioned array, specified as a phased.PartitionedArray System object.
Example: sArray= phased.PartitionedArray;

 patternAzimuth

1-1289

FREQ — Frequency for computing directivity and pattern
positive scalar

Frequency for computing directivity and pattern, specified as a positive scalar. Frequency
units are in hertz.

• For an antenna or microphone element, FREQ must lie within the range of values
specified by the FrequencyRange or the FrequencyVector property of the
element. Otherwise, the element produces no response and the directivity is
returned as –Inf. Most elements use the FrequencyRange property except for
phased.CustomAntennaElement and phased.CustomMicrophoneElement, which use
the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements
that make up the array. Otherwise, the array produces no response and the
directivity is returned as –Inf.

Example: 1e8

Data Types: double

EL — Elevation angles
1-by-N real-valued row vector

Elevation angles for computing array directivity and pattern, specified as a 1-by-N real-
valued row vector, where N is the number of requested elevation directions. Angle units
are in degrees. The elevation angle must lie between –90° and 90°.

The elevation angle is the angle between the direction vector and the xy plane. When
measured toward the z-axis, this angle is positive.
Example: [0,10,20]

Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Type' — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

1 Alphabetical List

1-1290

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and
one of

• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed

pattern is for the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field

pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'

Data Types: char

'PropagationSpeed' — Signal propagation speed
speed of light (default) | positive scalar

Signal propagation speed, specified as the comma-separated pair consisting of
'PropagationSpeed' and a positive scalar in meters per second.

Example: 'PropagationSpeed',physconst('LightSpeed')

Data Types: double

'Weights' — Subarray weights
M-by-1 complex-valued column vector

Subarray weights, specified as the comma-separated pair consisting of 'Weights' and
an M-by-1 complex-valued column vector. Subarray weights are applied to the subarrays
of the array to produce array steering, tapering, or both. The dimension M is the number
of subarrays in the array.
Example: 'Weights',ones(10,1)

Data Types: double
Complex Number Support: Yes

'SteerAngle' — Subarray steering angle
[0;0] (default) | scalar | 2-element column vector

Subarray steering angle, specified as the comma-separated pair consisting of
'SteerAngle' and a scalar or a 2-by-1 column vector.

 patternAzimuth

1-1291

If 'SteerAngle' is a 2-by-1 column vector, it has the form [azimuth; elevation].
The azimuth angle must be between –180° and 180°, inclusive. The elevation angle must
be between –90° and 90°, inclusive.

If 'SteerAngle' is a scalar, it specifies the azimuth angle only. In this case, the
elevation angle is assumed to be 0.

This option applies only when the 'SubarraySteering' property of the System object
is set to 'Phase' or 'Time'.

Example: 'SteerAngle',[20;30]

Data Types: double

'Azimuth' — Azimuth angles
[-180:180] (default) | 1-by-P real-valued row vector

Azimuth angles, specified as the comma-separated pair consisting of 'Azimuth' and a 1-
by-P real-valued row vector. Azimuth angles define where the array pattern is calculated.
Example: 'Azimuth',[-90:2:90]

Data Types: double

Output Arguments

PAT — Array directivity or pattern
L-by-N real-valued matrix

Array directivity or pattern, returned as an L-by-N rea-valued matrix. The dimension
L is the number of azimuth values determined by the 'Azimuth' name-value pair
argument. The dimension N is the number of elevation angles, as determined by the EL
input argument.

Definitions

Directivity

Directivity describes the directionality of the radiation pattern of a sensor element
or array of sensor elements. Higher directivity is desired when you want to transmit

1 Alphabetical List

1-1292

more radiation in a specific direction. Directivity is the ratio of the transmitted radiant
intensity in a specified direction to the radiant intensity transmitted by an isotropic
radiator with the same total transmitted power

D
U

P
=

()
4p

q jrad

total

,

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal
is the total power transmitted by an isotropic radiator. For a receiving element or array,
directivity measures the sensitivity toward radiation arriving from a specific direction.
The principle of reciprocity shows that the directivity of an element or array used for
reception equals the directivity of the same element or array used for transmission.
When converted to decibels, the directivity is denoted as dBi. For information on
directivity, read the notes on “Element directivity” and “Array directivity”.

Computing directivity requires integrating the far-field transmitted radiant intensity
over all directions in space to obtain the total transmitted power. There is a difference
between how that integration is performed when Antenna Toolbox antennas are used
in a phased array and when Phased Array System Toolbox antennas are used. When
an array contains Antenna Toolbox antennas, the directivity computation is performed
using a triangular mesh created from 500 regularly spaced points over a sphere. For
Phased Array System Toolbox antennas, the integration uses a uniform rectangular
mesh of points spaced 1° apart in azimuth and elevation over a sphere. There may be
significant differences in computed directivity, especially for large arrays.

Examples

Plot Azimuth Directivity of Partitioned URA

Convert a 2-by-6 URA of isotropic antenna elements into a 1-by-3 partitioned array so
that each subarray of the partitioned array is a 2-by-2 URA. Assume that the frequency
response of the elements lies between 1 and 6 GHz. The elements are spaced one-half
wavelength apart corresponding to the highest frequency of the element response. Plot
the azimuth directivity. For partitioned arrays, weights are applied to the subarrays
instead of the elements.

Create partitioned array

fmin = 1e9;

 patternAzimuth

1-1293

fmax = 6e9;

c = physconst('LightSpeed');

lam = c/fmax;

sIso = phased.IsotropicAntennaElement(...

 'FrequencyRange',[fmin,fmax],...

 'BackBaffled',false);

sURA = phased.URA('Element',sIso,'Size',[2,6],...

 'ElementSpacing',[lam/2,lam/2]);

subarraymap = [[1,1,1,1,0,0,0,0,0,0,0,0];...

 [0,0,0,0,1,1,1,1,0,0,0,0];...

 [0,0,0,0,0,0,0,0,1,1,1,1]];

sPA = phased.PartitionedArray('Array',sURA,...

 'SubarraySelection',subarraymap);

Plot azimuth directivity pattern

Plot the response of the array at 5 GHz

fc = 5e9;

wts = [0.862,1.23,0.862]';

patternAzimuth(sPA,fc,0,...

 'Type','directivity',...

 'PropagationSpeed',physconst('LightSpeed'),...

 'Weights',wts)

1 Alphabetical List

1-1294

See Also
phased.PartitionedArray.pattern | phased.PartitionedArray.patternElevation

Introduced in R2015a

 patternElevation

1-1295

patternElevation
System object: phased.PartitionedArray
Package: phased

Plot partitioned array directivity or pattern versus elevation

Syntax
patternElevation(sArray,FREQ)

patternElevation(sArray,FREQ,AZ)

patternElevation(sArray,FREQ,AZ,Name,Value)

PAT = patternElevation(___)

Description
patternElevation(sArray,FREQ) plots the 2-D array directivity pattern versus
elevation (in dBi) for the array sArray at zero degrees azimuth angle. When AZ is a
vector, multiple overlaid plots are created. The argument FREQ specifies the operating
frequency.

patternElevation(sArray,FREQ,AZ), in addition, plots the 2-D element directivity
pattern versus elevation (in dBi) at the azimuth angle specified by AZ. When AZ is a
vector, multiple overlaid plots are created.

patternElevation(sArray,FREQ,AZ,Name,Value) plots the array pattern with
additional options specified by one or more Name,Value pair arguments.

PAT = patternElevation(___) returns the array pattern. PAT is a matrix whose
entries represent the pattern at corresponding sampling points specified by the
'Elevation' parameter and the AZ input argument.

Input Arguments
sArray — Partitioned array
System object

Partitioned array, specified as a phased.PartitionedArray System object.

1 Alphabetical List

1-1296

Example: sArray= phased.PartitionedArray;

FREQ — Frequency for computing directivity and pattern
positive scalar

Frequency for computing directivity and pattern, specified as a positive scalar. Frequency
units are in hertz.

• For an antenna or microphone element, FREQ must lie within the range of values
specified by the FrequencyRange or the FrequencyVector property of the
element. Otherwise, the element produces no response and the directivity is
returned as –Inf. Most elements use the FrequencyRange property except for
phased.CustomAntennaElement and phased.CustomMicrophoneElement, which use
the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements
that make up the array. Otherwise, the array produces no response and the
directivity is returned as –Inf.

Example: 1e8

Data Types: double

AZ — Azimuth angles for computing directivity and pattern
1-by-N real-valued row vector

Azimuth angles for computing array directivity and pattern, specified as a 1-by-M real-
valued row vector where N is the number of desired azimuth directions. Angle units are
in degrees. The azimuth angle must lie between –180° and 180°.

The azimuth angle is the angle between the x-axis and the projection of the direction
vector onto the xy plane. This angle is positive when measured from the x-axis toward the
y-axis.
Example: [0,10,20]

Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

 patternElevation

1-1297

'Type' — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and
one of

• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed

pattern is for the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field

pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'

Data Types: char

'PropagationSpeed' — Signal propagation speed
speed of light (default) | positive scalar

Signal propagation speed, specified as the comma-separated pair consisting of
'PropagationSpeed' and a positive scalar in meters per second.

Example: 'PropagationSpeed',physconst('LightSpeed')

Data Types: double

'Weights' — Subarray weights
M-by-1 complex-valued column vector

Subarray weights, specified as the comma-separated pair consisting of 'Weights' and
an M-by-1 complex-valued column vector. Subarray weights are applied to the subarrays
of the array to produce array steering, tapering, or both. The dimension M is the number
of subarrays in the array.
Example: 'Weights',ones(10,1)

Data Types: double
Complex Number Support: Yes

'SteerAngle' — Subarray steering angle
[0;0] (default) | scalar | 2-element column vector

1 Alphabetical List

1-1298

Subarray steering angle, specified as the comma-separated pair consisting of
'SteerAngle' and a scalar or a 2-by-1 column vector.

If 'SteerAngle' is a 2-by-1 column vector, it has the form [azimuth; elevation].
The azimuth angle must be between –180° and 180°, inclusive. The elevation angle must
be between –90° and 90°, inclusive.

If 'SteerAngle' is a scalar, it specifies the azimuth angle only. In this case, the
elevation angle is assumed to be 0.

This option applies only when the 'SubarraySteering' property of the System object
is set to 'Phase' or 'Time'.

Example: 'SteerAngle',[20;30]

Data Types: double

'Elevation' — Elevation angles
[-90:90] (default) | 1-by-P real-valued row vector

Elevation angles, specified as the comma-separated pair consisting of 'Elevation'
and a 1-by-P real-valued row vector. Elevation angles define where the array pattern is
calculated.
Example: 'Elevation',[-90:2:90]

Data Types: double

Output Arguments

PAT — Array directivity or pattern
L-by-N real-valued matrix

Array directivity or pattern, returned as an L-by-N real-valued matrix. The dimension
L is the number of elevation angles determined by the 'Elevation' name-value pair
argument. The dimension N is the number of azimuth angles determined by the AZ
argument.

 patternElevation

1-1299

Definitions

Directivity

Directivity describes the directionality of the radiation pattern of a sensor element
or array of sensor elements. Higher directivity is desired when you want to transmit
more radiation in a specific direction. Directivity is the ratio of the transmitted radiant
intensity in a specified direction to the radiant intensity transmitted by an isotropic
radiator with the same total transmitted power

D
U

P
=

()
4p

q jrad

total

,

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal
is the total power transmitted by an isotropic radiator. For a receiving element or array,
directivity measures the sensitivity toward radiation arriving from a specific direction.
The principle of reciprocity shows that the directivity of an element or array used for
reception equals the directivity of the same element or array used for transmission.
When converted to decibels, the directivity is denoted as dBi. For information on
directivity, read the notes on “Element directivity” and “Array directivity”.

Computing directivity requires integrating the far-field transmitted radiant intensity
over all directions in space to obtain the total transmitted power. There is a difference
between how that integration is performed when Antenna Toolbox antennas are used
in a phased array and when Phased Array System Toolbox antennas are used. When
an array contains Antenna Toolbox antennas, the directivity computation is performed
using a triangular mesh created from 500 regularly spaced points over a sphere. For
Phased Array System Toolbox antennas, the integration uses a uniform rectangular
mesh of points spaced 1° apart in azimuth and elevation over a sphere. There may be
significant differences in computed directivity, especially for large arrays.

Examples

Plot Elevation Directivity of Partitioned URA

Convert a 2-by-6 URA of isotropic antenna elements into a 1-by-3 partitioned array so
that each subarray of the partitioned array is a 2-by-2 URA. Assume that the frequency

1 Alphabetical List

1-1300

response of the elements lies between 1 and 6 GHz. The elements are spaced one-half
wavelength apart corresponding to the highest frequency of the element response. Plot
the directivity for elevation angles from -45 to 45 degrees. For partitioned arrays, weights
are applied to the subarrays instead of the elements.

Create partitioned array

fmin = 1e9;

fmax = 6e9;

c = physconst('LightSpeed');

lam = c/fmax;

sIso = phased.IsotropicAntennaElement(...

 'FrequencyRange',[fmin,fmax],...

 'BackBaffled',false);

sURA = phased.URA('Element',sIso,'Size',[2,6],...

 'ElementSpacing',[lam/2,lam/2]);

subarraymap = [[1,1,1,1,0,0,0,0,0,0,0,0];...

 [0,0,0,0,1,1,1,1,0,0,0,0];...

 [0,0,0,0,0,0,0,0,1,1,1,1]];

sPA = phased.PartitionedArray('Array',sURA,...

 'SubarraySelection',subarraymap);

Plot elevation directivity pattern

Plot the response of the array at 5 GHz

fc = 5e9;

wts = [0.862,1.23,0.862]';

azimangle = 0;

patternElevation(sPA,fc,azimangle,...

 'Type','directivity',...

 'PropagationSpeed',physconst('LightSpeed'),...

 'Elevation',[-45:45],...

 'Weights',wts)

 patternElevation

1-1301

See Also
phased.PartitionedArray.pattern | phased.PartitionedArray.patternAzimuth

Introduced in R2015a

1 Alphabetical List

1-1302

plotResponse
System object: phased.PartitionedArray
Package: phased

Plot response pattern of array

Syntax

plotResponse(H,FREQ,V)

plotResponse(H,FREQ,V,Name,Value)

hPlot = plotResponse(___)

Description

plotResponse(H,FREQ,V) plots the array response pattern along the azimuth cut,
where the elevation angle is 0. The operating frequency is specified in FREQ. The
propagation speed is specified in V.

plotResponse(H,FREQ,V,Name,Value) plots the array response with additional
options specified by one or more Name,Value pair arguments.

hPlot = plotResponse(___) returns handles of the lines or surface in the figure
window, using any of the input arguments in the previous syntaxes.

Input Arguments

H

Array object.

FREQ

Operating frequency in hertz. Typical values are within the range specified by a property
of H.Array.Element. That property is named FrequencyRange or FrequencyVector,
depending on the type of element in the array. The element has zero response at

 plotResponse

1-1303

frequencies outside that range. If FREQ is a nonscalar row vector, the plot shows multiple
frequency responses on the same axes.

V

Propagation speed in meters per second.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'CutAngle'

Cut angle specified as a scalar. This argument is applicable only when RespCut is 'Az'
or 'El'. If RespCut is 'Az', CutAngle must be between –90 and 90. If RespCut is
'El', CutAngle must be between –180 and 180.

Default: 0

'Format'

Format of the plot, using one of 'Line', 'Polar', or 'UV'. If you set Format to 'UV',
FREQ must be a scalar.

Default: 'Line'

'NormalizeResponse'

Set this value to true to normalize the response pattern. Set this value to false to plot
the response pattern without normalizing it. This parameter is not applicable when you
set the Unit parameter value to 'dbi'.

Default: true

'OverlayFreq'

Set this value to true to overlay pattern cuts in a 2-D line plot. Set this value to false
to plot pattern cuts against frequency in a 3-D waterfall plot. If this value is false, then
FREQ must be a vector with at least two entries.

1 Alphabetical List

1-1304

This parameter applies only when Format is not 'Polar' and RespCut is not '3D'.

Default: true

'Polarization'

Specify the polarization options for plotting the array response pattern. The allowable
values are |'None' | 'Combined' | 'H' | 'V' | where:

• 'None' specifies plotting a nonpolarized response pattern
• 'Combined' specifies plotting a combined polarization response pattern
• 'H' specifies plotting the horizontal polarization response pattern
• 'V' specifies plotting the vertical polarization response pattern

For arrays that do not support polarization, the only allowed value is 'None'. This
parameter is not applicable when you set the Unit parameter value to 'dbi'.

Default: 'None'

'RespCut'

Cut of the response. Valid values depend on Format, as follows:

• If Format is 'Line' or 'Polar', the valid values of RespCut are 'Az', 'El', and
'3D'. The default is 'Az'.

• If Format is 'UV', the valid values of RespCut are 'U' and '3D'. The default is 'U'.

If you set RespCut to '3D', FREQ must be a scalar.

'SteerAng'

Subarray steering angle. SteerAng can be either a 2-element column vector or a scalar.

If SteerAng is a 2-element column vector, it has the form [azimuth; elevation]. The
azimuth angle must be between –180 and 180 degrees, inclusive. The elevation angle
must be between –90 and 90 degrees, inclusive.

If SteerAng is a scalar, it specifies the azimuth angle. In this case, the elevation angle is
assumed to be 0.

This option is applicable only if the SubarraySteering property of H is 'Phase' or
'Time'.

 plotResponse

1-1305

Default: [0;0]

'Unit'

The unit of the plot. Valid values are 'db', 'mag', 'pow', or 'dbi'. This parameter
determines the type of plot that is produced.

Unit value Plot type

db power pattern in dB
scale

mag field pattern
pow power pattern
dbi directivity

Default: 'db'

'Weights'

Weight values applied to the array, specified as a length-N column vector or N-by-M
matrix. The dimension N is the number of subarrays in the array. The interpretation of
M depends upon whether the input argument FREQ is a scalar or row vector.

Weights Dimension FREQ Dimension Purpose

N-by-1 column vector Scalar or 1-by-M row vector Apply one set of weights for
the same single frequency or
all M frequencies.

Scalar Apply all of the M different
columns in Weights for the
same single frequency.

N-by-M matrix 1-by-M row vector Apply each of the M different
columns in Weights for the
corresponding frequency in
FREQ.

'AzimuthAngles'

Azimuth angles for plotting subarray response, specified as a row vector. The
AzimuthAngles parameter sets the display range and resolution of azimuth angles for

1 Alphabetical List

1-1306

visualizing the radiation pattern. This parameter is allowed only when the RespCut
parameter is set to 'Az' or '3D' and the Format parameter is set to 'Line' or
'Polar'. The values of azimuth angles should lie between –180° and 180° and must be
in nondecreasing order. When you set the RespCut parameter to '3D', you can set the
AzimuthAngles and ElevationAngles parameters simultaneously.

Default: [-180:180]

'ElevationAngles'

Elevation angles for plotting subarray response, specified as a row vector. The
ElevationAngles parameter sets the display range and resolution of elevation
angles for visualizing the radiation pattern. This parameter is allowed only when the
RespCut parameter is set to 'El' or '3D' and the Format parameter is set to 'Line'
or 'Polar'. The values of elevation angles should lie between –90° and 90° and must be
in nondecreasing order. When you set the RespCut parameter to '3D', you can set the
ElevationAngles and AzimuthAngles parameters simultaneously.

Default: [-90:90]

'UGrid'

U coordinate values for plotting subarray response, specified as a row vector. The UGrid
parameter sets the display range and resolution of the U coordinates for visualizing
the radiation pattern in U/V space. This parameter is allowed only when the Format
parameter is set to 'UV' and the RespCut parameter is set to 'U' or '3D'. The values of
UGrid should be between –1 and 1 and should be specified in nondecreasing order. You
can set the UGrid and VGrid parameters simultaneously.

Default: [-1:0.01:1]

'VGrid'

V coordinate values for plotting subarray response, specified as a row vector. The VGrid
parameter sets the display range and resolution of the V coordinates for visualizing
the radiation pattern in U/V space. This parameter is allowed only when the Format
parameter is set to 'UV' and the RespCut parameter is set to '3D'. The values of VGrid
should be between –1 and 1 and should be specified in nondecreasing order. You can set
the VGrid and UGrid parameters simultaneously.

Default: [-1:0.01:1]

 plotResponse

1-1307

Examples

Azimuth Response of Partitioned ULA

Plot the azimuth response of a 4-element ULA partitioned into two 2-element ULA's. The
element spacing is one-half wavelength.

Create the ULA, and partition it into two 2-element ULA's.

sULA = phased.ULA('NumElements',4,'ElementSpacing',0.5);

sPA = phased.PartitionedArray('Array',sULA,...

 'SubarraySelection',[1 1 0 0;0 0 1 1]);

Plot the azimuth response of the array. Assume the operating frequency is 1 GHz and the
propagation speed is the speed of light.

fc = 1e9;

pattern(sPA,fc,[-180:180],0,'Type','powerdb',...

 'CoordinateSystem','polar',...

 'Normalize',true)

1 Alphabetical List

1-1308

Plot Response and Directivity of Partitioned URA Over Restricted Range of Angles

Convert a 2-by-6 URA of isotropic antenna elements into a 1-by-3 partitioned array so
that each subarray of the partitioned array is a 2-by-2 URA. Assume that the frequency
response of the elements lies between 1 and 6 GHz. The elements are spaced one-half
wavelength apart corresponding to the highest frequency of the element response. Plot
an azimuth cut from -50 to 50 degrees for different two sets of weights. For partitioned
arrays, weights are applied to the subarrays instead of the elements.

Set up the partitioned array.

fmin = 1e9;

fmax = 6e9;

 plotResponse

1-1309

c = physconst('LightSpeed');

lam = c/fmax;

s_iso = phased.IsotropicAntennaElement(...

 'FrequencyRange',[fmin,fmax],...

 'BackBaffled',false);

s_ura = phased.URA('Element',s_iso,'Size',[2,6],...

 'ElementSpacing',[lam/2,lam/2]);

subarraymap = [[1,1,1,1,0,0,0,0,0,0,0,0];...

 [0,0,0,0,1,1,1,1,0,0,0,0];...

 [0,0,0,0,0,0,0,0,1,1,1,1]];

s_pa = phased.PartitionedArray('Array',s_ura,...

 'SubarraySelection',subarraymap);

Plot the response of the array at 5 GHz over the restricted range of azimuth angles.

fc = 5e9;

wts = [[1,1,1]',[.862,1.23,.862]'];

plotResponse(s_pa,fc,c,'RespCut','Az',...

 'AzimuthAngles',[-50:0.1:50],...

 'Unit','db','Format','Polar',...

 'Weights',wts);

1 Alphabetical List

1-1310

The plot of the response shows the broadening of the main lobe and the reduction of the
strength of the sidelobes caused by the weight tapering.

Next, plot an azimuth cut of the directivity of the array at 5 GHz over the restricted
range of azimuth angles for the two different sets of weights.

fc = 5e9;

wts = [[1,1,1]',[.862,1.23,.862]'];

plotResponse(s_pa,fc,c,'RespCut','Az',...

 'AzimuthAngles',[-50:0.1:50],...

 'Unit','dbi',...

 'Weights',wts);

 plotResponse

1-1311

See Also
azel2uv | uv2azel

1 Alphabetical List

1-1312

release
System object: phased.PartitionedArray
Package: phased

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

 step

1-1313

step
System object: phased.PartitionedArray
Package: phased

Output responses of subarrays

Syntax

RESP = step(H,FREQ,ANG,V)

RESP = step(H,FREQ,ANG,V,STEERANGLE)

Description

RESP = step(H,FREQ,ANG,V) returns the responses RESP of the subarrays in the
array, at operating frequencies specified in FREQ and directions specified in ANG. The
phase center of each subarray is at its geometric center. V is the propagation speed. The
elements within each subarray are connected to the subarray phase center using an
equal-path feed.

RESP = step(H,FREQ,ANG,V,STEERANGLE) uses STEERANGLE as the subarray’s
steering direction. This syntax is available when you set the SubarraySteering
property to either 'Phase' or 'Time'.

Note: The object performs an initialization the first time the step method is executed.
This initialization locks nontunable properties and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Input Arguments

H

Partitioned array object.

1 Alphabetical List

1-1314

FREQ

Operating frequencies of array in hertz. FREQ is a row vector of length L. Typical values
are within the range specified by a property of H.Array.Element. That property is
named FrequencyRange or FrequencyVector, depending on the type of element in the
array. The element has zero response at frequencies outside that range.

ANG

Directions in degrees. ANG can be either a 2-by-M matrix or a row vector of length M.

If ANG is a 2-by-M matrix, each column of the matrix specifies the direction in the
form [azimuth; elevation]. The azimuth angle must be between –180 and 180 degrees,
inclusive. The elevation angle must be between –90 and 90 degrees, inclusive.

If ANG is a row vector of length M, each element specifies a direction’s azimuth angle. In
this case, the corresponding elevation angle is assumed to be 0.

V

Propagation speed in meters per second. This value must be a scalar.

STEERANGLE

Subarray steering direction. STEERANGLE can be either a 2-element column vector or a
scalar.

If STEERANGLE is a 2-element column vector, it has the form [azimuth; elevation].
The azimuth angle must be between –180 and 180 degrees, inclusive. The elevation angle
must be between –90 and 90 degrees, inclusive.

If STEERANGLE is a scalar, it specifies the direction’s azimuth angle. In this case, the
elevation angle is assumed to be 0.

Output Arguments

RESP

Voltage responses of the subarrays of a phased array. The output depends on whether
the array supports polarization or not.

 step

1-1315

• If the array is not capable of supporting polarization, the voltage response, RESP,
has the dimensions N-by-M-by-L. The size N represents the number of subarrays
in the phased array, M represents the number of angles specified in ANG, and L
represents the number of frequencies specified in FREQ. For a particular subarray,
each column of RESP contains the responses of the subarray for the corresponding
direction specified in ANG. Each of the L pages of RESP contains the responses of the
subarrays for the corresponding frequency specified in FREQ.

• If the array is capable of supporting polarization, the voltage response, RESP, is a
MATLAB struct containing two fields, RESP.H and RESP.V. The field RESP.H
represents the array’s horizontal polarization response while RESP.V represents the
array’s vertical polarization response. Each field has the dimensions N-by-M-by-L.
The size N represents the number of subarrays in the phased array, M represents
the number of angles specified in ANG, and L represents the number of frequencies
specified in FREQ. For a particular subarray, each column of RESP contains the
responses of the subarray for the corresponding direction specified in ANG. Each of
the L pages of RESP contains the responses of the subarrays for the corresponding
frequency specified in FREQ.

Examples

Response of Subarrays in Partitioned ULA

Calculate the response at the boresight of a 4-element ULA partitioned into two 2-
element ULAs.

Create a 4-element ULA, and partition it into 2-element ULAs.

h = phased.ULA('NumElements',4,'ElementSpacing',0.5);

ha = phased.PartitionedArray('Array',h,...

 'SubarraySelection',[1 1 0 0;0 0 1 1]);

Calculate the response of the subarrays at boresight. Assume the operating frequency is
1 GHz and the propagation speed is 3e8 m/s.

RESP = step(ha,1e9,[0;0],3e8);

See Also
phitheta2azel | uv2azel

1 Alphabetical List

1-1316

viewArray
System object: phased.PartitionedArray
Package: phased

View array geometry

Syntax

viewArray(H)

viewArray(H,Name,Value)

hPlot = viewArray(___)

Description

viewArray(H) plots the geometry of the array specified in H.

viewArray(H,Name,Value) plots the geometry of the array, with additional options
specified by one or more Name,Value pair arguments.

hPlot = viewArray(___) returns the handles of the array elements in the figure
window. All input arguments described for the previous syntaxes also apply here.

Input Arguments

H

Array object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

 viewArray

1-1317

'ShowIndex'

Vector specifying the element indices to show in the figure. Each number in the vector
must be an integer between 1 and the number of elements. You can also specify the
string 'All' to show indices of all elements of the array or 'None' to suppress indices.

Default: 'None'

'ShowNormals'

Set this value to true to show the normal directions of all elements of the array. Set this
value to false to plot the elements without showing normal directions.

Default: false

'ShowTaper'

Set this value to true to specify whether to change the element color brightness in
proportion to the element taper magnitude. When this value is set to false, all elements
are drawn with the same color. The default value is false.

Default: false

'ShowSubarray'

Vector specifying the indices of subarrays to highlight in the figure. Each number in
the vector must be an integer between 1 and the number of subarrays. You can also
specify the string 'All' to highlight all subarrays of the array or 'None' to suppress
the subarray highlighting. The highlighting uses different colors for different subarrays,
and white for elements that occur in multiple subarrays.

Default: 'All'

'Title'

String specifying the title of the plot.

Default: 'Array Geometry'

Output Arguments
hPlot

Handles of array elements in figure window.

1 Alphabetical List

1-1318

Examples

Highlight Overlapped Subarrays

Display the geometry of a uniform linear array having overlapped subarrays.

Create a 16-element ULA that has five 4-element subarrays. Some elements occur in
more than one subarray.

h = phased.ULA(16);

ha = phased.PartitionedArray('Array',h,...

 'SubarraySelection',...

 [1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0;...

 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0;...

 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0;...

 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0;...

 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1]);

Display the geometry of the array, highlighting all subarrays.

viewArray(ha);

 viewArray

1-1319

Each color other than white represents a different subarray. White represents elements
that occur in multiple subarrays.

Examine the overlapped subarrays by creating separate figures that highlight the
first, second, and third subarrays. In each figure, dark blue represents the highlighted
elements.

for idx = 1:3

 figure;

 viewArray(ha,'ShowSubarray',idx,...

 'Title',['Subarray #' num2str(idx)]);

end

1 Alphabetical List

1-1320

 viewArray

1-1321

1 Alphabetical List

1-1322

• Phased Array Gallery

See Also
phased.ArrayResponse

../examples/phased-array-gallery.html

 phased.PhaseCodedWaveform System object

1-1323

phased.PhaseCodedWaveform System object
Package: phased

Phase-coded pulse waveform

Description

The PhaseCodedWaveform object creates a phase-coded pulse waveform.

To obtain waveform samples:

1 Define and set up your phase-coded pulse waveform. See “Construction” on page
1-1323.

2 Call step to generate the phase-coded pulse waveform samples according to the
properties of phased.PhaseCodedWaveform. The behavior of step is specific to
each object in the toolbox.

Construction

H = phased.PhaseCodedWaveform creates a phase-coded pulse waveform System
object, H. The object generates samples of a phase-coded pulse.

H = phased.PhaseCodedWaveform(Name,Value) creates a phase-coded pulse
waveform object, H, with additional options specified by one or more Name,Value pair
arguments. Name is a property name, and Value is the corresponding value. Name must
appear inside single quotes (''). You can specify several name-value pair arguments in
any order as Name1,Value1,…,NameN,ValueN.

Properties

SampleRate

Sample rate

Specify the sample rate in hertz as a positive scalar. The default value of this property
corresponds to 1 MHz. The value of this property must satisfy these constraints:

1 Alphabetical List

1-1324

• (SampleRate./PRF) is a scalar or vector that contains only integers — the number
of samples in a pulse must be an integer.

• (SampleRate*ChipWidth) is an integer value — the number of samples in a chip
must be an integer.

Default: 1e6

Code

Phase code type

Specify the phase code type used in phase modulation. Valid values are:

• 'Barker'

• 'Frank'

• 'P1'

• 'P2'

• 'P3'

• 'P4'

• 'Px'

• 'Zadoff-Chu'

Default: 'Frank'

ChipWidth

Time duration of each chip

Specify the time duration of each chip in a phase-coded waveform as a positive scalar.
Units are seconds. For this waveform, the pulse duration is equal to the product of the
chip width and number of chips.

The value of this property must satisfy these constraints:

• ChipWidth is less than or equal to (1./(NumChips*PRF)) — the total time
duration of all chips cannot exceed the duration of the pulse.

• (SampleRate*ChipWidth) is an integer value — the number of samples in a chip
must be an integer.

Default: 1e-5

 phased.PhaseCodedWaveform System object

1-1325

NumChips

Number of chips

Specify the number of chips per pulse in a phase-coded waveform as a positive integer.
The value of this property must be less than or equal to (1./(ChipWidth*PRF)) — the
total time duration of all chips cannot exceed the pulse repetition interval.

The table shows additional constraints on the number of chips for different code types.

If the Code property is ... Then the NumChips property must be...

'Frank', 'P1', or 'Px' A perfect square
'P2' An even number that is a perfect square
'Barker' 2, 3, 4, 5, 7, 11, or 13

Default: 4

SequenceIndex

Zadoff-Chu sequence index

Specify the sequence index used in Zadoff-Chu code as a positive integer. This
property applies only when you set the Code property to 'Zadoff-Chu'. The value of
SequenceIndex must be relatively prime to the value of the NumChips property.

Default: 1

PRF

Pulse repetition frequency

Pulse repetition frequency (PRF), specified as a scalar or a row vector. Units are hertz.
The pulse repetition interval (PRI) is the inverse of the PRF.

• When PRFSelectionInputPort is false, you can

• implement a constant PRF by specifying PRF as a positive real-valued scalar.
• implement a staggered PRF by specifying PRF as a row vector with positive real-

valued entries. When PRF is a vector, the each call to the step method produces
pulses that use successive elements of the vector as the PRF. If the last element of
the vector is reached, the process continues cyclically with the first element of the
vector.

1 Alphabetical List

1-1326

• When PRFSelectionInputPort is true, you can implement a selectable PRF by
specifying PRF as a row vector with positive real-valued entries. Then in each call to
the step syntax, pass in an index to an entry in the desired PRF vector.

The value of this property must satisfy these constraints:

• The PRF must be less than or equal to 1/PulseWidth. This is equivalent to the
requirement that the pulse width is less than or equal to the PRI. For the phase-coded
waveform, the pulse width is the product of the chip width and number of chips.

• The ratio of sample rate to PRF must be an integer — the number of samples in a
pulse must be an integer

Default: 10e3

PRFSelectionInputPort

Enable PRF selection input

Enable the PRF selection input, specified as true or false. When you set this property
to false, the step method uses the values set in the PRF property in order. When you
set this property to true, you can pass an additional argument into the step method to
select any value from the PRF vector.

Default: false

OutputFormat

Output signal format

Specify the format of the output signal as one of 'Pulses' or 'Samples'. When you
set the OutputFormat property to 'Pulses', the output of the step method is in the
form of multiple pulses. In this case, the number of pulses is the value of the NumPulses
property.

When you set the OutputFormat property to 'Samples', the output of the step method
is in the form of multiple samples. In this case, the number of samples is the value of the
NumSamples property.

Default: 'Pulses'

NumSamples

Number of samples in output

 phased.PhaseCodedWaveform System object

1-1327

Specify the number of samples in the output of the step method as a positive integer.
This property applies only when you set the OutputFormat property to 'Samples'.

Default: 100

NumPulses

Number of pulses in output

Specify the number of pulses in the output of the step method as a positive integer. This
property applies only when you set the OutputFormat property to 'Pulses'.

Default: 1

Methods

bandwidth Bandwidth of phase-coded waveform
clone Create phase-coded waveform object with

same property values
getMatchedFilter Matched filter coefficients for waveform
getNumInputs Number of expected inputs to step method
getNumOutputs Number of outputs from step method
isLocked Locked status for input attributes and

nontunable properties
plot Plot phase-coded pulse waveform
release Allow property value and input

characteristics changes
reset Reset states of phase-coded waveform

object
step Samples of phase-coded waveform

Examples

Plot Phase-Coded Waveform and Spectrum

Create and plot a two-pulse phase-coded waveform that uses the Zadoff-Chu code.

1 Alphabetical List

1-1328

sPCW = phased.PhaseCodedWaveform('Code','Zadoff-Chu',...

 'ChipWidth',5e-6,'NumChips',16,...

 'OutputFormat','Pulses','NumPulses',2);

fs = sPCW.SampleRate;

Generate signal samples and plot the magnitude and phase of the waveforms.

wav = step(sPCW);

nsamp = size(wav,1);

t = [0:(nsamp-1)]/fs;

plot(t*1e6,abs(wav),'.-')

title('Magnitude')

xlabel('Time (\mu sec)')

ylabel('Amplitude')

 phased.PhaseCodedWaveform System object

1-1329

plot(t*1e6,180/pi*angle(wav))

title('Phase Angle')

xlabel('Time (\mu sec)')

ylabel('Phase Angle (deg)')

Plot the spectrum.

nsamp = size(wav,1);

nfft = 2^nextpow2(nsamp);

Z = fft(wav,nfft);

fr = [0:(nfft-1)]/nfft*fs;

fr = fr - fs/2;

plot(fr/1000,abs(fftshift(Z)))

xlabel('Frequency (kHz)')

1 Alphabetical List

1-1330

ylabel('Amplitude')

grid

• Waveform Analysis Using the Ambiguity Function

Algorithms

A 2-chip Barker code can use [1 –1] or [1 1] as the sequence of amplitudes. This software
implements [1 –1].

A 4-chip Barker code can use [1 1 –1 1] or [1 1 1 –1] as the sequence of amplitudes. This
software implements [1 1 –1 1].

../examples/waveform-analysis-using-the-ambiguity-function.html

 phased.PhaseCodedWaveform System object

1-1331

A Zadoff-Chu code can use a clockwise or counterclockwise sequence of phases. This
software implements the latter, such as p ◊ ◊f k() SequenceIndex NumChips instead of
- ◊ ◊p f k() SequenceIndex NumChips . In these expressions, k is the index of the chip
and f(k) is a function of k.

For further details, see [1].

References

[1] Levanon, N. and E. Mozeson. Radar Signals. Hoboken, NJ: John Wiley & Sons, 2004.

See Also
phased.LinearFMWaveform | phased.SteppedFMWaveform |
phased.RectangularWaveform

More About
• “Phase-Coded Waveforms”

Introduced in R2012a

1 Alphabetical List

1-1332

bandwidth
System object: phased.PhaseCodedWaveform
Package: phased

Bandwidth of phase-coded waveform

Syntax

BW = bandwidth(H)

Description

BW = bandwidth(H) returns the bandwidth (in hertz) of the pulses for the phase-coded
pulse waveform, H. The bandwidth value is the reciprocal of the chip width.

Input Arguments

H

Phase-coded waveform object.

Output Arguments

BW

Bandwidth of the pulses, in hertz.

Examples

Determine the bandwidth of a Frank code waveform.

H = phased.PhaseCodedWaveform;

bw = bandwidth(H);

 clone

1-1333

clone
System object: phased.PhaseCodedWaveform
Package: phased

Create phase-coded waveform object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates an object, C, having the same property values and same states as
H. If H is locked, so is C.

1 Alphabetical List

1-1334

getMatchedFilter
System object: phased.PhaseCodedWaveform
Package: phased

Matched filter coefficients for waveform

Syntax

Coeff = getMatchedFilter(H)

Description

Coeff = getMatchedFilter(H) returns the matched filter coefficients for the phase-
coded waveform object, H. Coeff is a column vector.

Input Arguments

H

Phase-coded waveform object.

Output Arguments

Coeff

Column vector containing coefficients of the matched filter for H.

Examples

Get the matched filter coefficients for a phase-coded pulse waveform that uses the Zadoff-
Chu code.

hwav = phased.PhaseCodedWaveform('Code','Zadoff-Chu',...

 getMatchedFilter

1-1335

 'ChipWidth',1e-6,'NumChips',16,...

 'OutputFormat','Pulses','NumPulses',2);

coeff = getMatchedFilter(hwav);

stem(real(coeff));

title('Matched Filter Coefficients, Real Part');

axis([0 17 -1.1 1.1])

1 Alphabetical List

1-1336

getNumInputs
System object: phased.PhaseCodedWaveform
Package: phased

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of inputs
(not counting the object itself) that you must use when calling the step method. This
value changes when you alter properties that turn inputs on or off.

 getNumOutputs

1-1337

getNumOutputs
System object: phased.PhaseCodedWaveform
Package: phased

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value changes when you alter properties that turn outputs on or off.

1 Alphabetical List

1-1338

isLocked
System object: phased.PhaseCodedWaveform
Package: phased

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF, for the PhaseCodedWaveform
System object.

isLocked returns a logical value that indicates whether input attributes and
nontunable properties for the object are locked. The object performs an internal
initialization the first time that you execute step. This initialization locks nontunable
properties and input specifications, such as the dimensions, complexity, and data type of
the input data. After locking, isLocked returns a true value.

 plot

1-1339

plot
System object: phased.PhaseCodedWaveform
Package: phased

Plot phase-coded pulse waveform

Syntax

plot(Hwav)

plot(Hwav,Name,Value)

plot(Hwav,Name,Value,LineSpec)

h = plot(___)

Description

plot(Hwav) plots the real part of the waveform specified by Hwav.

plot(Hwav,Name,Value) plots the waveform with additional options specified by one
or more Name,Value pair arguments.

plot(Hwav,Name,Value,LineSpec) specifies the same line color, line style, or marker
options as are available in the MATLAB plot function.

h = plot(___) returns the line handle in the figure.

Input Arguments

Hwav

Waveform object. This variable must be a scalar that represents a single waveform
object.

LineSpec

String that specifies the same line color, style, or marker options as are available in the
MATLAB plot function. If you specify a PlotType value of 'complex', then LineSpec
applies to both the real and imaginary subplots.

1 Alphabetical List

1-1340

Default: 'b'

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'PlotType'

Specifies whether the function plots the real part, imaginary part, or both parts of the
waveform. Valid values are 'real', 'imag', and 'complex'.

Default: 'real'

'PulseIdx'

Index of the pulse to plot. This value must be a scalar.

Default: 1

Output Arguments

h

Handle to the line or lines in the figure. For a PlotType value of 'complex', h is a
column vector. The first and second elements of this vector are the handles to the lines in
the real and imaginary subplots, respectively.

Examples

Create and plot a phase-coded pulse waveform that uses the Zadoff-Chu code.

hw = phased.PhaseCodedWaveform('Code','Zadoff-Chu',...

 'ChipWidth',1e-6,'NumChips',16,...

 'OutputFormat','Pulses','NumPulses',2);

plot(hw);

 plot

1-1341

1 Alphabetical List

1-1342

release
System object: phased.PhaseCodedWaveform
Package: phased

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

 reset

1-1343

reset
System object: phased.PhaseCodedWaveform
Package: phased

Reset states of phase-coded waveform object

Syntax

reset(H)

Description

reset(H) resets the states of the PhaseCodedWaveform object, H. Afterward, the next
call to step restarts the phase sequence from the beginning. Also, if the PRF property is
a vector, the next call to step uses the first PRF value in the vector.

1 Alphabetical List

1-1344

step

System object: phased.PhaseCodedWaveform
Package: phased

Samples of phase-coded waveform

Syntax

Y = step(sPCW)

Y = step(sPCW,prfidx)

Description

Y = step(sPCW) returns samples of the phase-coded pulse in a column vector, Y.

Y = step(sPCW,prfidx), uses the prfidx index to select the PRF from the predefined
vector of values specified by in the PRF property. This syntax applies when you set the
PRFSelectionInputPort property to true.

Note: The object performs an initialization the first time the step method is executed.
This initialization locks nontunable properties and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Input Arguments

sPCW

Phase-coded waveform object.

 step

1-1345

Output Arguments

Y

Column vector containing the waveform samples.

Examples

Create Pulse Coded Waveform

Generate samples of two pulses of a phase-coded pulse waveform that uses the Zadoff-
Chu code.

sPCW = phased.PhaseCodedWaveform('Code','Zadoff-Chu',...

 'ChipWidth',1e-6,'NumChips',16,...

 'OutputFormat','Pulses','NumPulses',2);

wav = step(sPCW);

fs = sPCW.SampleRate;

nsamps = size(wav,1);

t = [0:(nsamps-1)]/fs;

plot(t*1e6,real(wav))

title('Waveform: Real Part')

xlabel('Time (\mu sec)')

ylabel('Amplitude')

grid

1 Alphabetical List

1-1346

Create Phase-Coded Waveform with Variable PRF

Create and plot two-pulse phase-coded waveforms that uses the Zadoff-Chu code. Set the
sample rate to 1 MHz, a chip width of 5 microseconds, 16 chips per pulse. Vary the pulse
repetition frequency.

fs = 1e6;

PRF = [5000,10000];

sPCW = phased.PhaseCodedWaveform('SampleRate',fs,...

 'Code','Zadoff-Chu','PRFSelectionInputPort',true,...

 'ChipWidth',5e-6,'NumChips',16,'PRF',PRF,...

 'OutputFormat','Pulses','NumPulses',2);

 step

1-1347

Obtain and plot the phsed-coded waveforms. For the first call to the step method, set
the PRF to 10kHz using the PRF index. For the next call, set the PRF to 25 kHz. For the
final call, set the PRF to 10kHz.

wav = [];

wav1 = step(sPCW,1);

wav = [wav; wav1];

wav1 = step(sPCW,2);

wav = [wav; wav1];

wav1 = step(sPCW,1);

wav = [wav; wav1];

nsamps = size(wav,1);

t = [0:(nsamps-1)]/fs;

plot(t*1e6,real(wav))

xlabel('Time (\mu sec)')

ylabel('Amplitude')

1 Alphabetical List

1-1348

 phased.PhaseShiftBeamformer System object

1-1349

phased.PhaseShiftBeamformer System object

Package: phased

Narrowband phase shift beamformer

Description

The PhaseShiftBeamformer object implements a phase shift beamformer.

To compute the beamformed signal:

1 Define and set up your phase shift beamformer. See “Construction” on page 1-1349.
2 Call step to perform the beamforming operation according to the properties of

phased.PhaseShiftBeamformer. The behavior of step is specific to each object in
the toolbox.

Construction

H = phased.PhaseShiftBeamformer creates a conventional phase shift beamformer
System object, H. The object performs phase shift beamforming on the received signal.

H = phased.PhaseShiftBeamformer(Name,Value) creates a phase shift
beamformer object, H, with each specified property Name set to the specified
Value. You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties

SensorArray

Sensor array

Sensor array specified as an array System object belonging to the phased package. A
sensor array can contain subarrays.

1 Alphabetical List

1-1350

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second, as a positive scalar.

Default: Speed of light

OperatingFrequency

System operating frequency

Specify the operating frequency of the beamformer in hertz as a scalar. The default value
of this property corresponds to 300 MHz.

Default: 3e8

DirectionSource

Source of beamforming direction

Specify whether the beamforming direction for the beamformer comes from the
Direction property of this object or from an input argument in step. Values of this
property are:

'Property' The Direction property of this object specifies the
beamforming direction.

'Input port' An input argument in each invocation of step
specifies the beamforming direction.

Default: 'Property'

Direction

Beamforming directions

Specify the beamforming directions of the beamformer as a two-row matrix. Each column
of the matrix has the form [AzimuthAngle; ElevationAngle] (in degrees). Each azimuth
angle must be between –180 and 180 degrees, and each elevation angle must be between

 phased.PhaseShiftBeamformer System object

1-1351

–90 and 90 degrees. This property applies when you set the DirectionSource property
to 'Property'.

Default: [0; 0]

NumPhaseShifterBits

Number of phase shifter quantization bits

The number of bits used to quantize the phase shift component of beamformer or steering
vector weights. Specify the number of bits as a non-negative integer. A value of zero
indicates that no quantization is performed.

Default: 0

WeightsNormalization

Approach for normalizing beamformer weights

If you set this property value to 'Distortionless', the gain in the beamforming
direction is 0 dB. If you set this property value to 'Preserve power', the norm of the
weights is unity.

Default: 'Distortionless'

WeightsOutputPort

Output beamforming weights

To obtain the weights used in the beamformer, set this property to true and use the
corresponding output argument when invoking step. If you do not want to obtain the
weights, set this property to false.

Default: false

Methods

clone Create phase shift beamformer object with
same property values

getNumInputs Number of expected inputs to step method
getNumOutputs Number of outputs from step method

1 Alphabetical List

1-1352

isLocked Locked status for input attributes and
nontunable properties

release Allow property value and input
characteristics changes

step Perform phase shift beamforming

Examples

Phase-Shift ULA Beamformer

Apply phase-shift beamforming to a sinewave signal received by a 5-element ULA. The
beamforming direction is 45° azimuth and 0° elevation. Assume the array operates at 300
MHz.

Simulate the signal.

t = (0:1000)';

fsignal = 0.01;

x = sin(2*pi*fsignal*t);

c = physconst('Lightspeed');

fc = 300e6;

incidentAngle = [45;0];

sULA = phased.ULA('NumElements',5);

x = collectPlaneWave(sULA,x,incidentAngle,fc,c);

noise = 0.1*(randn(size(x)) + 1j*randn(size(x)));

rx = x + noise;

Set up a phase-shift beamformer and then perform the beamforming step on the input
data.

sBF = phased.PhaseShiftBeamformer('SensorArray',sULA,...

 'OperatingFrequency',fc,'PropagationSpeed',c,...

 'Direction',incidentAngle,'WeightsOutputPort',true);

[y,w] = step(sBF,rx);

Plot the beamformed data with the middle sensor input data.

plot(t,real(rx(:,3)),'r:',t,real(y))

xlabel('Time (sec)')

ylabel('Amplitude')

legend('Inout','Beamformed')

 phased.PhaseShiftBeamformer System object

1-1353

Plot the response pattern.

pattern(sULA,fc,[-180:180],0,'PropagationSpeed',c,'Type',...

 'powerdb','CoordinateSystem','polar','Weights',w)

1 Alphabetical List

1-1354

Algorithms
The phase shift beamformer uses the conventional delay-and-sum beamforming
algorithm. The beamformer assumes the signal is narrowband, so a phase shift can
approximate the required delay. The beamformer preserves the incoming signal power.

For further details, see [1].

References

[1] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002.

 phased.PhaseShiftBeamformer System object

1-1355

See Also
phased.SubbandPhaseShiftBeamformer | phased.LCMVBeamformer |
phased.MVDRBeamformer | phitheta2azel | uv2azel

Introduced in R2012a

1 Alphabetical List

1-1356

clone
System object: phased.PhaseShiftBeamformer
Package: phased

Create phase shift beamformer object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates an object, C, having the same property values and same states as
H. If H is locked, so is C.

 getNumInputs

1-1357

getNumInputs
System object: phased.PhaseShiftBeamformer
Package: phased

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of inputs
(not counting the object itself) that you must use when calling the step method. This
value changes when you alter properties that turn inputs on or off.

1 Alphabetical List

1-1358

getNumOutputs
System object: phased.PhaseShiftBeamformer
Package: phased

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value changes when you alter properties that turn outputs on or off.

 isLocked

1-1359

isLocked
System object: phased.PhaseShiftBeamformer
Package: phased

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF, for the PhaseShiftBeamformer
System object.

isLocked returns a logical value that indicates whether input attributes and
nontunable properties for the object are locked. The object performs an internal
initialization the first time that you execute step. This initialization locks nontunable
properties and input specifications, such as the dimensions, complexity, and data type of
the input data. After locking, isLocked returns a true value.

1 Alphabetical List

1-1360

release
System object: phased.PhaseShiftBeamformer
Package: phased

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

 step

1-1361

step
System object: phased.PhaseShiftBeamformer
Package: phased

Perform phase shift beamforming

Syntax

Y = step(H,X)

Y = step(H,X,ANG)

[Y,W] = step(___)

Description

Y = step(H,X) performs phase shift beamforming on the input, X, and returns the
beamformed output in Y.

Y = step(H,X,ANG) uses ANG as the beamforming direction. This syntax is available
when you set the DirectionSource property to 'Input port'.

[Y,W] = step(___) returns the beamforming weights, W. This syntax is available
when you set the WeightsOutputPort property to true.

Note: The object performs an initialization the first time the step method is executed.
This initialization locks nontunable properties and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Input Arguments

H

Beamformer object.

1 Alphabetical List

1-1362

X

Input signal, specified as an M-by-N matrix. If the sensor array contains subarrays, N is
the number of subarrays; otherwise, N is the number of elements.

ANG

Beamforming directions, specified as a two-row matrix. Each column has the form
[AzimuthAngle; ElevationAngle], in degrees. Each azimuth angle must be between –180
and 180 degrees, and each elevation angle must be between –90 and 90 degrees.

Output Arguments

Y

Beamformed output. Y is an M-by-L matrix, where M is the number of rows of X and L is
the number of beamforming directions.

W

Beamforming weights. W is an N-by-L matrix, where L is the number of beamforming
directions. If the sensor array contains subarrays, N is the number of subarrays;
otherwise, N is the number of elements.

Examples

Apply phase shift beamforming to the signal received by a 5-element ULA. The
beamforming direction is 45 degrees azimuth and 0 degrees elevation.

% Simulate signal

t = (0:1000)';

x = sin(2*pi*0.01*t);

c = 3e8; Fc = 3e8;

incidentAngle = [45; 0];

ha = phased.ULA('NumElements',5);

x = collectPlaneWave(ha,x,incidentAngle,Fc,c);

noise = 0.1*(randn(size(x)) + 1j*randn(size(x)));

rx = x + noise;

% Beamforming

 step

1-1363

hbf = phased.PhaseShiftBeamformer('SensorArray',ha,...

 'OperatingFrequency',Fc,'PropagationSpeed',c,...

 'Direction',incidentAngle,'WeightsOutputPort',true);

[y,w] = step(hbf,rx);

Algorithms

The phase shift beamformer uses the conventional delay-and-sum beamforming
algorithm. The beamformer assumes the signal is narrowband, so a phase shift can
approximate the required delay. The beamformer preserves the incoming signal power.

For further details, see [1].

References

[1] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002.

See Also
phitheta2azel | uv2azel

1 Alphabetical List

1-1364

phased.Platform System object
Package: phased

Model platform motion

Description

The phased.Platform System object models the translational motion of one or more
platforms in space. A platform can be a target such as a vehicle or airplane, or a sonar
or radar transmitter and receiver. The model assumes that the platform undergoes
translational motion at constant velocity or constant acceleration during each simulation
step. Positions and velocities are always defined in the global coordinate system.

To model a moving platform:

1 Define and set up your platform using the “Construction” on page 1-1364 procedure.
2 Repeatedly call the step method to move the platform along a path determined by

the phased.Platform properties.

The behavior of step is specific to each object in the toolbox.

Construction

sPlat = phased.Platform creates a platform System object, sPlat. The object
models a stationary platform with position at the origin and velocity set to zero.

sPlat = phased.Platform(Name,Value) creates an object, sPlat, with each
specified property Name set to the specified Value. You can specify additional name-
value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

sPlat = phased.Platform(pos,vel,Name,Value) creates a platform object, sPlat,
with InitialPosition set to pos and Velocity set to vel. Other specified property
Names are set to specified Values. The pos and vel arguments are value-only. Value-
only arguments do not require a specified Name but are interpreted according to their
argument positions. To specify any value-only argument, specify all preceding value-only
arguments.

 phased.Platform System object

1-1365

The motion model is either constant velocity or constant acceleration. You can choose one
of two motion models using the MotionModel property.

MotionModel Property Usage

Velocity If you set the VelocitySource property
to 'Property', the platform moves
with constant velocity determined by the
Velocity property. You can specify the
InitialPosition property or leave
it to its default value. You can change
the tunable Velocity property at any
simulation step.

When you set the VelocitySource
property to 'Input port', you can input
instantaneous velocity as an argument
to the step method. Specify the initial
position using the InitialPosition
property or leave it as a default value.

Acceleration When you set the AccelerationSource
property to 'Property', the
platform moves with constant
acceleration determined by the
Acceleration property. You can
specify the InitialPosition and
InitialVelocity properties or leave
them to their defaults. You can change the
tunable Acceleration property at any
simulation step.

When you set the AccelerationSource
property to 'Input port', you can
input instantaneous acceleration as
an argument to the step method.
Specify the InitialPosition and
InitialVelocity properties or leave
them as their defaults.

1 Alphabetical List

1-1366

Properties

MotionModel

Object motion model

Object motion model, specified as one of 'Velocity' or 'Acceleration'. When you
set this property to 'Velocity', the object follows a constant velocity trajectory during
each simulation step. When you set this property to 'Acceleration', the object follows
a constant acceleration trajectory during each simulation step.

Default: 'Velocity'

InitialPosition

Initial position of platform

Initial position of platform, specified as a real-valued 3-by-1 column vector in the form
of [x;y;z] or a real-valued 3-by-N matrix where N is the number of platforms. Each
column takes the form [x;y;z]. Position units are meters.

Default: [0;0;0]

InitialVelocity

Initial velocity of platform

Initial velocity of platform, specified as a real-valued 3-by-1 column vector in the form of
[vx;vy;vz] or a real-valued 3-by-N matrix where N is the number of platforms. Each
column taking the form [vx;vy;vz]. Velocity units are meters per second.

This property only applies when you set the MotionModel property to 'Velocity' and
the VelocitySource to 'Input port', or when you set the MotionModel property to
'Acceleration'.

Default: [0;0;0]

VelocitySource

Source of velocity data

Source of velocity data, specified as one of 'Property' or 'Input port'. When you
set the value of this property to 'Property', use Velocity property to set the velocity.

 phased.Platform System object

1-1367

When you set this property to 'Input port', use an input argument of the step method
to set the velocity.

This property applies when you set the MotionModel property to 'Velocity'.

Default: 'Property'

Velocity

Current velocity of platform

Specify the current velocity of the platform as a 3-by-1 real-valued column vector in the
form of [vx;vy;vz] or a 3-by-N real-valued matrix for multiple platforms. Each column
taking the form [vx;vy;vz]. Velocity units are meters/sec. The dimension N is the
number of platforms.

This property applies when you set the MotionModel property to 'Velocity' and the
VelocitySource to 'Property'. This property is tunable.

Default: [0;0;0]

AccelerationSource

Source of acceleration data

Source of acceleration data, specified as one of 'Property' or 'Input port'. When
you set the value of this property to 'Property', specify the acceleration using the
Acceleration property. When you set this property to 'Input port', use an input
argument of the step method to set the acceleration.

This property applies when you set the MotionModel property to 'Acceleration'.

Default: 'Property'

Acceleration

Acceleration of platform

Specify the current acceleration of the platform as a real-valued 3-by-1 column vector
in the form [ax;ay;az] or a real-valued 3-by-N matrix with each column taking the
form [ax;ay;az]. The dimension N is the number of platforms. Acceleration units are
meters/sec/sec.

1 Alphabetical List

1-1368

This property applies when you set the MotionModel property to 'Acceleration' and
AccelerationSource to 'Property'. This property is tunable.

Default: [0;0;0]

InitialOrientationAxes

Initial orientation axes of platform

Initial orientation axes of platform, specified as a 3-by-3 real-valued orthonormal matrix
for a single platform or as a 3-by-3-by-N real-valued matrix for multiple platforms. The
dimension N is the number of platforms. When the orientation matrix is 3-by-3, the three
columns represent the axes of the local coordinate system (xyz). When the orientation
matrix is 3-by-3-by-N, for each page index, the resulting 3-by-3 matrix represents the
axes of a local coordinate system.

Default: [1 0 0;0 1 0;0 0 1]

OrientationAxesOutputPort

Output orientation axes

To obtain the instantaneous orientation axes of the platform, set this property to true
and use the corresponding output argument when invoking step. If you do not want to
obtain the orientation axes of the platform, set this property to false.

Default: false

Methods

clone Create platform object with same property
values

getNumInputs Number of expected inputs to step method
getNumOutputs Number of outputs from step method
isLocked Locked status for input attributes and

nontunable properties
release Allow property value and input

characteristics changes

 phased.Platform System object

1-1369

reset Reset platform to initial position
step Output current position, velocity, and

orientation axes of platform

Orientation

A platform has an associated local coordinate system. The coordinate system is defined
by three orthonormal axis vectors. The direction and magnitude of the velocity vector
can change with each call to the method. When the platform undergoes curvilinear
motion, the orientation of the local coordinate system axes rotates with the motion of the
platform. The change of direction of the velocity vector defines a rotation matrix. The
same rotation matrix is then used to rotate the local coordinate system as well. When
the velocity vector maintains a constant direction, the rotation matrix is the identity
matrix. The initial orientation of the local coordinate system is specified using the
InitalOrientationAxes property. When you specify multiple platforms, each platform
rotates independently.

Examples

Simulate motion of a platform

Create a platform at the origin having a velocity of (100,100,0) meters per second.
Simulate the motion of the platform for two time steps, assuming the time elapsed for
each step is one second. The position of the platform is updated after each step.

sPlat = phased.Platform([0; 0; 0],[100; 100; 0]);

T = 1;

At the first call to step, the position is at its initial value.

[pos,v] = step(sPlat,T);

pos

pos =

 0

 0

 0

1 Alphabetical List

1-1370

At the second call to step, the position changes.

[pos,v] = step(sPlat,T);

pos

pos =

 100

 100

 0

Model Motion of Circling Airplane

Start with an airplane moving at 150 kmh in a circle of radius 10 km and descending
at the same time at a rate of 20 m/sec. Compute the motion of the airplane from
its instantaneous acceleration as an argument to the step method. Set the initial
orientation of the platform to the identity, coinciding with the global coordinate system.

Set up the scenario

Specify the initial position and velocity of the airplane. The airplane has a ground range
of 10 km and an altitude of 20 km.

range = 10000;

alt = 20000;

initPos = [cosd(60)*range;sind(60)*range;alt];

originPos = [1000,1000,0]';

originVel = [0,0,0]';

vs = 150.0;

phi = atan2d(initPos(2)-originPos(2),initPos(1)-originPos(1));

phi1 = phi + 90;

vx = vs*cosd(phi1);

vy = vs*sind(phi1);

initVel = [vx,vy,-20]';

sAirplane = phased.Platform('MotionModel','Acceleration',...

 'AccelerationSource','Input port','InitialPosition',initPos,...

 'InitialVelocity',initVel,'OrientationAxesOutputPort',true,...

 'InitialOrientationAxes',eye(3));

relPos = initPos - originPos;

relVel = initVel - originVel;

rel2Pos = [relPos(1),relPos(2),0]';

 phased.Platform System object

1-1371

rel2Vel = [relVel(1),relVel(2),0]';

r = sqrt(rel2Pos'*rel2Pos);

accelmag = vs^2/r;

unitvec = rel2Pos/r;

accel = -accelmag*unitvec;

T = 0.5;

N = 1000;

Compute the trajectory

Specify the acceleration of an object moving in a circle in the x-y plane. The acceleration
is v^2/r towards the orign

posmat = zeros(3,N);

r1 = zeros(N);

v = zeros(N);

for n = 1:N

 [pos,vel,oax] = step(sAirplane,T,accel);

 posmat(:,n) = pos;

 vel2 = vel(1)^2 + vel(2)^2;

 v(n) = sqrt(vel2);

 relPos = pos - originPos;

 rel2Pos = [relPos(1),relPos(2),0]';

 r = sqrt(rel2Pos'*rel2Pos);

 r1(n) = r;

 accelmag = vel2/r;

 accelmag = vs^2/r;

 unitvec = rel2Pos/r;

 accel = -accelmag*unitvec;

end

Display the final orientation of the local coordinate system.

disp(oax)

 -0.3658 -0.9307 -0.0001

 0.9307 -0.3658 -0.0010

 0.0009 -0.0005 1.0000

Plot the trajectory and the origin position

posmat = posmat/1000;

figure(1)

plot3(posmat(1,:),posmat(2,:),posmat(3,:),'b.')

1 Alphabetical List

1-1372

hold on

plot3(originPos(1)/1000,originPos(2)/1000,originPos(3)/1000,'ro')

xlabel('X (km)')

ylabel('Y (km)')

zlabel('Z (km)')

grid

hold off

• “Motion Modeling in Phased Array Systems”

See Also
global2localcoord | local2globalcoord | phased.Collector | phased.Radiator |
rangeangle

 phased.Platform System object

1-1373

Introduced in R2012a

1 Alphabetical List

1-1374

clone
System object: phased.Platform
Package: phased

Create platform object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates an object, C, having the same property values and same states as
H. If H is locked, so is C.

 getNumInputs

1-1375

getNumInputs
System object: phased.Platform
Package: phased

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of inputs
(not counting the object itself) that you must use when calling the step method. This
value changes when you alter properties that turn inputs on or off.

1 Alphabetical List

1-1376

getNumOutputs
System object: phased.Platform
Package: phased

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value changes when you alter properties that turn outputs on or off.

 isLocked

1-1377

isLocked
System object: phased.Platform
Package: phased

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF, for the Platform System object.

isLocked returns a logical value that indicates whether input attributes and
nontunable properties for the object are locked. The object performs an internal
initialization the first time that you execute step. This initialization locks nontunable
properties and input specifications, such as the dimensions, complexity, and data type of
the input data. After locking, isLocked returns a true value.

1 Alphabetical List

1-1378

release
System object: phased.Platform
Package: phased

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

 reset

1-1379

reset
System object: phased.Platform
Package: phased

Reset platform to initial position

Syntax

reset(H)

Description

reset(H) resets the initial position of the Platform object, H.

1 Alphabetical List

1-1380

step
System object: phased.Platform
Package: phased

Output current position, velocity, and orientation axes of platform

Syntax

[Pos,Vel] = step(sPlat,T)

[Pos,Vel] = step(sPlat,T,V)

[Pos,Vel] = step(sPlat,T,A)

[Pos,Vel,Laxes] = step(___)

Description

[Pos,Vel] = step(sPlat,T) returns the current position, Pos, and velocity,
Vel, of the platform. The method then updates the position and velocity. When the
MotionModel property is set to 'Velocity' and the VelocitySource property is
set to 'Property', the position is updated using the equation Pos = Pos + Vel*T where
T specifies the elapsed time (in seconds) for the current step. When the MotionModel
property is set to 'Acceleration' and the AccelerationSource property is set
to 'Property', the position and velocity are updated using the equations Pos = Pos
+ Vel*T + 1/2Acl*T^2 and Vel = Vel + Acl*T where T specifies the elapsed time (in
seconds) for the current step.

[Pos,Vel] = step(sPlat,T,V) returns the current position, Pos, and the current
velocity, Vel, of the platform. The method then updates the position and velocity
using the equation Pos = Pos + Vel*T where T specifies the elapsed time (in seconds)
for the current step. This syntax applies when you set the MotionModel property to
'Velocity' and the VelocitySource property to 'Input port'.

[Pos,Vel] = step(sPlat,T,A) returns the current position, Pos, and the current
velocity, Vel, of the platform. The method then updates the position and velocity using
the equations Pos = Pos + Vel*T + 1/2Acl*T^2 and Vel = Vel + Acl*T where T specifies
the elapsed time (in seconds) for the current step. This syntax applies when you set the
MotionModel property to 'Acceleration' and the AccelerationSource property to
'Input port'.

 step

1-1381

[Pos,Vel,Laxes] = step(___) returns the additional output Laxes as the
platform's orientation axes when you set the OrientationAxesOutputPort property to
true.

Note: The object performs an initialization the first time the step method is executed.
This initialization locks nontunable properties and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Input Arguments

sPlat

Platform

Platform, specified as a phased.Platform System object.

T

Step time

Step time, specified as a real-valued scalar. Units are seconds

V

Platform velocity

Platform velocity, specified as a real-valued 3-by-N matrix where N is the number of
platforms to model. This argument applies when you set the MotionModel property to
'Velocity' and the VelocitySource property to 'Input port'. Units are meters
per second.

A

Platform acceleration

Platform acceleration, specified as a real-valued 3-by-N matrix where N is the number of
platforms to model. This argument applies when you set the MotionModel property to

1 Alphabetical List

1-1382

'Acceleration' and the AccelerationSource property to 'Input port'. Units are
meters per second-squared.

Output Arguments

Pos

Current platform position

Current position of platform, specified as a real-valued 3-by-1 column vector in the form
of [x;y;z] or a real-valued 3-by-N matrix where N is the number of platforms to model.
Each column takes the form [x;y;z]. Units are meters.

Vel

Current platform velocity

Current velocity of platform, specify as a real-valued 3-by-1 column vector in the form
of [vx;vy;vz] or a real-valued 3-by-N matrix where N is the number of platforms to
model. Each column taking the form [vx;vy;vz]. Velocity units are meters per second.

Laxes

Current platform orientation axes

Current platform orientation axes, returned as real-valued 3-by-3-by-N matrix where N
is the number of platforms to model. Each 3-by-3 submatrix is an orthonormal matrix.
This output is enabled when you set the OrientationAxesOutputPort property to
true. The current platform axes rotate around the normal vector to the path of the
platform.

Examples

Simulate motion of two platforms

Create two moving platforms. The first platform, starting at the origin, has a velocity of
(100,100,0) meters per second. The second starts at (1000,0,0) meters and has a velocity
of (0,200,0) meters per second. Next, specify different local coordinate axes for each

 step

1-1383

platform defined by rotation matrices. Setting the OrientationAxesOutputPort
property to true lets you retrieve the local coordinate axes at each step.

Set up the plaform object.

pos0 = [[0;0;0],[1000;0;0]];

vel0 = [[100;100;0],[0;200;0]];

R1 = rotx(30);

R2 = roty(45);

laxes(:,:,1) = R1;

laxes(:,:,2) = R2;

sPlat = phased.Platform(pos0,vel0,...

 'OrientationAxesOutputPort',true,...

 'InitialOrientationAxes',laxes);

Simulate the motion of the platform for two time steps, assuming the time elapsed for
each step is one second. The position of the platform is updated after each step.

T = 1;

At the first step, the position and velocity equal the initial values.

[pos,v,lax] = step(sPlat,T);

pos

lax

pos =

 0 1000

 0 0

 0 0

lax(:,:,1) =

 1.0000 0 0

 0 0.8660 -0.5000

 0 0.5000 0.8660

lax(:,:,2) =

 0.7071 0 0.7071

 0 1.0000 0

1 Alphabetical List

1-1384

 -0.7071 0 0.7071

At the second step, the position is updated.

[pos,v,lax] = step(sPlat,T);

pos

lax

pos =

 100 1000

 100 200

 0 0

lax(:,:,1) =

 1.0000 0 0

 0 0.8660 -0.5000

 0 0.5000 0.8660

lax(:,:,2) =

 0.7071 0 0.7071

 0 1.0000 0

 -0.7071 0 0.7071

Free-fall accelerating platform

Find the trajectory of a platform which has starts with some initial upward velocity but
accelerates downward with a constant acceleration of gravity, -9.8 m/sec/sec. Call the
step method every two seconds.

Construct System™ object.

sPlat = phased.Platform('MotionModel','Acceleration','InitialPosition',[2000,100,3000]',...

 'InitialVelocity',[300,150,20]','AccelerationSource','Property','Acceleration',[0,0,-9.8]');

T = 2;

N = 100;

Call the step method for 100 time samples.

 step

1-1385

posmat = zeros(3,N);

for n = 1:N

 [pos,vel] = step(sPlat,T);

 posmat(:,n) = pos;

end

Plot the trejectory.

plot3(posmat(1,:),posmat(2,:),posmat(3,:),'b.')

axis equal

xlabel('m')

ylabel('m')

zlabel('m')

grid

1 Alphabetical List

1-1386

phased.RadarTarget System object
Package: phased

Radar target

Description

The RadarTarget System object models how a signal is reflected from a radar target.
The quantity that determines the response of a target to an incoming signals is called the
radar target cross-section (RCS). While all electromagnetic radar signals are polarized,
you can sometimes ignore polarization and process them as if they were scalar signals.
To ignore polarization, you should specify the EnablePolarization property as false.
To utilize polarization, you must specify the EnablePolarization property as true.
For non-polarized processing, the radar cross section is encapsulated in a single scalar
quantity called the MeanRCS. For polarized processing, the radar cross-section is more
generally expressed by a 2-by-2 scattering matrix in the ScatteringMatrix property.
For both polarization processing types, there are several Swerling models available to
be used to generate random fluctuations in the RCS. These models are chosen using the
Model property. The random fluctuations are controlled by the SeedSource and Seed
properties.

The properties that you can use to model the radar cross-section or scattering matrix
depend upon the polarization type.

EnablePolarization Use these properties

false • MeanRCSSource

• MeanRCS

true • ScatteringMatrixSource

• ScatteringMatrix

• Mode

To compute the signal reflected from a radar target:

1 Define and set up your radar target. See “Construction” on page 1-1387.
2 Call step to compute the reflected signal according to the properties of

phased.RadarTarget. The behavior of step is specific to each object in the toolbox.

 phased.RadarTarget System object

1-1387

Construction

H = phased.RadarTarget creates a radar target System object, H, that computes the
reflected signal from a target.

H = phased.RadarTarget(Name,Value) creates a radar target object, H, with each
specified property set to the specified value. You can specify additional name-value pair
arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties

EnablePolarization

Allow polarized signals

Set this property to true to allow the target to simulate the reflection of polarized
radiation. Set this property to false to ignore polarization.

Default: false

Mode

Target scattering mode

Target scattering mode specified as one of 'Monostatic' or 'Bistatic'. If you set
this property to 'Monostatic', the signal's reflection direction is the opposite to its
incoming direction. If you set this property to 'Bistatic', the signal's reflection
direction differs from its incoming direction. This property applies when you set the
EnablePolarization property to true.

Default: 'Monostatic'

ScatteringMatrixSource

Source of target mean scattering matrix

Source of target mean scattering matrix specified as one of 'Property' or 'Input
port'. If you set the ScatteringMatrixSource property to 'Property', the target’s
mean scattering matrix is determined by the value of the ScatteringMatrix property.
If you set this property to 'Input port', the mean scattering matrix is determined
by an input argument of the step method. This property applies only when you set the

1 Alphabetical List

1-1388

EnablePolarization property to true. When the EnablePolarization property
is set to false, use the MeanRCSSource property instead, together with the MeanRCS
property, if needed.

Default: 'Property'

ScatteringMatrix

Mean radar scattering matrix

Mean radar scattering matrix specified as a complex–valued 2-by-2 matrix. This
matrix represents the mean value of the target's radar cross-section (in square meters).
The matrix has the form [s_hh s_hv;s_vh s_vv]. In this matrix, the component
s_hv specifies the complex scattering response when the input signal is vertically
polarized and the reflected signal is horizontally polarized. The other components are
defined similarly. This property applies when you set the ScatteringMatrixSource
property to 'Property' and the EnablePolarization property to true. When the
EnablePolarization property is set to false, use the MeanRCS property instead,
together with the MeanRCSSource property. This property is tunable.

Default: [1 0;0 1]

MeanRCSSource

Source of mean radar cross section

Specify whether the target’s mean RCS value(s) comes from the MeanRCS property of this
object or from an input argument in step. Values of this property are:

'Property' The MeanRCS property of this object specifies the
mean RCS value(s).

'Input port' An input argument in each invocation of step
specifies the mean RCS value.

When EnablePolarization property is set to true, use the
ScatteringMatrixSource property together with ScatteringMatrix.

Default: 'Property'

MeanRCS

Mean radar cross section

 phased.RadarTarget System object

1-1389

Specify the mean value of the target's radar cross section (in square meters) as a
nonnegative scalar or as a 1-by-M nonnegative row vector. Using a vector allows you to
process multiple targets simultaneous. The quantity Mis the number of targets. This
property is used when MeanRCSSource is set to 'Property'. This property is tunable.

When EnablePolarization property is set to true, use the ScatteringMatrix
property together with the ScatteringMatrixSource.

Default: 1

Model

Target statistical model

Specify the statistical model of the target as one of 'Nonfluctuating', 'Swerling1',
'Swerling2', 'Swerling3', or 'Swerling4'. If you set this property to a value other
than 'Nonfluctuating', you must use the UPDATERCS input argument when invoking
step. You can set the mean value of the radar cross-section model by specifying MeanRCS
or use its default va;ue.

Default: 'Nonfluctuating'

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second, as a positive scalar.

Default: Speed of light

OperatingFrequency

Signal carrier frequency

Specify the carrier frequency of the signal you are reflecting from the target, as a scalar
in hertz.

Default: 3e8

SeedSource

Source of seed for random number generator

Specify how the object generates random numbers. Values of this property are:

1 Alphabetical List

1-1390

'Auto' The default MATLAB random number generator produces
the random numbers. Use 'Auto' if you are using this
object with Parallel Computing Toolbox software.

'Property' The object uses its own private random number generator
to produce random numbers. The Seed property of this
object specifies the seed of the random number generator.
Use 'Property' if you want repeatable results and are
not using this object with Parallel Computing Toolbox
software.

The random numbers are used to model random RCS values. This property applies when
the Model property is 'Swerling1', 'Swerling2','Swerling3', or 'Swerling4'.

Default: 'Auto'

Seed

Seed for random number generator

Specify the seed for the random number generator as a scalar integer between 0 and 232–
1. This property applies when you set the SeedSource property to 'Property'.

Default: 0

Methods

clone Create radar target object with same
property values

getNumInputs Number of expected inputs to step method
getNumOutputs Number of outputs from step method
isLocked Locked status for input attributes and

nontunable properties
release Allow property value and input

characteristics changes
reset Reset states of radar target object
step Reflect incoming signal

 phased.RadarTarget System object

1-1391

Examples

Compute the Reflected Signal from a Non-fluctuating Radar Target

Create a simple signal and compute the value of the reflected signal from a target having
a radar cross section of . Set the radar cross section using the MeanRCS property.
Set the radar operating frequency to 600 MHz.

x = ones(10,1);

sRadarTarget = phased.RadarTarget('Model','Nonfluctuating',...

 'MeanRCS',10,...

 'OperatingFrequency',600e6);

y = step(sRadarTarget,x);

disp(y(1:3))

 22.4355

 22.4355

 22.4355

This value agrees with the formula where

Algorithms

For nonpolarized waves, the reflected wave is given by

Y G X= ◊ ,

where:

• X is the incoming signal.
• G is the target gain factor, a dimensionless quantity given by

G =
4

2

ps

l
.

• σ is the mean radar cross-section (RCS) of the target.

1 Alphabetical List

1-1392

• λ is the wavelength of the incoming signal.

The incident signal on the target is scaled by the square root of the gain factor.

For polarized waves, the single scalar signal, X, is replaced by a vector signal, (EH, EV),
with horizontal and vertical components. The scattering matrix, S, replaces the scalar
cross-section, σ. Through the scattering matrix, the incident horizontal and vertical
polarized signals are converted into the reflected horizontal and vertical polarized
signals.

E

E

S S

S S

E

E

H

scat

V

scat

HH VH

HV VV

H

inc

V

i

()

()

()

(

È

Î

Í
Í

˘

˚

˙
˙

=
È

Î
Í

˘

˚
˙

4

2

p

l nnc

H

inc

V

inc
S

E

E
)

()

()

È

Î

Í
Í

˘

˚

˙
˙

= []
È

Î

Í
Í

˘

˚

˙
˙

4

2

p

l

For further details, see Mott, [1] or Richards, [2] .

References

[1] Mott, H., Antennas for Radar and Communications, John Wiley & Sons, 1992.

[2] Richards, M. A. Fundamentals of Radar Signal Processing. New York: McGraw-Hill,
2005.

[3] Skolnik, M. Introduction to Radar Systems, 3rd Ed. New York: McGraw-Hill, 2001.

See Also
phased.FreeSpace | phased.Platform

More About
• “Radar Target”

Introduced in R2012a

 clone

1-1393

clone
System object: phased.RadarTarget
Package: phased

Create radar target object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates an object, C, having the same property values and same states as
H. If H is locked, so is C.

1 Alphabetical List

1-1394

getNumInputs
System object: phased.RadarTarget
Package: phased

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of inputs
(not counting the object itself) that you must use when calling the step method. This
value changes when you alter properties that turn inputs on or off.

 getNumOutputs

1-1395

getNumOutputs
System object: phased.RadarTarget
Package: phased

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value changes when you alter properties that turn outputs on or off.

1 Alphabetical List

1-1396

isLocked
System object: phased.RadarTarget
Package: phased

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the RadarTarget System object.

isLocked returns a logical value that indicates whether input attributes and
nontunable properties for the object are locked. The object performs an internal
initialization the first time that you execute step. This initialization locks nontunable
properties and input specifications, such as the dimensions, complexity, and data type of
the input data. After locking, isLocked returns a true value.

 release

1-1397

release
System object: phased.RadarTarget
Package: phased

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles, or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

1 Alphabetical List

1-1398

reset
System object: phased.RadarTarget
Package: phased

Reset states of radar target object

Syntax

reset(H)

Description

reset(H) resets the states of the RadarTarget object, H. This method resets the
random number generator state if the SeedSource property is applicable and has the
value 'Property'.

 step

1-1399

step
System object: phased.RadarTarget
Package: phased

Reflect incoming signal

Syntax

Y = step(H,X)

Y = step(H,X,MEANRCS)

Y = step(H,X,UPDATERCS)

Y = step(H,X,MEANRCS,UPDATERCS)

Y = step(H,X,ANGLE_IN,LAXES)

Y = step(H,X,ANGLE_IN,ANGLE_OUT,LAXES)

Y = step(H,X,ANGLE_IN,LAXES,SMAT)

Y = step(H,X,ANGLE_IN,LAXES,UPDATESMAT)

Y = step(H,X,ANGLE_IN,ANGLE_OUT,LAXES,SMAT,UPDATESMAT)

Description

Y = step(H,X) returns the reflected signal Y due to the incident signal X. The
argument X is a complex-valued N-by-1 column vector or N-by-M matrix. The value
M is the number of signals. Each signal corresponds to a different target. The value
N is the number of samples in each signal. Use this syntax when you set the Model
property of H to 'Nonfluctuating'. In this case, the value of the MeanRCS property
is used as the Radar cross-section (RCS) value. This syntax applies only when the
EnablePolarization property is set to false. If you specify M incident signal, you
must specify the radar cross-section as a scalar or as a 1-by-M vector. For a scalar, the
same value will be applied to all signals.

Y = step(H,X,MEANRCS) uses MEANRCS as the mean RCS value. This syntax
is available when you set the MeanRCSSource property to 'Input port' and
Model is set to 'Nonfluctuating'. The value of MEANRCS must be a nonnegative
scalar or 1-by-M row vector for multiple targets. This syntax applies only when the
EnablePolarization property is set to false.

1 Alphabetical List

1-1400

Y = step(H,X,UPDATERCS) uses UPDATERCS as the indicator of whether to update the
RCS value. This syntax is available when you set the Model property to 'Swerling1',
'Swerling2', 'Swerling3', or 'Swerling4'. If UPDATERCS is true, a new RCS
value is generated. If UPDATERCS is false, the previous RCS value is used. This syntax
applies only when the EnablePolarization property is set to false. In this case, the
value of the MeanRCS property is used as the radar cross-section (RCS) value.

Y = step(H,X,MEANRCS,UPDATERCS) lets you can combine optional input arguments
when their enabling properties are set. In this syntax, MeanRCSSource is set to 'Input
port' and Model is set to one of the Swerling models. This syntax applies only
when the EnablePolarization property is set to false. For this syntax, changes in
MEANRCS will be ignored after the first call to the step method.

Y = step(H,X,ANGLE_IN,LAXES) returns the reflected signal Y from an incident
signal X. This syntax applies only when the EnablePolarization property is set to
true. The input argument, ANGLE_IN, specifies the direction of the incident signal with
respect to the target’s local coordinate system. The input argument, LAXES, specifies the
direction of the local coordinate axes with respect to the global coordinate system. This
syntax requires that you set the Model property to 'Nonfluctuating' and the Mode
property to 'Monostatic'. In this case, the value of the ScatteringMatrix property
is used as the scattering matrix value.

X is a 1-by-M row array of MATLAB struct type, each member of the array representing
a different signal. The struct contains three fields, X.X, X.Y, and X.Z. Each field
corresponds to the x, y, and z components of the polarized input signal. Polarization
components are measured with respect to the global coordinate system. Each field is
a column vector representing a sequence of values for each incoming signal. The X.X,
X.Y, and Y.Z fields must all have the same dimension. The argument, ANGLE_IN, is a
2-by-M matrix representing the signals’ incoming directions with respect to the target’s
local coordinate system. Each column of ANGLE_IN specifies the incident direction of the
corresponding signal in the form [AzimuthAngle; ElevationAngle]. Angle units
are in degrees. The number of columns in ANGLE_IN must equal the number of signals
in the X array. The argument, LAXES, is a 3-by-3 matrix. The columns are unit vectors
specifying the local coordinate system's orthonormal x, y, and z axes, respectively, with
respect to the global coordinate system. Each column is written in [x;y;z] form.

Y is a row array of struct type having the same size as X. Each struct contains the
three reflected polarized fields, Y.X, Y.Y, and Y.Z. Each field corresponds to the x, y,
and z component of the signal. Polarization components are measured with respect to the
global coordinate system. Each field is a column vector representing one reflected signal.

 step

1-1401

Y = step(H,X,ANGLE_IN,ANGLE_OUT,LAXES), in addition, specifies the reflection
angle, ANGLE_OUT, of the reflected signal when you set the Mode property to
'Bistatic'. This syntax applies only when the EnablePolarization property is
set to true. ANGLE_OUT is a 2-row matrix representing the reflected direction of each
signal. Each column of ANGLE_OUT specifies the reflected direction of the signal in the
form [AzimuthAngle; ElevationAngle]. Angle units are in degrees. The number of
columns in ANGLE_OUT must equal the number of members in the X array. The number
of columns in ANGLE_OUT must equal the number of elements in the X array.

Y = step(H,X,ANGLE_IN,LAXES,SMAT) specifies SMAT as the scattering matrix.
This syntax applies only when the EnablePolarization property is set to true. The
input argument SMAT is a 2-by-2 matrix. You must set the ScatteringMatrixSource
property 'Input port' to use SMAT.

Y = step(H,X,ANGLE_IN,LAXES,UPDATESMAT) specifies UPDATESMAT to indicate
whether to update the scattering matrix when you set the Model property to
'Swerling1', 'Swerling2'', 'Swerling3', or 'Swerling4'. This syntax applies only
when the EnablePolarization property is set to true. If UPDATESMAT is set to true,
a scattering matrix value is generated. If UPDATESMAT is false, the previous scattering
matrix value is used.

Y = step(H,X,ANGLE_IN,ANGLE_OUT,LAXES,SMAT,UPDATESMAT). You can combine
optional input arguments when their enabling properties are set. Optional inputs must
be listed in the same order as the order of their enabling properties.

Note: The object performs an initialization the first time the step method is executed.
This initialization locks nontunable properties and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Examples

Compute Reflected Signals from Two Non-fluctuating Radar Targets

Create two sinusoidal signals and compute the value of the reflected signals from targets
having radar cross section of and , respectively. Set the radar cross sections

1 Alphabetical List

1-1402

in the step method by choosing Input port for the value of the MeanRCSSource
property. Set the radar operating frequency to 600 MHz.

sRadarTarget = phased.RadarTarget('Model','Nonfluctuating',...

 'MeanRCSSource','Input port',...

 'OperatingFrequency',600e6);

t = linspace(0,1,1000);

x = [cos(2*pi*250*t)',10*sin(2*pi*250*t)'];

y = step(sRadarTarget,x,[5,10]);

disp(y(1:3,1:2))

 15.8643 0

 -0.0249 224.3546

 -15.8642 -0.7055

• “Swerling 1 Target Models”
• “Swerling Target Models”
• “Swerling 3 Target Models”
• “Swerling 4 Target Models”

Algorithms

For nonpolarized waves, the reflected wave is given by

Y G X= ◊ ,

where:

• X is the incoming signal.
• G is the target gain factor, a dimensionless quantity given by

G =
4

2

ps

l
.

• σ is the mean radar cross-section (RCS) of the target.
• λ is the wavelength of the incoming signal.

The incident signal on the target is scaled by the square root of the gain factor.

 step

1-1403

For polarized waves, the single scalar signal, X, is replaced by a vector signal, (EH, EV),
with horizontal and vertical components. The scattering matrix, S, replaces the scalar
cross-section, σ. Through the scattering matrix, the incident horizontal and vertical
polarized signals are converted into the reflected horizontal and vertical polarized
signals.

E

E

S S

S S

E

E

H

scat

V

scat

HH VH

HV VV

H

inc

V

i

()

()

()

(

È

Î

Í
Í

˘

˚

˙
˙

=
È

Î
Í

˘

˚
˙

4

2

p

l nnc

H

inc

V

inc
S

E

E
)

()

()

È

Î

Í
Í

˘

˚

˙
˙

= []
È

Î

Í
Í

˘

˚

˙
˙

4

2

p

l

For further details, see Mott [1] or Richards[2].

References

[1] Mott, H. Antennas for Radar and Communications.John Wiley & Sons, 1992.

[2] Richards, M. A. Fundamentals of Radar Signal Processing. New York: McGraw-Hill,
2005.

[3] Skolnik, M. Introduction to Radar Systems, 3rd Ed. New York: McGraw-Hill, 2001.

1 Alphabetical List

1-1404

phased.Radiator System object

Package: phased

Narrowband signal radiator

Description

The phased.Radiator object implements a narrowband signal radiator. For any
antenna element, microphone element, or array, the radiator creates the outgoing
signal that is to be propagated to the far field using the phased.FreeSpace or
phased.TwoRayChannel System objects. The output of phased.Radiator represents
the field at a reference distance from the element or center of the array. The signal can
represent a polarized or nonpolarized field depending upon whether the element or array
supports polarization and the value of the EnablePolarization property. For arrays,
you can create a superposed field of all array elements signals or a separate field for each
element depending upon the value of the CombineRadiatedSignals property.

To compute the radiated signal from the sensor(s):

1 Define and set up your radiator. See “Construction” on page 1-1404.
2 Call step to compute the radiated signal according to the properties of

phased.Radiator. The behavior of step is specific to each object in the toolbox.

Construction

H = phased.Radiator creates a narrowband signal radiator System object, H. The
object returns radiated narrowband signals for given directions using a sensor array or a
single element.

H = phased.Radiator(Name,Value) creates a radiator object, H, with each specified
property Name set to the specified Value. You can specify additional name-value pair
arguments in any order as (Name1,Value1,...,NameN,ValueN).

 phased.Radiator System object

1-1405

Properties

Sensor

Sensor element or sensor array

Sensor element or sensor array specified as a System object in the Phased Array System
Toolbox. A sensor array can contain subarrays.

Antenna Toolbox antenna

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second, as a positive scalar.

Default: Speed of light

OperatingFrequency

System operating frequency

Specify the operating frequency of the system in hertz as a positive scalar. The default
value corresponds to 300 MHz.

Default: 3e8

CombineRadiatedSignals

Combine radiated signals

Set this property to true to combine radiated signals from all radiating elements. Set
this property to false to obtain the radiated signal for each radiating element. If the
Sensor property is an array that contains subarrays, the CombineRadiatedSignals
property must be true.

Default: true

EnablePolarization

Enable Polarization

1 Alphabetical List

1-1406

Set this property to true to simulate the radiation of polarized waves. Set this property
to false to ignore polarization. This property applies when the sensor specified in the
Sensor property is capable of simulating polarization.

Default: false

WeightsInputPort

Enable weights input

To specify weights, set this property to true and then use the corresponding input
argument when you invoke step. If you do not want to specify weights, set this property
to false.

Default: false

Methods

clone Create radiator object with same property
values

getNumInputs Number of expected inputs to step method
getNumOutputs Number of outputs from step method
isLocked Locked status for input attributes and

nontunable properties
release Allow property value and input

characteristics changes
step Radiate signals

Examples

Radiate the signal from a single isotropic antenna.

ha = phased.IsotropicAntennaElement;

hr = phased.Radiator('Sensor',ha,'OperatingFrequency',300e6);

x = [1;1];

radiatingAngle = [30 10]';

y = step(hr,x,radiatingAngle);

 phased.Radiator System object

1-1407

Radiate a far field signal with a 5-element array.

ha = phased.ULA('NumElements',5);

hr = phased.Radiator('Sensor',ha,'OperatingFrequency',300e6);

x = [1;1];

radiatingAngle = [30 10; 20 0]'; % two directions

y = step(hr,x,radiatingAngle);

Radiate signal with a 3-element antenna array. Each antenna radiates a separate signal
to a separate direction.

ha = phased.ULA('NumElements',3);

hr = phased.Radiator('Sensor',ha,'OperatingFrequency',1e9,...

 'CombineRadiatedSignals',false);

x = [1 2 3;1 2 3];

radiatingAngle = [10 0; 20 5; 45 2]'; % One angle for one antenna

y = step(hr,x,radiatingAngle);

References

[1] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002.

See Also
phased.Collector | phased.FreeSpace

Introduced in R2012a

1 Alphabetical List

1-1408

clone
System object: phased.Radiator
Package: phased

Create radiator object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates an object, C, having the same property values and same states as
H. If H is locked, so is C.

 getNumInputs

1-1409

getNumInputs
System object: phased.Radiator
Package: phased

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of inputs
(not counting the object itself) that you must use when calling the step method. This
value changes when you alter properties that turn inputs on or off.

1 Alphabetical List

1-1410

getNumOutputs
System object: phased.Radiator
Package: phased

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value changes when you alter properties that turn outputs on or off.

 isLocked

1-1411

isLocked
System object: phased.Radiator
Package: phased

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF, for the Radiator System object.

isLocked returns a logical value that indicates whether input attributes and
nontunable properties for the object are locked. The object performs an internal
initialization the first time that you execute step. This initialization locks nontunable
properties and input specifications, such as the dimensions, complexity, and data type of
the input data. After locking, isLocked returns a true value.

1 Alphabetical List

1-1412

release
System object: phased.Radiator
Package: phased

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

 step

1-1413

step
System object: phased.Radiator
Package: phased

Radiate signals

Syntax

Y = step(H,X,ANG)

Y = step(H,X,ANG,LAXES)

Y = step(H,X,ANG,WEIGHTS)

Y = step(H,X,ANG,STEERANGLE)

Y = step(H,X,ANG,LAXES,WEIGHTS,STEERANGLE)

Description

Y = step(H,X,ANG) radiates signal X in the direction ANG. Y is the radiated signal. The
radiating process depends on the CombineRadiatedSignals property of H, as follows:

• If CombineRadiatedSignals has the value true, each radiating element or
subarray radiates X in all the directions in ANG. Y combines the outputs of all
radiating elements or subarrays. If the Sensor property of H contains subarrays, the
radiating process distributes the power equally among the elements of each subarray.

• If CombineRadiatedSignals has the value false, each radiating element
radiates X in only one direction in ANG. Each column of Y contains the output of the
corresponding element. The false option is available when the Sensor property of H
does not contain subarrays.

Y = step(H,X,ANG,LAXES) uses LAXES as the local coordinate system axes directions.
This syntax is available when you set the EnablePolarization property to true.

Y = step(H,X,ANG,WEIGHTS) uses WEIGHTS as the weight vector. This syntax is
available when you set the WeightsInputPort property to true.

Y = step(H,X,ANG,STEERANGLE) uses STEERANGLE as the subarray steering angle.
This syntax is available when you configure H so that H.Sensor is an array that contains
subarrays and H.Sensor.SubarraySteering is either 'Phase' or 'Time'.

1 Alphabetical List

1-1414

Y = step(H,X,ANG,LAXES,WEIGHTS,STEERANGLE) combines all input arguments.
This syntax is available when you configure H so that H.EnablePolarization is true,
H.WeightsInputPort is true, H.Sensor is an array that contains subarrays, and
H.Sensor.SubarraySteering is either 'Phase' or 'Time'.

Note: The object performs an initialization the first time the step method is executed.
This initialization locks nontunable properties and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Input Arguments

H

Radiator object.

X

Signals to radiate. X can be either a vector or a matrix.

If X is a vector, that vector is radiated through all radiating elements or subarrays. The
computation does not divide the signal’s power among elements or subarrays, but rather
treats the X vector the same as a matrix in which each column equals this vector.

If X is a matrix, the number of columns of X must equal the number of subarrays if
H.Sensor is an array that contains subarrays, or the number of radiating elements
otherwise. Each column of X is radiated by the corresponding element or subarray.

ANG

Radiating directions of signals. ANG is a two-row matrix. Each column specifies a
radiating direction in the form [AzimuthAngle; ElevationAngle], in degrees.

LAXES

Local coordinate system. LAXES is a 3-by-3 matrix whose columns specify the local
coordinate system's orthonormal x, y, and z axes, respectively. Each axis is specified in

 step

1-1415

terms of [x;y;z] with respect to the global coordinate system. This argument is only
used when the EnablePolarization property is set to true.

WEIGHTS

Vector of weights. WEIGHTS is a column vector whose length equals the number of
radiating elements or subarrays.

STEERANGLE

Subarray steering angle, specified as a length-2 column vector. The vector has the form
[azimuth; elevation], in degrees. The azimuth angle must be between –180 and 180
degrees, inclusive. The elevation angle must be between –90° and 90°, inclusive.

Output Arguments

Y

Radiated signals

• If the EnablePolarization property value is set to false, the output argument
Y is a matrix. The number of columns of the matrix equals the number of radiating
signals. Each column of Y contains a separate radiating signal. The number of
radiating signals depends upon the CombineRadiatedSignals property of H.

• If the EnablePolarization property value is set to true, Y is a row vector of
elements of MATLAB struct type. The length of the struct vector equals the
number of radiating signals. Each struct contains a separate radiating signal. The
number of radiating signals depends upon the CombineRadiatedSignals property
of H. Each struct contains three column-vector fields, X, Y, and Z. These fields
represent the x, y, and z components of the polarized wave vector signal in the global
coordinate system.

Examples

Radiating from a 5-Element ULA

Combine the radiation from five isotropic antenna elements.

Set up a uniform line array of five isotropic antennas. Then, construct the radiator object.

1 Alphabetical List

1-1416

ha = phased.ULA('NumElements',5);

% construct the radiator object

hr = phased.Radiator('Sensor',ha,...

 'OperatingFrequency',300e6,'CombineRadiatedSignals',true);

% simple signal to radiate

x = [1;1];

% radiating direction in azimuth and elevation

radiatingAngle = [30; 10];

% use the step method to radiate the signal

y = step(hr,x,radiatingAngle);

Radiating from a 5-Element ULA of Polarized Antennas

Combine the radiation from five short-dipole antenna elements.

Set up a uniform line array of five short-dipole antennas with polarization enabled. Then,
construct the radiator object.

hsd = phased.ShortDipoleAntennaElement;

ha = phased.ULA('Element',hsd,'NumElements',5);

hr = phased.Radiator('Sensor',ha,...

 'OperatingFrequency',300e6,'CombineRadiatedSignals',true,'EnablePolarization',true);

Rotate the local coordinate system by 10° around the x-axis. Demonstrate that the output
represents a polarized field.

x = [1;1];

radiatingAngle = [30 30; 0 20];

y = step(hr,x,radiatingAngle,rotx(10))

y =

1x2 struct array with fields:

 X

 Y

 Z

 phased.RangeDopplerResponse System object

1-1417

phased.RangeDopplerResponse System object
Package: phased

Range-Doppler response

Description

The RangeDopplerResponse object calculates the range-Doppler response of input
data.

To compute the range-Doppler response:

1 Define and set up your range-Doppler response calculator. See “Construction” on
page 1-1417.

2 Call step to compute the range-Doppler response of the input signal according to the
properties of phased.RangeDopplerResponse. The behavior of step is specific to
each object in the toolbox.

Construction

H = phased.RangeDopplerResponse creates a range-Doppler response System object,
H. The object calculates the range-Doppler response of the input data.

H = phased.RangeDopplerResponse(Name,Value) creates a range-Doppler
response object, H, with additional options specified by one or more Name,Value pair
arguments. Name is a property name, and Value is the corresponding value. Name must
appear inside single quotes (''). You can specify several name-value pair arguments in
any order as Name1,Value1,…,NameN,ValueN.

Properties

RangeMethod

Method of range processing

Specify the method of range processing as 'Matched filter' or 'FFT'.

1 Alphabetical List

1-1418

'Matched filter' Algorithm applies a matched filter to the incoming signal.
This approach is common with pulsed signals, where the
matched filter is the time reverse of the transmitted signal.

'FFT' Algorithm performs range processing by applying an FFT
to the input signal. This approach is commonly used with
FMCW and linear FM pulsed signals.

Default: 'Matched filter'

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second, as a positive scalar.

Default: Speed of light

SampleRate

Sample rate

Specify the sample rate, in hertz, as a positive scalar. The default value corresponds to 1
MHz.

Default: 1e6

SweepSlope

FM sweep slope

Specify the slope of the linear FM sweeping, in hertz per second, as a scalar. The x data
you provide to step or plotResponse must correspond to sweeps having this slope.

This property applies only when you set the RangeMethod property to 'FFT'.

Default: 1e9

DechirpInput

Whether to dechirp input signal

Set this property to true to have the range-Doppler response object dechirp the input
signal. Set this property to false to indicate that the input signal is already dechirped

 phased.RangeDopplerResponse System object

1-1419

and no dechirp operation is necessary. This property applies only when you set the
RangeMethod property to 'FFT'.

Default: false

DecimationFactor

Decimation factor for dechirped signal

Specify the decimation factor for the dechirped signal as a positive integer. When
processing FMCW signals, you can often decimate the dechirped signal to reduce the
requirements on the analog-to-digital converter.

This property applies only when you set the RangeMethod property to 'FFT' and the
DechirpInput property to true. The default value indicates no decimation.

Default: 1

RangeFFTLengthSource

Source of FFT length in range processing

Specify how the object determines the FFT length in range processing. Values of this
property are:

'Auto' The FFT length equals the number of rows of the input
signal.

'Property' The RangeFFTLength property of this object specifies the
FFT length.

This property applies only when you set the RangeMethod property to 'FFT'.

Default: 'Auto'

RangeFFTLength

FFT length in range processing

Specify the FFT length in the range domain as a positive integer. This property
applies only when you set the RangeMethod property to 'FFT' and the
RangeFFTLengthSource property to 'Property'.

1 Alphabetical List

1-1420

Default: 1024

RangeWindow

Window for range weighting

Specify the window used for range processing using one of 'None', 'Hamming',
'Chebyshev', 'Hann', 'Kaiser', 'Taylor', or 'Custom'. If you set this property
to 'Taylor', the generated Taylor window has four nearly constant sidelobes adjacent
to the mainlobe. This property applies only when you set the RangeMethod property to
'FFT'.

Default: 'None'

RangeSidelobeAttenuation

Sidelobe attenuation level for range processing

Specify the sidelobe attenuation level of a Kaiser, Chebyshev, or Taylor window in range
processing as a positive scalar, in decibels. This property applies only when you set
the RangeMethod property to 'FFT' and the RangeWindow property to 'Kaiser',
'Chebyshev', or 'Taylor'.

Default: 30

CustomRangeWindow

User-defined window for range processing

Specify the user-defined window for range processing using a function handle or a cell
array. This property applies only when you set the RangeMethod property to 'FFT' and
the RangeWindow property to 'Custom'.

If CustomRangeWindow is a function handle, the specified function takes the window
length as the input and generates appropriate window coefficients.

If CustomRangeWindow is a cell array, then the first cell must be a function handle.
The specified function takes the window length as the first input argument, with other
additional input arguments, if necessary. The function then generates appropriate
window coefficients. The remaining entries in the cell array are the additional input
arguments to the function, if any.

Default: @hamming

 phased.RangeDopplerResponse System object

1-1421

DopplerFFTLengthSource

Source of FFT length in Doppler processing

Specify how the object determines the FFT length in Doppler processing. Values of this
property are:

'Auto' The FFT length is equal to the number of rows of the input
signal.

'Property' The DopplerFFTLength property of this object specifies
the FFT length.

This property applies only when you set the RangeMethod property to 'FFT'.

Default: 'Auto'

DopplerFFTLength

FFT length in Doppler processing

Specify the FFT length in Doppler processing as a positive integer. This
property applies only when you set the RangeMethod property to 'FFT' and the
DopplerFFTLengthSource property to 'Property'.

Default: 1024

DopplerWindow

Window for Doppler weighting

Specify the window used for Doppler processing using one of 'None', 'Hamming',
'Chebyshev', 'Hann', 'Kaiser', 'Taylor', or 'Custom'. If you set this property
to 'Taylor', the generated Taylor window has four nearly constant sidelobes adjacent
to the mainlobe. This property applies only when you set the RangeMethod property to
'FFT'.

Default: 'None'

DopplerSidelobeAttenuation

Sidelobe attenuation level for Doppler processing

Specify the sidelobe attenuation level of a Kaiser, Chebyshev, or Taylor window in
Doppler processing as a positive scalar, in decibels. This property applies only when you

1 Alphabetical List

1-1422

set the RangeMethod property to 'FFT' and the DopplerWindow property to 'Kaiser',
'Chebyshev', or 'Taylor'.

Default: 30

CustomDopplerWindow

User-defined window for Doppler processing

Specify the user-defined window for Doppler processing using a function handle or a cell
array. This property applies only when you set the RangeMethod property to 'FFT' and
the DopplerWindow property to 'Custom'.

If CustomDopplerWindow is a function handle, the specified function takes the window
length as the input and generates appropriate window coefficients.

If CustomDopplerWindow is a cell array, then the first cell must be a function handle.
The specified function takes the window length as the first input argument, with other
additional input arguments, if necessary. The function then generates appropriate
window coefficients. The remaining entries in the cell array are the additional input
arguments to the function, if any.

Default: @hamming

DopplerOutput

Doppler domain output

Specify the Doppler domain output as 'Frequency' or 'Speed'. The Doppler domain
output is the DOP_GRID argument of step.

'Frequency' DOP_GRID is the Doppler shift, in hertz.
'Speed' DOP_GRID is the radial speed corresponding to the Doppler

shift, in meters per second.

Default: 'Frequency'

OperatingFrequency

Signal carrier frequency

Specify the carrier frequency, in hertz, as a scalar. This property applies only when
you set the DopplerOutput property to 'Speed'. The default value of this property
corresponds to 300 MHz.

 phased.RangeDopplerResponse System object

1-1423

Default: 3e8

Methods

clone Create range-Doppler response object with
same property values

getNumInputs Number of expected inputs to step method
getNumOutputs Number of outputs from step method
isLocked Locked status for input attributes and

nontunable properties
plotResponse Plot range-Doppler response
release Allow property value and input

characteristics changes
step Calculate range-Doppler response

Examples

Range-Doppler Response of Pulsed Radar Signal Using Matched Filter

Compute using a matched filter the range-doppler response of a pulsed radar signal.

Load data for a pulsed radar signal. The signal includes three target returns. Two targets
are approximately 2000 m away, while the third is approximately 3500 m away. In
addition, two of the targets are stationary relative to the radar. The third is moving away
from the radar at about 100 m/s.

load RangeDopplerExampleData;

Create a range-Doppler response object.

hrdresp = phased.RangeDopplerResponse(...

 'DopplerFFTLengthSource','Property',...

 'DopplerFFTLength',RangeDopplerEx_MF_NFFTDOP,...

 'SampleRate',RangeDopplerEx_MF_Fs,...

 'DopplerOutput','Speed',...

 'OperatingFrequency',RangeDopplerEx_MF_Fc);

1 Alphabetical List

1-1424

Calculate the range-Doppler response.

[resp,rng_grid,dop_grid] = step(hrdresp,...

 RangeDopplerEx_MF_X,RangeDopplerEx_MF_Coeff);

Plot the range-Doppler response.

imagesc(dop_grid,rng_grid,mag2db(abs(resp)));

xlabel('Speed (m/s)');

ylabel('Range (m)');

title('Range-Doppler Map');

Range-Doppler Response of FMCW Signal

Compute the range-Doppler response of an FMCW signal using an FFT.

 phased.RangeDopplerResponse System object

1-1425

Load data for an FMCW signal that has not been dechirped. The signal contains the
return from a target about 2200 m away. The signal has a normalized Doppler frequency
of approximately -0.36 relative to the radar.

load RangeDopplerExampleData;

Create a range-Doppler response object.

hrdresp = phased.RangeDopplerResponse(...

 'RangeMethod','FFT',...

 'PropagationSpeed',RangeDopplerEx_Dechirp_PropSpeed,...

 'SampleRate',RangeDopplerEx_Dechirp_Fs,...

 'DechirpInput',true,...

 'SweepSlope',RangeDopplerEx_Dechirp_SweepSlope);

Plot the range-Doppler response.

plotResponse(hrdresp,...

 RangeDopplerEx_Dechirp_X,RangeDopplerEx_Dechirp_Xref,...

 'Unit','db','NormalizeDoppler',true)

1 Alphabetical List

1-1426

• Automotive Adaptive Cruise Control Using FMCW Technology

Algorithms

The RangeDopplerResponse object generates the response as follows:

1 Processes the input signal in the range domain using either a matched filter or
dechirp operation.

2 Processes in the Doppler domain using an FFT.

The decimation algorithm uses a 30th order FIR filter generated by fir1(30,1/R),
where R is the value of the DecimationFactor property.

../examples/automotive-adaptive-cruise-control-using-fmcw-technology.html

 phased.RangeDopplerResponse System object

1-1427

See Also
phased.AngleDopplerResponse | phased.MatchedFilter | dechirp

Introduced in R2012b

1 Alphabetical List

1-1428

clone
System object: phased.RangeDopplerResponse
Package: phased

Create range-Doppler response object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates an object, C, having the same property values and same states as
H. If H is locked, so is C.

 getNumInputs

1-1429

getNumInputs
System object: phased.RangeDopplerResponse
Package: phased

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of inputs
(not counting the object itself) that you must use when calling the step method. This
value changes when you alter properties that turn inputs on or off.

1 Alphabetical List

1-1430

getNumOutputs
System object: phased.RangeDopplerResponse
Package: phased

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value changes when you alter properties that turn outputs on or off.

 isLocked

1-1431

isLocked
System object: phased.RangeDopplerResponse
Package: phased

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF, for the RangeDopplerResponse
System object.

isLocked returns a logical value that indicates whether input attributes and
nontunable properties for the object are locked. The object performs an internal
initialization the first time that you execute step. This initialization locks nontunable
properties and input specifications, such as the dimensions, complexity, and data type of
the input data. After locking, isLocked returns a true value.

1 Alphabetical List

1-1432

plotResponse

System object: phased.RangeDopplerResponse
Package: phased

Plot range-Doppler response

Syntax

plotResponse(H,x)

plotResponse(H,x,xref)

plotResponse(H,x,coeff)

plotResponse(___ ,Name,Value)

hPlot = plotResponse(___)

Description

plotResponse(H,x) plots the range-Doppler response of the input signal, x, in decibels.
This syntax is available when you set the RangeMethod property to 'FFT' and the
DechirpInput property to false.

plotResponse(H,x,xref) plots the range-Doppler response after performing a dechirp
operation on x using the reference signal, xref. This syntax is available when you set
the RangeMethod property to 'FFT' and the DechirpInput property to true.

plotResponse(H,x,coeff) plots the range-Doppler response after performing a
matched filter operation on x using the matched filter coefficients in coeff. This syntax
is available when you set the RangeMethod property to 'Matched filter'.

plotResponse(___ ,Name,Value) plots the angle-Doppler response with additional
options specified by one or more Name,Value pair arguments.

hPlot = plotResponse(___) returns the handle of the image in the figure window,
using any of the input arguments in the previous syntaxes.

 plotResponse

1-1433

Input Arguments

H

Range-Doppler response object.

x

Input data. Specific requirements depend on the syntax:

• In the syntax plotResponse(H,x), each column of the matrix x represents a
dechirped signal from one frequency sweep. The function assumes all sweeps in x are
consecutive.

• In the syntax plotResponse(H,x,xref), each column of the matrix x represents
a signal from one frequency sweep. The function assumes all sweeps in x are
consecutive and have not been dechirped yet.

• In the syntax plotResponse(H,x,coeff), each column of the matrix x represents a
signal from one pulse. The function assumes all pulses in x are consecutive.

In the case of an FMCW waveform with a triangle sweep, the sweeps alternate
between positive and negative slopes. However, phased.RangeDopplerResponse
is designed to process consecutive sweeps of the same slope. To apply
phased.RangeDopplerResponse for a triangle-sweep system, use one of the following
approaches:

• Specify a positive SweepSlope property value, with x corresponding to upsweeps
only. In the plot, change the tick mark labels on the horizontal axis to reflect that the
Doppler or speed values are half of what the plot shows by default.

• Specify a negative SweepSlope property value, with x corresponding to downsweeps
only. In the plot, change the tick mark labels on the horizontal axis to reflect that the
Doppler or speed values are half of what the plot shows by default.

xref

Reference signal, specified as a column vector having the same number of rows as x.

coeff

Matched filter coefficients, specified as a column vector.

1 Alphabetical List

1-1434

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'NormalizeDoppler'

Set this value to true to normalize the Doppler frequency. Set this value to false to plot
the range-Doppler response without normalizing the Doppler frequency. This parameter
applies when you set the DopplerOutput property of H to 'Frequency'.

Default: false

'Unit'

The unit of the plot. Valid values are 'db', 'mag', and 'pow'.

Default: 'db'

Examples

Range-Doppler Response of FMCW Signal

Compute the range-Doppler response of an FMCW signal using an FFT.

Load data for an FMCW signal that has not been dechirped. The signal contains the
return from a target about 2200 m away. The signal has a normalized Doppler frequency
of approximately -0.36 relative to the radar.

load RangeDopplerExampleData;

Create a range-Doppler response object.

hrdresp = phased.RangeDopplerResponse(...

 'RangeMethod','FFT',...

 'PropagationSpeed',RangeDopplerEx_Dechirp_PropSpeed,...

 'SampleRate',RangeDopplerEx_Dechirp_Fs,...

 'DechirpInput',true,...

 'SweepSlope',RangeDopplerEx_Dechirp_SweepSlope);

 plotResponse

1-1435

Plot the range-Doppler response.

plotResponse(hrdresp,...

 RangeDopplerEx_Dechirp_X,RangeDopplerEx_Dechirp_Xref,...

 'Unit','db','NormalizeDoppler',true)

• Automotive Adaptive Cruise Control Using FMCW Technology

See Also
phased.AngleDopplerResponse.plotResponse

../examples/automotive-adaptive-cruise-control-using-fmcw-technology.html

1 Alphabetical List

1-1436

release
System object: phased.RangeDopplerResponse
Package: phased

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

 step

1-1437

step
System object: phased.RangeDopplerResponse
Package: phased

Calculate range-Doppler response

Syntax

[RESP,RNG_GRID,DOP_GRID] = step(H,x)

[RESP,RNG_GRID,DOP_GRID] = step(H,x,xref)

[RESP,RNG_GRID,DOP_GRID] = step(H,x,coeff)

Description

[RESP,RNG_GRID,DOP_GRID] = step(H,x) calculates the range-Doppler response
of the input signal, x. RESP is the complex range-Doppler response. RNG_GRID and
DOP_GRID provide the range samples and Doppler samples, respectively, at which
the range-Doppler response is evaluated. This syntax is available when you set the
RangeMethod property to 'FFT' and the DechirpInput property to false. This syntax
is most commonly used with FMCW signals.

[RESP,RNG_GRID,DOP_GRID] = step(H,x,xref) uses xref as the reference signal
to dechirp x. This syntax is available when you set the RangeMethod property to 'FFT'
and the DechirpInput property to true. This syntax is most commonly used with
FMCW signals, where the reference signal is typically the transmitted signal.

[RESP,RNG_GRID,DOP_GRID] = step(H,x,coeff) uses coeff as the matched
filter coefficients. This syntax is available when you set the RangeMethod property to
'Matched filter'. This syntax is most commonly used with pulsed signals, where the
matched filter is the time reverse of the transmitted signal.

Note: The object performs an initialization the first time the step method is executed.
This initialization locks nontunable properties and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change

1 Alphabetical List

1-1438

nontunable properties or inputs, you must first call the release method to unlock the
object.

Input Arguments

H

Range-Doppler response object.

x

Input data. Specific requirements depend on the syntax:

• In the syntax step(H,x), each column of the matrix x represents a dechirped signal
from one frequency sweep. The function assumes all sweeps in x are consecutive.

• In the syntax step(H,x,xref), each column of the matrix x represents a signal from
one frequency sweep. The function assumes all sweeps in x are consecutive and have
not been dechirped yet.

• In the syntax step(H,x,coeff), each column of the matrix x represents a signal
from one pulse. The function assumes all pulses in x are consecutive.

In the case of an FMCW waveform with a triangle sweep, the sweeps alternate
between positive and negative slopes. However, phased.RangeDopplerResponse
is designed to process consecutive sweeps of the same slope. To apply
phased.RangeDopplerResponse for a triangle-sweep system, use one of the following
approaches:

• Specify a positive SweepSlope property value, with x corresponding to upsweeps
only. After obtaining the Doppler or speed values, divide them by 2.

• Specify a negative SweepSlope property value, with x corresponding to downsweeps
only. After obtaining the Doppler or speed values, divide them by 2.

xref

Reference signal, specified as a column vector having the same number of rows as x.

coeff

Matched filter coefficients, specified as a column vector.

 step

1-1439

Output Arguments

RESP

Complex range-Doppler response of x, returned as a P-by-Q matrix. The values of P and
Q depend on the syntax.

Syntax Values of P and Q

step(H,x) If you set the RangeFFTLength property
to 'Auto', P is the number of rows
in x. Otherwise, P is the value of the
RangeFFTLength property.

If you set the DopplerFFTLength property
to 'Auto', Q is the number of columns
in x. Otherwise, Q is the value of the
DopplerFFTLength property.

step(H,x,xref) P is the quotient between the number
of rows of x and the value of the
DecimationFactor property.

If you set the DopplerFFTLength property
to 'Auto', Q is the number of columns
in x. Otherwise, Q is the value of the
DopplerFFTLength property.

step(H,x,coeff) P is the number of rows of x.

If you set the DopplerFFTLength property
to 'Auto', Q is the number of columns
in x. Otherwise, Q is the value of the
DopplerFFTLength property.

RNG_GRID

Range samples at which the range-Doppler response is evaluated. RNG_GRID is a column
vector of length P.

1 Alphabetical List

1-1440

DOP_GRID

Doppler samples or speed samples at which the range-Doppler response is evaluated.
DOP_GRID is a column vector of length Q. Whether DOP_GRID contains Doppler or speed
samples depends on the DopplerOutput property of H.

Examples

Range-Doppler Response of Pulsed Radar Signal Using Matched Filter

Compute using a matched filter the range-doppler response of a pulsed radar signal.

Load data for a pulsed radar signal. The signal includes three target returns. Two targets
are approximately 2000 m away, while the third is approximately 3500 m away. In
addition, two of the targets are stationary relative to the radar. The third is moving away
from the radar at about 100 m/s.

load RangeDopplerExampleData;

Create a range-Doppler response object.

hrdresp = phased.RangeDopplerResponse(...

 'DopplerFFTLengthSource','Property',...

 'DopplerFFTLength',RangeDopplerEx_MF_NFFTDOP,...

 'SampleRate',RangeDopplerEx_MF_Fs,...

 'DopplerOutput','Speed',...

 'OperatingFrequency',RangeDopplerEx_MF_Fc);

Calculate the range-Doppler response.

[resp,rng_grid,dop_grid] = step(hrdresp,...

 RangeDopplerEx_MF_X,RangeDopplerEx_MF_Coeff);

Plot the range-Doppler response.

imagesc(dop_grid,rng_grid,mag2db(abs(resp)));

xlabel('Speed (m/s)');

ylabel('Range (m)');

title('Range-Doppler Map');

 step

1-1441

Estimate Doppler and Range from Range-Doppler Response

Estimate the Doppler and range values of a single target from the range-Doppler
response.

Load data for an FMCW signal that has not yet been dechirped. The signal contains the
return from one target.

load RangeDopplerExampleData;

Create a range-Doppler response object.

hrdresp = phased.RangeDopplerResponse(...

 'RangeMethod','FFT',...

1 Alphabetical List

1-1442

 'PropagationSpeed',RangeDopplerEx_Dechirp_PropSpeed,...

 'SampleRate',RangeDopplerEx_Dechirp_Fs,...

 'DechirpInput',true,...

 'SweepSlope',RangeDopplerEx_Dechirp_SweepSlope);

Obtain the range-Doppler response data.

[resp,rng_grid,dop_grid] = step(hrdresp,...

 RangeDopplerEx_Dechirp_X,RangeDopplerEx_Dechirp_Xref);

Estimate the range and Doppler by finding the location of the maximum response.

[x_temp,idx_temp] = max(abs(resp));

[~,dop_idx] = max(x_temp);

rng_idx = idx_temp(dop_idx);

dop_est = dop_grid(dop_idx)

rng_est = rng_grid(rng_idx)

dop_est =

 -712.8906

rng_est =

 2250

The target is approximately 2250 meters away, and is moving fast enough to cause a
Doppler shift of approximately -713 Hz.

 phased.ReceiverPreamp System object

1-1443

phased.ReceiverPreamp System object
Package: phased

Receiver preamp

Description

The ReceiverPreamp System object implements a model of a receiver preamplifer. The
object receives incoming signals, multiplies them by the amplifier gain and divides by
system losses. Finally, Gaussian white noise is added to the signal.

To model a receiver preamp:

1 Define and set up your receiver preamp. See “Construction” on page 1-1443.
2 Call step to amplify the input signal according to the properties of

phased.ReceiverPreamp. The behavior of step is specific to each object in the
toolbox.

Construction

H = phased.ReceiverPreamp creates a receiver preamp System object, H.

H = phased.ReceiverPreamp(Name,Value) creates a receiver preamp object, H, with
each specified property Name set to the specified Value. You can specify additional name-
value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties

Gain

Gain of receiver

A scalar containing the gain (in decibels) of the receiver preamp.

Default: 20

1 Alphabetical List

1-1444

LossFactor

Loss factor of receiver

A scalar containing the loss factor (in decibels) of the receiver preamp.

Default: 0

NoiseMethod

Noise specification method

Specify how to compute noise power using one of 'Noise power' | 'Noise
temperature'. If you set this property to 'Noise temperature', complex
baseband noise is added to the input signal with noise power computed from the
ReferenceTemperature, NoiseFigure, and SampleRate properties. If you set this
property to 'Noise power', noise is added to the signal with power specified in the
NoisePower property.

Default: 'Noise temperature'

NoiseFigure

Noise figure of receiver

A scalar containing the noise figure (in decibels) of the receiver preamp. If the receiver
has multiple channels/sensors, the noise figure applies to each channel/sensor. This
property is only applicable when you set the NoiseMethod property to 'Noise
temperature'.

Default: 0

ReferenceTemperature

Reference temperature of receiver

A scalar containing the reference temperature of the receiver (in kelvin). If the receiver
has multiple channels/sensors, the reference temperature applies to each channel/sensor.
This property is only applicable when you set the NoiseMethod property to 'Noise
temperature'.

Default: 290

 phased.ReceiverPreamp System object

1-1445

SampleRate

Sample rate

Specify the sample rate, in hertz, as a positive scalar. This property is only applicable
when you set the NoiseMethod property to 'Noise temperature'. The SampleRate
property also specifies the noise bandwidth.

Default: 1e6

NoisePower

Noise power

Specify the noise power (in Watts) as a positive scalar. This property is only applicable
when you set the NoiseMethod property to 'Noise power'.

Default: 1.0

NoiseComplexity

Noise complexity

Specify the noise complexity as one of 'Complex' | 'Real'. When you set this property
to 'Complex', the noise power is evenly divided between real and imaginary channels.
Usually, complex-valued baseband signals require the addition of complex-valued noise.
On occasion, when the signal is real-valued, you can use this option to specify that the
noise is real-valued as well.

Default: 'Complex'

EnableInputPort

Add input to specify enabling signal

To specify a receiver enabling signal, set this property to true and use the corresponding
input argument when you invoke step. If you do not want to specify a receiver enabling
signal, set this property to false.

Default: false

PhaseNoiseInputPort

Add input to specify phase noise

1 Alphabetical List

1-1446

To specify the phase noise for each incoming sample, set this property to true and use
the corresponding input argument when you invoke step. You can use this information to
emulate coherent-on-receive systems. If you do not want to specify phase noise, set this
property to false.

Default: false

SeedSource

Source of seed for random number generator

Specify how the object generates random numbers. Values of this property are:

'Auto' The default MATLAB random number generator produces
the random numbers. Use 'Auto' if you are using this
object with Parallel Computing Toolbox software.

'Property' The object uses its own private random number generator
to produce random numbers. The Seed property of this
object specifies the seed of the random number generator.
Use 'Property' if you want repeatable results and are
not using this object with Parallel Computing Toolbox
software.

Default: 'Auto'

Seed

Seed for random number generator

Specify the seed for the random number generator as a scalar integer between 0 and 232–
1. This property applies when you set the SeedSource property to 'Property'.

Default: 0

Methods

clone Create receiver preamp object with same
property values

 phased.ReceiverPreamp System object

1-1447

getNumInputs Number of expected inputs to step method
getNumOutputs Number of outputs from step method
isLocked Locked status for input attributes and

nontunable properties
release Allow property value and input

characteristics changes
reset Reset random number generator for noise

generation
step Receive incoming signal

Examples

Preamplify a signal

This example shows how to use a ReceiverPreamp System object to amplify a signal.

Create the ReceiverPreamp System object.

Hrx = phased.ReceiverPreamp('NoiseFigure',10);

Create the input signal.

Fs = 100;

t = linspace(0,1-1/Fs,100);

x = 1e-6*sin(2*pi*5*t);

Amplify the signal and compare with the input signal.

y = step(Hrx,x);

plot(t,x,t,real(y))

xlabel('Time (s)')

ylabel('Amplitude')

legend('Original signal','Received signal')

1 Alphabetical List

1-1448

References

[1] Richards, M. A. Fundamentals of Radar Signal Processing. New York: McGraw-Hill,
2005.

[2] Skolnik, M. Introduction to Radar Systems, 3rd Ed. New York: McGraw-Hill, 2001.

See Also
phased.Collector | phased.Transmitter

 phased.ReceiverPreamp System object

1-1449

More About
• “Receiver Preamp”

Introduced in R2012a

1 Alphabetical List

1-1450

clone
System object: phased.ReceiverPreamp
Package: phased

Create receiver preamp object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates an object, C, having the same property values and same states as
H. If H is locked, so is C.

 getNumInputs

1-1451

getNumInputs
System object: phased.ReceiverPreamp
Package: phased

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of inputs
(not counting the object itself) that you must use when calling the step method. This
value changes when you alter properties that turn inputs on or off.

1 Alphabetical List

1-1452

getNumOutputs
System object: phased.ReceiverPreamp
Package: phased

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value changes when you alter properties that turn outputs on or off.

 isLocked

1-1453

isLocked
System object: phased.ReceiverPreamp
Package: phased

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF, for the ReceiverPreamp System
object.

isLocked returns a logical value that indicates whether input attributes and
nontunable properties for the object are locked. The object performs an internal
initialization the first time that you execute step. This initialization locks nontunable
properties and input specifications, such as the dimensions, complexity, and data type of
the input data. After locking, isLocked returns a true value.

1 Alphabetical List

1-1454

release
System object: phased.ReceiverPreamp
Package: phased

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

 reset

1-1455

reset
System object: phased.ReceiverPreamp
Package: phased

Reset random number generator for noise generation

Syntax

reset(H)

Description

reset(H) resets the states of the ReceiverPreamp object, H. This method resets the
random number generator state if the SeedSource property is set to 'Property'.

1 Alphabetical List

1-1456

step
System object: phased.ReceiverPreamp
Package: phased

Receive incoming signal

Syntax

Y = step(H,X)

Y = step(H,X,EN_RX)

Y = step(H,X,PHNOISE)

Y = step(H,X,EN_RX,PHNOISE)

Description

Y = step(H,X) applies the receiver gain and the receiver noise to the input signal, X,
and returns the resulting output signal, Y.

Y = step(H,X,EN_RX) uses input EN_RX as the enabling signal when the
EnableInputPort property is set to true.

Y = step(H,X,PHNOISE) uses input PHNOISE as the phase noise for each sample in
X when the PhaseNoiseInputPort is set to true. The phase noise is the same for all
channels in X. The elements in PHNOISE represent the random phases the transmitter
adds to the transmitted pulses. The receiver preamp object removes these random phases
from all received samples returned within corresponding pulse intervals. Such setup is
often referred to as coherent on receive.

Y = step(H,X,EN_RX,PHNOISE) combines all input arguments. This syntax
is available when you configure H so that H.EnableInputPort is true and
H.PhaseNoiseInputPort is true.

Note: The object performs an initialization the first time the step method is executed.
This initialization locks nontunable properties and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change

 step

1-1457

nontunable properties or inputs, you must first call the release method to unlock the
object.

Input Arguments
H

Receiver object.

X

Input signal.

EN_RX

Enabling signal, specified as a column vector whose length equals the number of rows in
X. The data type of EN_RN is double or logical. Every element of EN_RX that equals 0
or false indicates that the receiver is turned off, and no input signal passes through the
receiver. Every element of EN_RX that is nonzero or true indicates that the receiver is
turned on, and the input passes through.

PHNOISE

Phase noise for each sample in X, specified as a column vector whose length equals the
number of rows in X. You can obtain PHNOISE as an optional output argument from the
step method of phased.Transmitter.

Output Arguments
Y

Output signal. Y has the same dimensions as X.

Examples
Preamplify a cosine wave

This example shows how to construct a Receiver Preamp System object with a noise
figure of 5 dB and a bandwidth of 1 MHz and then use its step method to amplify a sine
wave.

1 Alphabetical List

1-1458

Construct the Receiver Preamp system object.

hrx = phased.ReceiverPreamp('NoiseFigure',5,'SampleRate',1e6);

Create the signal.

Fs = 1e3;

t = linspace(0,1,1e3);

x = cos(2*pi*200*t)';

Use the step method to amplify the signal and then plot the first 100 samples.

y = step(hrx,x);

idx = [1:100];

plot(t(idx),x(idx),t(idx),real(y(idx)))

xlabel('Time (s)')

ylabel('Amplitude')

legend('Original signal','Received signal')

 step

1-1459

1 Alphabetical List

1-1460

phased.RectangularWaveform System object
Package: phased

Rectangular pulse waveform

Description

The RectangularWaveform object creates a rectangular pulse waveform.

To obtain waveform samples:

1 Define and set up your rectangular pulse waveform. See “Construction” on page
1-1460.

2 Call step to generate the rectangular pulse waveform samples according to the
properties of phased.RectangularWaveform. The behavior of step is specific to
each object in the toolbox.

Construction

H = phased.RectangularWaveform creates a rectangular pulse waveform System
object, H. The object generates samples of a rectangular pulse.

H = phased.RectangularWaveform(Name,Value) creates a rectangular
pulse waveform object, H, with each specified property Name set to the specified
Value. You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties

SampleRate

Sample rate

Signal sample rate, specified as a positive scalar. Units are Hertz. The ratio of sample
rate to pulse repetition frequency (PRF) must be a positive integer — each pulse must
contain an integer number of samples.

 phased.RectangularWaveform System object

1-1461

Default: 1e6

DurationSpecification

Method to set pulse duration

Method to set pulse duration (pulse width), specified as 'Pulse width' or 'Duty
cycle'. This property determines how you set the pulse duration. When you set
this property to 'Pulse width', then you set the pulse duration directly using the
PulseWidth property. When you set this property to 'Duty cycle', you set the pulse
duration from the values of the PRF and DutyCycle properties. The pulse width is equal
to the duty cycle divided by the PRF.

Default: 'Pulse width'

PulseWidth

Pulse width

Specify the length of each pulse (in seconds) as a positive scalar. The value must satisfy
PulseWidth <= 1./PRF.

Default: 50e-6

DutyCycle

Waveform duty cycle

Waveform duty cycle, specified as a scalar from 0 through 1, inclusive. This property
applies when you set the DurationSpecification property to 'Duty cycle'. The
pulse width is the value of the DutyCycle property divided by the value of the PRF
property.

Default: 0.5

PRF

Pulse repetition frequency

Pulse repetition frequency (PRF), specified as a scalar or a row vector. Units are hertz.
The pulse repetition interval (PRI) is the inverse of the PRF.

• When PRFSelectionInputPort is false, you can

• implement a constant PRF by specifying PRF as a positive real-valued scalar.

1 Alphabetical List

1-1462

• implement a staggered PRF by specifying PRF as a row vector with positive real-
valued entries. When PRF is a vector, the each call to the step method produces
pulses that use successive elements of the vector as the PRF. If the last element of
the vector is reached, the process continues cyclically with the first element of the
vector.

• When PRFSelectionInputPort is true, you can implement a selectable PRF by
specifying PRF as a row vector with positive real-valued entries. Then in each call to
the step syntax, pass in an index to an entry in the desired PRF vector.

The value of this property must satisfy these constraints:

• The PRF must be less than or equal to 1/PulseWidth. This is equivalent to the
requirement that the pulse width is less than or equal to the PRI. For the phase-coded
waveform, the pulse width is the product of the chip width and number of chips.

• The ratio of sample rate to PRF must be an integer — the number of samples in a
pulse must be an integer

Default: 10e3

PRFSelectionInputPort

Enable PRF selection input

Enable the PRF selection input, specified as true or false. When you set this property
to false, the step method uses the values set in the PRF property in order. When you
set this property to true, you can pass an additional argument into the step method to
select any value from the PRF vector.

Default: false

OutputFormat

Output signal format

Specify the format of the output signal as one of 'Pulses' or 'Samples'. When you
set the OutputFormat property to 'Pulses', the output of the step method is in the
form of multiple pulses. In this case, the number of pulses is the value of the NumPulses
property.

When you set the OutputFormat property to 'Samples', the output of the step method
is in the form of multiple samples. In this case, the number of samples is the value of the
NumSamples property.

 phased.RectangularWaveform System object

1-1463

Default: 'Pulses'

NumSamples

Number of samples in output

Specify the number of samples in the output of the step method as a positive integer.
This property applies only when you set the OutputFormat property to 'Samples'.

Default: 100

NumPulses

Number of pulses in output

Specify the number of pulses in the output of the step method as a positive integer. This
property applies only when you set the OutputFormat property to 'Pulses'.

Default: 1

Methods

bandwidth Bandwidth of rectangular pulse waveform
clone Create rectangular waveform object with

same property values
getMatchedFilter Matched filter coefficients for waveform
getNumInputs Number of expected inputs to step method
getNumOutputs Number of outputs from step method
isLocked Locked status for input attributes and

nontunable properties
plot Plot rectangular pulse waveform
release Allow property value and input

characteristics changes
reset Reset states of rectangular waveform object
step Samples of rectangular pulse waveform

1 Alphabetical List

1-1464

Examples

Plot Rectangular Waveform and Spectrum

Create and plot a rectangular pulse waveform object and then plot its spectrum.

Plot the waveform

Create and plot a pulse waveform. The sample rate is 500 kHz, the pulse width is 0.1
millisecond. The pulse repetition interval is twice the pulse duration.

fs = 500e3;

Create the rectangular waveform System object™.

sWF = phased.RectangularWaveform('SampleRate',fs,'PulseWidth',1e-4,'PRF',5000.0);

Use the step method to obtain the waveform. Then, plot the waveform.

rectwav = step(sWF);

nsamp = size(rectwav,1);

t = [0:(nsamp-1)]/fs;

plot(t*1000,real(rectwav))

xlabel('Time (millisec)')

ylabel('Amplitude')

grid

 phased.RectangularWaveform System object

1-1465

Plot the spectrum

Compute the Fourier transform of the complex signal. Then show the spectrum.

nfft = 2^nextpow2(nsamp);

Z = fft(real(rectwav),nfft);

fr = [0:(nfft/2-1)]/nfft*fs;

plot(fr/1000,abs(Z(1:nfft/2)),'.-')

xlabel('Frequency (kHz)')

ylabel('Amplitude')

grid

1 Alphabetical List

1-1466

Plot the spectrogram

Plot a spectrogram of the function with a window size of 64 samples and 50% overlap.
Window the signal with a Hamming function.

nfft1 = 64;

nov = floor(0.5*nfft1);

spectrogram(rectwav,hamming(nfft1),nov,nfft1,fs,'centered','yaxis')

 phased.RectangularWaveform System object

1-1467

This plot shows the constant frequency of the signal.

• Waveform Analysis Using the Ambiguity Function

References

[1] Richards, M. A. Fundamentals of Radar Signal Processing. New York: McGraw-Hill,
2005.

../examples/waveform-analysis-using-the-ambiguity-function.html

1 Alphabetical List

1-1468

See Also
phased.LinearFMWaveform | phased.SteppedFMWaveform |
phased.PhaseCodedWaveform

Introduced in R2012a

 bandwidth

1-1469

bandwidth
System object: phased.RectangularWaveform
Package: phased

Bandwidth of rectangular pulse waveform

Syntax

BW = bandwidth(H)

Description

BW = bandwidth(H) returns the bandwidth (in hertz) of the pulses for the rectangular
pulse waveform, H. The bandwidth equals the reciprocal of the pulse width.

Input Arguments

H

Rectangular pulse waveform object.

Output Arguments

BW

Bandwidth of the pulses, in hertz.

Examples

Determine the bandwidth of a rectangular pulse waveform.

H = phased.RectangularWaveform;

bw = bandwidth(H)

1 Alphabetical List

1-1470

clone
System object: phased.RectangularWaveform
Package: phased

Create rectangular waveform object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates an object, C, having the same property values and same states as
H. If H is locked, so is C.

 getMatchedFilter

1-1471

getMatchedFilter
System object: phased.RectangularWaveform
Package: phased

Matched filter coefficients for waveform

Syntax

Coeff = getMatchedFilter(H)

Description

Coeff = getMatchedFilter(H) returns the matched filter coefficients for the
rectangular waveform object H. Coeff is a column vector.

Examples

Get the matched filter coefficients for a rectangular pulse.

hw = phased.RectangularWaveform('PulseWidth',1e-5,...

 'OutputFormat','Pulses','NumPulses',1);

Coeff = getMatchedFilter(hw);

1 Alphabetical List

1-1472

getNumInputs
System object: phased.RectangularWaveform
Package: phased

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of inputs
(not counting the object itself) that you must use when calling the step method. This
value changes when you alter properties that turn inputs on or off.

 getNumOutputs

1-1473

getNumOutputs
System object: phased.RectangularWaveform
Package: phased

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value changes when you alter properties that turn outputs on or off.

1 Alphabetical List

1-1474

isLocked
System object: phased.RectangularWaveform
Package: phased

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF, for the RectangularWaveform
System object.

isLocked returns a logical value that indicates whether input attributes and
nontunable properties for the object are locked. The object performs an internal
initialization the first time that you execute step. This initialization locks nontunable
properties and input specifications, such as the dimensions, complexity, and data type of
the input data. After locking, isLocked returns a true value.

 plot

1-1475

plot
System object: phased.RectangularWaveform
Package: phased

Plot rectangular pulse waveform

Syntax

plot(Hwav)

plot(Hwav,Name,Value)

plot(Hwav,Name,Value,LineSpec)

h = plot(___)

Description

plot(Hwav) plots the real part of the waveform specified by Hwav.

plot(Hwav,Name,Value) plots the waveform with additional options specified by one
or more Name,Value pair arguments.

plot(Hwav,Name,Value,LineSpec) specifies the same line color, line style, or marker
options as are available in the MATLAB plot function.

h = plot(___) returns the line handle in the figure.

Input Arguments

Hwav

Waveform object. This variable must be a scalar that represents a single waveform
object.

LineSpec

String that specifies the same line color, style, or marker options as are available in the
MATLAB plot function. If you specify a PlotType value of 'complex', then LineSpec
applies to both the real and imaginary subplots.

1 Alphabetical List

1-1476

Default: 'b'

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'PlotType'

Specifies whether the function plots the real part, imaginary part, or both parts of the
waveform. Valid values are 'real', 'imag', and 'complex'.

Default: 'real'

'PulseIdx'

Index of the pulse to plot. This value must be a scalar.

Default: 1

Output Arguments

h

Handle to the line or lines in the figure. For a PlotType value of 'complex', h is a
column vector. The first and second elements of this vector are the handles to the lines in
the real and imaginary subplots, respectively.

Examples

Create and plot a rectangular pulse waveform.

hw = phased.RectangularWaveform('PulseWidth',1e-4);

plot(hw);

 plot

1-1477

1 Alphabetical List

1-1478

release
System object: phased.RectangularWaveform
Package: phased

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

 reset

1-1479

reset
System object: phased.RectangularWaveform
Package: phased

Reset states of rectangular waveform object

Syntax

reset(H)

Description

reset(H) resets the states of the RectangularWaveform object, H. Afterward, if the
PRF property is a vector, the next call to step uses the first PRF value in the vector.

1 Alphabetical List

1-1480

step
System object: phased.RectangularWaveform
Package: phased

Samples of rectangular pulse waveform

Syntax

Y = step(sRFM)

Y = step(sRFM,prfidx)

Description

Y = step(sRFM) returns samples of a rectangular pulse in the column vector Y.

Y = step(sRFM,prfidx), uses the prfidx index to select the PRF from the predefined
vector of values specified by in the PRF property. This syntax applies when you set the
PRFSelectionInputPort property to true.

Note: The object performs an initialization the first time the step method is executed.
This initialization locks nontunable properties and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Examples

Create Rectangular Waveform Pulse

Construct a 10 microseconds rectangular pulse with a pulse repetition interval of 100
microseconds.

Pulsewidth = 10e-6;

PRI = 100e-6;

 step

1-1481

sRFM = phased.RectangularWaveform('PulseWidth',Pulsewidth,...

 'OutputFormat','Pulses','NumPulses',1,...

 'SampleRate',1e6,'PRF',1/PRI);

wav = step(sRFM);

plot(wav)

xlabel('Time (\mu sec)')

ylabel('Amplitude')

grid

Create Rectangular Pulses with Variable PRF

Construct rectangular waveforms with two pulses each. Set the sample rate to 1 MHz,
a pulse width of 50 microseconds, and a duty cycle of 20%. Vary the pulse repetition
frequency.

1 Alphabetical List

1-1482

Set the sample rate and PRF. The ratio of sample rate to PRF must be an integer.

fs = 1e6;

PRF = [10000,25000];

sRFM = phased.RectangularWaveform('OutputFormat','Pulses','SampleRate',fs,...

 'DurationSpecification','Duty Cycle','DutyCycle',.2,...

 'PRF',PRF,'NumPulses',2,'PRFSelectionInputPort',true);

Obtain and plot the rectangular waveforms. For the first call to the step method, set
the PRF to 10kHz using the PRF index. For the next call, set the PRF to 25 kHz. For the
final call, set the PRF to 10kHz.

wav = [];

wav1 = step(sRFM,1);

wav = [wav; wav1];

wav1 = step(sRFM,2);

wav = [wav; wav1];

wav1 = step(sRFM,1);

wav = [wav; wav1];

nsamps = size(wav,1);

t = [0:(nsamps-1)]/sRFM.SampleRate;

plot(t*1e6,real(wav))

xlabel('Time (\mu sec)')

ylabel('Amplitude')

grid

 step

1-1483

1 Alphabetical List

1-1484

phased.ReplicatedSubarray System object
Package: phased

Phased array formed by replicated subarrays

Description

The ReplicatedSubarray object represents a phased array that contains copies of a
subarray.

To obtain the response of the subarrays:

1 Define and set up your phased array containing replicated subarrays. See
“Construction” on page 1-1484.

2 Call step to compute the response of the subarrays according to the properties of
phased.ReplicatedSubarray. The behavior of step is specific to each object in
the toolbox.

You can also use a ReplicatedSubarray object as the value of the SensorArray or
Sensor property of objects that perform beamforming, steering, and other operations.

Construction

H = phased.ReplicatedSubarray creates a replicated subarray System object, H.
This object represents an array that contains copies of a subarray.

H = phased.ReplicatedSubarray(Name,Value) creates a replicated
subarray object, H, with each specified property Name set to the specified
Value. You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties

Subarray

Subarray to replicate

 phased.ReplicatedSubarray System object

1-1485

Specify the subarray you use to form the array. The subarray must be a phased.ULA,
phased.URA, or phased.ConformalArray object.

Default: phased.ULA with default property values

Layout

Layout of subarrays

Specify the layout of the replicated subarrays as 'Rectangular' or 'Custom'.

Default: 'Rectangular'

GridSize

Size of rectangular grid

Specify the size of the rectangular grid as a single positive integer or 1-by-2 positive
integer row vector. This property applies only when you set the Layout property to
'Rectangular'.

If GridSize is a scalar, the array has the same number of subarrays in each row and
column.

If GridSize is a 1-by-2 vector, the vector has the form [NumberOfRows,
NumberOfColumns]. The first entry is the number of subarrays along each column,
while the second entry is the number of subarrays in each row. A row is along the local
y-axis, and a column is along the local z-axis. This figure shows how a 3-by-2 URA
subarray is replicated using a GridSize value of [1,2].

1 Alphabetical List

1-1486

3 x 2 Element URA

Replicated on a 1 x 2 Grid

1

2

3

4

6

5

Z

Y

7

8

9

10

12

11

Default: [2 1]

GridSpacing

Spacing of rectangular grid

Specify the rectangular grid spacing of subarrays as a real-valued positive scalar, a 1-
by-2 row vector, or the string value 'Auto'. This property applies only when you set the
Layout property to 'Rectangular'. Grid spacing units are expressed in meters.

If GridSpacing is a scalar, the spacing along the row and the spacing along the column
is the same.

If GridSpacing is a length-2 row vector, it has the form [SpacingBetweenRows,
SpacingBetweenColumn]. The first entry specifies the spacing between rows along a
column. The second entry specifies the spacing between columns along a row.

If GridSpacing is 'Auto', the replication preserves the element spacing in both row
and column. This option is available only if you use a phased.ULA or phased.URA object
as the subarray.

Default: 'Auto'

SubarrayPosition

Subarray positions in custom grid

 phased.ReplicatedSubarray System object

1-1487

Specify the positions of the subarrays in the custom grid. This property value is a 3-by-
N matrix, where N indicates the number of subarrays in the array. Each column of the
matrix represents the position of a single subarray in the array’s local coordinate system,
in meters, using the form [x; y; z].

This property applies when you set the Layout property to 'Custom'.

Default: [0 0; -0.5 0.5; 0 0]

SubarrayNormal

Subarray normal directions in custom grid

Specify the normal directions of the subarrays in the array. This property value is a 2-by-
N matrix, where N is the number of subarrays in the array. Each column of the matrix
specifies the normal direction of the corresponding subarray, in the form [azimuth;
elevation]. Each angle is in degrees and is defined in the local coordinate system.

You can use the SubarrayPosition and SubarrayNormal properties to represent
any arrangement in which pairs of subarrays differ by certain transformations. The
transformations can combine translation, azimuth rotation, and elevation rotation.
However, you cannot use transformations that require rotation about the normal.

This property applies when you set the Layout property to 'Custom'.

Default: [0 0; 0 0]

SubarraySteering

Subarray steering method

Specify the method of steering the subarray as one of 'None' | 'Phase' | 'Time'.

Default: 'None'

PhaseShifterFrequency

Subarray phase shifter frequency

Specify the operating frequency of phase shifters that perform subarray steering. The
property value is a positive scalar in hertz. This property applies when you set the
SubarraySteering property to 'Phase'.

Default: 3e8

1 Alphabetical List

1-1488

NumPhaseShifterBits

Number of phase shifter quantization bits

The number of bits used to quantize the phase shift component of beamformer or steering
vector weights. Specify the number of bits as a non-negative integer. A value of zero
indicates that no quantization is performed.

Default: 0

Methods

clone Create replicated subarray with same
property values

directivity Directivity of replicated subarray
collectPlaneWave Simulate received plane waves
getElementPosition Positions of array elements
getNumElements Number of elements in array
getNumInputs Number of expected inputs to step method
getNumOutputs Number of outputs from step method
getNumSubarrays Number of subarrays in array
getSubarrayPosition Positions of subarrays in array
isLocked Locked status for input attributes and

nontunable properties
isPolarizationCapable Polarization capability
pattern Plot replicated subarray directivity and

patterns
patternAzimuth Plot replicated subarray directivity or

pattern versus azimuth
patternElevation Plot replicated subarray directivity or

pattern versus elevation
plotResponse Plot response pattern of array
release Allow property value and input

characteristics changes

 phased.ReplicatedSubarray System object

1-1489

step Output responses of subarrays
viewArray View array geometry

Examples

Azimuth Response of Array with Subarrays

Plot the azimuth response of a 4-element ULA composed of two 2-element ULAs. By
default, the antenna elements are isotropic.

sArray = phased.ULA('NumElements',2,'ElementSpacing',0.5);

sRSA = phased.ReplicatedSubarray('Subarray',sArray,...

 'Layout','Rectangular','GridSize',[1 2],...

 'GridSpacing','Auto');

Plot the azimuth response of the array. Assume the operating frequency is 1 GHz and the
wave propagation speed is the speed of light.

fc = 1.0e9;

pattern(sRSA,fc,[-180:180],0,...

 'PropagationSpeed',physconst('LightSpeed'),...

 'Type','powerdb',...

 'Normalize',true,...

 'CoordinateSystem','polar')

1 Alphabetical List

1-1490

Response of Subarrays with Polarized Antenna Elements

Create a 4-element ULA from two 2-element ULA subarrays consisting of short-dipole
antenna elements. Then, calculate the response at boresight. Because the array elements
support polarization, the response consists of horizontal and vertical components.

Create the arrays from subarrays.

sSD = phased.ShortDipoleAntennaElement;

sULA = phased.ULA('Element',sSD,...

 'NumElements',2,...

 'ElementSpacing',0.5);

sRSA = phased.ReplicatedSubarray('Subarray',sULA,...

 'Layout','Rectangular',...

 phased.ReplicatedSubarray System object

1-1491

 'GridSize',[1 2],...

 'GridSpacing','Auto');

Show the vertical polarization response for the subarrays.

fc = 1.0e9;

ang = [0;0];

resp = step(sRSA,fc,ang,physconst('LightSpeed'));

disp(resp.V)

 -2.4495

 -2.4495

• Subarrays in Phased Array Antennas
• Phased Array Gallery

References

[1] Mailloux, Robert J. Electronically Scanned Arrays. San Rafael, CA: Morgan &
Claypool Publishers, 2007.

[2] Mailloux, Robert J. Phased Array Antenna Handbook, 2nd Ed. Norwood, MA: Artech
House, 2005.

See Also
phased.ULA | phased.URA | phased.UCA | phased.ConformalArray |
phased.PartitionedArray

More About
• “Subarrays Within Arrays”

Introduced in R2012a

../examples/subarrays-in-phased-array-antennas.html
../examples/phased-array-gallery.html

1 Alphabetical List

1-1492

clone
System object: phased.ReplicatedSubarray
Package: phased

Create replicated subarray with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates an object, C, having the same property values and same states as
H. If H is locked, so is C.

 directivity

1-1493

directivity
System object: phased.ReplicatedSubarray
Package: phased

Directivity of replicated subarray

Syntax

D = directivity(H,FREQ,ANGLE)

D = directivity(H,FREQ,ANGLE,Name,Value)

Description

D = directivity(H,FREQ,ANGLE) returns the “Directivity (dBi)” on page 1-1496 of
a replicated array of antenna or microphone element, H, at frequencies specified by FREQ
and in angles of direction specified by ANGLE.

D = directivity(H,FREQ,ANGLE,Name,Value) returns the directivity with
additional options specified by one or more Name,Value pair arguments.

Input Arguments

H — Replicated subarray
System object

Replicated subarray, specified as a phased.ReplicatedSubarray System object.
Example: H = phased.ReplicatedSubarray;

FREQ — Frequency for computing directivity and patterns
positive scalar | 1-by-L real-valued row vector

Frequencies for computing directivity and patterns, specified as a positive scalar or 1-
by-L real-valued row vector. Frequency units are in hertz.

• For an antenna or microphone element, FREQ must lie within the range of
values specified by the FrequencyRange or FrequencyVector property of the

1 Alphabetical List

1-1494

element. Otherwise, the element produces no response and the directivity is
returned as –Inf. Most elements use the FrequencyRange property except for
phased.CustomAntennaElement and phased.CustomMicrophoneElement, which use
the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements
that make up the array. Otherwise, the array produces no response and the
directivity is returned as –Inf.

Example: [1e8 2e8]

Data Types: double

ANGLE — Angles for computing directivity
1-by-M real-valued row vector | 2-by-M real-valued matrix

Angles for computing directivity, specified as a 1-by-M real-valued row vector or a 2-
by-M real-valued matrix, where M is the number of angular directions. Angle units
are in degrees. If ANGLE is a 2-by-M matrix, then each column specifies a direction in
azimuth and elevation, [az;el]. The azimuth angle must lie between –180° and 180°.
The elevation angle must lie between –90° and 90°.

If ANGLE is a 1-by-M vector, then each entry represents an azimuth angle, with the
elevation angle assumed to be zero.

The azimuth angle is the angle between the x-axis and the projection of the direction
vector onto the xy plane. This angle is positive when measured from the x-axis toward the
y-axis. The elevation angle is the angle between the direction vector and xy plane. This
angle is positive when measured towards the z-axis.
Example: [45 60; 0 10]

Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'PropagationSpeed' — Signal propagation speed
speed of light (default) | positive scalar

 directivity

1-1495

Signal propagation speed, specified as the comma-separated pair consisting of
'PropagationSpeed' and a positive scalar in meters per second.

Example: 'PropagationSpeed',physconst('LightSpeed')

Data Types: double

'Weights' — Subarray weights
1 (default) | N-by-1 complex-valued column vector | N-by-L complex-valued matrix

Subarray weights, specified as the comma-separated pair consisting of 'Weights' and an
N-by-1 complex-valued column vector or N-by-M complex-valued matrix. The dimension
N is the number of subarrays in the array. The dimension L is the number of frequencies
specified by the FREQ argument.

Weights dimension FREQ dimension Purpose

N-by-1 complex-valued
column vector

Scalar or 1-by-L row vector Applies a set of weights for
the single frequency or for all
L frequencies.

N-by-L complex-valued
matrix

1-by-L row vector Applies each of the L
columns of ‘Weights’ for
the corresponding frequency
in the FREQ argument.

Example: 'Weights',ones(N,M)

Data Types: double

'SteerAngle' — Subarray steering angle
[0;0] (default) | scalar | 2-element column vector

Subarray steering angle, specified as the comma-separated pair consisting of
'SteerAngle' and a scalar or a 2-by-1 column vector.

If 'SteerAngle' is a 2-by-1 column vector, it has the form [azimuth; elevation].
The azimuth angle must be between –180° and 180°, inclusive. The elevation angle must
be between –90° and 90°, inclusive.

If 'SteerAngle' is a scalar, it specifies the azimuth angle only. In this case, the
elevation angle is assumed to be 0.

This option applies only when the 'SubarraySteering' property of the System object
is set to 'Phase' or 'Time'.

1 Alphabetical List

1-1496

Example: 'SteerAngle',[20;30]

Data Types: double

Output Arguments

D — Directivity
M-by-L matrix

Directivity, returned as an M-by-L matrix whose columns contain the directivities at the
M angles specified by ANGLE. Each column corresponds to one of the L frequency values
specified in FREQ. Directivity units are in dBi.

Definitions

Directivity (dBi)

Directivity describes the directionality of the radiation pattern of a sensor element
or array of sensor elements. Higher directivity is desired when you want to transmit
more radiation in a specific direction. Directivity is the ratio of the transmitted radiant
intensity in a specified direction to the radiant intensity transmitted by an isotropic
radiator with the same total transmitted power

D
U

P
=

()
4p

q jrad

total

,

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal
is the total power transmitted by an isotropic radiator. For a receiving element or array,
directivity measures the sensitivity toward radiation arriving from a specific direction.
The principle of reciprocity shows that the directivity of an element or array used for
reception equals the directivity of the same element or array used for transmission.
When converted to decibels, the directivity is denoted as dBi. For information on
directivity, read the notes on “Element directivity” and “Array directivity”.

Computing directivity requires integrating the far-field transmitted radiant intensity
over all directions in space to obtain the total transmitted power. There is a difference
between how that integration is performed when Antenna Toolbox antennas are used

 directivity

1-1497

in a phased array and when Phased Array System Toolbox antennas are used. When
an array contains Antenna Toolbox antennas, the directivity computation is performed
using a triangular mesh created from 500 regularly spaced points over a sphere. For
Phased Array System Toolbox antennas, the integration uses a uniform rectangular
mesh of points spaced 1° apart in azimuth and elevation over a sphere. There may be
significant differences in computed directivity, especially for large arrays.

Examples

Directivity of Replicated Subarray

Compute the directivity of an array built up from ULA subarrays. Determine the
directivity of the replicated subarray when the array is steered to towards 30 degrees
azimuth.

Set the signal propagation speed to the speed of light. Set the signal frequency to 300
MHz.

c = physconst('LightSpeed');

fc = 3e8;

lambda = c/fc;

Create a 4-element ULA of isotropic antenna elements spaced 0.4-wavelength apart.

myArray = phased.ULA;

myArray.NumElements = 4;

myArray.ElementSpacing = 0.4*lambda;

Construct a 2-by-1 replicated subarray.

myRepArray = phased.ReplicatedSubarray;

myRepArray.Subarray = myArray;

myRepArray.Layout = 'Rectangular';

myRepArray.GridSize = [2 1];

myRepArray.GridSpacing = 'Auto';

myRepArray.SubarraySteering = 'Time';

Steer the array to 30 degrees azimuth and zero degrees elevation.

ang = [30;0];

mySV = phased.SteeringVector;

mySV.SensorArray = myRepArray;

1 Alphabetical List

1-1498

mySV.PropagationSpeed = c;

Find the directivity at 30 degrees azimuth.

d = directivity(myRepArray,fc,ang,...

 'PropagationSpeed',c,...

 'Weights',step(mySV,fc,ang),...

 'SteerAngle',ang)

d =

 7.4776

See Also
phased.ReplicatedSubarray.plotResponse

 collectPlaneWave

1-1499

collectPlaneWave

System object: phased.ReplicatedSubarray
Package: phased

Simulate received plane waves

Syntax

Y = collectPlaneWave(H,X,ANG)

Y = collectPlaneWave(H,X,ANG,FREQ)

Y = collectPlaneWave(H,X,ANG,FREQ,C)

Description

Y = collectPlaneWave(H,X,ANG) returns the received signals at the sensor array, H,
when the input signals indicated by X arrive at the array from the directions specified in
ANG.

Y = collectPlaneWave(H,X,ANG,FREQ), in addition, specifies the incoming signal
carrier frequency in FREQ.

Y = collectPlaneWave(H,X,ANG,FREQ,C), in addition, specifies the signal
propagation speed in C.

Input Arguments

H

Array object.

X

Incoming signals, specified as an M-column matrix. Each column of X represents an
individual incoming signal.

1 Alphabetical List

1-1500

ANG

Directions from which incoming signals arrive, in degrees. ANG can be either a 2-by-M
matrix or a row vector of length M.

If ANG is a 2-by-M matrix, each column specifies the direction of arrival of the
corresponding signal in X. Each column of ANG is in the form [azimuth; elevation].
The azimuth angle must be between –180° and 180°, inclusive. The elevation angle must
be between –90° and 90°, inclusive.

If ANG is a row vector of length M, each entry in ANG specifies the azimuth angle. In this
case, the corresponding elevation angle is assumed to be 0°.

FREQ

Carrier frequency of signal in hertz. FREQ must be a scalar.

Default: 3e8

C

Propagation speed of signal in meters per second.

Default: Speed of light

Output Arguments

Y

Received signals. Y is an N-column matrix, where N is the number of subarrays in the
array H. Each column of Y is the received signal at the corresponding subarray, with all
incoming signals combined.

Examples

Plane Waves Received at Array Containing Subarrays

Simulate the received signal at a 16-element ULA composed of four 4-element ULAs.

Create a 4-element ULA, and replicate it to create a 16-element ULA.

 collectPlaneWave

1-1501

hs = phased.ULA('NumElements',4);

ha = phased.ReplicatedSubarray('Subarray',hs,...

 'GridSize',[4 1]);

Simulate receiving signals from 10 degrees and 30 degrees azimuth. Both signals have an
elevation angle of 0 degrees. Assume the propagation speed is the speed of light and the
carrier frequency of the signal is 100 MHz.

Y = collectPlaneWave(ha,randn(4,2),[10 30],...

 1e8,physconst('LightSpeed'));

Algorithms

collectPlaneWave modulates the input signal with a phase corresponding to the
delay caused by the direction of arrival. This method does not account for the response
of individual elements in the array and only models the array factor among subarrays.
Therefore, the result does not depend on whether the subarray is steered.

See Also
phitheta2azel | uv2azel

1 Alphabetical List

1-1502

getElementPosition
System object: phased.ReplicatedSubarray
Package: phased

Positions of array elements

Syntax

POS = getElementPosition(H)

Description

POS = getElementPosition(H) returns the element positions in the array H.

Input Arguments

H

Array object consisting of replicated subarrays.

Output Arguments

POS

Element positions in array. POS is a 3-by-N matrix, where N is the number of elements in
H. Each column of POS defines the position of an element in the local coordinate system,
in meters, using the form [x; y; z].

Examples

Positions of Elements in Array with Replicated Subarrays

Create an array with two copies of a 3-element ULA, and obtain the positions of the
elements.

 getElementPosition

1-1503

H = phased.ReplicatedSubarray('Subarray',...

 phased.ULA('NumElements',3),'GridSize',[1 2]);

POS = getElementPosition(H)

See Also
getSubarrayPosition

1 Alphabetical List

1-1504

getNumElements
System object: phased.ReplicatedSubarray
Package: phased

Number of elements in array

Syntax

N = getNumElements(H)

Description

N = getNumElements(H) returns the number of elements in the array object H. This
number includes the elements in all subarrays of the array.

Input Arguments

H

Array object consisting of replicated subarrays.

Examples

Number of Elements in Array with ReplicatedSubarrays

Create an array with two copies of a 3-element ULA, and obtain the total number of
elements.

H = phased.ReplicatedSubarray('Subarray',...

 phased.ULA('NumElements',3),'GridSize',[1 2]);

N = getNumElements(H);

See Also
getNumSubarrays

 getNumInputs

1-1505

getNumInputs
System object: phased.ReplicatedSubarray
Package: phased

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of inputs
(not counting the object itself) that you must use when calling the step method. This
value changes when you alter properties that turn inputs on or off.

1 Alphabetical List

1-1506

getNumOutputs
System object: phased.ReplicatedSubarray
Package: phased

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value changes when you alter properties that turn outputs on or off.

 getNumSubarrays

1-1507

getNumSubarrays
System object: phased.ReplicatedSubarray
Package: phased

Number of subarrays in array

Syntax

N = getNumSubarrays(H)

Description

N = getNumSubarrays(H) returns the number of subarrays in the array object H.

Input Arguments

H

Array object consisting of replicated subarrays.

Examples

Number of Subarrays in Array

Create an array by tiling copies of a ULA in a 2-by-5 grid. Obtain the number of
subarrays.

H = phased.ReplicatedSubarray('Subarray',...

 phased.ULA('NumElements',3),'GridSize',[2 5]);

N = getNumSubarrays(H);

See Also
getNumElements

1 Alphabetical List

1-1508

getSubarrayPosition
System object: phased.ReplicatedSubarray
Package: phased

Positions of subarrays in array

Syntax

POS = getSubarrayPosition(H)

Description

POS = getSubarrayPosition(H) returns the subarray positions in the array H.

Input Arguments

H

Partitioned array object.

Output Arguments

POS

Subarrays positions in array. POS is a 3-by-N matrix, where N is the number of
subarrays in H. Each column of POS defines the position of a subarray in the local
coordinate system, in meters, using the form [x; y; z].

Examples

Positions of Replicated Subarrays in Array

Create an array with two copies of a 3-element ULA, and obtain the positions of the
subarrays.

 getSubarrayPosition

1-1509

H = phased.ReplicatedSubarray('Subarray',...

 phased.ULA('NumElements',3),'GridSize',[1 2]);

POS = getSubarrayPosition(H)

See Also
getElementPosition

1 Alphabetical List

1-1510

isLocked
System object: phased.ReplicatedSubarray
Package: phased

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF, for the ReplicatedSubarray
System object.

isLocked returns a logical value that indicates whether input attributes and
nontunable properties for the object are locked. The object performs an internal
initialization the first time that you execute step. This initialization locks nontunable
properties and input specifications, such as the dimensions, complexity, and data type of
the input data. After locking, isLocked returns a true value.

 isPolarizationCapable

1-1511

isPolarizationCapable

System object: phased.ReplicatedSubarray
Package: phased

Polarization capability

Syntax

flag = isPolarizationCapable(h)

Description

flag = isPolarizationCapable(h) returns a Boolean value, flag, indicating
whether the array supports polarization. An array supports polarization if all of its
constituent sensor elements support polarization.

Input Arguments

h — Replicated subarray

Replicated subarray specified as a phased.ReplicatedSubarray System object.

Output Arguments

flag — Polarization-capability flag

Polarization-capability flag returned as a Boolean value true if the array supports
polarization or false if it does not.

1 Alphabetical List

1-1512

Examples

Replicated Array of Short Dipoles Supports Polarization

Verify that a replicated subarray of phased.ShortDipoleAntennaElement short-dipole
antenna elements supports polarization.

h = phased.ShortDipoleAntennaElement(...

 'FrequencyRange',[1e9 10e9]);

ha = phased.URA([3,2],'Element',h);

hr = phased.ReplicatedSubarray('Subarray',ha,...

 'Layout','Rectangular',...

 'GridSize',[1,2],'GridSpacing','Auto');

isPolarizationCapable(hr)

ans =

 1

The returned value true (1) shows that this array supports polarization.

 pattern

1-1513

pattern

System object: phased.ReplicatedSubarray
Package: phased

Plot replicated subarray directivity and patterns

Syntax

pattern(sArray,FREQ)

pattern(sArray,FREQ,AZ)

pattern(sArray,FREQ,AZ,EL)

pattern(___ ,Name,Value)

[PAT,AZ_ANG,EL_ANG] = pattern(___)

Description

pattern(sArray,FREQ) plots the 3-D array directivity pattern (in dBi) for the array
specified in sArray. The operating frequency is specified in FREQ.

pattern(sArray,FREQ,AZ) plots the array directivity pattern at the specified azimuth
angle.

pattern(sArray,FREQ,AZ,EL) plots the array directivity pattern at specified azimuth
and elevation angles.

pattern(___ ,Name,Value) plots the array pattern with additional options specified
by one or more Name,Value pair arguments.

[PAT,AZ_ANG,EL_ANG] = pattern(___) returns the array pattern in PAT. The
AZ_ANG output contains the coordinate values corresponding to the rows of PAT. The
EL_ANG output contains the coordinate values corresponding to the columns of PAT.
If the 'CoordinateSystem' parameter is set to 'uv', then AZ_ANG contains the
U coordinates of the pattern and EL_ANG contains the V coordinates of the pattern.
Otherwise, they are in angular units in degrees. UV units are dimensionless.

1 Alphabetical List

1-1514

Note: This method replaces the previous plotResponse method. To replace plots using
plotResponse plots with equivalent plots using pattern, see “Convert plotResponse to
pattern” on page 1-1955

Input Arguments

sArray — Replicated subarray
System object

Replicated subarray, specified as a phased.ReplicatedSubarray System object.
Example: sArray= phased.ReplicatedSubarray;

FREQ — Frequency for computing directivity and patterns
positive scalar | 1-by-L real-valued row vector

Frequencies for computing directivity and patterns, specified as a positive scalar or 1-
by-L real-valued row vector. Frequency units are in hertz.

• For an antenna or microphone element, FREQ must lie within the range of
values specified by the FrequencyRange or FrequencyVector property of the
element. Otherwise, the element produces no response and the directivity is
returned as –Inf. Most elements use the FrequencyRange property except for
phased.CustomAntennaElement and phased.CustomMicrophoneElement, which use
the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements
that make up the array. Otherwise, the array produces no response and the
directivity is returned as –Inf.

Example: [1e8 2e8]

Data Types: double

AZ — Azimuth angles
[-180:180] (default) | 1-by-M real-valued row vector

Azimuth angles for computing directivity and pattern, specified as a 1-by-M real-
valued row vector where M is the number of azimuth angles. Angle units are in degrees.
Azimuth angles must lie between –180° and 180°.

 pattern

1-1515

The azimuth angle is the angle between the x-axis and the projection of the direction
vector onto the xy plane. When measured from the x-axis toward the y-axis, this angle is
positive.
Example: [-45:2:45]

Data Types: double

EL — Elevation angles
[-90:90] (default) | 1-by-N real-valued row vector

Elevation angles for computing directivity and pattern, specified as a 1-by-N real-valued
row vector where N is the number of desired elevation directions. Angle units are in
degrees. The elevation angle must lie between –90° and 90°.

The elevation angle is the angle between the direction vector and xy-plane. When
measured towards the z-axis, this angle is positive.
Example: [-75:1:70]

Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'CoordinateSystem' — Plotting coordinate system
'polar' (default) | 'rectangular' | 'uv'

Plotting coordinate system of the pattern, specified as the comma-separated pair
consisting of 'CoordinateSystem' and one of 'polar', 'rectangular', or
'uv'. When 'CoordinateSystem' is set to 'polar' or 'rectangular', the
AZ and EL arguments specify the pattern azimuth and elevation, respectively. AZ
values must lie between –180° and 180°. EL values must lie between –90° and 90°. If
'CoordinateSystem' is set to 'uv', AZ and EL then specify U and V coordinates,
respectively. AZ and EL must lie between -1 and 1.

Example: 'uv'

Data Types: char

1 Alphabetical List

1-1516

'Type' — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and
one of

• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed

pattern is for the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field

pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'

Data Types: char

'Normalize' — Display normalize pattern
true (default) | false

Display normalized pattern, specified as the comma-separated pair consisting of
'Normalize' and a Boolean. Set this parameter to true to display a normalized pattern.
When you set 'Type' to 'directivity', this parameter does not apply. Directivity
patterns are already normalized.
Example:
Data Types: logical

'PlotStyle' — Plotting style
'overlay' (default) | 'waterfall'

Plotting style, specified as the comma-separated pair consisting of 'Plotstyle' and
either 'overlay' or 'waterfall'. This parameter applies when you specify multiple
frequencies in FREQ in 2-D plots. You can draw 2-D plots by setting one of the arguments
AZ or EL to a scalar.

Example:
Data Types: char

'Polarization' — Polarized field component
'combined' (default) | 'H' | 'V'

 pattern

1-1517

Polarized field component to display, specified as the comma-separated pair consisting
of 'Polarization' and 'combined', 'H', or 'V'. This parameter applies only when
the sensors are polarization-capable and when the 'Type' parameter is not set to
'directivity'. This table shows the meaning of the display options

'Polarization' Display

'combined' Combined H and V polarization
components

'H' H polarization component
'V' V polarization component

Example: 'V'

Data Types: char

'PropagationSpeed' — Signal propagation speed
speed of light (default) | positive scalar

Signal propagation speed, specified as the comma-separated pair consisting of
'PropagationSpeed' and a positive scalar in meters per second.

Example: 'PropagationSpeed',physconst('LightSpeed')

Data Types: double

'Weights' — Subarray weights
1 (default) | N-by-1 complex-valued column vector | N-by-L complex-valued matrix

Subarray weights, specified as the comma-separated pair consisting of 'Weights' and an
N-by-1 complex-valued column vector or N-by-M complex-valued matrix. The dimension
N is the number of subarrays in the array. The dimension L is the number of frequencies
specified by the FREQ argument.

Weights dimension FREQ dimension Purpose

N-by-1 complex-valued
column vector

Scalar or 1-by-L row vector Applies a set of weights for
the single frequency or for all
L frequencies.

N-by-L complex-valued
matrix

1-by-L row vector Applies each of the L
columns of ‘Weights’ for
the corresponding frequency
in the FREQ argument.

1 Alphabetical List

1-1518

Example: 'Weights',ones(N,M)

Data Types: double

'SteerAngle' — Subarray steering angle
[0;0] (default) | scalar | 2-element column vector

Subarray steering angle, specified as the comma-separated pair consisting of
'SteerAngle' and a scalar or a 2-by-1 column vector.

If 'SteerAngle' is a 2-by-1 column vector, it has the form [azimuth; elevation].
The azimuth angle must be between –180° and 180°, inclusive. The elevation angle must
be between –90° and 90°, inclusive.

If 'SteerAngle' is a scalar, it specifies the azimuth angle only. In this case, the
elevation angle is assumed to be 0.

This option applies only when the 'SubarraySteering' property of the System object
is set to 'Phase' or 'Time'.

Example: 'SteerAngle',[20;30]

Data Types: double

Output Arguments

PAT — Array pattern
M-by-N real-valued matrix

Array pattern, returned as an M-by-N real-valued matrix. The dimensions of PAT
correspond to the dimensions of the output arguments AZ_ANG and EL_ANG.

AZ_ANG — Azimuth angles
scalar | 1-by-M real-valued row vector

Azimuth angles for displaying directivity or response pattern, returned as a scalar or 1-
by-M real-valued row vector corresponding to the dimension set in AZ. The rows of PAT
correspond to the values in AZ_ANG.

EL_ANG — Elevation angles
scalar | 1-by-N real-valued row vector

 pattern

1-1519

Elevation angles for displaying directivity or response, returned as a scalar or 1-by-N
real-valued row vector corresponding to the dimension set in EL. The columns of PAT
correspond to the values in EL_ANG.

More About

Directivity

Directivity describes the directionality of the radiation pattern of a sensor element
or array of sensor elements. Higher directivity is desired when you want to transmit
more radiation in a specific direction. Directivity is the ratio of the transmitted radiant
intensity in a specified direction to the radiant intensity transmitted by an isotropic
radiator with the same total transmitted power

D
U

P
=

()
4p

q jrad

total

,

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal
is the total power transmitted by an isotropic radiator. For a receiving element or array,
directivity measures the sensitivity toward radiation arriving from a specific direction.
The principle of reciprocity shows that the directivity of an element or array used for
reception equals the directivity of the same element or array used for transmission.
When converted to decibels, the directivity is denoted as dBi. For information on
directivity, read the notes on “Element directivity” and “Array directivity”.

Computing directivity requires integrating the far-field transmitted radiant intensity
over all directions in space to obtain the total transmitted power. There is a difference
between how that integration is performed when Antenna Toolbox antennas are used
in a phased array and when Phased Array System Toolbox antennas are used. When
an array contains Antenna Toolbox antennas, the directivity computation is performed
using a triangular mesh created from 500 regularly spaced points over a sphere. For
Phased Array System Toolbox antennas, the integration uses a uniform rectangular
mesh of points spaced 1° apart in azimuth and elevation over a sphere. There may be
significant differences in computed directivity, especially for large arrays.

Convert plotResponse to pattern

For antenna, microphone, and array System objects, the pattern method replaces the
plotResponse method. In addition, two new simplified methods exist just to draw

1 Alphabetical List

1-1520

2-D azimuth and elevation pattern plots. These methods are azimuthPattern and
elevationPattern.

The following table is a guide for converting your code from using plotResponse to
pattern. Notice that some of the inputs have changed from input arguments to Name-
Value pairs and conversely. The general pattern method syntax is

pattern(H,FREQ,AZ,EL,'Name1','Value1',...,'NameN','ValueN')

plotResponse Inputs plotResponse Description pattern Inputs

H argument Antenna, microphone, or array
System object.

H argument (no change)

FREQ argument Operating frequency. FREQ argument (no change)
V argument Propagation speed. This

argument is used only for
arrays.

'PropagationSpeed' name-
value pair. This parameter is
only used for arrays.

'Format' and 'RespCut'
name-value pairs

These options work together to
let you create a plot in angle
space (line or polar style) or
UV space. They also determine
whether the plot is 2-D or 3-
D. This table shows you how to
create different types of plots
using plotResponse.

Display space

Angle space
(2D)

Set
'RespCut'

to 'Az' or

'El'. Set
'Format' to
'line' or
'polar'.

Set the display
axis using
either the
the
'AzimuthAngles'

'CoordinateSystem' name-
value pair used together with
the AZ and EL input arguments.

'CoordinateSystem' has
the same options as the
plotResponse method
'Format'name-value pair,
except that 'line' is now
named 'rectangular'. The
table shows how to create
different types of plots using
pattern.

Display space

Angle space
(2D)

Set
'Coordinate

System' to
'rectangular'

or 'polar'.
Specify either

 pattern

1-1521

plotResponse Inputs plotResponse Description pattern Inputs

Display space

or
'ElevationAngles'

name-value
pairs.

Angle space
(3D)

Set
'RespCut'

to '3D'. Set
'Format' to
'line' or
'polar'.

Set the display
axis using
both the
'AzimuthAngles'

and'ElevationAngles'
name-value
pairs.

UV space (2D) Set
'RespCut'

to'U'. Set
'Format'

to 'UV'. Set
the display
range using
the 'UGrid'
name-value
pair.

UV space (3D) Set
'RespCut'

to'3D'. Set
'Format' to
'UV'. Set the
display range
using both
the 'UGrid'

Display space

AZ or EL as a
scalar.

Angle space
(3D)

Set
'Coordinate

System' to
'rectangular'

or 'polar'.
Specify both
AZ and EL as
vectors.

UV space (2D) Set
'Coordinate

System' to
'uv'. Use AZ
to specify a U-
space vector.
Use EL to
specify a V-
space scalar.

UV space (3D) Set
'Coordinate

System' to
'uv'. Use AZ
to specify a U-
space vector.
Use EL to
specify a V-
space vector.

If you set CoordinateSystem
to 'uv', enter the UV grid
values using AZ and EL.

1 Alphabetical List

1-1522

plotResponse Inputs plotResponse Description pattern Inputs

Display space

and 'VGrid'
name-value
pairs.

'CutAngle' name-value pair Constant angle at to take an
azimuth or elevation cut. When
producing a 2-D plot and when
'RespCut' is set to 'Az' or
'El', use 'CutAngle' to set
the slice across which to view
the plot.

No equivalent name-value pair.
To create a cut, specify either AZ
or EL as a scalar, not a vector.

'NormalizeResponse' name-
value pair

Normalizes the plot.
When 'Unit' is set to
'dbi', you cannot specify
'NormalizeResponse'.

'Normalize' name-value
pair. When 'Type' is set to
'directivity',

you cannot specify
'Normalize'.
.

'OverlayFreq' name-value
pair

Plot multiple frequencies on
the same 2-D plot. Available
only when 'Format' is
set to 'line' or 'uv' and
'RespCut' is not set to '3D'.
The value true produces an
overlay plot and the value
false produces a waterfall
plot.

'PlotStyle' name-value pair
plots multiple frequencies on the
same 2-D plot.

The values 'overlay' and
'waterfall' correspond to
'OverlayFreq' values of
true and false. The option
'waterfall' is allowed only
when 'CoordinateSystem' is
set to 'rectangular' or 'uv'.

'Polarization' name-value
pair

Determines how to plot
polarized fields. Options are
'None', 'Combined', 'H', or
'V'.

'Polarization' name-value
pair determines how to plot
polarized fields. The 'None'
option is removed. The options
'Combined', 'H', or 'V' are
unchanged.

 pattern

1-1523

plotResponse Inputs plotResponse Description pattern Inputs

'Unit' name-value pair Determines the plot units.
Choose 'db', 'mag', 'pow',
or 'dbi', where the default is
'db'.

'Type' name-value pair, uses
equivalent options with different
names

plotResponse pattern

'db' 'powerdb'

'mag' 'efield'

'pow' 'power'

'dbi' 'directivity'

'Weights' name-value pair Array element tapers (or
weights).

'Weights' name-value pair (no
change).

'AzimuthAngles' name-value
pair

Azimuth angles used to display
the antenna or array response.

AZ argument

'ElevationAngles' name-
value pair

Elevation angles used to
display the antenna or array
response.

EL argument

'UGrid' name-value pair Contains U coordinates in UV-
space.

AZ argument when
'CoordinateSystem' name-
value pair is set to 'uv'

'VGrid' name-value pair Contains V-coordinates in UV-
space.

EL argument when
'CoordinateSystem' name-
value pair is set to 'uv'

Examples

Azimuth Response of Array with Subarrays

Plot the azimuth response of a 4-element ULA composed of two 2-element ULAs. By
default, the antenna elements are isotropic.

sArray = phased.ULA('NumElements',2,'ElementSpacing',0.5);

sRSA = phased.ReplicatedSubarray('Subarray',sArray,...

 'Layout','Rectangular','GridSize',[1 2],...

 'GridSpacing','Auto');

1 Alphabetical List

1-1524

Plot the azimuth response of the array. Assume the operating frequency is 1 GHz and the
wave propagation speed is the speed of light.

fc = 1.0e9;

pattern(sRSA,fc,[-180:180],0,...

 'PropagationSpeed',physconst('LightSpeed'),...

 'Type','powerdb',...

 'Normalize',true,...

 'CoordinateSystem','polar')

Directivity of Array with Subarrays

Create a 2-by-2-element URA of isotropic antenna elements, and arrange four copies to
form a 16-element URA. Plot the 3-D directivity pattern.

 pattern

1-1525

Create the array

fmin = 1e9;

fmax = 6e9;

c = physconst('LightSpeed');

lam = c/fmax;

sIso = phased.IsotropicAntennaElement(...

 'FrequencyRange',[fmin,fmax],...

 'BackBaffled',false);

sURA = phased.URA('Element',sIso,...

 'Size',[2 2],...

 'ElementSpacing',lam/2);

sRS = phased.ReplicatedSubarray('Subarray',sURA,...

 'Layout','Rectangular','GridSize',[2 2],...

 'GridSpacing','Auto');

Plot 3-D directivity pattern

fc = 1e9;

wts = [0.862,1.23,1.23,0.862]';

pattern(sRS,fc,[-180:180],[-90:90],...

 'PropagationSpeed',physconst('LightSpeed'),....

 'Type','directivity',...

 'Weights',wts);

1 Alphabetical List

1-1526

See Also
phased.ReplicatedSubarray.patternAzimuth |
phased.ReplicatedSubarray.patternElevation

Introduced in R2015a

 patternAzimuth

1-1527

patternAzimuth
System object: phased.ReplicatedSubarray
Package: phased

Plot replicated subarray directivity or pattern versus azimuth

Syntax
patternAzimuth(sArray,FREQ)

patternAzimuth(sArray,FREQ,EL)

patternAzimuth(sArray,FREQ,EL,Name,Value)

PAT = patternAzimuth(___)

Description
patternAzimuth(sArray,FREQ) plots the 2-D array directivity pattern versus
azimuth (in dBi) for the array sArray at zero degrees elevation angle. The argument
FREQ specifies the operating frequency.

patternAzimuth(sArray,FREQ,EL), in addtion, plots the 2-D array directivity
pattern versus azimuth (in dBi) for the array sArray at the elevation angle specified by
EL. When EL is a vector, multiple overlaid plots are created.

patternAzimuth(sArray,FREQ,EL,Name,Value) plots the array pattern with
additional options specified by one or more Name,Value pair arguments.

PAT = patternAzimuth(___) returns the array pattern. PAT is a matrix whose
entries represent the pattern at corresponding sampling points specified by the
'Azimuth' parameter and the EL input argument.

Input Arguments
sArray — Replicated subarray
System object

Replicated subarray, specified as a phased.ReplicatedSubarray System object.
Example: sArray= phased.ReplicatedSubarray;

1 Alphabetical List

1-1528

FREQ — Frequency for computing directivity and pattern
positive scalar

Frequency for computing directivity and pattern, specified as a positive scalar. Frequency
units are in hertz.

• For an antenna or microphone element, FREQ must lie within the range of values
specified by the FrequencyRange or the FrequencyVector property of the
element. Otherwise, the element produces no response and the directivity is
returned as –Inf. Most elements use the FrequencyRange property except for
phased.CustomAntennaElement and phased.CustomMicrophoneElement, which use
the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements
that make up the array. Otherwise, the array produces no response and the
directivity is returned as –Inf.

Example: 1e8

Data Types: double

EL — Elevation angles
1-by-N real-valued row vector

Elevation angles for computing array directivity and pattern, specified as a 1-by-N real-
valued row vector, where N is the number of requested elevation directions. Angle units
are in degrees. The elevation angle must lie between –90° and 90°.

The elevation angle is the angle between the direction vector and the xy plane. When
measured toward the z-axis, this angle is positive.
Example: [0,10,20]

Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Type' — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

 patternAzimuth

1-1529

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and
one of

• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed

pattern is for the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field

pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'

Data Types: char

'PropagationSpeed' — Signal propagation speed
speed of light (default) | positive scalar

Signal propagation speed, specified as the comma-separated pair consisting of
'PropagationSpeed' and a positive scalar in meters per second.

Example: 'PropagationSpeed',physconst('LightSpeed')

Data Types: double

'Weights' — Subarray weights
M-by-1 complex-valued column vector

Subarray weights, specified as the comma-separated pair consisting of 'Weights' and
an M-by-1 complex-valued column vector. Subarray weights are applied to the subarrays
of the array to produce array steering, tapering, or both. The dimension M is the number
of subarrays in the array.
Example: 'Weights',ones(10,1)

Data Types: double
Complex Number Support: Yes

'SteerAngle' — Subarray steering angle
[0;0] (default) | scalar | 2-element column vector

Subarray steering angle, specified as the comma-separated pair consisting of
'SteerAngle' and a scalar or a 2-by-1 column vector.

1 Alphabetical List

1-1530

If 'SteerAngle' is a 2-by-1 column vector, it has the form [azimuth; elevation].
The azimuth angle must be between –180° and 180°, inclusive. The elevation angle must
be between –90° and 90°, inclusive.

If 'SteerAngle' is a scalar, it specifies the azimuth angle only. In this case, the
elevation angle is assumed to be 0.

This option applies only when the 'SubarraySteering' property of the System object
is set to 'Phase' or 'Time'.

Example: 'SteerAngle',[20;30]

Data Types: double

'Azimuth' — Azimuth angles
[-180:180] (default) | 1-by-P real-valued row vector

Azimuth angles, specified as the comma-separated pair consisting of 'Azimuth' and a 1-
by-P real-valued row vector. Azimuth angles define where the array pattern is calculated.
Example: 'Azimuth',[-90:2:90]

Data Types: double

Output Arguments

PAT — Array directivity or pattern
L-by-N real-valued matrix

Array directivity or pattern, returned as an L-by-N rea-valued matrix. The dimension
L is the number of azimuth values determined by the 'Azimuth' name-value pair
argument. The dimension N is the number of elevation angles, as determined by the EL
input argument.

Definitions

Directivity

Directivity describes the directionality of the radiation pattern of a sensor element
or array of sensor elements. Higher directivity is desired when you want to transmit

 patternAzimuth

1-1531

more radiation in a specific direction. Directivity is the ratio of the transmitted radiant
intensity in a specified direction to the radiant intensity transmitted by an isotropic
radiator with the same total transmitted power

D
U

P
=

()
4p

q jrad

total

,

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal
is the total power transmitted by an isotropic radiator. For a receiving element or array,
directivity measures the sensitivity toward radiation arriving from a specific direction.
The principle of reciprocity shows that the directivity of an element or array used for
reception equals the directivity of the same element or array used for transmission.
When converted to decibels, the directivity is denoted as dBi. For information on
directivity, read the notes on “Element directivity” and “Array directivity”.

Computing directivity requires integrating the far-field transmitted radiant intensity
over all directions in space to obtain the total transmitted power. There is a difference
between how that integration is performed when Antenna Toolbox antennas are used
in a phased array and when Phased Array System Toolbox antennas are used. When
an array contains Antenna Toolbox antennas, the directivity computation is performed
using a triangular mesh created from 500 regularly spaced points over a sphere. For
Phased Array System Toolbox antennas, the integration uses a uniform rectangular
mesh of points spaced 1° apart in azimuth and elevation over a sphere. There may be
significant differences in computed directivity, especially for large arrays.

Examples

Azimuth Pattern of Array with Subarrays

Create a 2-element ULA of isotropic antenna elements, and arrange three copies to
form a 6-element ULA. Plot the directivity azimuth pattern within a restricted range
of azimuth angles from -30 to 30 degrees in 0.1 degree increments. Plot directivity for 0
degrees and 45 degrees elevation.

Create the array

fmin = 1e9;

1 Alphabetical List

1-1532

fmax = 6e9;

c = physconst('LightSpeed');

lam = c/fmax;

sIso = phased.IsotropicAntennaElement(...

 'FrequencyRange',[fmin,fmax],...

 'BackBaffled',false);

sULA = phased.ULA('Element',sIso,...

 'NumElements',2,'ElementSpacing',0.5);

sRS = phased.ReplicatedSubarray('Subarray',sULA,...

 'Layout','Rectangular','GridSize',[1 3],...

 'GridSpacing','Auto');

Plot azimuth directivity pattern

fc = 1e9;

wts = [0.862,1.23,0.862]';

patternAzimuth(sRS,fc,[0,45],'PropagationSpeed',physconst('LightSpeed'),...

 'Azimuth',[-30:0.1:30],...

 'Type','directivity',...

 'Weights',wts);

 patternAzimuth

1-1533

See Also
phased.ReplicatedSubarray.pattern | phased.ReplicatedSubarray.patternElevation

Introduced in R2015a

1 Alphabetical List

1-1534

patternElevation
System object: phased.ReplicatedSubarray
Package: phased

Plot replicated subarray directivity or pattern versus elevation

Syntax
patternElevation(sArray,FREQ)

patternElevation(sArray,FREQ,AZ)

patternElevation(sArray,FREQ,AZ,Name,Value)

PAT = patternElevation(___)

Description
patternElevation(sArray,FREQ) plots the 2-D array directivity pattern versus
elevation (in dBi) for the array sArray at zero degrees azimuth angle. When AZ is a
vector, multiple overlaid plots are created. The argument FREQ specifies the operating
frequency.

patternElevation(sArray,FREQ,AZ), in addition, plots the 2-D element directivity
pattern versus elevation (in dBi) at the azimuth angle specified by AZ. When AZ is a
vector, multiple overlaid plots are created.

patternElevation(sArray,FREQ,AZ,Name,Value) plots the array pattern with
additional options specified by one or more Name,Value pair arguments.

PAT = patternElevation(___) returns the array pattern. PAT is a matrix whose
entries represent the pattern at corresponding sampling points specified by the
'Elevation' parameter and the AZ input argument.

Input Arguments
sArray — Replicated subarray
System object

Replicated subarray, specified as a phased.ReplicatedSubarray System object.

 patternElevation

1-1535

Example: sArray= phased.ReplicatedSubarray;

FREQ — Frequency for computing directivity and pattern
positive scalar

Frequency for computing directivity and pattern, specified as a positive scalar. Frequency
units are in hertz.

• For an antenna or microphone element, FREQ must lie within the range of values
specified by the FrequencyRange or the FrequencyVector property of the
element. Otherwise, the element produces no response and the directivity is
returned as –Inf. Most elements use the FrequencyRange property except for
phased.CustomAntennaElement and phased.CustomMicrophoneElement, which use
the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements
that make up the array. Otherwise, the array produces no response and the
directivity is returned as –Inf.

Example: 1e8

Data Types: double

AZ — Azimuth angles for computing directivity and pattern
1-by-N real-valued row vector

Azimuth angles for computing array directivity and pattern, specified as a 1-by-M real-
valued row vector where N is the number of desired azimuth directions. Angle units are
in degrees. The azimuth angle must lie between –180° and 180°.

The azimuth angle is the angle between the x-axis and the projection of the direction
vector onto the xy plane. This angle is positive when measured from the x-axis toward the
y-axis.
Example: [0,10,20]

Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

1 Alphabetical List

1-1536

'Type' — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and
one of

• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed

pattern is for the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field

pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'

Data Types: char

'PropagationSpeed' — Signal propagation speed
speed of light (default) | positive scalar

Signal propagation speed, specified as the comma-separated pair consisting of
'PropagationSpeed' and a positive scalar in meters per second.

Example: 'PropagationSpeed',physconst('LightSpeed')

Data Types: double

'Weights' — Subarray weights
M-by-1 complex-valued column vector

Subarray weights, specified as the comma-separated pair consisting of 'Weights' and
an M-by-1 complex-valued column vector. Subarray weights are applied to the subarrays
of the array to produce array steering, tapering, or both. The dimension M is the number
of subarrays in the array.
Example: 'Weights',ones(10,1)

Data Types: double
Complex Number Support: Yes

'SteerAngle' — Subarray steering angle
[0;0] (default) | scalar | 2-element column vector

 patternElevation

1-1537

Subarray steering angle, specified as the comma-separated pair consisting of
'SteerAngle' and a scalar or a 2-by-1 column vector.

If 'SteerAngle' is a 2-by-1 column vector, it has the form [azimuth; elevation].
The azimuth angle must be between –180° and 180°, inclusive. The elevation angle must
be between –90° and 90°, inclusive.

If 'SteerAngle' is a scalar, it specifies the azimuth angle only. In this case, the
elevation angle is assumed to be 0.

This option applies only when the 'SubarraySteering' property of the System object
is set to 'Phase' or 'Time'.

Example: 'SteerAngle',[20;30]

Data Types: double

'Elevation' — Elevation angles
[-90:90] (default) | 1-by-P real-valued row vector

Elevation angles, specified as the comma-separated pair consisting of 'Elevation'
and a 1-by-P real-valued row vector. Elevation angles define where the array pattern is
calculated.
Example: 'Elevation',[-90:2:90]

Data Types: double

Output Arguments

PAT — Array directivity or pattern
L-by-N real-valued matrix

Array directivity or pattern, returned as an L-by-N real-valued matrix. The dimension
L is the number of elevation angles determined by the 'Elevation' name-value pair
argument. The dimension N is the number of azimuth angles determined by the AZ
argument.

1 Alphabetical List

1-1538

Definitions

Directivity

Directivity describes the directionality of the radiation pattern of a sensor element
or array of sensor elements. Higher directivity is desired when you want to transmit
more radiation in a specific direction. Directivity is the ratio of the transmitted radiant
intensity in a specified direction to the radiant intensity transmitted by an isotropic
radiator with the same total transmitted power

D
U

P
=

()
4p

q jrad

total

,

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal
is the total power transmitted by an isotropic radiator. For a receiving element or array,
directivity measures the sensitivity toward radiation arriving from a specific direction.
The principle of reciprocity shows that the directivity of an element or array used for
reception equals the directivity of the same element or array used for transmission.
When converted to decibels, the directivity is denoted as dBi. For information on
directivity, read the notes on “Element directivity” and “Array directivity”.

Computing directivity requires integrating the far-field transmitted radiant intensity
over all directions in space to obtain the total transmitted power. There is a difference
between how that integration is performed when Antenna Toolbox antennas are used
in a phased array and when Phased Array System Toolbox antennas are used. When
an array contains Antenna Toolbox antennas, the directivity computation is performed
using a triangular mesh created from 500 regularly spaced points over a sphere. For
Phased Array System Toolbox antennas, the integration uses a uniform rectangular
mesh of points spaced 1° apart in azimuth and elevation over a sphere. There may be
significant differences in computed directivity, especially for large arrays.

Examples

Elevation Pattern of Array with Subarrays

Create a 2-by-2-element URA of isotropic antenna elements, and arrange four copies to
form a 16-element URA. Plot the elevation directivity pattern within a restricted range

 patternElevation

1-1539

of elevation angles from -45 to 45 degrees in 0.1 degree increments. Plot directivity for 0
degrees and 15 degrees azimuth.

Create the array

fmin = 1e9;

fmax = 6e9;

c = physconst('LightSpeed');

lam = c/fmax;

sIso = phased.IsotropicAntennaElement(...

 'FrequencyRange',[fmin,fmax],...

 'BackBaffled',false);

sURA = phased.URA('Element',sIso,...

 'Size',[2 2],...

 'ElementSpacing',lam/2);

sRS = phased.ReplicatedSubarray('Subarray',sURA,...

 'Layout','Rectangular','GridSize',[2 2],...

 'GridSpacing','Auto');

Plot elevation directivity pattern

fc = 1e9;

wts = [0.862,1.23,1.23,0.862]';

patternElevation(sRS,fc,[0,15],...

 'PropagationSpeed',physconst('LightSpeed'),...

 'Elevation',[-45:0.1:45],...

 'Type','directivity',...

 'Weights',wts);

1 Alphabetical List

1-1540

See Also
phased.ReplicatedSubarray.pattern | phased.ReplicatedSubarray.patternAzimuth

Introduced in R2015a

 plotResponse

1-1541

plotResponse
System object: phased.ReplicatedSubarray
Package: phased

Plot response pattern of array

Syntax

plotResponse(H,FREQ,V)

plotResponse(H,FREQ,V,Name,Value)

hPlot = plotResponse(___)

Description

plotResponse(H,FREQ,V) plots the array response pattern along the azimuth cut,
where the elevation angle is 0. The operating frequency is specified in FREQ. The
propagation speed is specified in V.

plotResponse(H,FREQ,V,Name,Value) plots the array response with additional
options specified by one or more Name,Value pair arguments.

hPlot = plotResponse(___) returns handles of the lines or surface in the figure
window, using any of the input arguments in the previous syntaxes.

Input Arguments

H

Array object.

FREQ

Operating frequency, in hertz. Typical values are within the range specified by a
property of H.Subarray.Element. That property is named FrequencyRange or
FrequencyVector, depending on the type of element in the array. The element has zero

1 Alphabetical List

1-1542

response at frequencies outside that range. If FREQ is a nonscalar row vector, the plot
shows multiple frequency responses on the same axes.

V

Propagation speed in meters per second.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'CutAngle'

Cut angle specified as a scalar. This argument is applicable only when RespCut is 'Az'
or 'El'. If RespCut is 'Az', CutAngle must be between –90 and 90. If RespCut is
'El', CutAngle must be between –180 and 180.

Default: 0

'Format'

Format of the plot, using one of 'Line', 'Polar', or 'UV'. If you set Format to 'UV',
FREQ must be a scalar.

Default: 'Line'

'NormalizeResponse'

Set this value to true to normalize the response pattern. Set this value to false to plot
the response pattern without normalizing it. This parameter is not applicable when you
set the Unit parameter value to 'dbi'.

Default: true

'OverlayFreq'

Set this value to true to overlay pattern cuts in a 2-D line plot. Set this value to false
to plot pattern cuts against frequency in a 3-D waterfall plot. If this value is false, then
FREQ must be a vector with at least two entries.

 plotResponse

1-1543

This parameter applies only when Format is not 'Polar' and RespCut is not '3D'.

Default: true

'Polarization'

Specify the polarization options for plotting the array response pattern. The allowable
values are |'None' | 'Combined' | 'H' | 'V' | where:

• 'None' specifies plotting a nonpolarized response pattern
• 'Combined' specifies plotting a combined polarization response pattern
• 'H' specifies plotting the horizontal polarization response pattern
• 'V' specifies plotting the vertical polarization response pattern

For arrays that do not support polarization, the only allowed value is 'None'. This
parameter is not applicable when you set the Unit parameter value to 'dbi'.

Default: 'None'

'RespCut'

Cut of the response. Valid values depend on Format, as follows:

• If Format is 'Line' or 'Polar', the valid values of RespCut are 'Az', 'El', and
'3D'. The default is 'Az'.

• If Format is 'UV', the valid values of RespCut are 'U' and '3D'. The default is 'U'.

If you set RespCut to '3D', FREQ must be a scalar.

'SteerAng'

Subarray steering angle. SteerAng can be either a 2-element column vector or a scalar.

If SteerAng is a 2-element column vector, it has the form [azimuth; elevation]. The
azimuth angle must be between –180 and 180 degrees, inclusive. The elevation angle
must be between –90 and 90 degrees, inclusive.

If SteerAng is a scalar, it specifies the azimuth angle. In this case, the elevation angle is
assumed to be 0.

This option is applicable only if the SubarraySteering property of H is 'Phase' or
'Time'.

1 Alphabetical List

1-1544

Default: [0;0]

'Unit'

The unit of the plot. Valid values are 'db', 'mag', 'pow', or 'dbi'. This parameter
determines the type of plot that is produced.

Unit value Plot type

db power pattern in dB
scale

mag field pattern
pow power pattern
dbi directivity

Default: 'db'

'Weights'

Weight values applied to the array, specified as a length-N column vector or N-by-M
matrix. The dimension N is the number of subarrays in the array. The interpretation of
M depends upon whether the input argument FREQ is a scalar or row vector.

Weights Dimension FREQ Dimension Purpose

N-by-1 column vector Scalar or 1-by-M row vector Apply one set of weights for
the same single frequency or
all M frequencies.

Scalar Apply all of the M different
columns in Weights for the
same single frequency.

N-by-M matrix 1-by-M row vector Apply each of the M different
columns in Weights for the
corresponding frequency in
FREQ.

'AzimuthAngles'

Azimuth angles for plotting subarray response, specified as a row vector. The
AzimuthAngles parameter sets the display range and resolution of azimuth angles for

 plotResponse

1-1545

visualizing the radiation pattern. This parameter is allowed only when the RespCut
parameter is set to 'Az' or '3D' and the Format parameter is set to 'Line' or
'Polar'. The values of azimuth angles should lie between –180° and 180° and must be
in nondecreasing order. When you set the RespCut parameter to '3D', you can set the
AzimuthAngles and ElevationAngles parameters simultaneously.

Default: [-180:180]

'ElevationAngles'

Elevation angles for plotting subarray response, specified as a row vector. The
ElevationAngles parameter sets the display range and resolution of elevation
angles for visualizing the radiation pattern. This parameter is allowed only when the
RespCut parameter is set to 'El' or '3D' and the Format parameter is set to 'Line'
or 'Polar'. The values of elevation angles should lie between –90° and 90° and must be
in nondecreasing order. When you set the RespCut parameter to '3D', you can set the
ElevationAngles and AzimuthAngles parameters simultaneously.

Default: [-90:90]

'UGrid'

U coordinate values for plotting subarray response, specified as a row vector. The UGrid
parameter sets the display range and resolution of the U coordinates for visualizing
the radiation pattern in U/V space. This parameter is allowed only when the Format
parameter is set to 'UV' and the RespCut parameter is set to 'U' or '3D'. The values of
UGrid should be between –1 and 1 and should be specified in nondecreasing order. You
can set the UGrid and VGrid parameters simultaneously.

Default: [-1:0.01:1]

'VGrid'

V coordinate values for plotting subarray response, specified as a row vector. The VGrid
parameter sets the display range and resolution of the V coordinates for visualizing
the radiation pattern in U/V space. This parameter is allowed only when the Format
parameter is set to 'UV' and the RespCut parameter is set to '3D'. The values of VGrid
should be between –1 and 1 and should be specified in nondecreasing order. You can set
the VGrid and UGrid parameters simultaneously.

Default: [-1:0.01:1]

1 Alphabetical List

1-1546

Examples

Azimuth Response and Directivity of ULA with Subarrays

Plot the azimuth response of a 4-element ULA composed of two 2-element ULAs.

Create a 2-element ULA, and arrange two copies to form a 4-element ULA.

h = phased.ULA('NumElements',2,'ElementSpacing',0.5);

ha = phased.ReplicatedSubarray('Subarray',h,...

 'Layout','Rectangular','GridSize',[1 2],...

 'GridSpacing','Auto');

Plot the azimuth response of the array. Assume the operating frequency is 1 GHz and the
wave propagation speed is 3e8 m/s.

plotResponse(ha,1e9,3e8,'RespCut','Az','Format','Polar');

 plotResponse

1-1547

Plot the azimuth directivity of the array.

plotResponse(ha,1e9,3e8,'RespCut','Az','Format','Polar','Unit','dbi');

1 Alphabetical List

1-1548

Display Azimuth Response of Array with Subarrays Between -30 and 30 Degrees

Create a 2-element ULA, and arrange two copies to form a 4-element ULA. Using the
AzimuthAngles parameter, plot the response within a restricted range of azimuth
angles from -30 to 30 degrees in 0.1 degree increments.

h = phased.ULA('NumElements',2,'ElementSpacing',0.5);

ha = phased.ReplicatedSubarray('Subarray',h,...

 'Layout','Rectangular','GridSize',[1 2],...

 'GridSpacing','Auto');

plotResponse(ha,1e9,3e8,'RespCut','Az','Format','Polar',...

 'AzimuthAngles',[-30:0.1:30],'Unit','mag');

 plotResponse

1-1549

Apply Two Sets of Weights at a Single Frequency

Construct an array of replicated subarrays. Start with a 2-element uniform line array
(ULA), and duplicate it 5 times to create a 10-element ULA. Apply both uniform weights
and tapered weights. Then, use plotResponse to show that the tapered set of weights
reduces the adjacent sidelobes while broadening the main lobe.

h = phased.ULA('NumElements',2,'ElementSpacing',0.2);

ha = phased.ReplicatedSubarray('Subarray',h,...

 'Layout','Rectangular','GridSize',[1 5],...

 'GridSpacing',0.4);

c = physconst('LightSpeed');

fc = 1e9;

wts1 = [0.2,0.2,0.2,0.2,0.2]';

1 Alphabetical List

1-1550

wts2 = [0.1,0.23333,.33333,0.23333,0.1]';

plotResponse(ha,fc,c,'RespCut','Az','Format','Polar',...

 'Weights',[wts1,wts2]);

See Also
azel2uv | uv2azel

 release

1-1551

release
System object: phased.ReplicatedSubarray
Package: phased

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

1 Alphabetical List

1-1552

step
System object: phased.ReplicatedSubarray
Package: phased

Output responses of subarrays

Syntax

RESP = step(H,FREQ,ANG,V)

RESP = step(H,FREQ,ANG,V,STEERANGLE)

Description

RESP = step(H,FREQ,ANG,V) returns the responses, RESP, of the subarrays in the
array, at operating frequencies specified in FREQ and directions specified in ANG. V is the
propagation speed. The elements within each subarray are connected to the subarray
phase center using an equal-path feed.

RESP = step(H,FREQ,ANG,V,STEERANGLE) uses STEERANGLE as the subarray’s
steering direction. This syntax is available when you set the SubarraySteering
property to either 'Phase' or 'Time'.

Note: The object performs an initialization the first time the step method is executed.
This initialization locks nontunable properties and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Input Arguments

H

Phased array formed by replicated subarrays.

 step

1-1553

FREQ

Operating frequencies of array in hertz. FREQ is a row vector of length L. Typical values
are within the range specified by a property of H.Subarray.Element. That property is
named FrequencyRange or FrequencyVector, depending on the type of element in the
array. The element has zero response at frequencies outside that range.

ANG

Directions in degrees. ANG can be either a 2-by-M matrix or a row vector of length M.

If ANG is a 2-by-M matrix, each column of the matrix specifies the direction in the
form [azimuth; elevation]. The azimuth angle must be between –180 and 180 degrees,
inclusive. The elevation angle must be between –90 and 90 degrees, inclusive.

If ANG is a row vector of length M, each element specifies a direction’s azimuth angle. In
this case, the corresponding elevation angle is assumed to be 0.

V

Propagation speed in meters per second. This value must be a scalar.

STEERANGLE

Subarray steering direction. STEERANGLE can be either a 2-element column vector or a
scalar.

If STEERANGLE is a 2-element column vector, it has the form [azimuth; elevation]. The
azimuth angle must be between –180 and 180 degrees, inclusive. The elevation angle
must be between –90 and 90 degrees, inclusive.

If STEERANGLE is a scalar, it specifies the direction’s azimuth angle. In this case, the
elevation angle is assumed to be 0.

Output Arguments

RESP

Voltage responses of the subarrays of the phased array. The output depends on whether
the array supports polarization or not.

1 Alphabetical List

1-1554

• If the array is not capable of supporting polarization, the voltage response, RESP,
has the dimensions N-by-M-by-L. The first dimension, N , represents the number
of subarrays in the phased array, the second dimension, M, represents the number
of angles specified in ANG, while L represents the number of frequencies specified
in FREQ. Each column of RESP contains the responses of the subarrays for the
corresponding direction specified in ANG. Each of the L pages of RESP contains the
responses of the subarrays for the corresponding frequency specified in FREQ.

• If the array is capable of supporting polarization, the voltage response, RESP, is a
MATLAB struct containing two fields, RESP.H and RESP.V, each having dimensions
N-by-M-by-L. The field, RESP.H, represents the array’s horizontal polarization
response, while RESP.V represents the array’s vertical polarization response. The first
dimension, N , represents the number of subarrays in the phased array, the second
dimension, M, represents the number of angles specified in ANG, while L represents
the number of frequencies specified in FREQ. Each of the M columns contains the
responses of the subarrays for the corresponding direction specified in ANG. Each of
the L pages contains the responses of the subarrays for the corresponding frequency
specified in FREQ.

Examples

Response of Subarrays

Calculate the response at boresight for two 2-element ULA’s that are subarrays of a 4-
element ULA of short-dipole antenna elements.

Create a two-element ULA of short-dipole antenna elements. Then, arrange two copies to
form a 4-element ULA.

hsd = phased.ShortDipoleAntennaElement;

h = phased.ULA('Element',hsd,'NumElements',2,'ElementSpacing',0.5);

ha = phased.ReplicatedSubarray('Subarray',h,...

 'Layout','Rectangular','GridSize',[1 2],...

 'GridSpacing','Auto');

Find the response of each subarray at boresight. Assume the operating frequency is 1
GHz and the wave propagation speed is 3e8 m/s.

RESP = step(ha,1e9,[0;0],3e8)

RESP =

 step

1-1555

 H: [2x1 double]

 V: [2x1 double]

See Also
phitheta2azel | uv2azel

1 Alphabetical List

1-1556

viewArray
System object: phased.ReplicatedSubarray
Package: phased

View array geometry

Syntax

viewArray(H)

viewArray(H,Name,Value)

hPlot = viewArray(___)

Description

viewArray(H) plots the geometry of the array specified in H.

viewArray(H,Name,Value) plots the geometry of the array, with additional options
specified by one or more Name,Value pair arguments.

hPlot = viewArray(___) returns the handles of the array elements in the figure
window. All input arguments described for the previous syntaxes also apply here.

Input Arguments

H

Array object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

 viewArray

1-1557

'ShowIndex'

Vector specifying the element indices to show in the figure. Each number in the vector
must be an integer between 1 and the number of elements. You can also specify the
string 'All' to show indices of all elements of the array or 'None' to suppress indices.

Default: 'None'

'ShowNormals'

Set this value to true to show the normal directions of all elements of the array. Set this
value to false to plot the elements without showing normal directions.

Default: false

'ShowTaper'

Set this value to true to specify whether to change the element color brightness in
proportion to the element taper magnitude. When this value is set to false, all elements
are drawn with the same color.

Default: false

'ShowSubarray'

Vector specifying the indices of subarrays to highlight in the figure. Each number in
the vector must be an integer between 1 and the number of subarrays. You can also
specify the string 'All' to highlight all subarrays of the array or 'None' to suppress
the subarray highlighting. The highlighting uses different colors for different subarrays.

Default: 'All'

'Title'

String specifying the title of the plot.

Default: 'Array Geometry'

Output Arguments

hPlot

Handles of array elements in figure window.

1 Alphabetical List

1-1558

Examples

Array of Replicated Hexagonal Arrays on a Sphere

This example shows how to construct a full array by replicating subarrays.

Create a hexagonal array to use as a subarray.

Nmin = 9;

Nmax = 17;

dy = 0.5;

dz = 0.5*sin(pi/3);

rowlengths = [Nmin:Nmax Nmax-1:-1:Nmin];

numels_hex = sum(rowlengths);

stopvals = cumsum(rowlengths);

startvals = stopvals-rowlengths+1;

pos = zeros(3,numels_hex);

rowidx = 0;

for m = Nmin-Nmax:Nmax-Nmin

 rowidx = rowidx+1;

 idx = startvals(rowidx):stopvals(rowidx);

 pos(2,idx) = (-(rowlengths(rowidx)-1)/2:...

 (rowlengths(rowidx)-1)/2) * dy;

 pos(3,idx) = m*dz;

end

hexa = phased.ConformalArray('ElementPosition',pos,...

 'ElementNormal',zeros(2,numels_hex));

Arrange copies of the hexagonal array on a sphere.

radius = 9;

az = [-180 -180 -180 -120 -120 -60 -60 0 0 60 60 120 120 180];

el = [-90 -30 30 -30 30 -30 30 -30 30 -30 30 -30 30 90];

numsubarrays = size(az,2);

[x,y,z] = sph2cart(degtorad(az),degtorad(el),...

 radius*ones(1,numsubarrays));

ha = phased.ReplicatedSubarray('Subarray',hexa,...

 'Layout','Custom',...

 'SubarrayPosition',[x; y; z], ...

 'SubarrayNormal',[az; el]);

Display the geometry of the array, highlighting selected subarrays with different colors.

viewArray(ha,'ShowSubarray',3:2:13,...

 viewArray

1-1559

 'Title','Hexagonal Subarrays on a Sphere');

view(0,90)

• Phased Array Gallery

See Also
phased.ArrayResponse

../examples/phased-array-gallery.html

1 Alphabetical List

1-1560

phased.RootMUSICEstimator System object

Package: phased

Root MUSIC direction of arrival (DOA) estimator

Description

The RootMUSICEstimator object implements the root multiple signal classification
(root-MUSIC) direction of arrival estimator for uniform linear arrays (ULA) and uniform
circular arrays (UCA). When a uniform circular array is used, the algorithm transforms
the input to a ULA-like structure using the phase mode excitation technique [2].

To estimate the direction of arrival (DOA):

1 Define and set up your DOA estimator. See “Construction” on page 1-1560.
2 Call step to estimate the DOA according to the properties of

phased.RootMUSICEstimator. The behavior of step is specific to each object in
the toolbox.

Construction

H = phased.RootMUSICEstimator creates a root MUSIC DOA estimator System
object, H. The object estimates the signal's direction of arrival using the root MUSIC
algorithm with a uniform linear array (ULA).

H = phased.RootMUSICEstimator(Name,Value) creates object, H, with each
specified property Name set to the specified Value. You can specify additional name-
value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties

SensorArray

Sensor array System object

 phased.RootMUSICEstimator System object

1-1561

Sensor array specified as a System object. The sensor array must be a phased.ULA object
or a phased.UCA object.

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second, as a positive scalar.

Default: Speed of light

OperatingFrequency

System operating frequency

Specify the operating frequency of the system in hertz as a positive scalar. The default
value corresponds to 300 MHz.

Default: 3e8

ForwardBackwardAveraging

Perform forward-backward averaging

Set this property to true to use forward-backward averaging to estimate the covariance
matrix for sensor arrays with conjugate symmetric array manifold.

Default: false

SpatialSmoothing

Spatial smoothing

The averaging number used by spatial smoothing to estimate the covariance matrix,
specified as a strictly positive integer. Each additional smoothing value handles one
additional coherent source, but reduces the effective number of elements by one. The
maximum value of this property is M-2. For a ULA, M is the number of sensors. For a
UCA, M is the size of the internal ULA-like array structure defined by the phase mode
excitation technique. The default value of zero indicates that no spatial smoothing is
employed.

1 Alphabetical List

1-1562

Default: 0

NumSignalsSource

Source of number of signals

Specify the source of the number of signals as one of 'Auto' or 'Property'. If you set
this property to 'Auto', the number of signals is estimated by the method specified by
the NumSignalsMethod property.

When spatial smoothing is employed on a UCA, you cannot set the NumSignalsSource
property to'Auto' to estimate the number of signals. You can use the functions
aictest or mdltest independently to determine the number of signals.

Default: 'Auto'

NumSignalsMethod

Method to estimate number of signals

Specify the method to estimate the number of signals as one of 'AIC' or 'MDL'. 'AIC'
uses the Akaike Information Criterion and 'MDL' uses Minimum Description Length
Criterion. This property applies when you set the NumSignalsSource property to
'Auto'.

Default: 'AIC'

NumSignals

Number of signals

Specify the number of signals as a positive integer scalar. This property applies when you
set the NumSignalsSource property to 'Property'.

Default: 1

Methods

clone Create root MUSIC DOA estimator object
with same property values

 phased.RootMUSICEstimator System object

1-1563

getNumInputs Number of expected inputs to step method
getNumOutputs Number of outputs from step method
isLocked Locked status for input attributes and

nontunable properties
release Allow property value and input

characteristics changes
step Perform DOA estimation

Examples

Root-MUSIC Estimation of DOA for ULA

Estimate the DOA's of two signals received by a standard 10-element uniform linear
array (ULA) having an element spacing of 1 meter. The antenna operating frequency is
150 MHz. The actual direction of the first signal is 10 degrees in azimuth and 20 degrees
in elevation. The direction of the second signal is 45 degrees in azimuth and 60 degrees in
elevation.

fs = 8000;

t = (0:1/fs:1).';

x1 = cos(2*pi*t*300);

x2 = cos(2*pi*t*400);

sULA = phased.ULA('NumElements',10,...

 'ElementSpacing',1);

sULA.Element.FrequencyRange = [100e6 300e6];

fc = 150e6;

x = collectPlaneWave(sULA,[x1 x2],[10 20;45 60]',fc);

rng default;

noise = 0.1/sqrt(2)*(randn(size(x))+1i*randn(size(x)));

sDOA = phased.RootMUSICEstimator('SensorArray',sULA,...

 'OperatingFrequency',fc,...

 'NumSignalsSource','Property',...

 'NumSignals',2);

doas = step(sDOA,x + noise);

az = broadside2az(sort(doas),[20 60])

az =

 10.0001 45.0107

1 Alphabetical List

1-1564

References

[1] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002.

[2] Mathews, C.P., Zoltowski, M.D., "Eigenstructure techniques for 2-D angle estimation
with uniform circular arrays." IEEE Transactions on Signal Processing, vol. 42,
No. 9, pp. 2395-2407, Sept. 1994.

See Also
broadside2az | phased.RootWSFEstimator | rootmusicdoa | sensorcov |
spsmooth

Introduced in R2012a

 clone

1-1565

clone
System object: phased.RootMUSICEstimator
Package: phased

Create root MUSIC DOA estimator object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates an object, C, having the same property values and same states as
H. If H is locked, so is C.

1 Alphabetical List

1-1566

getNumInputs
System object: phased.RootMUSICEstimator
Package: phased

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of inputs
(not counting the object itself) that you must use when calling the step method. This
value changes when you alter properties that turn inputs on or off.

 getNumOutputs

1-1567

getNumOutputs
System object: phased.RootMUSICEstimator
Package: phased

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value changes when you alter properties that turn outputs on or off.

1 Alphabetical List

1-1568

isLocked
System object: phased.RootMUSICEstimator
Package: phased

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF, for the RootMUSICEstimator
System object.

isLocked returns a logical value that indicates whether input attributes and
nontunable properties for the object are locked. The object performs an internal
initialization the first time that you execute step. This initialization locks nontunable
properties and input specifications, such as the dimensions, complexity, and data type of
the input data. After locking, isLocked returns a true value.

 release

1-1569

release
System object: phased.RootMUSICEstimator
Package: phased

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

1 Alphabetical List

1-1570

step
System object: phased.RootMUSICEstimator
Package: phased

Perform DOA estimation

Syntax
ANG = step(H,X)

ANG = step(H,X,ElAng)

Description
ANG = step(H,X) estimates the direction of arrivals (DOA’s) from a signal X using the
DOA estimator H. X is a matrix whose columns correspond to the signal channels. ANG is
a row vector of the estimated broadside angles (in degrees).

ANG = step(H,X,ElAng) specifies, in addition, the assumed elevation angles of the
signals. This syntax is only applicable when the SensorArray property of the object
specifies a uniform circular array (UCA). ElAng is a scalar between -90° and 90° and is
applied to all signals. The elevation angles for all signals must be the same as required
by the phase mode excitation algorithm.

Note: The object performs an initialization the first time the step method is executed.
This initialization locks nontunable properties and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Examples
Root-MUSIC Estimation of DOA for ULA

Estimate the DOA's of two signals received by a standard 10-element uniform linear
array (ULA) having an element spacing of 1 meter. The antenna operating frequency is

 step

1-1571

150 MHz. The actual direction of the first signal is 10 degrees in azimuth and 20 degrees
in elevation. The direction of the second signal is 45 degrees in azimuth and 60 degrees in
elevation.

fs = 8000;

t = (0:1/fs:1).';

x1 = cos(2*pi*t*300);

x2 = cos(2*pi*t*400);

sULA = phased.ULA('NumElements',10,...

 'ElementSpacing',1);

sULA.Element.FrequencyRange = [100e6 300e6];

fc = 150e6;

x = collectPlaneWave(sULA,[x1 x2],[10 20;45 60]',fc);

rng default;

noise = 0.1/sqrt(2)*(randn(size(x))+1i*randn(size(x)));

sDOA = phased.RootMUSICEstimator('SensorArray',sULA,...

 'OperatingFrequency',fc,...

 'NumSignalsSource','Property',...

 'NumSignals',2);

doas = step(sDOA,x + noise);

az = broadside2az(sort(doas),[20 60])

az =

 10.0001 45.0107

Root-MUSIC Estimation of DOA for UCA

Using the root-MUSIC algorithm, estimate the azimuth angle of arrival of two signals
received by a 15-element UCA having a 1.5 meter radius. The antenna operating
frequency is 150 MHz. The actual direction of arrival of the first signal is 10 degrees in
azimuth and 4 degrees in elevation. The direction of arrival of the second signal is 45
degrees in azimuth and -2 degrees in elevation. In estimating the directions of arrival,
assume the signals arrive from 0 degrees elevation.

Set the frequencies of the signals to 500 and 600 Hz. Set the sample rate to 8 kHz and
the operating frequency to 150 MHz. Then, create the baseband signals, the UCA array
and the plane wave signals.

fs = 8000;

fc = 150e6;

t = (0:1/fs:1).';

1 Alphabetical List

1-1572

x1 = cos(2*pi*t*500);

x2 = cos(2*pi*t*600);

sUCA = phased.UCA('NumElements',15,...

 'Radius',1.5);

x = collectPlaneWave(sUCA,[x1 x2],[10 4; 45 -2]',fc);

Add random complex gaussian white noise to the signals.

rs = RandStream('mt19937ar','Seed',0);

noise = 0.1/sqrt(2)*(randn(rs,size(x))+1i*randn(rs,size(x)));

Create the phased.RootMUSICEstimator System object

sDOA = phased.RootMUSICEstimator('SensorArray',sUCA,...

 'OperatingFrequency',fc,...

 'NumSignalsSource','Property',...

 'NumSignals',2);

Solve for the azimuth angles for zero degrees elevation.

elang = 0;

doas = step(sDOA, x + noise, elang);

az = sort(doas)

az =

 9.9815 44.9986

 phased.RootWSFEstimator System object

1-1573

phased.RootWSFEstimator System object
Package: phased

Root WSF direction of arrival (DOA) estimator

Description

The RootWSFEstimator object implements a root weighted subspace fitting direction of
arrival algorithm.

To estimate the direction of arrival (DOA):

1 Define and set up your root WSF DOA estimator. See “Construction” on page
1-1573.

2 Call step to estimate the DOA according to the properties of
phased.RootWSFEstimator. The behavior of step is specific to each object in the
toolbox.

Construction

H = phased.RootWSFEstimator creates a root WSF DOA estimator System object, H.
The object estimates the signal's direction of arrival using the root weighted subspace
fitting (WSF) algorithm with a uniform linear array (ULA).

H = phased.RootWSFEstimator(Name,Value) creates object, H, with each specified
property Name set to the specified Value. You can specify additional name-value pair
arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties

SensorArray

Handle to sensor array

Specify the sensor array as a handle. The sensor array must be a phased.ULA object.

1 Alphabetical List

1-1574

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second, as a positive scalar.

Default: Speed of light

OperatingFrequency

System operating frequency

Specify the operating frequency of the system in hertz as a positive scalar. The default
value corresponds to 300 MHz.

Default: 3e8

NumSignalsSource

Source of number of signals

Specify the source of the number of signals as one of 'Auto' or 'Property'. If you set
this property to 'Auto', the number of signals is estimated by the method specified by
the NumSignalsMethod property.

Default: 'Auto'

NumSignalsMethod

Method to estimate number of signals

Specify the method to estimate the number of signals as one of 'AIC' or 'MDL'. 'AIC'
uses the Akaike Information Criterion and 'MDL' uses the Minimum Description Length
Criterion. This property applies when you set the NumSignalsSource property to
'Auto'.

Default: 'AIC'

NumSignals

Number of signals

 phased.RootWSFEstimator System object

1-1575

Specify the number of signals as a positive integer scalar. This property applies when you
set the NumSignalsSource property to 'Property'.

Default: 1

Method

Iterative method

Specify the iterative method as one of 'IMODE' or 'IQML'.

Default: 'IMODE'

MaximumIterationCount

Maximum number of iterations

Specify the maximum number of iterations as a positive integer scalar or 'Inf'. This
property is tunable.

Default: 'Inf'

Methods

clone Create root WSF DOA estimator object
with same property values

getNumInputs Number of expected inputs to step method
getNumOutputs Number of outputs from step method
isLocked Locked status for input attributes and

nontunable properties
release Allow property value and input

characteristics changes
step Perform DOA estimation

Examples

Estimate the DOAs of two signals received by a standard 10-element ULA with element
spacing 1 m. The antenna operating frequency is 150 MHz. The actual direction of the

1 Alphabetical List

1-1576

first signal is 10 degrees in azimuth and 20 degrees in elevation. The direction of the
second signal is 45 degrees in azimuth and 60 degrees in elevation.

fs = 8000; t = (0:1/fs:1).';

x1 = cos(2*pi*t*300); x2 = cos(2*pi*t*400);

ha = phased.ULA('NumElements',10,'ElementSpacing',1);

ha.Element.FrequencyRange = [100e6 300e6];

fc = 150e6;

x = collectPlaneWave(ha,[x1 x2],[10 20;45 60]',fc);

rng default;

noise = 0.1/sqrt(2)*(randn(size(x))+1i*randn(size(x)));

hdoa = phased.RootWSFEstimator('SensorArray',ha,...

 'OperatingFrequency',fc,...

 'NumSignalsSource','Property','NumSignals',2);

doas = step(hdoa,x+noise);

az = broadside2az(sort(doas),[20 60])

References

[1] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002.

See Also
broadside2az | phased.RootMUSICEstimator

Introduced in R2012a

 clone

1-1577

clone
System object: phased.RootWSFEstimator
Package: phased

Create root WSF DOA estimator object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates an object, C, having the same property values and same states as
H. If H is locked, so is C.

1 Alphabetical List

1-1578

getNumInputs
System object: phased.RootWSFEstimator
Package: phased

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of inputs
(not counting the object itself) that you must use when calling the step method. This
value changes when you alter properties that turn inputs on or off.

 getNumOutputs

1-1579

getNumOutputs
System object: phased.RootWSFEstimator
Package: phased

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value changes when you alter properties that turn outputs on or off.

1 Alphabetical List

1-1580

isLocked
System object: phased.RootWSFEstimator
Package: phased

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF, for the RootWSFEstimator System
object.

isLocked returns a logical value that indicates whether input attributes and
nontunable properties for the object are locked. The object performs an internal
initialization the first time that you execute step. This initialization locks nontunable
properties and input specifications, such as the dimensions, complexity, and data type of
the input data. After locking, isLocked returns a true value.

 release

1-1581

release
System object: phased.RootWSFEstimator
Package: phased

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

1 Alphabetical List

1-1582

step
System object: phased.RootWSFEstimator
Package: phased

Perform DOA estimation

Syntax

ANG = step(H,X)

Description

ANG = step(H,X) estimates the DOAs from X using the DOA estimator H. X is a matrix
whose columns correspond to channels. ANG is a row vector of the estimated broadside
angles (in degrees).

Note: The object performs an initialization the first time the step method is executed.
This initialization locks nontunable properties and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Examples

Estimate the DOAs of two signals received by a standard 10-element ULA with element
spacing 1 m. The antenna operating frequency is 150 MHz. The actual direction of the
first signal is 10 degrees in azimuth and 20 degrees in elevation. The direction of the
second signal is 45 degrees in azimuth and 60 degrees in elevation.

fs = 8000; t = (0:1/fs:1).';

x1 = cos(2*pi*t*300); x2 = cos(2*pi*t*400);

ha = phased.ULA('NumElements',10,'ElementSpacing',1);

ha.Element.FrequencyRange = [100e6 300e6];

fc = 150e6;

 step

1-1583

x = collectPlaneWave(ha,[x1 x2],[10 20;45 60]',fc);

rng default;

noise = 0.1/sqrt(2)*(randn(size(x))+1i*randn(size(x)));

hdoa = phased.RootWSFEstimator('SensorArray',ha,...

 'OperatingFrequency',fc,...

 'NumSignalsSource','Property','NumSignals',2);

doas = step(hdoa,x+noise);

az = broadside2az(sort(doas),[20 60])

1 Alphabetical List

1-1584

phased.ScenarioViewer System object

Package: phased

Display motion of radars and targets

Description

The phased.ScenarioViewer System object creates a 3-D viewer to display the motion
of radars and targets that you model in your radar simulation. You can display current
positions and velocities, object tracks, position and speed annotations, radar beam
directions, and other object parameters. You can change radar features such as beam
range and beam width during the simulation. You can use the phased.Platform System
object to model moving objects or you can supply your own dynamic models.

This figure shows a four-object scenario consisting of a ground radar, two airplanes, and
a ground vehicle. You can view the code that generated this figure in the “Multiplatform
Scenario” on page 1-1598 example.

 phased.ScenarioViewer System object

1-1585

To create a scenario viewer:

1 Define and set up the phased.ScenarioViewer System object. See “Construction”
on page 1-1585. You can set System object properties at construction time or leave
them to their default values. Some properties that you set at construction time can
be changed later. These properties are tunable.

2 Call the phased.ScenarioViewer.step method to update radar and target displayed
positions according to the properties of the phased.ScenarioViewer System
object. You can change tunable properties at any time.

Construction

sIS = phased.ScenarioViewer creates a scenario viewer System object, sIS having
default property values.

1 Alphabetical List

1-1586

sIS = phased.ScenarioViewer(Name,Value) returns a scenario viewer System
object, sIS, with any specified property Name set to a specified Value. Name must appear
inside single quotes (''). You can specify several name-value pair arguments in any
order as Name1,Value1,...,NameN,ValueN.

Properties

Name — Window caption name
'Scenario Viewer' (default) | string

Window caption name, specified as a string. The Name property and the Title property
are different.
Example: 'Multitarget Viewer'

Data Types: char

ReferenceRadar — Reference radar index
1 (default) | positive integer

Reference radar index, specified as a positive integer. This property selects one of the
radars as the reference radar. Its value must be less than or equal to the number of
radars that you specify in the radar_pos argument of the phased.ScenarioViewer.step
method. This property is tunable. Target range, radial speed, azimuth, and elevation are
defined with respect to this radar.
Example: 2

Data Types: double

ShowBeam — Show radar beams
'ReferenceRadar' (default) | 'None' | 'All'

Enable the display of radar beams, specified as 'ReferenceRadar', 'None', or 'All'.
This option determines which radar beams to show.

Option Beams to show

'ReferenceRadar' Show the beam of the radar specified in the
ReferenceRadar property.

 phased.ScenarioViewer System object

1-1587

Option Beams to show

'None' Do not show any radar beams.
'All' Show the beams for all radars.

This property is tunable.
Example: 'All'

Data Types: char

BeamWidth — Vertical and horizontal radar beam widths
15 (default) | positive, real-valued scalar | positive, real-valued 2-element column vector
| positive, real-valued N-element row vector | positive, real-valued 2-by-N matrix

Vertical and horizontal radar beam widths, specified as a positive real-valued scalar, a 2-
element column vector, an N-element row vector, or a 2-by-N matrix. N is the number of
radars. All scalar, vector, and matrix entries are positive, real-valued numbers between
0–360°. Units are in degrees.

Value Specification Interpretation

Scalar The horizontal and vertical radar beam
widths are equal and identical for all
radars.

2-element column vector The first row specifies the horizontal beam
width. The second row specifies the vertical
beam width. These values are identical for
all radars.

N-element row vector Each element applies to one radar. Vertical
and horizontal beam widths for each radar
are equal.

2-by-N matrix Each column applies to one radar. The first
row specifies the horizontal beam width
and the second row specifies the vertical
beam width for each radar.

When CameraPerspective is set to 'Radar', the System object uses this property to
calculate the value of CameraViewAngle. This property is tunable.

Example: [20 10; 18 9]

1 Alphabetical List

1-1588

Data Types: double

BeamRange — Radar beam range
1000 (default) | positive scalar | real-valued N- element row vector of positive values

Radar beam range, specified as a positive scalar or an N-element row vector, where N is
the number of radars. Units are in meters. When specified as a scalar, all radars have
the same beam range. When specified as a vector, each element corresponds to one radar.
This property is tunable.
Example: [1000 1500 850]

Data Types: double

BeamSteering — Beam steering direction
[0;0] (default) | positive real-valued 2-element column vector | positive real-valued N-
element row vector

Beam steering directions of radars, specified as a real-valued 2-element column vector
of positive values or 2-by-N real-valued matrix of positive values. N is the number of
radars. Beam steering angles are relative to the local coordinate axes of each radar.
Units are in degrees. Each column takes the form [azimuthangle;elevationangle].
When only one column is specified, the beam steering directions of all radars are the
same. Azimuth angles are from –180° to 180°, and the elevation angles are from –90° to
90°. This property is tunable.
Example: [20 60 35; 5 0 10]

Data Types: double

VelocityInputPort — Enable velocity input
true (default) | false

Enable the velocity input arguments, radar_velocity and tgt_velocity, of the
phased.ScenarioViewer.step method, specified as true or false. Setting this property
to true enables the input arguments. When this property is false, velocity vectors are
estimated from the position change between consecutive updates divided by the update
interval. The update interval is the inverse of the UpdateRate value.

Example: false

Data Types: logical

OrientationInputPort — Enable orientation input
false (default) | true

 phased.ScenarioViewer System object

1-1589

Enable the input of local coordinate system orientation axes, radar_laxes and
tgt_laxes, to the phased.ScenarioViewer.step method, specified as false or true.
Setting this property to true enables the input arguments. When this property is false,
the orientation axes are aligned with the global coordinate axes.
Example: true

Data Types: logical

UpdateRate — Update rate of scenario viewer
1 (default) | positive scalar

Update rate of scenario viewer, specified as a positive scalar. Units are in hertz.
Example: 2.5

Data Types: double

Title — Display title
'' (default) | string

Display title, specified as a string. The Title property and the Name property are
different. The display title appears within the figure at the top. The name appears at the
top of the figure window. This property is tunable.
Example: 'Radar and Target Display'

Data Types: char

PlatformNames — Names of radars and targets
'Auto' (default) | 1-by-(N+M) cell array of strings

Names assigned to radars and targets, specified as a 1-by-(N+M) cell array of character
strings. N is the number of radars and M is the number of targets. Order the cell entries
by radar names, followed by target names. Names appear in the legend and annotations.
When you set PlatformNames to 'Auto', names are created sequentially starting from
'Radar 1' for radars and 'Target 1' for targets.

Example: {'Stationary Radar','Mobile Radar','Airplane'}

Data Types: cell

TrailLength — Length of visible tracks
500 (default) | positive integer | (N+M)-length vector of positive integers

1 Alphabetical List

1-1590

Length of the visibility of object tracks, specified as a positive integer or (N+M)-length
vector of positive integers. N is the number of radars and M is the number of targets.
When TrailLength is a scalar, all tracks have the same length. When TrailLength
is a vector, each element of the vector specifies the length of the corresponding radar
or target trajectory. Order the entries by radars, followed by targets. Each call to the
phased.ScenarioViewer.step method generates a new visible point. This property is
tunable.
Example: [100,150,100]

Data Types: double

CameraPerspective — Camera perspective
'Auto' (default) | 'Custom' | 'Radar'

Camera perspective, specified as 'Auto', 'Custom', or 'Radar'. When you set this
property to 'Auto', the System object estimates appropriate values for the camera
position, orientation, and view angle to show all tracks. When you set this property
to 'Custom', you can set the camera position, orientation, and angles using camera
properties or the camera toolbar. When you set this property to 'Radar', the System
object determines the camera position, orientation, and angles from the radar position
and the radar beam steering direction. This property is tunable.
Example: 'Radar'

Data Types: char

CameraPosition — Camera position
[x,y,z] vector of real-values

Camera position, specified as an [x,y,z] vector of real values. Units are in meters.
This property applies when you set CameraPerspective to 'Custom'. When you
do not specify this property, the System object chooses values based on your display
configuration. This property is tunable.
Example: [100,50,40]

Data Types: double

CameraOrientation — Camera orientation
[pan,tilt,roll] vector of positive, real values

Camera orientation, specified as a [pan,tilt,roll] vector of positive, real values.
Units are in degrees. Pan and roll angles take values from –180° to 180°. The tilt angle

 phased.ScenarioViewer System object

1-1591

takes values from –90° to 90°. Camera rotations are performed in the order: pan, tilt,
and roll. This property applies when you set CameraPerspective to 'Custom'. When
you do not specify this property, the System object chooses values based on your display
configuration. This property is tunable.
Example: [180,45,30]

Data Types: double

CameraViewAngle — Camera view angle
real-valued scalar from 0° to 360°

Camera view angle, specified as a real-valued scalar. Units are in degrees. View
angle values are in the range 0° to 360°. This property applies when you set
CameraPerspective to 'Custom'. When you do not specify this property, the System
object chooses values based on your display configuration. This property is tunable.
Example: 75

Data Types: double

ShowLegend — Show viewer legend
false (default) | true

Option to show the viewer legend, specified as false or true. This property is tunable.

Example: true

Data Types: logical

ShowGround — Show ground plane of scenario
true (default) | false

Option to show the ground plane of the viewer scenario, specified as true or false. This
property is tunable.
Example: false

Data Types: logical

ShowName — Option to annotate radar and target tracks with names
true (default) | false

Annotate radar and target tracks with names, specified as true or false. You can
define custom platform names using PlatformNames. This property is tunable.

1 Alphabetical List

1-1592

Example: false

Data Types: logical

ShowPosition — Annotate radar and target tracks with positions
false (default) | true

Option to annotate radar and target tracks with positions, specified as false or true.
This property is tunable.
Example: true

Data Types: logical

ShowRange — Annotate radar and target tracks with ranges
false (default) | true

Option to annotate radar and target tracks with the range from the reference radar,
specified as false or true. This property is tunable.

Example: true

Data Types: logical

ShowAltitude — Annotate radar and target tracks with altitude
false (default) | true

Option to annotate radar and target tracks with altitude, specified as false or true.
This property is tunable.
Example: true

Data Types: logical

ShowSpeed — Annotate radar and target tracks with speed
false (default) | true

Option to annotate radar and target tracks with speed, specified as false or true. This
property is tunable.
Example: true

Data Types: logical

ShowRadialSpeed — Annotate radar and target tracks with radial speed
false (default) | true

 phased.ScenarioViewer System object

1-1593

Option to annotate radar and target tracks with radial speed, specified as false or
true. Radial speed is relative to the reference radar. This property is tunable.

Example: true

Data Types: logical

ShowAzEl — Annotate radar and target tracks with azimuth and elevation
false (default) | true

Option to annotate radar and target tracks with azimuth and elevation angles relative to
the reference radar, specified as false or true. This property is tunable.

Example: true

Data Types: logical

Position — Viewer window size and position
[left bottom width height] vector of positive, real values

Scenario viewer window size and position, specified as a [left bottom width
height] vector of positive, real values. Units are in pixels.

• left sets the position of the left edge of the window.
• bottom sets the position of the bottom edge of the window.
• width sets the width of the window.
• height sets the height of the window.

When you do not specify this property, the window is positioned at the center of the
screen, with width and height taking the values 410 and 300 pixels, respectively. This
property is tunable.
Example: [100,200,800,500]

Data Types: double

ReducePlotRate — Enable reduced plot rate
true (default) | false

Option to reduce the plot rate to improve performance, specified as true or false. Set
this property to true to update the viewer at a reduced rate. Set this property to false
to update the viewer with each call to the phased.ScenarioViewer.step method. This
mode adversely affects viewer performance. This property is tunable.

1 Alphabetical List

1-1594

Example: false

Data Types: logical

Methods

clone Create System object with identical
property values

getNumInputs Number of expected inputs to step method
getNumOutputs Number of outputs from step method
hide Hide scenario viewer window
isLocked Locked status for input attributes and

nontunable properties
release Enable property values and input

characteristics to change
reset Reset state of the System object
show Show scenario viewer window
step Update scenario viewer display

Examples

View Tracks of Stationary Radar and One Target

Visualize the tracks of a radar and a single airplane target. The radar is stationary
and the airplane is moving in a straight line. Maintain the radar beam pointing at the
airplane.

Create the radar and airplane platform System objects. Set the update rate to 0.1 s.

updateRate = 0.1;

radarPlatform = phased.Platform(...

 'InitialPosition',[0;0;10], ...

 'Velocity',[0;0;0]);

airplanePlatforms = phased.Platform(...

 'InitialPosition',[5000.0;3500.0;6000.0],...

 phased.ScenarioViewer System object

1-1595

 'Velocity',[-300;0;0]);

Create the phased.ScenarioViewer System object™. Show the radar beam and
annotate the tracks with position, speed, and altitude.

sSV = phased.ScenarioViewer('BeamRange',5000.0,'UpdateRate',updateRate,...

 'PlatformNames',{'Ground Radar','Airplane'},'ShowPosition',true,...

 'ShowSpeed',true,'ShowAltitude',true,'ShowLegend',true);

Run the scenario. At each step, compute the angle to the target. Then, use that angle to
steer the radar beam toward the target.

for i = 1:100

 [radar_pos,radar_vel] = step(radarPlatform,updateRate);

 [tgt_pos,tgt_vel] = step(airplanePlatforms,updateRate);

 [rng,ang] = rangeangle(tgt_pos,radar_pos);

 sSV.BeamSteering = ang;

 step(sSV,radar_pos,radar_vel,tgt_pos,tgt_vel);

 pause(0.1);

end

1 Alphabetical List

1-1596

View Tracks of Airborne Radar and Ground Target

Visualize the tracks of an airborne radar and a ground vehicle target. The airborne radar
is carried by a drone flying at 5 km altitude.

Create the drone radar and ground vehicle using phased.Platform System objects. Set
the update rate to 0.1 s.

updateRate = 0.1;

drone = phased.Platform(...

 'InitialPosition',[100;1000;5000], ...

 'Velocity',[400;0;0]);

vehicle = phased.Platform('MotionModel','Acceleration',...

 phased.ScenarioViewer System object

1-1597

 'InitialPosition',[5000.0;3500.0;0.0],...

 'InitialVelocity',[40;5;0],'Acceleration',[0.1;0.1;0]);

Create the phased.ScenarioViewer System object™. Show the radar beam and
annotate the tracks with position, speed, and, altitude.

sSV = phased.ScenarioViewer('BeamRange',8000.0,'BeamWidth',2,'UpdateRate',updateRate,...

 'PlatformNames',{'Drone Radar','Vehicle'},'ShowPosition',true,...

 'ShowSpeed',true,'ShowAltitude',true,'ShowLegend',true,'Title','Vehicle Tracking Radar');

Run the scenario. At each step, compute the angle to the target. Then, use that angle to
steer the radar beam toward the target.

for i = 1:100

 [radar_pos,radar_vel] = step(drone,updateRate);

 [tgt_pos,tgt_vel] = step(vehicle,updateRate);

 [rng,ang] = rangeangle(tgt_pos,radar_pos);

 sSV.BeamSteering = ang;

 step(sSV,radar_pos,radar_vel,tgt_pos,tgt_vel);

 pause(.1);

end

1 Alphabetical List

1-1598

Multiplatform Scenario

Display a multiplatform scenario containing a ground-based stationary radar, a turning
airplane, a constant-velocity airplane, and a moving ground vehicle. The turning airplane
follows a parabolic flight path while descending at a rate of 20 m/s.

Specify the scenario refresh rate at 0.5 Hz. For 150 steps, the time duration of the
scenario is 300 s.

updateRate = 0.5;

N = 150;

 phased.ScenarioViewer System object

1-1599

Set up the turning airplane using the Acceleration model of the phased.Platform
System object™. Specify the initial position of the airplane by range and azimuth from
the ground-based radar and its elevation. The airplane is 10 km from the radar at 60°
azimuth and has an altitude of 6 km. The airplane is accelerating at 10 in the
negative x-direction.

airplane1range = 10.0e3;

airplane1Azimuth = 60.0;

airplane1alt = 6.0e3;

airplane1Pos0 = [cosd(airplane1Azimuth)*airplane1range;...

 sind(airplane1Azimuth)*airplane1range;airplane1alt];

airplane1Vel0 = [400.0;-100.0;-20];

airplane1Accel = [-10.0;0.0;0.0];

sAirplane1 = phased.Platform('MotionModel','Acceleration',...

 'AccelerationSource','Input port','InitialPosition',airplane1Pos0,...

 'InitialVelocity',airplane1Vel0,'OrientationAxesOutputPort',true,...

 'InitialOrientationAxes',eye(3));

Set up the stationary ground radar at the origin of the global coordinate system.
To simulate a rotating radar, change the ground radar beam steering angle in the
processing loop.

groundRadarPos = [0,0,0]';

groundRadarVel = [0,0,0]';

sGroundRadar = phased.Platform('MotionModel','Velocity',...

 'InitialPosition',groundRadarPos,'Velocity',groundRadarVel,...

 'InitialOrientationAxes',eye(3));

Set up the ground vehicle to move at a constant velocity.

groundVehiclePos = [5e3,2e3,0]';

groundVehicleVel = [50,50,0]';

sGroundVehicle = phased.Platform('MotionModel','Velocity',...

 'InitialPosition',groundVehiclePos,'Velocity',groundVehicleVel,...

 'InitialOrientationAxes',eye(3));

Set up the second airplane to also move at constant velocity.

airplane2Pos = [8.5e3,1e3,6000]';

airplane2Vel = [-300,100,20]';

sAirplane2 = phased.Platform('MotionModel','Velocity',...

 'InitialPosition',airplane2Pos,'Velocity',airplane2Vel,...

 'InitialOrientationAxes',eye(3));

1 Alphabetical List

1-1600

Set up the scenario viewer. Specity the radar as having a beam range of 8 km, a vertical
beam width of 30°, and a horizontal beam width of 2°. Annotate the tracks with position,
speed, altitude, and range.

BeamSteering = [0;50];

sSV = phased.ScenarioViewer('BeamRange',8.0e3,'BeamWidth',[2;30],'UpdateRate',updateRate,...

 'PlatformNames',{'Ground Radar','Turning Airplane','Vehicle','Airplane 2'},'ShowPosition',true,...

 'ShowSpeed',true,'ShowAltitude',true,'ShowLegend',true,'ShowRange',true,...

 'Title','Multiplatform Scenario','BeamSteering',BeamSteering);

Step through the display processing loop, updating radar and target positions. Rotate the
ground-based radar steering angle by four degrees at each step.

for n = 1:N

 [groundRadarPos,groundRadarVel] = step(sGroundRadar,updateRate);

 [airplane1Pos,airplane1Vel,airplane1Axes] = ...

 step(sAirplane1,updateRate,airplane1Accel);

 [vehiclePos,vehicleVel] = step(sGroundVehicle,updateRate);

 [airplane2Pos,airplane2Vel] = step(sAirplane2,updateRate);

 step(sSV,groundRadarPos,groundRadarVel,[airplane1Pos,vehiclePos,airplane2Pos],...

 [airplane1Vel,vehicleVel,airplane2Vel]);

 BeamSteering = sSV.BeamSteering(1);

 BeamSteering = mod(BeamSteering + 4,360.0);

 if BeamSteering > 180.0

 BeamSteering = BeamSteering - 360.0;

 end

 sSV.BeamSteering(1) = BeamSteering;

 pause(0.2);

end

 phased.ScenarioViewer System object

1-1601

• “Visualizing Radar and Target Trajectories in System Simulation”

See Also
phased.Platform | rangeangle

Introduced in R2016a

1 Alphabetical List

1-1602

clone
System object: phased.ScenarioViewer
Package: phased

Create System object with identical property values

Syntax

sSV2 = clone(sSV)

Description

sSV2 = clone(sSV) creates a System object, sSV2, having the same property values
and same states as sSV. If sSV is locked, so is sSV2.

Input Arguments

sSV — Scenario viewer
phased.ScenarioViewer System object

Scenario viewer, specified as a phased.ScenarioViewer System object.
Example: phased.ScenarioViewer

Output Arguments

sSV2 — Scenario viewer clone
phased.ScenarioViewer System object

Scenario viewer clone, returned as a phased.ScenarioViewer System object.

Introduced in R2016a

 getNumInputs

1-1603

getNumInputs
System object: phased.ScenarioViewer
Package: phased

Number of expected inputs to step method

Syntax

N = getNumInputs(sSV)

Description

N = getNumInputs(sSV) returns a positive integer, N, representing the number of
inputs (not counting the object itself) that you must use when calling the step method.
This value changes when you alter properties that turn inputs on or off.

Input Arguments

sSV — Scenario viewer
phased.ScenarioViewer System object

Scenario viewer, specified as a phased.ScenarioViewer System object.
Example: phased.ScenarioViewer

Output Arguments

N — Number of expected inputs to step method
positive integer

Number of expected inputs to the step method, returned as a positive integer. The
number does not include the object itself.

Introduced in R2016a

1 Alphabetical List

1-1604

getNumOutputs
System object: phased.ScenarioViewer
Package: phased

Number of outputs from step method

Syntax

N = getNumOutputs(sSV)

Description

N = getNumOutputs(sSV) returns the number of outputs, N, from the step method.
This value changes when you alter properties that turn outputs on or off.

Input Arguments

sSV — Scenario viewer
phased.ScenarioViewer System object

Scenario viewer, specified as a phased.ScenarioViewer System object.
Example: phased.ScenarioViewer

Output Arguments

N — Number of expected outputs from step method
nonnegative integer

Number of expected outputs from the step method, returned as a nonnegative integer.

Introduced in R2016a

 hide

1-1605

hide
System object: phased.ScenarioViewer
Package: phased

Hide scenario viewer window

Syntax

hide(sSV)

Description

hide(sSV) hides the display window of the phased.ScenarioViewer System object,
sSV.

Input Arguments

sSV — Scenario viewer
phased.ScenarioViewer System object

Scenario viewer, specified as a phased.ScenarioViewer System object.
Example: phased.ScenarioViewer

Introduced in R2016a

1 Alphabetical List

1-1606

isLocked
System object: phased.ScenarioViewer
Package: phased

Locked status for input attributes and nontunable properties

Syntax

LS = isLocked(sSV)

Description

LS = isLocked(sSV) returns the locked status, LS, for the phased.ScenarioViewer
System object.

isLocked returns a logical value that indicates whether input attributes and
nontunable properties for the object are locked. The object performs an internal
initialization the first time that you execute step. This initialization locks nontunable
properties and input specifications, such as the dimensions, complexity, and data type of
the input data. After locking, isLocked returns a true value.

Input Arguments

sSV — Scenario viewer
phased.ScenarioViewer System object

Scenario viewer, specified as a phased.ScenarioViewer System object.
Example: phased.ScenarioViewer

Output Arguments

LS — Locked status of phased.ScenarioViewer System object
true | false

 isLocked

1-1607

Locked status of phased.ScenarioViewer System object, returned as true when the input
attributes and nontunable properties of the object are locked. Otherwise, the returned
value is false.

Introduced in R2016a

1 Alphabetical List

1-1608

release
System object: phased.ScenarioViewer
Package: phased

Enable property values and input characteristics to change

Syntax

release(sSV)

Description

release(sSV) releases system resources (such as memory, file handles, or hardware
connections) and lets you change all properties and input characteristics.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

Input Arguments

sSV — Scenario viewer
phased.ScenarioViewer System object

Scenario viewer, specified as a phased.ScenarioViewer System object.
Example: phased.ScenarioViewer

Introduced in R2016a

 reset

1-1609

reset
System object: phased.ScenarioViewer
Package: phased

Reset state of the System object

Syntax

reset(sSV)

Description

reset(sSV) resets the internal state of the phased.ScenarioViewer System object,
sSV, to its initial value.

Input Arguments

sSV — Scenario viewer
phased.ScenarioViewer System object

Scenario viewer, specified as a phased.ScenarioViewer System object.
Example: phased.ScenarioViewer

Introduced in R2016a

1 Alphabetical List

1-1610

show
System object: phased.ScenarioViewer
Package: phased

Show scenario viewer window

Syntax

show(sSV)

Description

show(sSV) shows the display window of the phased.ScenarioViewer System object,
sSV.

Input Arguments

sSV — Scenario viewer
phased.ScenarioViewer System object

Scenario viewer, specified as a phased.ScenarioViewer System object.
Example: phased.ScenarioViewer

Introduced in R2016a

 step

1-1611

step
System object: phased.ScenarioViewer
Package: phased

Update scenario viewer display

Syntax

step(sSV,radar_pos,tgt_pos)

step(sSV,radar_pos,tgt_pos,radar_velocity,tgt_velocity)

step(sSV,radar_pos,radar_laxes,tgt_pos,tgt_laxes)

step(sSV,radar_pos,radar_velocity,radar_laxes,tgt_pos,tgt_velocity,

tgt_laxes)

Description

step(sSV,radar_pos,tgt_pos) updates the scenario viewer display with new
radar positions, radar_pos, and target positions, tgt_pos. This syntax applies when
VelocityInputPort and OrientationInputPort are set to false.

step(sSV,radar_pos,tgt_pos,radar_velocity,tgt_velocity) also specifies
the radar velocity, radar_velocity, and target velocity, tgt_velocity. This syntax
applies when VelocityInputPort is set to true and OrientationInputPort is set to
false.

step(sSV,radar_pos,radar_laxes,tgt_pos,tgt_laxes) also specifies
the radar orientation axes, radar_laxes, and the target orientation axes,
tgt_laxes. This syntax applies when VelocityInputPort is set to false and
OrientationInputPort is set to true.

step(sSV,radar_pos,radar_velocity,radar_laxes,tgt_pos,tgt_velocity,

tgt_laxes) also specifies velocity and orientation axes when VelocityInputPort and
OrientationInputPort are set to true.

Note: The object performs an initialization the first time the step method is executed.
This initialization locks nontunable properties and input specifications, such as

1 Alphabetical List

1-1612

dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Input Arguments

sSV — Scenario viewer
phased.ScenarioViewer System object

Scenario viewer, specified as a phased.ScenarioViewer System object.
Example: phased.ScenarioViewer

radar_pos — Radar positions
real-valued 3-by-N matrix

Radar positions, specified as a real-valued 3-by-N matrix. N is the number of radar
tracks and must be equal to or greater than one. Each column has the form [x;y;z].
Position units are in meters.
Example: [100,250,75;0,20,49;300,5,120]

Data Types: double

tgt_pos — Target positions
real-valued 3-by-M matrix

Target positions, specified as a real-valued 3-by-N matrix. M is the number of target
tracks and must be equal to or greater than one. Each column has the form [x;y;z].
Position units are in meters.
Example: [200,40;10,40;305,15]

Data Types: double

radar_velocity — Radar velocities
real-valued 3-by-N matrix

Radar velocities, specified as a real-valued 3-by-N matrix. N is the number of radar
tracks and must be equal to or greater than one. Each column has the form [vx;vy;vz].

 step

1-1613

The dimensions of radar_velocity must match the dimensions of radar_pos. Velocity
units are in meters per second.
Example: [100,10,0;4,0,7;100,500,0]

Data Types: double

tgt_velocity — Target velocities
real-valued 3-by-M matrix

Target velocities, specified as a real-valued 3-by-M matrix. M is the number of target
tracks and must be equal to or greater than one. Each column has the form [vx;vy;vz].
The dimensions of tgt_velocity must match the dimensions of target_position.
Velocity units are in meters per second.
Example: [100,10,0;4,0,7;100,500,0]

Data Types: double

radar_laxes — Radar local coordinate axes
real-valued 3-by-3-by-N array

Local coordinate axes of radar, specified as a real-valued 3-by-3-by-N array. N is
the number of radar tracks. Each page (third index) represents a 3-by-3 orthogonal
matrix that specifies the local coordinate axes of one radar. The columns are the unit
vectors that form the x, y, and z axes of the local coordinate system. Array units are
dimensionless.
Example: [100,10,0;4,0,7;100,500,0]

Data Types: double

tgt_laxes — Target local coordinate axes
real-valued 3-by-3-by-M array

Local coordinate axes of targer, specified as a real-valued 3-by-3-by-M array. M is
the number of target tracks. Each page (third index) represents a 3-by-3 orthogonal
matrix that specifies the local coordinate axes of one radar. The columns are the unit
vectors that form the x, y, and z axes of the local coordinate system. Array units are
dimensionless.
Example: [100,10,0;4,0,7;100,500,0]

Data Types: double

1 Alphabetical List

1-1614

Examples

View Tracks of Stationary Radar and One Target

Visualize the tracks of a radar and a single airplane target. The radar is stationary
and the airplane is moving in a straight line. Maintain the radar beam pointing at the
airplane.

Create the radar and airplane platform System objects. Set the update rate to 0.1 s.

updateRate = 0.1;

radarPlatform = phased.Platform(...

 'InitialPosition',[0;0;10], ...

 'Velocity',[0;0;0]);

airplanePlatforms = phased.Platform(...

 'InitialPosition',[5000.0;3500.0;6000.0],...

 'Velocity',[-300;0;0]);

Create the phased.ScenarioViewer System object™. Show the radar beam and
annotate the tracks with position, speed, and altitude.

sSV = phased.ScenarioViewer('BeamRange',5000.0,'UpdateRate',updateRate,...

 'PlatformNames',{'Ground Radar','Airplane'},'ShowPosition',true,...

 'ShowSpeed',true,'ShowAltitude',true,'ShowLegend',true);

Run the scenario. At each step, compute the angle to the target. Then, use that angle to
steer the radar beam toward the target.

for i = 1:100

 [radar_pos,radar_vel] = step(radarPlatform,updateRate);

 [tgt_pos,tgt_vel] = step(airplanePlatforms,updateRate);

 [rng,ang] = rangeangle(tgt_pos,radar_pos);

 sSV.BeamSteering = ang;

 step(sSV,radar_pos,radar_vel,tgt_pos,tgt_vel);

 pause(0.1);

end

 step

1-1615

View Tracks of Airborne Radar and Ground Target

Visualize the tracks of an airborne radar and a ground vehicle target. The airborne radar
is carried by a drone flying at 5 km altitude.

Create the drone radar and ground vehicle using phased.Platform System objects. Set
the update rate to 0.1 s.

updateRate = 0.1;

drone = phased.Platform(...

 'InitialPosition',[100;1000;5000], ...

 'Velocity',[400;0;0]);

vehicle = phased.Platform('MotionModel','Acceleration',...

1 Alphabetical List

1-1616

 'InitialPosition',[5000.0;3500.0;0.0],...

 'InitialVelocity',[40;5;0],'Acceleration',[0.1;0.1;0]);

Create the phased.ScenarioViewer System object™. Show the radar beam and
annotate the tracks with position, speed, and, altitude.

sSV = phased.ScenarioViewer('BeamRange',8000.0,'BeamWidth',2,'UpdateRate',updateRate,...

 'PlatformNames',{'Drone Radar','Vehicle'},'ShowPosition',true,...

 'ShowSpeed',true,'ShowAltitude',true,'ShowLegend',true,'Title','Vehicle Tracking Radar');

Run the scenario. At each step, compute the angle to the target. Then, use that angle to
steer the radar beam toward the target.

for i = 1:100

 [radar_pos,radar_vel] = step(drone,updateRate);

 [tgt_pos,tgt_vel] = step(vehicle,updateRate);

 [rng,ang] = rangeangle(tgt_pos,radar_pos);

 sSV.BeamSteering = ang;

 step(sSV,radar_pos,radar_vel,tgt_pos,tgt_vel);

 pause(.1);

end

 step

1-1617

Multiplatform Scenario

Display a multiplatform scenario containing a ground-based stationary radar, a turning
airplane, a constant-velocity airplane, and a moving ground vehicle. The turning airplane
follows a parabolic flight path while descending at a rate of 20 m/s.

Specify the scenario refresh rate at 0.5 Hz. For 150 steps, the time duration of the
scenario is 300 s.

updateRate = 0.5;

N = 150;

1 Alphabetical List

1-1618

Set up the turning airplane using the Acceleration model of the phased.Platform
System object™. Specify the initial position of the airplane by range and azimuth from
the ground-based radar and its elevation. The airplane is 10 km from the radar at 60°
azimuth and has an altitude of 6 km. The airplane is accelerating at 10 in the
negative x-direction.

airplane1range = 10.0e3;

airplane1Azimuth = 60.0;

airplane1alt = 6.0e3;

airplane1Pos0 = [cosd(airplane1Azimuth)*airplane1range;...

 sind(airplane1Azimuth)*airplane1range;airplane1alt];

airplane1Vel0 = [400.0;-100.0;-20];

airplane1Accel = [-10.0;0.0;0.0];

sAirplane1 = phased.Platform('MotionModel','Acceleration',...

 'AccelerationSource','Input port','InitialPosition',airplane1Pos0,...

 'InitialVelocity',airplane1Vel0,'OrientationAxesOutputPort',true,...

 'InitialOrientationAxes',eye(3));

Set up the stationary ground radar at the origin of the global coordinate system.
To simulate a rotating radar, change the ground radar beam steering angle in the
processing loop.

groundRadarPos = [0,0,0]';

groundRadarVel = [0,0,0]';

sGroundRadar = phased.Platform('MotionModel','Velocity',...

 'InitialPosition',groundRadarPos,'Velocity',groundRadarVel,...

 'InitialOrientationAxes',eye(3));

Set up the ground vehicle to move at a constant velocity.

groundVehiclePos = [5e3,2e3,0]';

groundVehicleVel = [50,50,0]';

sGroundVehicle = phased.Platform('MotionModel','Velocity',...

 'InitialPosition',groundVehiclePos,'Velocity',groundVehicleVel,...

 'InitialOrientationAxes',eye(3));

Set up the second airplane to also move at constant velocity.

airplane2Pos = [8.5e3,1e3,6000]';

airplane2Vel = [-300,100,20]';

sAirplane2 = phased.Platform('MotionModel','Velocity',...

 'InitialPosition',airplane2Pos,'Velocity',airplane2Vel,...

 'InitialOrientationAxes',eye(3));

 step

1-1619

Set up the scenario viewer. Specity the radar as having a beam range of 8 km, a vertical
beam width of 30°, and a horizontal beam width of 2°. Annotate the tracks with position,
speed, altitude, and range.

BeamSteering = [0;50];

sSV = phased.ScenarioViewer('BeamRange',8.0e3,'BeamWidth',[2;30],'UpdateRate',updateRate,...

 'PlatformNames',{'Ground Radar','Turning Airplane','Vehicle','Airplane 2'},'ShowPosition',true,...

 'ShowSpeed',true,'ShowAltitude',true,'ShowLegend',true,'ShowRange',true,...

 'Title','Multiplatform Scenario','BeamSteering',BeamSteering);

Step through the display processing loop, updating radar and target positions. Rotate the
ground-based radar steering angle by four degrees at each step.

for n = 1:N

 [groundRadarPos,groundRadarVel] = step(sGroundRadar,updateRate);

 [airplane1Pos,airplane1Vel,airplane1Axes] = ...

 step(sAirplane1,updateRate,airplane1Accel);

 [vehiclePos,vehicleVel] = step(sGroundVehicle,updateRate);

 [airplane2Pos,airplane2Vel] = step(sAirplane2,updateRate);

 step(sSV,groundRadarPos,groundRadarVel,[airplane1Pos,vehiclePos,airplane2Pos],...

 [airplane1Vel,vehicleVel,airplane2Vel]);

 BeamSteering = sSV.BeamSteering(1);

 BeamSteering = mod(BeamSteering + 4,360.0);

 if BeamSteering > 180.0

 BeamSteering = BeamSteering - 360.0;

 end

 sSV.BeamSteering(1) = BeamSteering;

 pause(0.2);

end

1 Alphabetical List

1-1620

Introduced in R2016a

 phased.STAPSMIBeamformer System object

1-1621

phased.STAPSMIBeamformer System object
Package: phased

Sample matrix inversion (SMI) beamformer

Description

The SMIBeamformer object implements a sample matrix inversion space-time adaptive
beamformer. The beamformer works on the space-time covariance matrix.

To compute the space-time beamformed signal:

1 Define and set up your SMI beamformer. See “Construction” on page 1-1621.
2 Call step to execute the SMI beamformer algorithm according to the properties of

phased.STAPSMIBeamformer. The behavior of step is specific to each object in the
toolbox.

Construction

H = phased.STAPSMIBeamformer creates a sample matrix inversion (SMI)
beamformer System object, H. The object performs the SMI space-time adaptive
processing (STAP) on the input data.

H = phased.STAPSMIBeamformer(Name,Value) creates an SMI object, H, with each
specified property Name set to the specified Value. You can specify additional name-
value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties

SensorArray

Sensor array

Sensor array specified as an array System object belonging to the phased package. A
sensor array can contain subarrays.

1 Alphabetical List

1-1622

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second, as a positive scalar.

Default: Speed of light

OperatingFrequency

System operating frequency

Specify the operating frequency of the system in hertz as a positive scalar. The default
value corresponds to 300 MHz.

Default: 3e8

PRF

Pulse repetition frequency

Specify the pulse repetition frequency (PRF) of the received signal in hertz as a scalar.

Default: 1

DirectionSource

Source of targeting direction

Specify whether the targeting direction for the STAP processor comes from the
Direction property of this object or from an input argument in step. Values of this
property are:

'Property' The Direction property of this object specifies the
targeting direction.

'Input port' An input argument in each invocation of step specifies the
targeting direction.

 phased.STAPSMIBeamformer System object

1-1623

Default: 'Property'

Direction

Targeting direction

Specify the targeting direction of the SMI processor as a column vector of length 2. The
direction is specified in the format of [AzimuthAngle; ElevationAngle] (in degrees).
Azimuth angle should be between –180 and 180. Elevation angle should be between
–90 and 90. This property applies when you set the DirectionSource property to
'Property'.

Default: [0; 0]

NumPhaseShifterBits

Number of phase shifter quantization bits

The number of bits used to quantize the phase shift component of beamformer or steering
vector weights. Specify the number of bits as a non-negative integer. A value of zero
indicates that no quantization is performed.

Default: 0

DopplerSource

Source of targeting Doppler

Specify whether the targeting Doppler for the STAP processor comes from the Doppler
property of this object or from an input argument in step. Values of this property are:

'Property' The Doppler property of this object specifies the Doppler.
'Input port' An input argument in each invocation of step specifies the

Doppler.

Default: 'Property'

Doppler

Targeting Doppler frequency

1 Alphabetical List

1-1624

Specify the targeting Doppler of the STAP processor as a scalar. This property applies
when you set the DopplerSource property to 'Property'.

Default: 0

WeightsOutputPort

Output processing weights

To obtain the weights used in the STAP processor, set this property to true and use the
corresponding output argument when invoking step. If you do not want to obtain the
weights, set this property to false.

Default: false

NumGuardCells

Number of guarding cells

Specify the number of guard cells used in the training as an even integer. This property
specifies the total number of cells on both sides of the cell under test.

Default: 2, indicating that there is one guard cell at both the front and back of the cell
under test

NumTrainingCells

Number of training cells

Specify the number of training cells used in the training as an even integer. Whenever
possible, the training cells are equally divided before and after the cell under test.

Default: 2, indicating that there is one training cell at both the front and back of the cell
under test

Methods

clone Create space-time adaptive SMI
beamformer object with same property
values

 phased.STAPSMIBeamformer System object

1-1625

getNumInputs Number of expected inputs to step method
getNumOutputs Number of outputs from step method
isLocked Locked status for input attributes and

nontunable properties
release Allow property value and input

characteristics changes
step Perform SMI STAP processing on input

data

Examples

Process the data cube using an SMI processor. The weights are calculated for the 71st
cell of a collected data cube pointing to the direction of [45; –35] degrees and the Doppler
of 12980 Hz.

load STAPExampleData; % load data

Hs = phased.STAPSMIBeamformer('SensorArray',STAPEx_HArray,...

 'PRF',STAPEx_PRF,...

 'PropagationSpeed',STAPEx_PropagationSpeed,...

 'OperatingFrequency',STAPEx_OperatingFrequency,...

 'NumTrainingCells',100,...

 'WeightsOutputPort',true,...

 'DirectionSource','Input port',...

 'DopplerSource','Input port');

[y,w] = step(Hs,STAPEx_ReceivePulse,71,[45; -35],12980);

Hresp = phased.AngleDopplerResponse(...

 'SensorArray',Hs.SensorArray,...

 'OperatingFrequency',Hs.OperatingFrequency,...

 'PRF',Hs.PRF,...

 'PropagationSpeed',Hs.PropagationSpeed);

plotResponse(Hresp,w);

1 Alphabetical List

1-1626

Algorithms

The optimum beamformer weights are

w kR v=
-1

where:

 phased.STAPSMIBeamformer System object

1-1627

• k is a scalar
• R represents the space-time covariance matrix
• v indicates the space-time steering vector

Because the space-time covariance matrix is unknown, you must estimate that matrix
from the data. The sample matrix inversion (SMI) algorithm estimates the covariance
matrix by designating a number of range gates to be training cells. Because you use
the training cells to estimate the interference covariance, these cells should not contain
target returns. To prevent target returns from contaminating the estimate of the
interference covariance, you can specify insertion of a number of guard cells before and
after the designated target cell.

To use the general algorithm for estimating the space-time covariance matrix:

1 Assume you have a M-by-N-by-K matrix. M represents the number of slow-time
samples, and N is the number of array sensors. K is the number of training cells
(range gates for training). Also assume that the number of training cells is an even
integer and that you can designate K/2 training cells before and after the target
range gate excluding the guard cells. Reshape the M-by-N-by-K matrix into a MN-
by-K matrix by letting X denote the MN-by-K matrix.

2 Estimate the space-time covariance matrix as

1

K
XX

H

3 Invert the space-time covariance matrix estimate.
4 Obtain the beamforming weights by multiplying the sample space-time covariance

matrix inverse by the space-time steering vector.

References

[1] Guerci, J. R. Space-Time Adaptive Processing for Radar. Boston: Artech House, 2003.

[2] Ward, J. “Space-Time Adaptive Processing for Airborne Radar Data Systems,”
Technical Report 1015, MIT Lincoln Laboratory, December, 1994.

See Also
phased.ADPCACanceller | phased.AngleDopplerResponse | phased.DPCACanceller |
phitheta2azel | uv2azel

1 Alphabetical List

1-1628

Introduced in R2012a

 clone

1-1629

clone
System object: phased.STAPSMIBeamformer
Package: phased

Create space-time adaptive SMI beamformer object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates an object, C, having the same property values and same states as
H. If H is locked, so is C.

1 Alphabetical List

1-1630

getNumInputs
System object: phased.STAPSMIBeamformer
Package: phased

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of inputs
(not counting the object itself) that you must use when calling the step method. This
value changes when you alter properties that turn inputs on or off.

 getNumOutputs

1-1631

getNumOutputs
System object: phased.STAPSMIBeamformer
Package: phased

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value changes when you alter properties that turn outputs on or off.

1 Alphabetical List

1-1632

isLocked
System object: phased.STAPSMIBeamformer
Package: phased

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF, for the STAPSMIBeamformer System
object.

isLocked returns a logical value that indicates whether input attributes and
nontunable properties for the object are locked. The object performs an internal
initialization the first time that you execute step. This initialization locks nontunable
properties and input specifications, such as the dimensions, complexity, and data type of
the input data. After locking, isLocked returns a true value.

 release

1-1633

release
System object: phased.STAPSMIBeamformer
Package: phased

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

1 Alphabetical List

1-1634

step
System object: phased.STAPSMIBeamformer
Package: phased

Perform SMI STAP processing on input data

Syntax
Y = step(H,X,CUTIDX)

Y = step(H,X,CUTIDX,ANG)

Y = step(H,X,CUTIDX,DOP)

[Y,W] = step(___)

Description
Y = step(H,X,CUTIDX) applies SMI processing to the input data, X. X must be a
3-dimensional M-by-N-by-P numeric array whose dimensions are (range, channels,
pulses). The processing weights are calculated according to the range cell specified
by CUTIDX. The targeting direction and the targeting Doppler are specified by
Direction and Doppler properties, respectively. Y is a column vector of length M.
This syntax is available when the DirectionSource property is 'Property' and the
DopplerSource property is 'Property'.

Y = step(H,X,CUTIDX,ANG) uses ANG as the targeting direction. This syntax is
available when the DirectionSource property is 'Input port'. ANG must be a 2-by-1
vector in the form of [AzimuthAngle; ElevationAngle] (in degrees). The azimuth
angle must be between –180 and 180. The elevation angle must be between –90 and 90.

Y = step(H,X,CUTIDX,DOP) uses DOP as the targeting Doppler frequency (in hertz).
This syntax is available when the DopplerSource property is 'Input port'. DOP must
be a scalar.

You can combine optional input arguments when their enabling properties are set: Y =
step(H,X,CUTIDX,ANG,DOP)

[Y,W] = step(___) returns the additional output, W, as the processing weights. This
syntax is available when the WeightsOutputPort property is true. W is a column
vector of length N*P.

 step

1-1635

Note: The object performs an initialization the first time the step method is executed.
This initialization locks nontunable properties and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Examples

Process the data cube using an SMI processor. The weights are calculated for the 71st
cell of a collected data cube pointing to the direction of [45; –35] degrees and the Doppler
of 12980 Hz.

load STAPExampleData; % load data

Hs = phased.STAPSMIBeamformer('SensorArray',STAPEx_HArray,...

 'PRF',STAPEx_PRF,...

 'PropagationSpeed',STAPEx_PropagationSpeed,...

 'OperatingFrequency',STAPEx_OperatingFrequency,...

 'NumTrainingCells',100,...

 'WeightsOutputPort',true,...

 'DirectionSource','Input port',...

 'DopplerSource','Input port');

[y,w] = step(Hs,STAPEx_ReceivePulse,71,[45; -35],12980);

See Also
phitheta2azel | uv2azel

1 Alphabetical List

1-1636

phased.ShortDipoleAntennaElement System object

Package: phased

Short-dipole antenna element

Description

The phased.ShortDipoleAntennaElement object models a short-dipole antenna
element. A short-dipole antenna is a center-fed wire whose length is much shorter than
one wavelength. This antenna object only supports polarized fields.

To compute the response of the antenna element for specified directions:

1 Define and set up your short-dipole antenna element. See “Construction” on page
1-1636 .

2 Call step to compute the antenna response according to the properties of
phased.ShortDipoleAntennaElement. The behavior of step is specific to each
object in the toolbox.

Construction

h = phased.ShortDipoleAntennaElement creates the system object, h, to model a
short-dipole antenna element.

h = phased.ShortDipoleAntennaElement(Name,Value) creates the
system object, h, with each specified property Name set to the specified
Value. You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties

FrequencyRange

Antenna operating frequency range

 phased.ShortDipoleAntennaElement System object

1-1637

Antenna operating frequency range specified as a 1-by-2 row vector in the form of
[LowerBound HigherBound]. This vector defines the frequency range over which the
antenna has a response. The antenna element has zero response outside this specified
frequency range.

Default: [0 1e20]

AxisDirection

Dipole axis direction

Dipole axis direction, specified as one of 'X', 'Y' or 'Z'. The dipole axis defines the
direction of the dipole current with respect to the local coordinate system. 'X' specifies a
dipole along the x-axis, 'Y' specifies a dipole along the y-axis, and 'Z' specifies a dipole
along the z-axis.

Default: 'Z'

Methods

clone Create short-dipole antenna object with
same property values

directivity Directivity of short-dipole antenna element
getNumInputs Number of expected inputs to step method
getNumOutputs Number of outputs from step method
isLocked Locked status for input attributes and

nontunable properties
isPolarizationCapable Polarization capability
pattern Plot short-dipole antenna element

directivity and patterns
patternAzimuth Plot short-dipole antenna element

directivity or pattern versus azimuth
patternElevation Plot short-dipole antenna element

directivity or pattern versus elevation
plotResponse Plot response pattern of antenna

1 Alphabetical List

1-1638

release Allow property value and input
characteristics changes

step Output response of antenna element

Examples

Short-dipole Antenna Aligned Along the Y-Axis

Specify a short-dipole antenna with its dipole oriented along the y-axis. Then, plot the 3-
D responses for both the horizontal and vertical polarizations.

h1 = phased.ShortDipoleAntennaElement(...

 'FrequencyRange',[100e6,600e6],'AxisDirection','Y');

fc = 250e6;

figure;

plotResponse(h1,fc,'Format','Polar',...

 'RespCut','3D','Polarization','H');

figure;

plotResponse(h1,fc,'Format','Polar',...

 'RespCut','3D','Polarization','V');

figure;

plotResponse(h1,fc,'Format','Polar',...

 'RespCut','3D','Polarization','C');

This figure shows the horizontal polarization response.

 phased.ShortDipoleAntennaElement System object

1-1639

This figure shows the vertical polarization response.

1 Alphabetical List

1-1640

This combined response best illustrates the polarity of the short-dipole.

 phased.ShortDipoleAntennaElement System object

1-1641

Algorithms

The total response of a short-dipole antenna element is a combination of its frequency
response and spatial response. This System object calculates both responses using

1 Alphabetical List

1-1642

nearest neighbor interpolation and then multiplies the responses to form the total
response.

References

[1] Mott, H., Antennas for Radar and Communications, John Wiley & Sons, 1992.

See Also
phased.ConformalArray | phased.CosineAntennaElement |
phased.CrossedDipoleAntennaElement | phased.CustomAntennaElement |
phased.IsotropicAntennaElement | phased.ULA | phased.URA | phitheta2azel |
phitheta2azelpat | uv2azel | uv2azelpat

Introduced in R2013a

 clone

1-1643

clone
System object: phased.ShortDipoleAntennaElement
Package: phased

Create short-dipole antenna object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates an object, C, having the same property values and same states as
H. If H is locked, so is C.

1 Alphabetical List

1-1644

directivity
System object: phased.ShortDipoleAntennaElement
Package: phased

Directivity of short-dipole antenna element

Syntax

D = directivity(H,FREQ,ANGLE)

Description

D = directivity(H,FREQ,ANGLE) returns the “Directivity (dBi)” on page 1-1646 of a
short-dipole antenna element, H, at frequencies specified by FREQ and in direction angles
specified by ANGLE.

Input Arguments

H — Short-dipole antenna element
System object

Short-dipole antenna element specified as a phased.ShortDipoleAntennaElement System
object.
Example: H = phased.ShortDipoleAntennaElement;

FREQ — Frequency for computing directivity and patterns
positive scalar | 1-by-L real-valued row vector

Frequencies for computing directivity and patterns, specified as a positive scalar or 1-
by-L real-valued row vector. Frequency units are in hertz.

• For an antenna or microphone element, FREQ must lie within the range of
values specified by the FrequencyRange or FrequencyVector property of the
element. Otherwise, the element produces no response and the directivity is

 directivity

1-1645

returned as –Inf. Most elements use the FrequencyRange property except for
phased.CustomAntennaElement and phased.CustomMicrophoneElement, which use
the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements
that make up the array. Otherwise, the array produces no response and the
directivity is returned as –Inf.

Example: [1e8 2e8]

Data Types: double

ANGLE — Angles for computing directivity
1-by-M real-valued row vector | 2-by-M real-valued matrix

Angles for computing directivity, specified as a 1-by-M real-valued row vector or a 2-
by-M real-valued matrix, where M is the number of angular directions. Angle units
are in degrees. If ANGLE is a 2-by-M matrix, then each column specifies a direction in
azimuth and elevation, [az;el]. The azimuth angle must lie between –180° and 180°.
The elevation angle must lie between –90° and 90°.

If ANGLE is a 1-by-M vector, then each entry represents an azimuth angle, with the
elevation angle assumed to be zero.

The azimuth angle is the angle between the x-axis and the projection of the direction
vector onto the xy plane. This angle is positive when measured from the x-axis toward the
y-axis. The elevation angle is the angle between the direction vector and xy plane. This
angle is positive when measured towards the z-axis.
Example: [45 60; 0 10]

Data Types: double

Output Arguments

D — Directivity
M-by-L matrix

Directivity, returned as an M-by-L matrix whose columns contain the directivities at the
M angles specified by ANGLE. Each column corresponds to one of the L frequency values
specified in FREQ. Directivity units are in dBi.

1 Alphabetical List

1-1646

Definitions

Directivity (dBi)

Directivity describes the directionality of the radiation pattern of a sensor element
or array of sensor elements. Higher directivity is desired when you want to transmit
more radiation in a specific direction. Directivity is the ratio of the transmitted radiant
intensity in a specified direction to the radiant intensity transmitted by an isotropic
radiator with the same total transmitted power

D
U

P
=

()
4p

q jrad

total

,

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal
is the total power transmitted by an isotropic radiator. For a receiving element or array,
directivity measures the sensitivity toward radiation arriving from a specific direction.
The principle of reciprocity shows that the directivity of an element or array used for
reception equals the directivity of the same element or array used for transmission.
When converted to decibels, the directivity is denoted as dBi. For information on
directivity, read the notes on “Element directivity” and “Array directivity”.

Computing directivity requires integrating the far-field transmitted radiant intensity
over all directions in space to obtain the total transmitted power. There is a difference
between how that integration is performed when Antenna Toolbox antennas are used
in a phased array and when Phased Array System Toolbox antennas are used. When
an array contains Antenna Toolbox antennas, the directivity computation is performed
using a triangular mesh created from 500 regularly spaced points over a sphere. For
Phased Array System Toolbox antennas, the integration uses a uniform rectangular
mesh of points spaced 1° apart in azimuth and elevation over a sphere. There may be
significant differences in computed directivity, especially for large arrays.

Examples

Directivity of Short-Dipole Antenna Element

Compute the directivity of a z-directed short-dipole antenna element as a function of
elevation.

 directivity

1-1647

Create the crossed-dipole antenna element system object.

myAnt = phased.ShortDipoleAntennaElement;

myAnt.AxisDirection = 'Z';

myAnt.FrequencyRange = [0,10e9];

Select the desired angles of interest to be at constant azimuth angle at zero degrees. Set
the elevation angles to center around boresight (zero degrees azimuth and zero degrees
elevation). Set the frequency to 1 GHz.

elev = [-30:30];

azm = zeros(size(elev));

ang = [azm;elev];

freq = 1e9;

Plot the directivity along the constant azimuth cut.

d = directivity(myAnt,freq,ang);

plot(elev,d)

xlabel('Elevation (deg)');

ylabel('Directivity (dBi)');

1 Alphabetical List

1-1648

See Also
phased.ShortDipoleAntennaElement.plotResponse

 getNumInputs

1-1649

getNumInputs
System object: phased.ShortDipoleAntennaElement
Package: phased

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of inputs
(not counting the object itself) that you must use when calling the step method. This
value changes when you alter properties that turn inputs on or off.

1 Alphabetical List

1-1650

getNumOutputs
System object: phased.ShortDipoleAntennaElement
Package: phased

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value changes when you alter properties that turn outputs on or off.

 isLocked

1-1651

isLocked
System object: phased.ShortDipoleAntennaElement
Package: phased

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF, for the
phased.ShortDipoleAntennaElement System object.

isLocked returns a logical value that indicates whether input attributes and
nontunable properties for the object are locked. The object performs an internal
initialization the first time that you execute step. This initialization locks nontunable
properties and input specifications, such as the dimensions, complexity, and data type of
the input data. After locking, isLocked returns a true value.

1 Alphabetical List

1-1652

isPolarizationCapable

System object: phased.ShortDipoleAntennaElement
Package: phased

Polarization capability

Syntax

flag = isPolarizationCapable(h)

Description

flag = isPolarizationCapable(h) returns a Boolean value, flag, indicating
whether the phased.ShortDipoleAntennaElement antenna element supports polarization
or not. An antenna element supports polarization if it can create or respond to polarized
fields. The phased.ShortDipoleAntennaElement object always supports polarization.

Input Arguments

h — Short-dipole antenna element

Short-dipole antenna element specified as a phased.ShortDipoleAntennaElement System
object.

Output Arguments

flag — Polarization-capability flag

Polarization-capability returned as a Boolean value true if the antenna element
supports polarization or false if it does not. Because the short-dipole antenna element
supports polarization, the returned value is always true.

 isPolarizationCapable

1-1653

Examples

Short-Dipole Antenna Supports Polarization

Determine whether a phased.ShortDipoleAntennaElement antenna element supports
polarization.

h = phased.ShortDipoleAntennaElement;

isPolarizationCapable(h)

ans =

 1

The returned value true (1) shows that this antenna element supports polarization.

1 Alphabetical List

1-1654

pattern

System object: phased.ShortDipoleAntennaElement
Package: phased

Plot short-dipole antenna element directivity and patterns

Syntax

pattern(sElem,FREQ)

pattern(sElem,FREQ,AZ)

pattern(sElem,FREQ,AZ,EL)

pattern(___ ,Name,Value)

[PAT,AZ_ANG,EL_ANG] = pattern(___)

Description

pattern(sElem,FREQ) plots the 3-D array directivity pattern (in dBi) for the array
specified in sElem. The operating frequency is specified in FREQ.

pattern(sElem,FREQ,AZ) plots the array directivity pattern at the specified azimuth
angle.

pattern(sElem,FREQ,AZ,EL) plots the array directivity pattern at specified azimuth
and elevation angles.

pattern(___ ,Name,Value) plots the array pattern with additional options specified
by one or more Name,Value pair arguments.

[PAT,AZ_ANG,EL_ANG] = pattern(___) returns the array pattern in PAT. The
AZ_ANG output contains the coordinate values corresponding to the rows of PAT. The
EL_ANG output contains the coordinate values corresponding to the columns of PAT.
If the 'CoordinateSystem' parameter is set to 'uv', then AZ_ANG contains the
U coordinates of the pattern and EL_ANG contains the V coordinates of the pattern.
Otherwise, they are in angular units in degrees. UV units are dimensionless.

 pattern

1-1655

Note: This method replaces the previous plotResponse method. To replace plots using
plotResponse plots with equivalent plots using pattern, see “Convert plotResponse to
pattern” on page 1-1955

Input Arguments

sElem — Short-dipole antenna element
System object

Short-dipole antenna element, specified as a phased.ShortDipoleAntennaElement
System object.
Example: sElem = phased.ShortDipoleAntennaElement;

FREQ — Frequency for computing directivity and patterns
positive scalar | 1-by-L real-valued row vector

Frequencies for computing directivity and patterns, specified as a positive scalar or 1-
by-L real-valued row vector. Frequency units are in hertz.

• For an antenna or microphone element, FREQ must lie within the range of
values specified by the FrequencyRange or FrequencyVector property of the
element. Otherwise, the element produces no response and the directivity is
returned as –Inf. Most elements use the FrequencyRange property except for
phased.CustomAntennaElement and phased.CustomMicrophoneElement, which use
the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements
that make up the array. Otherwise, the array produces no response and the
directivity is returned as –Inf.

Example: [1e8 2e8]

Data Types: double

AZ — Azimuth angles
[-180:180] (default) | 1-by-M real-valued row vector

Azimuth angles for computing directivity and pattern, specified as a 1-by-M real-
valued row vector where M is the number of azimuth angles. Angle units are in degrees.
Azimuth angles must lie between –180° and 180°.

1 Alphabetical List

1-1656

The azimuth angle is the angle between the x-axis and the projection of the direction
vector onto the xy plane. When measured from the x-axis toward the y-axis, this angle is
positive.
Example: [-45:2:45]

Data Types: double

EL — Elevation angles
[-90:90] (default) | 1-by-N real-valued row vector

Elevation angles for computing directivity and pattern, specified as a 1-by-N real-valued
row vector where N is the number of desired elevation directions. Angle units are in
degrees. The elevation angle must lie between –90° and 90°.

The elevation angle is the angle between the direction vector and xy-plane. When
measured towards the z-axis, this angle is positive.
Example: [-75:1:70]

Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'CoordinateSystem' — Plotting coordinate system
'polar' (default) | 'rectangular' | 'uv'

Plotting coordinate system of the pattern, specified as the comma-separated pair
consisting of 'CoordinateSystem' and one of 'polar', 'rectangular', or
'uv'. When 'CoordinateSystem' is set to 'polar' or 'rectangular', the
AZ and EL arguments specify the pattern azimuth and elevation, respectively. AZ
values must lie between –180° and 180°. EL values must lie between –90° and 90°. If
'CoordinateSystem' is set to 'uv', AZ and EL then specify U and V coordinates,
respectively. AZ and EL must lie between -1 and 1.

Example: 'uv'

Data Types: char

 pattern

1-1657

'Type' — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and
one of

• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed

pattern is for the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field

pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'

Data Types: char

'Normalize' — Display normalize pattern
true (default) | false

Display normalized pattern, specified as the comma-separated pair consisting of
'Normalize' and a Boolean. Set this parameter to true to display a normalized pattern.
When you set 'Type' to 'directivity', this parameter does not apply. Directivity
patterns are already normalized.
Example:
Data Types: logical

'PlotStyle' — Plotting style
'overlay' (default) | 'waterfall'

Plotting style, specified as the comma-separated pair consisting of 'Plotstyle' and
either 'overlay' or 'waterfall'. This parameter applies when you specify multiple
frequencies in FREQ in 2-D plots. You can draw 2-D plots by setting one of the arguments
AZ or EL to a scalar.

Example:
Data Types: char

'Polarization' — Polarized field component
'combined' (default) | 'H' | 'V'

1 Alphabetical List

1-1658

Polarized field component to display, specified as the comma-separated pair consisting
of 'Polarization' and 'combined', 'H', or 'V'. This parameter applies only when
the sensors are polarization-capable and when the 'Type' parameter is not set to
'directivity'. This table shows the meaning of the display options

'Polarization' Display

'combined' Combined H and V polarization
components

'H' H polarization component
'V' V polarization component

Example: 'V'

Data Types: char

Output Arguments

PAT — Element pattern
M-by-N real-valued matrix

Element pattern, returned as an M-by-N real-valued matrix. The dimensions of PAT
correspond to the dimensions of the output arguments AZ_ANG and EL_ANG.

AZ_ANG — Azimuth angles
scalar | 1-by-M real-valued row vector

Azimuth angles for displaying directivity or response pattern, returned as a scalar or 1-
by-M real-valued row vector corresponding to the dimension set in AZ. The rows of PAT
correspond to the values in AZ_ANG.

EL_ANG — Elevation angles
scalar | 1-by-N real-valued row vector

Elevation angles for displaying directivity or response, returned as a scalar or 1-by-N
real-valued row vector corresponding to the dimension set in EL. The columns of PAT
correspond to the values in EL_ANG.

 pattern

1-1659

More About

Directivity

Directivity describes the directionality of the radiation pattern of a sensor element
or array of sensor elements. Higher directivity is desired when you want to transmit
more radiation in a specific direction. Directivity is the ratio of the transmitted radiant
intensity in a specified direction to the radiant intensity transmitted by an isotropic
radiator with the same total transmitted power

D
U

P
=

()
4p

q jrad

total

,

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal
is the total power transmitted by an isotropic radiator. For a receiving element or array,
directivity measures the sensitivity toward radiation arriving from a specific direction.
The principle of reciprocity shows that the directivity of an element or array used for
reception equals the directivity of the same element or array used for transmission.
When converted to decibels, the directivity is denoted as dBi. For information on
directivity, read the notes on “Element directivity” and “Array directivity”.

Computing directivity requires integrating the far-field transmitted radiant intensity
over all directions in space to obtain the total transmitted power. There is a difference
between how that integration is performed when Antenna Toolbox antennas are used
in a phased array and when Phased Array System Toolbox antennas are used. When
an array contains Antenna Toolbox antennas, the directivity computation is performed
using a triangular mesh created from 500 regularly spaced points over a sphere. For
Phased Array System Toolbox antennas, the integration uses a uniform rectangular
mesh of points spaced 1° apart in azimuth and elevation over a sphere. There may be
significant differences in computed directivity, especially for large arrays.

Convert plotResponse to pattern

For antenna, microphone, and array System objects, the pattern method replaces the
plotResponse method. In addition, two new simplified methods exist just to draw
2-D azimuth and elevation pattern plots. These methods are azimuthPattern and
elevationPattern.

1 Alphabetical List

1-1660

The following table is a guide for converting your code from using plotResponse to
pattern. Notice that some of the inputs have changed from input arguments to Name-
Value pairs and conversely. The general pattern method syntax is

pattern(H,FREQ,AZ,EL,'Name1','Value1',...,'NameN','ValueN')

plotResponse Inputs plotResponse Description pattern Inputs

H argument Antenna, microphone, or array
System object.

H argument (no change)

FREQ argument Operating frequency. FREQ argument (no change)
V argument Propagation speed. This

argument is used only for
arrays.

'PropagationSpeed' name-
value pair. This parameter is
only used for arrays.

'Format' and 'RespCut'
name-value pairs

These options work together to
let you create a plot in angle
space (line or polar style) or
UV space. They also determine
whether the plot is 2-D or 3-
D. This table shows you how to
create different types of plots
using plotResponse.

Display space

Angle space
(2D)

Set
'RespCut'

to 'Az' or

'El'. Set
'Format' to
'line' or
'polar'.

Set the display
axis using
either the
the
'AzimuthAngles'

or
'ElevationAngles'

'CoordinateSystem' name-
value pair used together with
the AZ and EL input arguments.

'CoordinateSystem' has
the same options as the
plotResponse method
'Format'name-value pair,
except that 'line' is now
named 'rectangular'. The
table shows how to create
different types of plots using
pattern.

Display space

Angle space
(2D)

Set
'Coordinate

System' to
'rectangular'

or 'polar'.
Specify either
AZ or EL as a
scalar.

Angle space
(3D)

Set
'Coordinate

 pattern

1-1661

plotResponse Inputs plotResponse Description pattern Inputs

Display space

name-value
pairs.

Angle space
(3D)

Set
'RespCut'

to '3D'. Set
'Format' to
'line' or
'polar'.

Set the display
axis using
both the
'AzimuthAngles'

and'ElevationAngles'
name-value
pairs.

UV space (2D) Set
'RespCut'

to'U'. Set
'Format'

to 'UV'. Set
the display
range using
the 'UGrid'
name-value
pair.

UV space (3D) Set
'RespCut'

to'3D'. Set
'Format' to
'UV'. Set the
display range
using both
the 'UGrid'
and 'VGrid'

Display space

System' to
'rectangular'

or 'polar'.
Specify both
AZ and EL as
vectors.

UV space (2D) Set
'Coordinate

System' to
'uv'. Use AZ
to specify a U-
space vector.
Use EL to
specify a V-
space scalar.

UV space (3D) Set
'Coordinate

System' to
'uv'. Use AZ
to specify a U-
space vector.
Use EL to
specify a V-
space vector.

If you set CoordinateSystem
to 'uv', enter the UV grid
values using AZ and EL.

1 Alphabetical List

1-1662

plotResponse Inputs plotResponse Description pattern Inputs

Display space

name-value
pairs.

'CutAngle' name-value pair Constant angle at to take an
azimuth or elevation cut. When
producing a 2-D plot and when
'RespCut' is set to 'Az' or
'El', use 'CutAngle' to set
the slice across which to view
the plot.

No equivalent name-value pair.
To create a cut, specify either AZ
or EL as a scalar, not a vector.

'NormalizeResponse' name-
value pair

Normalizes the plot.
When 'Unit' is set to
'dbi', you cannot specify
'NormalizeResponse'.

'Normalize' name-value
pair. When 'Type' is set to
'directivity',

you cannot specify
'Normalize'.
.

'OverlayFreq' name-value
pair

Plot multiple frequencies on
the same 2-D plot. Available
only when 'Format' is
set to 'line' or 'uv' and
'RespCut' is not set to '3D'.
The value true produces an
overlay plot and the value
false produces a waterfall
plot.

'PlotStyle' name-value pair
plots multiple frequencies on the
same 2-D plot.

The values 'overlay' and
'waterfall' correspond to
'OverlayFreq' values of
true and false. The option
'waterfall' is allowed only
when 'CoordinateSystem' is
set to 'rectangular' or 'uv'.

'Polarization' name-value
pair

Determines how to plot
polarized fields. Options are
'None', 'Combined', 'H', or
'V'.

'Polarization' name-value
pair determines how to plot
polarized fields. The 'None'
option is removed. The options
'Combined', 'H', or 'V' are
unchanged.

 pattern

1-1663

plotResponse Inputs plotResponse Description pattern Inputs

'Unit' name-value pair Determines the plot units.
Choose 'db', 'mag', 'pow',
or 'dbi', where the default is
'db'.

'Type' name-value pair, uses
equivalent options with different
names

plotResponse pattern

'db' 'powerdb'

'mag' 'efield'

'pow' 'power'

'dbi' 'directivity'

'Weights' name-value pair Array element tapers (or
weights).

'Weights' name-value pair (no
change).

'AzimuthAngles' name-value
pair

Azimuth angles used to display
the antenna or array response.

AZ argument

'ElevationAngles' name-
value pair

Elevation angles used to
display the antenna or array
response.

EL argument

'UGrid' name-value pair Contains U coordinates in UV-
space.

AZ argument when
'CoordinateSystem' name-
value pair is set to 'uv'

'VGrid' name-value pair Contains V-coordinates in UV-
space.

EL argument when
'CoordinateSystem' name-
value pair is set to 'uv'

Examples

Pattern of Short-Dipole Antenna Oriented Along the Z-Axis

Specify a short-dipole antenna element with its dipole axis pointing along the z-axis. To
do so, set the 'AxisDirection' value to 'Z'.

sSD = phased.ShortDipoleAntennaElement(...

 'FrequencyRange',[100 900]*1e6,'AxisDirection','Z');

Plot the antenna's vertical polarization power pattern at 200 MHz as a 3-D polar plot.

1 Alphabetical List

1-1664

fc = 200e6;

pattern(sSD,fc,[-180:180],[-90:90],...

 'CoordinateSystem','polar',...

 'Type','powerdb',...

 'Polarization','V')

As the above figure shows, the antenna pattern is that of a vertically-oriented dipole and
has its maximum at the equator and nulls at the poles.

Short-Dipole Antenna Element Pattern Over Selected Range

Specify a short-dipole antenna element with its dipole axis pointing along the z-axis.
Then, plot the magnitude pattern over a selected range of angles. The antenna operating
frequency spans the range 100 to 900 MHz.

 pattern

1-1665

To construct a z-directed short-dipole antenna, set the 'AxisDirection' value to 'Z'.

sSD = phased.ShortDipoleAntennaElement(...

 'FrequencyRange',[100 900]*1e6,...

 'AxisDirection','Z');

Plot the antenna's vertical polarization response at 200 MHz as an elevation cut at zero
degrees azimuth angle. Restrict the plot from -60 to 60 degrees elevation in 0.1 degree
increments.

fc = 200e6;

pattern(sSD,fc,0,[-60:0.1:60],...

 'CoordinateSystem','polar',...

 'Type','efield',...

 'Polarization','V')

1 Alphabetical List

1-1666

Short-Dipole Antenna Element Directivity

Specify a short-dipole antenna element with its dipole axis pointing along the y-axis.
Then, plot the directivity. The antenna operating frequency spans the range 100 to 900
MHz.

Construct a y-directed short-dipole antenna by setting the 'AxisDirection' value to
'Y'.

sSD = phased.ShortDipoleAntennaElement(...

 'FrequencyRange',[100 900]*1e6,...

 'AxisDirection','Y');

 pattern

1-1667

Plot the antenna's directivity at 500 MHz as an elevation cut at zero degrees azimuth
angle.

fc = 500e6;

pattern(sSD,fc,0,[-90:90],...

 'CoordinateSystem','rectangular',...

 'Type','directivity')

See Also
phased.ShortDipoleAntennaElement.patternAzimuth |
phased.ShortDipoleAntennaElement.patternElevation

Introduced in R2015a

1 Alphabetical List

1-1668

patternAzimuth

System object: phased.ShortDipoleAntennaElement
Package: phased

Plot short-dipole antenna element directivity or pattern versus azimuth

Syntax

patternAzimuth(sElem,FREQ)

patternAzimuth(sElem,FREQ,EL)

patternAzimuth(sElem,FREQ,EL,Name,Value)

PAT = patternAzimuth(___)

Description

patternAzimuth(sElem,FREQ) plots the 2-D element directivity pattern versus
azimuth (in dBi) for the element sElem at zero degrees elevation angle. The argument
FREQ specifies the operating frequency.

patternAzimuth(sElem,FREQ,EL), in addition, plots the 2-D element directivity
pattern versus azimuth (in dBi) at the elevation angle specified by EL. When EL is a
vector, multiple overlaid plots are created.

patternAzimuth(sElem,FREQ,EL,Name,Value) plots the element pattern with
additional options specified by one or more Name,Value pair arguments.

PAT = patternAzimuth(___) returns the element pattern. PAT is a matrix whose
entries represent the pattern at corresponding sampling points specified by the
'Azimuth' parameter and the EL input argument.

Input Arguments

sElem — Short-dipole antenna element
System object

 patternAzimuth

1-1669

Short-dipole antenna element, specified as a phased.ShortDipoleAntennaElement
System object.
Example: sElem = phased.ShortDipoleAntennaElement;

FREQ — Frequency for computing directivity and pattern
positive scalar

Frequency for computing directivity and pattern, specified as a positive scalar. Frequency
units are in hertz.

• For an antenna or microphone element, FREQ must lie within the range of values
specified by the FrequencyRange or the FrequencyVector property of the
element. Otherwise, the element produces no response and the directivity is
returned as –Inf. Most elements use the FrequencyRange property except for
phased.CustomAntennaElement and phased.CustomMicrophoneElement, which use
the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements
that make up the array. Otherwise, the array produces no response and the
directivity is returned as –Inf.

Example: 1e8

Data Types: double

EL — Elevation angles
1-by-N real-valued row vector

Elevation angles for computing array directivity and pattern, specified as a 1-by-N real-
valued row vector, where N is the number of requested elevation directions. Angle units
are in degrees. The elevation angle must lie between –90° and 90°.

The elevation angle is the angle between the direction vector and the xy plane. When
measured toward the z-axis, this angle is positive.
Example: [0,10,20]

Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

1 Alphabetical List

1-1670

quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Type' — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and
one of

• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed

pattern is for the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field

pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'

Data Types: char

'Azimuth' — Azimuth angles
[-180:180] (default) | 1-by-P real-valued row vector

Azimuth angles, specified as the comma-separated pair consisting of 'Azimuth' and a 1-
by-P real-valued row vector. Azimuth angles define where the array pattern is calculated.
Example: 'Azimuth',[-90:2:90]

Data Types: double

Output Arguments

PAT — Element directivity or pattern
L-by-N real-valued matrix

Element directivity or pattern, returned as an L-by-N real-valued matrix. The dimension
L is the number of azimuth values determined by the 'Azimuth' name-value pair
argument. The dimension N is the number of elevation angles, as determined by the EL
input argument.

 patternAzimuth

1-1671

Definitions

Directivity

Directivity describes the directionality of the radiation pattern of a sensor element
or array of sensor elements. Higher directivity is desired when you want to transmit
more radiation in a specific direction. Directivity is the ratio of the transmitted radiant
intensity in a specified direction to the radiant intensity transmitted by an isotropic
radiator with the same total transmitted power

D
U

P
=

()
4p

q jrad

total

,

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal
is the total power transmitted by an isotropic radiator. For a receiving element or array,
directivity measures the sensitivity toward radiation arriving from a specific direction.
The principle of reciprocity shows that the directivity of an element or array used for
reception equals the directivity of the same element or array used for transmission.
When converted to decibels, the directivity is denoted as dBi. For information on
directivity, read the notes on “Element directivity” and “Array directivity”.

Computing directivity requires integrating the far-field transmitted radiant intensity
over all directions in space to obtain the total transmitted power. There is a difference
between how that integration is performed when Antenna Toolbox antennas are used
in a phased array and when Phased Array System Toolbox antennas are used. When
an array contains Antenna Toolbox antennas, the directivity computation is performed
using a triangular mesh created from 500 regularly spaced points over a sphere. For
Phased Array System Toolbox antennas, the integration uses a uniform rectangular
mesh of points spaced 1° apart in azimuth and elevation over a sphere. There may be
significant differences in computed directivity, especially for large arrays.

Examples

Azimuth Directivity of Short-Dipole Antenna Element at Two Elevations

Specify a short-dipole antenna element having a direction along the y-axis. Then, plot
an azimuth cut of the directivity at 0 and 30 degrees elevation. Assume the operating
frequency is 500 MHz.

1 Alphabetical List

1-1672

Create the antenna element.

fc = 500e6;

sSD = phased.ShortDipoleAntennaElement('FrequencyRange',[100,900]*1e6,...

 'AxisDirection','y');

patternAzimuth(sSD,fc,[0 30])

Plot a reduced range of azimuth angles using the Azimuth parameter. Notice the change
in scale.

patternAzimuth(sSD,fc,[0 30],'Azimuth',[-20:20])

 patternAzimuth

1-1673

See Also
phased.ShortDipoleAntennaElement.pattern |
phased.ShortDipoleAntennaElement.patternElevation

Introduced in R2015a

1 Alphabetical List

1-1674

patternElevation
System object: phased.ShortDipoleAntennaElement
Package: phased

Plot short-dipole antenna element directivity or pattern versus elevation

Syntax
patternElevation(sElem,FREQ)

patternElevation(sElem,FREQ,AZ)

patternElevation(sElem,FREQ,AZ,Name,Value)

PAT = patternElevation(___)

Description
patternElevation(sElem,FREQ) plots the 2-D element directivity pattern versus
elevation (in dBi) for the element sElem at zero degrees azimuth angle. The argument
FREQ specifies the operating frequency.

patternElevation(sElem,FREQ,AZ), in addition, plots the 2-D element directivity
pattern versus elevation (in dBi) at the azimuth angle specified by AZ. When AZ is a
vector, multiple overlaid plots are created.

patternElevation(sElem,FREQ,AZ,Name,Value) plots the element pattern with
additional options specified by one or more Name,Value pair arguments.

PAT = patternElevation(___) returns the element pattern. PAT is a matrix
whose entries represent the pattern at corresponding sampling points specified by the
'Elevation' parameter and the AZ input argument.

Input Arguments
sElem — Short-dipole antenna element
System object

Short-dipole antenna element, specified as a phased.ShortDipoleAntennaElement
System object.

 patternElevation

1-1675

Example: sElem = phased.ShortDipoleAntennaElement;

FREQ — Frequency for computing directivity and pattern
positive scalar

Frequency for computing directivity and pattern, specified as a positive scalar. Frequency
units are in hertz.

• For an antenna or microphone element, FREQ must lie within the range of values
specified by the FrequencyRange or the FrequencyVector property of the
element. Otherwise, the element produces no response and the directivity is
returned as –Inf. Most elements use the FrequencyRange property except for
phased.CustomAntennaElement and phased.CustomMicrophoneElement, which use
the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements
that make up the array. Otherwise, the array produces no response and the
directivity is returned as –Inf.

Example: 1e8

Data Types: double

AZ — Azimuth angles for computing directivity and pattern
1-by-N real-valued row vector

Azimuth angles for computing array directivity and pattern, specified as a 1-by-M real-
valued row vector where N is the number of desired azimuth directions. Angle units are
in degrees. The azimuth angle must lie between –180° and 180°.

The azimuth angle is the angle between the x-axis and the projection of the direction
vector onto the xy plane. This angle is positive when measured from the x-axis toward the
y-axis.
Example: [0,10,20]

Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

1 Alphabetical List

1-1676

quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Type' — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and
one of

• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed

pattern is for the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field

pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'

Data Types: char

'Elevation' — Elevation angles
[-90:90] (default) | 1-by-P real-valued row vector

Elevation angles, specified as the comma-separated pair consisting of 'Elevation'
and a 1-by-P real-valued row vector. Elevation angles define where the array pattern is
calculated.
Example: 'Elevation',[-90:2:90]

Data Types: double

Output Arguments

PAT — Element directivity or pattern
L-by-N real-valued matrix

Element directivity or pattern, returned as an L-by-N real-valued matrix. The dimension
L is the number of elevation angles determined by the 'Elevation' name-value pair
argument. The dimension N is the number of azimuth angles determined by the AZ
argument.

 patternElevation

1-1677

Definitions

Directivity

Directivity describes the directionality of the radiation pattern of a sensor element
or array of sensor elements. Higher directivity is desired when you want to transmit
more radiation in a specific direction. Directivity is the ratio of the transmitted radiant
intensity in a specified direction to the radiant intensity transmitted by an isotropic
radiator with the same total transmitted power

D
U

P
=

()
4p

q jrad

total

,

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal
is the total power transmitted by an isotropic radiator. For a receiving element or array,
directivity measures the sensitivity toward radiation arriving from a specific direction.
The principle of reciprocity shows that the directivity of an element or array used for
reception equals the directivity of the same element or array used for transmission.
When converted to decibels, the directivity is denoted as dBi. For information on
directivity, read the notes on “Element directivity” and “Array directivity”.

Computing directivity requires integrating the far-field transmitted radiant intensity
over all directions in space to obtain the total transmitted power. There is a difference
between how that integration is performed when Antenna Toolbox antennas are used
in a phased array and when Phased Array System Toolbox antennas are used. When
an array contains Antenna Toolbox antennas, the directivity computation is performed
using a triangular mesh created from 500 regularly spaced points over a sphere. For
Phased Array System Toolbox antennas, the integration uses a uniform rectangular
mesh of points spaced 1° apart in azimuth and elevation over a sphere. There may be
significant differences in computed directivity, especially for large arrays.

Examples

Reduced Elevation Pattern of Crossed-Dipole Antenna Element

Plot an elevation cut of directivity of a crossed dipole antenna element at 45 and 55
degrees azimuth. Assume the operating frequency is 500 MHz.

1 Alphabetical List

1-1678

Create the antenna element

fc = 500e6;

sCD = phased.CrossedDipoleAntennaElement('FrequencyRange',[100,900]*1e6);

patternElevation(sCD,fc,[45 55])

Plot a reduced range of elevation angles using the Elevation parameter. Notice the
change in scale.

patternElevation(sCD,fc,[45 55],'Elevation',[-20:20])

 patternElevation

1-1679

See Also
phased.ShortDipoleAntennaElement.pattern |
phased.ShortDipoleAntennaElement.patternAzimuth

Introduced in R2015a

1 Alphabetical List

1-1680

plotResponse
System object: phased.ShortDipoleAntennaElement
Package: phased

Plot response pattern of antenna

Syntax

plotResponse(H,FREQ)

plotResponse(H,FREQ,Name,Value)

hPlot = plotResponse(___)

Description

plotResponse(H,FREQ) plots the element response pattern along the azimuth cut,
where the elevation angle is 0. The operating frequency is specified in FREQ.

plotResponse(H,FREQ,Name,Value) plots the element response with additional
options specified by one or more Name,Value pair arguments.

hPlot = plotResponse(___) returns handles of the lines or surface in the figure
window, using any of the input arguments in the previous syntaxes.

Input Arguments

H

Element System object

FREQ

Operating frequency in Hertz specified as a scalar or 1–by-K row vector. FREQ must
lie within the range specified by the FrequencyVector property of H. If you set the
'RespCut' property of H to '3D', FREQ must be a scalar. When FREQ is a row vector,
plotResponse draws multiple frequency responses on the same axes.

 plotResponse

1-1681

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'CutAngle'

Cut angle specified as a scalar. This argument is applicable only when RespCut is 'Az'
or 'El'. If RespCut is 'Az', CutAngle must be between –90 and 90. If RespCut is
'El', CutAngle must be between –180 and 180.

Default: 0

'Format'

Format of the plot, using one of 'Line', 'Polar', or 'UV'. If you set Format to 'UV',
FREQ must be a scalar.

Default: 'Line'

'NormalizeResponse'

Set this value to true to normalize the response pattern. Set this value to false to plot
the response pattern without normalizing it. This parameter is not applicable when you
set the Unit parameter value to 'dbi'.

Default: true

'OverlayFreq'

Set this value to true to overlay pattern cuts in a 2-D line plot. Set this value to false
to plot pattern cuts against frequency in a 3-D waterfall plot. If this value is false, FREQ
must be a vector with at least two entries.

This parameter applies only when Format is not 'Polar' and RespCut is not '3D'.

Default: true

'Polarization'

Specify the polarization options for plotting the antenna response pattern. The allowable
values are |'None' | 'Combined' | 'H' | 'V' | where

1 Alphabetical List

1-1682

• 'None' specifies plotting a nonpolarized response pattern
• 'Combined' specifies plotting a combined polarization response pattern
• 'H' specifies plotting the horizontal polarization response pattern
• 'V' specifies plotting the vertical polarization response pattern

For antennas that do not support polarization, the only allowed value is 'None'. This
parameter is not applicable when you set the Unit parameter value to 'dbi'.

Default: 'None'

'RespCut'

Cut of the response. Valid values depend on Format, as follows:

• If Format is 'Line' or 'Polar', the valid values of RespCut are 'Az', 'El', and
'3D'. The default is 'Az'.

• If Format is 'UV', the valid values of RespCut are 'U' and '3D'. The default is 'U'.

If you set RespCut to '3D', FREQ must be a scalar.

'Unit'

The unit of the plot. Valid values are 'db', 'mag', 'pow', or 'dbi'. This parameter
determines the type of plot that is produced.

Unit value Plot type

db power pattern in dB
scale

mag field pattern
pow power pattern
dbi directivity

Default: 'db'

'AzimuthAngles'

Azimuth angles for plotting element response, specified as a row vector. The
AzimuthAngles parameter sets the display range and resolution of azimuth angles for

 plotResponse

1-1683

visualizing the radiation pattern. This parameter is allowed only when the RespCut
parameter is set to 'Az' or '3D' and the Format parameter is set to 'Line' or
'Polar'. The values of azimuth angles should lie between –180° and 180° and must be
in nondecreasing order. When you set the RespCut parameter to '3D', you can set the
AzimuthAngles and ElevationAngles parameters simultaneously.

Default: [-180:180]

'ElevationAngles'

Elevation angles for plotting element response, specified as a row vector. The
ElevationAngles parameter sets the display range and resolution of elevation
angles for visualizing the radiation pattern. This parameter is allowed only when the
RespCut parameter is set to 'El' or '3D' and the Format parameter is set to 'Line'
or 'Polar'. The values of elevation angles should lie between –90° and 90° and must be
in nondecreasing order. When you set the RespCut parameter to '3D', you can set the
ElevationAngles and AzimuthAngles parameters simultaneously.

Default: [-90:90]

'UGrid'

U coordinate values for plotting element response, specified as a row vector. The UGrid
parameter sets the display range and resolution of the U coordinates for visualizing
the radiation pattern in U/V space. This parameter is allowed only when the Format
parameter is set to 'UV' and the RespCut parameter is set to 'U' or '3D'. The values of
UGrid should be between –1 and 1 and should be specified in nondecreasing order. You
can set the UGrid and VGrid parameters simultaneously.

Default: [-1:0.01:1]

'VGrid'

V coordinate values for plotting element response, specified as a row vector. The VGrid
parameter sets the display range and resolution of the V coordinates for visualizing
the radiation pattern in U/V space. This parameter is allowed only when the Format
parameter is set to 'UV' and the RespCut parameter is set to '3D'. The values of VGrid
should be between –1 and 1 and should be specified in nondecreasing order. You can set
the VGrid and UGrid parameters simultaneously.

Default: [-1:0.01:1]

1 Alphabetical List

1-1684

Examples

Response of Short-Dipole Antenna Oriented Along the Z-Axis

Specify a short-dipole antenna element with its dipole axis pointing along the z-axis. To
do so, set the 'AxisDirection' value to 'Z'.

sSD = phased.ShortDipoleAntennaElement(...

 'FrequencyRange',[100 900]*1e6,'AxisDirection','Z');

Plot the antenna's vertical polarization response at 200 MHz as a 3-D polar plot.

fc = 200e6;

plotResponse(sSD,fc,'Format','Polar',...

 'RespCut','3D','Polarization','V');

 plotResponse

1-1685

As the above figure shows, the antenna pattern is that of a vertically-oriented dipole and
has its maximum at the equator and nulls at the poles.

Plot Short-Dipole Antenna Element Response Over Selected Range

This example shows how to construct a short-dipole antenna element with its dipole axis
pointing along the z-axis and how to plot the response over a selected range of angles.
The antenna operating frequency spans the range 100 to 900 MHz.

To construct a z-directed short-dipole antenna, set the 'AxisDirection' value to 'Z'.

sSD = phased.ShortDipoleAntennaElement(...

 'FrequencyRange',[100 900]*1e6,'AxisDirection','Z');

1 Alphabetical List

1-1686

Plot the antenna's vertical polarization response at 200 MHz as an elevation cut at a
fixed azimuth angle. Use the 'ElevationAngles' property to restrict the plot from -60 to 60
degrees elevation in 0.1 degree increments.

plotResponse(sSD,200e6,'Format','Polar',...

 'RespCut','El','Polarization','V',...

 'ElevationAngles',[-60:0.1:60],'Unit','mag');

Plot Short-Dipole Antenna Element Directivity

This example shows how to construct a short-dipole antenna element with its dipole
axis pointing along the y-axis and how to plot the directivity. The antenna operating
frequency spans the range 100 to 900 MHz.

 plotResponse

1-1687

To construct a y-directed short-dipole antenna, set the 'AxisDirection' value to 'Y'.

sSD = phased.ShortDipoleAntennaElement(...

 'FrequencyRange',[100 900]*1e6,'AxisDirection','Y');

Plot the antenna's directivity at 500 MHz as an elevation cut at a fixed azimuth angle.

plotResponse(sSD,500e6,'Format','Line',...

 'RespCut','El','Unit','dbi');

See Also
azel2uv | uv2azel

1 Alphabetical List

1-1688

release
System object: phased.ShortDipoleAntennaElement
Package: phased

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

 step

1-1689

step
System object: phased.ShortDipoleAntennaElement
Package: phased

Output response of antenna element

Syntax

RESP = step(H,FREQ,ANG)

Description

RESP = step(H,FREQ,ANG) returns the antenna’s voltage response, RESP, at the
operating frequencies specified in FREQ and in the directions specified in ANG. For the
short-dipole antenna element object, RESP is a MATLAB struct containing two fields,
RESP.H and RESP.V, representing the horizontal and vertical polarization components of
the antenna's response. Each field is an M-by-L matrix containing the antenna response
at the M angles specified in ANG and at the L frequencies specified in FREQ.

Note: The object performs an initialization the first time the step method is executed.
This initialization locks nontunable properties and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Input Arguments

H

Antenna element object.

FREQ

Operating frequencies of antenna in hertz. FREQ is a row vector of length L.

1 Alphabetical List

1-1690

ANG

Directions in degrees. ANG can be either a 2-by-M matrix or a row vector of length M.

If ANG is a 2-by-M matrix, each column of the matrix specifies the direction in the
form [azimuth; elevation]. The azimuth angle must be between –180 and 180 degrees,
inclusive. The elevation angle must be between –90 and 90 degrees, inclusive.

If ANG is a row vector of length M, each element specifies a direction’s azimuth angle. In
this case, the corresponding elevation angle is assumed to be 0.

Output Arguments

RESP

Voltage response of antenna element returned as a MATLAB struct with fields RESP.H
and RESP.V. Both RESP.H and RESP.V contain responses for the horizontal and vertical
polarization components of the antenna radiation pattern. Both RESP.H and RESP.V are
M-by-L matrices. In these matrices, M represents the number of angles specified in ANG,
and L represents the number of frequencies specified in FREQ.

Examples

Find the response of a short-dipole antenna element at the boresight angle, [0;0], and
at off-boresight, [30;0]. The antenna operates between 100 and 900 MHz. Compute the
response of the antenna at these angles.

hsd = phased.ShortDipoleAntennaElement(...

 'FrequencyRange',[100 900]*1e6,'AxisDirection','Y');

ang = [0 30;0 0];

fc = 250e6;

resp = step(hsd,fc,ang);

resp =

 H: [2x1 double]

 V: [2x1 double]

 step

1-1691

Algorithms

The total response of a short-dipole antenna element is a combination of its frequency
response and spatial response. This System object calculates both responses using
nearest neighbor interpolation and then multiplies the responses to form the total
response.

See Also
phitheta2azel | uv2azel

1 Alphabetical List

1-1692

phased.SteeringVector System object
Package: phased

Sensor array steering vector

Description

The SteeringVector object calculates the steering vector for a sensor array.

To compute the steering vector of the array for specified directions:

1 Define and set up your steering vector calculator. See “Construction” on page
1-1692.

2 Call step to compute the steering vector according to the properties of
phased.SteeringVector. The behavior of step is specific to each object in the
toolbox.

Construction

H = phased.SteeringVector creates a steering vector System object, H. The object
calculates the steering vector of the given sensor array for the specified directions.

H = phased.SteeringVector(Name,Value) creates a steering vector object, H, with
each specified property Name set to the specified Value. You can specify additional name-
value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties

SensorArray

Handle to sensor array used to calculate steering vector

Specify the sensor array as a handle. The sensor array must be an array object in the
phased package. The array can contain subarrays.

Default: phased.ULA with default property values

 phased.SteeringVector System object

1-1693

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second, as a positive scalar.

Default: Speed of light

IncludeElementResponse

Include individual element response in the steering vector

If this property is true, the steering vector includes the individual element responses.

If this property is false, the computation of the steering vector assumes the elements
are isotropic. The steering vector does not include the individual element responses.
Furthermore, if the SensorArray property contains subarrays, the steering vector is
the array factor among the subarrays. If SensorArray does not contain subarrays, the
steering vector is the array factor among the array elements.

Default: false

NumPhaseShifterBits

Number of phase shifter quantization bits

The number of bits used to quantize the phase shift component of beamformer or steering
vector weights. Specify the number of bits as a non-negative integer. A value of zero
indicates that no quantization is performed.

Default: 0

EnablePolarization

Enable polarization simulation

Set to this property to true, to enable the steering vector to simulate polarization. Set
this property to false to ignore polarization. This property applies only when the array
specified in the SensorArray property is capable of simulating polarization and you
have set the IncludeElementResponse property to true.

Default: false

1 Alphabetical List

1-1694

Methods
clone Create steering vector object with same

property values
getNumInputs Number of expected inputs to step method
getNumOutputs Number of outputs from step method
isLocked Locked status for input attributes and

nontunable properties
release Allow property value and input

characteristics changes
step Calculate steering vector

Examples
Steering Vector for Uniform Linear Array

Calculate and display the steering vector for a 4-element uniform linear array in the
direction of 30 degrees azimuth and 20 degrees elevation. Assume the array's operating
frequency is 300 MHz.

hULA = phased.ULA('NumElements',4);

hsv = phased.SteeringVector('SensorArray',hULA);

Fc = 3e8;

ANG = [30; 20];

sv = step(hsv,Fc,ANG)

sv =

 -0.6011 - 0.7992i

 0.7394 - 0.6732i

 0.7394 + 0.6732i

 -0.6011 + 0.7992i

Beam Pattern With and Without Steering

Calculate the steering vector for a 4-element uniform linear array in the direction of 30
degrees azimuth and 20 degrees elevation. Assume the array's operating frequency is 300
MHz.

 phased.SteeringVector System object

1-1695

fc = 3e8;

ha = phased.ULA('NumElements',4);

hsv = phased.SteeringVector('SensorArray',ha);

sv = step(hsv,fc,[30; 20]);

Plot the beam patterns for the uniform linear array when no steering vector is applied
(steered broadside) and when a steering vector is applied.

c = hsv.PropagationSpeed;

subplot(211)

plotResponse(ha,fc,c,'RespCut','Az');

title('Without steering');

subplot(212)

plotResponse(ha,fc,c,'RespCut','Az','Weights',sv);

title('With steering');

1 Alphabetical List

1-1696

References

[1] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002.

See Also
phased.ArrayGain | phased.ArrayResponse | phased.ElementDelay

Introduced in R2012a

 clone

1-1697

clone
System object: phased.SteeringVector
Package: phased

Create steering vector object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates an object, C, having the same property values and same states as
H. If H is locked, so is C.

1 Alphabetical List

1-1698

getNumInputs
System object: phased.SteeringVector
Package: phased

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of inputs
(not counting the object itself) that you must use when calling the step method. This
value changes when you alter properties that turn inputs on or off.

 getNumOutputs

1-1699

getNumOutputs
System object: phased.SteeringVector
Package: phased

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value changes when you alter properties that turn outputs on or off.

1 Alphabetical List

1-1700

isLocked
System object: phased.SteeringVector
Package: phased

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF, for the SteeringVector System
object.

isLocked returns a logical value that indicates whether input attributes and
nontunable properties for the object are locked. The object performs an internal
initialization the first time that you execute step. This initialization locks nontunable
properties and input specifications, such as the dimensions, complexity, and data type of
the input data. After locking, isLocked returns a true value.

 release

1-1701

release
System object: phased.SteeringVector
Package: phased

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

1 Alphabetical List

1-1702

step
System object: phased.SteeringVector
Package: phased

Calculate steering vector

Syntax

SV = step(H,FREQ,ANG)

SV = step(H,FREQ,ANG,STEERANGLE)

Description

SV = step(H,FREQ,ANG) returns the steering vector SV of the array for the directions
specified in ANG. The operating frequencies are specified in FREQ. The meaning of SV
depends on the IncludeElementResponse property of H, as follows:

• If IncludeElementResponse is true, SV includes the individual element responses.
• If IncludeElementResponse is false, the computation assumes the elements are

isotropic and SV does not include the individual element responses. Furthermore,
if the SensorArray property of H contains subarrays, SV is the array factor among
the subarrays and the phase center of each subarray is at its geometric center. If
SensorArray does not contain subarrays, SV is the array factor among the elements.

SV = step(H,FREQ,ANG,STEERANGLE) uses STEERANGLE as the subarray steering
angle. This syntax is available when you configure H so that H.Sensor is an array that
contains subarrays, H.Sensor.SubarraySteering is either 'Phase' or 'Time', and
H.IncludeElementResponse is true.

Note: The object performs an initialization the first time the step method is executed.
This initialization locks nontunable properties and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

 step

1-1703

Input Arguments

H

Steering vector object.

FREQ

Operating frequencies in hertz. FREQ is a row vector of length L.

ANG

Directions in degrees. ANG can be either a 2-by-M matrix or a row vector of length M.

If ANG is a 2-by-M matrix, each column of the matrix specifies the direction in space in
the form [azimuth; elevation]. The azimuth angle must be between –180 and 180
degrees, and the elevation angle must be between –90 and 90 degrees.

If ANG is a row vector of length M, each element specifies a direction’s azimuth angle. In
this case, the corresponding elevation angle is assumed to be 0.

STEERANGLE

Subarray steering angle in degrees. STEERANGLE can be a length-2 column vector or a
scalar.

If STEERANGLE is a length-2 vector, it has the form [azimuth; elevation]. The azimuth
angle must be between –180 and 180 degrees, and the elevation angle must be between –
90 and 90 degrees.

If STEERANGLE is a scalar, it represents the azimuth angle. In this case, the elevation
angle is assumed to be 0.

Output Arguments

SV

Steering vector. The form of the steering vector depends upon whether the
EnablePolarization property is set to true or false.

1 Alphabetical List

1-1704

• If EnablePolarization is set to false, the steering vector, SV, has the dimensions
N-by-M-by-L. The first dimension, N, is the number of elements of the phased array
or, if H.SensorArray contains subarrays, the number of subarrays. Each column of
SV contains the steering vector of the array for the corresponding direction specified
in ANG. Each of the L pages of SV contains the steering vectors of the array for the
corresponding frequency specified in FREQ.

If you set the H.IncludeElementResponse property to true, the
steering vector includes the individual element responses. If you set the
H.IncludeElementResponse property to false, the elements are assumed to be
isotropic. Then, the steering vector does not include individual element responses.

• If EnablePolarization is set to true, SV is a MATLAB struct containing
two fields, SV.H and SV.V. These fields represent the steering vector’s horizontal
and vertical polarization components. Each field has the dimensions N-by-M-
by-L. The first dimension, N, is the number of elements of the phased array or, if
H.SensorArray contains subarrays, the number of subarrays. Each column of SV
contains the steering vector of the array for the corresponding direction specified
in ANG. Each of the L pages of SV contains the steering vectors of the array for the
corresponding frequency specified in FREQ.

If you set the EnablePolarization to false for an array that supports
polarization, then all polarization information is discarded. The combined pattern
from both H and V polarizations is used at each element to compute the steering
vector.

Simulating polarization also requires that the sensor array specified in
the SensorArray property is capable of simulating polarization, and the
IncludeElementResponse property is set to true.

Examples

Steering Vector for Uniform Linear Array

Calculate the steering vector for a uniform linear array at the direction of 30 degrees
azimuth and 20 degrees elevation. Assume the array’s operating frequency is 300 MHz.

hULA = phased.ULA('NumElements',2);

hsv = phased.SteeringVector('SensorArray',hULA);

Fc = 3e8;

ANG = [30; 20];

 step

1-1705

sv = step(hsv,Fc,ANG);

See Also
phitheta2azel | uv2azel

1 Alphabetical List

1-1706

phased.SteppedFMWaveform System object
Package: phased

Stepped FM pulse waveform

Description

The SteppedFMWaveform object creates a stepped FM pulse waveform.

To obtain waveform samples:

1 Define and set up your stepped FM pulse waveform. See “Construction” on page
1-1706.

2 Call step to generate the stepped FM pulse waveform samples according to the
properties of phased.SteppedFMWaveform. The behavior of step is specific to each
object in the toolbox.

Construction

sSFM = phased.SteppedFMWaveform creates a stepped FM pulse waveform System
object, sSFM. The object generates samples of a linearly stepped FM pulse waveform.

sSFM = phased.SteppedFMWaveform(Name,Value) creates a stepped FM
pulse waveform object, sSFM, with each specified property Name set to the specified
Value. You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties

SampleRate

Sample rate

Signal sample rate, specified as a positive scalar. Units are Hertz. The ratio of sample
rate to pulse repetition frequency (PRF) must be a positive integer — each pulse must
contain an integer number of samples.

 phased.SteppedFMWaveform System object

1-1707

Default: 1e6

DurationSpecification

Method to set pulse duration

Method to set pulse duration (pulse width), specified as 'Pulse width' or 'Duty
cycle'. This property determines how you set the pulse duration. When you set
this property to 'Pulse width', then you set the pulse duration directly using the
PulseWidth property. When you set this property to 'Duty cycle', you set the pulse
duration from the values of the PRF and DutyCycle properties. The pulse width is equal
to the duty cycle divided by the PRF.

Default: 'Pulse width'

PulseWidth

Pulse width

Specify the length of each pulse (in seconds) as a positive scalar. The value must satisfy
PulseWidth <= 1./PRF.

Default: 50e-6

DutyCycle

Waveform duty cycle

Waveform duty cycle, specified as a scalar from 0 through 1, inclusive. This property
applies when you set the DurationSpecification property to 'Duty cycle'. The
pulse width is the value of the DutyCycle property divided by the value of the PRF
property.

Default: 0.5

PRF

Pulse repetition frequency

Pulse repetition frequency (PRF), specified as a scalar or a row vector. Units are hertz.
The pulse repetition interval (PRI) is the inverse of the PRF.

1 Alphabetical List

1-1708

• When PRFSelectionInputPort is false, you can

• implement a constant PRF by specifying PRF as a positive real-valued scalar.
• implement a staggered PRF by specifying PRF as a row vector with positive real-

valued entries. When PRF is a vector, the each call to the step method produces
pulses that use successive elements of the vector as the PRF. If the last element of
the vector is reached, the process continues cyclically with the first element of the
vector.

• When PRFSelectionInputPort is true, you can implement a selectable PRF by
specifying PRF as a row vector with positive real-valued entries. Then in each call to
the step syntax, pass in an index to an entry in the desired PRF vector.

The value of this property must satisfy these constraints:

• The PRF must be less than or equal to 1/PulseWidth. This is equivalent to the
requirement that the pulse width is less than or equal to the PRI. For the phase-coded
waveform, the pulse width is the product of the chip width and number of chips.

• The ratio of sample rate to PRF must be an integer — the number of samples in a
pulse must be an integer

Default: 10e3

PRFSelectionInputPort

Enable PRF selection input

Enable the PRF selection input, specified as true or false. When you set this property
to false, the step method uses the values set in the PRF property in order. When you
set this property to true, you can pass an additional argument into the step method to
select any value from the PRF vector.

Default: false

FrequencyStep

Linear frequency step size

Specify the linear frequency step size (in hertz) as a positive scalar. The default value of
this property corresponds to 20 kHz.

Default: 20e3

 phased.SteppedFMWaveform System object

1-1709

NumSteps

Specify the number of frequency steps as a positive integer. When NumSteps is 1, the
stepped FM waveform reduces to a rectangular waveform.

Default: 5

OutputFormat

Output signal format

Specify the format of the output signal as one of 'Pulses' or 'Samples'. When you
set the OutputFormat property to 'Pulses', the output of the step method is in the
form of multiple pulses. In this case, the number of pulses is the value of the NumPulses
property.

When you set the OutputFormat property to 'Samples', the output of the step method
is in the form of multiple samples. In this case, the number of samples is the value of the
NumSamples property.

Default: 'Pulses'

NumSamples

Number of samples in output

Specify the number of samples in the output of the step method as a positive integer.
This property applies only when you set the OutputFormat property to 'Samples'.

Default: 100

NumPulses

Number of pulses in output

Specify the number of pulses in the output of the step method as a positive integer. This
property applies only when you set the OutputFormat property to 'Pulses'.

Default: 1

Methods
bandwidth Bandwidth of stepped FM pulse waveform

1 Alphabetical List

1-1710

clone Create stepped FM pulse waveform object
with same property values

getMatchedFilter Matched filter coefficients for waveform
getNumInputs Number of expected inputs to step method
getNumOutputs Number of outputs from step method
isLocked Locked status for input attributes and

nontunable properties
plot Plot stepped FM pulse waveform
release Allow property value and input

characteristics changes
reset Reset state of stepped FM pulse waveform

object
step Samples of stepped FM pulse waveform

Definitions

Stepped FM Waveform

In a stepped FM waveform, a group of pulses together sweep a certain bandwidth. Each
pulse in this group occupies a given center frequency and these center frequencies are
uniformly located within the total bandwidth.

Examples

Plot Stepped-FM Waveform and Spectrum

Create a stepped frequency pulse waveform object. Assume the default value, 1 MHz, for
the sample rate. Then, plot the waveform.

Create the SteppedFMWaveform System object™ with 20 kHz frequency step size.

sSFM = phased.SteppedFMWaveform('NumSteps',3,'FrequencyStep',20e3);

fs = sSFM.SampleRate;

Plot the third pulse of the wave using the phased.SteppedFMWaveform.plot method.
Pass in the pulse number using the 'PulseIdx' name-value pair.

 phased.SteppedFMWaveform System object

1-1711

plot(sSFM,'PulseIdx',3);

Alternatively, call the step method three times to obtain three pulses. Collect the three
pulses in a single time series. Then plot the waveform using the plot function. You can
see the full duty cycles of the pulses.

wavfull = [];

wav = step(sSFM);

wavfull = [wavfull;wav];

wav = step(sSFM);

wavfull = [wavfull;wav];

wav = step(sSFM);

wavfull = [wavfull;wav];

1 Alphabetical List

1-1712

nsamps = size(wavfull,1);

t = [0:(nsamps-1)]/fs*1e6;

plot(t,real(wavfull))

xlabel('Time (\mu sec)')

ylabel('Amplitude')

grid

Plot the spectrum using the spectrogram function. Assume an fft of 64 samples and a
50% overlap. Window the signal with a hamming function.

nfft1 = 64;

nov = floor(0.5*nfft1);

spectrogram(wavfull,hamming(nfft1),nov,nfft1,fs,'centered','yaxis')

 phased.SteppedFMWaveform System object

1-1713

• Waveform Analysis Using the Ambiguity Function

References

[1] Richards, M. A. Fundamentals of Radar Signal Processing. New York: McGraw-Hill,
2005.

See Also
phased.LinearFMWaveform | phased.RectangularWaveform |
phased.PhaseCodedWaveform

../examples/waveform-analysis-using-the-ambiguity-function.html

1 Alphabetical List

1-1714

Introduced in R2012a

 bandwidth

1-1715

bandwidth
System object: phased.SteppedFMWaveform
Package: phased

Bandwidth of stepped FM pulse waveform

Syntax

BW = bandwidth(H)

Description

BW = bandwidth(H) returns the bandwidth (in hertz) of the pulses for the stepped
FM pulse waveform H. If there are N frequency steps, the bandwidth equals N times the
value of the FrequencyStep property. If there is no frequency stepping, the bandwidth
equals the reciprocal of the pulse width.

Input Arguments

H

Stepped FM pulse waveform object.

Output Arguments

BW

Bandwidth of the pulses, in hertz.

Examples

Determine the bandwidth of a stepped FM waveform.

1 Alphabetical List

1-1716

 H = phased.SteppedFMWaveform;

 bw = bandwidth(H)

 clone

1-1717

clone
System object: phased.SteppedFMWaveform
Package: phased

Create stepped FM pulse waveform object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates an object, C, having the same property values and same states as
H. If H is locked, so is C.

1 Alphabetical List

1-1718

getMatchedFilter
System object: phased.SteppedFMWaveform
Package: phased

Matched filter coefficients for waveform

Syntax

Coeff = getMatchedFilter(H)

Description

Coeff = getMatchedFilter(H) returns the matched filter coefficients for the stepped
FM waveform object H. Coeff is a matrix whose columns correspond to the different
frequency pulses in the stepped FM waveform.

Examples

Get the matched filter coefficients for a stepped FM pulse waveform.

hw = phased.SteppedFMWaveform(...

 'NumSteps',3,'FrequencyStep',2e4,...

 'OutputFormat','Pulses','NumPulses',3);

coeff = getMatchedFilter(hw);

 getNumInputs

1-1719

getNumInputs
System object: phased.SteppedFMWaveform
Package: phased

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of inputs
(not counting the object itself) that you must use when calling the step method. This
value changes when you alter properties that turn inputs on or off.

1 Alphabetical List

1-1720

getNumOutputs
System object: phased.SteppedFMWaveform
Package: phased

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value changes when you alter properties that turn outputs on or off.

 isLocked

1-1721

isLocked
System object: phased.SteppedFMWaveform
Package: phased

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF, for the SteppedFMWaveform System
object.

isLocked returns a logical value that indicates whether input attributes and
nontunable properties for the object are locked. The object performs an internal
initialization the first time that you execute step. This initialization locks nontunable
properties and input specifications, such as the dimensions, complexity, and data type of
the input data. After locking, isLocked returns a true value.

1 Alphabetical List

1-1722

plot
System object: phased.SteppedFMWaveform
Package: phased

Plot stepped FM pulse waveform

Syntax

plot(Hwav)

plot(Hwav,Name,Value)

plot(Hwav,Name,Value,LineSpec)

h = plot(___)

Description

plot(Hwav) plots the real part of the waveform specified by Hwav.

plot(Hwav,Name,Value) plots the waveform with additional options specified by one
or more Name,Value pair arguments.

plot(Hwav,Name,Value,LineSpec) specifies the same line color, line style, or marker
options as are available in the MATLAB plot function.

h = plot(___) returns the line handle in the figure.

Input Arguments

Hwav

Waveform object. This variable must be a scalar that represents a single waveform
object.

LineSpec

String that specifies the same line color, style, or marker options as are available in the
MATLAB plot function. If you specify a PlotType value of 'complex', then LineSpec
applies to both the real and imaginary subplots.

 plot

1-1723

Default: 'b'

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'PlotType'

Specifies whether the function plots the real part, imaginary part, or both parts of the
waveform. Valid values are 'real', 'imag', and 'complex'.

Default: 'real'

'PulseIdx'

Index of the pulse to plot. This value must be a scalar.

Default: 1

Output Arguments

h

Handle to the line or lines in the figure. For a PlotType value of 'complex', h is a
column vector. The first and second elements of this vector are the handles to the lines in
the real and imaginary subplots, respectively.

Examples

Create and plot a stepped frequency pulse waveform.

 hw = phased.SteppedFMWaveform;

 plot(hw);

1 Alphabetical List

1-1724

 release

1-1725

release
System object: phased.SteppedFMWaveform
Package: phased

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

1 Alphabetical List

1-1726

reset
System object: phased.SteppedFMWaveform
Package: phased

Reset state of stepped FM pulse waveform object

Syntax

reset(H)

Description

reset(H) resets the states of the SteppedFMWaveform object, H. Afterward, if the PRF
property is a vector, the next call to step uses the first PRF value in the vector.

 step

1-1727

step

System object: phased.SteppedFMWaveform
Package: phased

Samples of stepped FM pulse waveform

Syntax

Y = step(sSFM)

Y = step(sSFM,prfidx)

Description

Y = step(sSFM) returns samples of the stepped FM pulses in a column vector, Y. The
output, Y, results from increasing the frequency of the preceding output by an amount
specified by the FrequencyStep property. If the total frequency increase is larger than
the value specified by the SweepBandwidth property, the samples of a rectangular pulse
are returned.

Y = step(sSFM,prfidx), uses the prfidx index to select the PRF from the predefined
vector of values specified by in the PRF property. This syntax applies when you set the
PRFSelectionInputPort property to true.

Note: The object performs an initialization the first time the step method is executed.
This initialization locks nontunable properties and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

1 Alphabetical List

1-1728

Definitions

Stepped FM Waveform

In a stepped FM waveform, a group of pulses together sweep a certain bandwidth. Each
pulse in this group occupies a given center frequency and these center frequencies are
uniformly located within the total bandwidth.

Examples

Create Stepped Frequency Pulse Waveform

Create a stepped frequency pulse waveform object with a frequency step of 40 kHz and
four frequency steps.

sSFM = phased.SteppedFMWaveform(...

 'NumSteps',4,'FrequencyStep',40e3,...

 'OutputFormat','Pulses','NumPulses',1);

fs = sSFM.SampleRate;

Use the step method to obtain the pulses.

First, generate pulse 1.

pulse1 = step(sSFM);

Then, generate pulse 2, incremented by the frequency step 40 kHz

pulse2 = step(sSFM);

Next, generate pulse 3, incremented by the frequency step 40 kHz

pulse3 = step(sSFM);

Finally, generate pulse 4, incremented by the frequency step 40 kHz

pulse4 = step(sSFM);

nsamps = size(pulse4,1);

t = [0:(nsamps-1)]/fs*1e6;

plot(t,real(pulse4))

xlabel('Time (\mu sec)')

 step

1-1729

ylabel('Amplitude')

grid

1 Alphabetical List

1-1730

phased.StretchProcessor System object

Package: phased

Stretch processor for linear FM waveform

Description

The StretchProcessor object performs stretch processing on data from a linear FM
waveform.

To perform stretch processing:

1 Define and set up your stretch processor. See “Construction” on page 1-1730.
2 Call step to perform stretch processing on input data according to the properties of

phased.StretchProcessor. The behavior of step is specific to each object in the
toolbox.

Construction

H = phased.StretchProcessor creates a stretch processor System object, H. The
object performs stretch processing on data from a linear FM waveform.

H = phased.StretchProcessor(Name,Value) creates a stretch processor object,
H, with additional options specified by one or more Name,Value pair arguments. Name
is a property name, and Value is the corresponding value. Name must appear inside
single quotes (''). You can specify several name-value pair arguments in any order as
Name1,Value1,…,NameN,ValueN.

Properties

SampleRate

Sample rate

 phased.StretchProcessor System object

1-1731

Signal sample rate, specified as a positive scalar. Units are Hertz. The ratio of sample
rate to pulse repetition frequency (PRF) must be a positive integer — each pulse must
contain an integer number of samples.

Default: 1e6

PulseWidth

Pulse width

Specify the length of each pulse (in seconds) as a positive scalar. The value must satisfy
PulseWidth <= 1./PRF.

Default: 50e-6

PRF

Pulse repetition frequency

Pulse repetition frequency (PRF), specified as a scalar or a row vector. Units are hertz.
The pulse repetition interval (PRI) is the inverse of the PRF.

• When PRFSelectionInputPort is false, you can

• implement a constant PRF by specifying PRF as a positive real-valued scalar.
• implement a staggered PRF by specifying PRF as a row vector with positive real-

valued entries. When PRF is a vector, the each call to the step method produces
pulses that use successive elements of the vector as the PRF. If the last element of
the vector is reached, the process continues cyclically with the first element of the
vector.

• When PRFSelectionInputPort is true, you can implement a selectable PRF by
specifying PRF as a row vector with positive real-valued entries. Then in each call to
the step syntax, pass in an index to an entry in the desired PRF vector.

The value of this property must satisfy these constraints:

• The PRF must be less than or equal to 1/PulseWidth. This is equivalent to the
requirement that the pulse width is less than or equal to the PRI. For the phase-coded
waveform, the pulse width is the product of the chip width and number of chips.

• The ratio of sample rate to PRF must be an integer — the number of samples in a
pulse must be an integer

1 Alphabetical List

1-1732

Default: 10e3

SweepSlope

FM sweep slope

Specify the slope of the linear FM sweeping, in hertz per second, as a scalar.

Default: 2e9

SweepInterval

Location of FM sweep interval

Specify the linear FM sweeping interval using the value 'Positive' or 'Symmetric'.
If SweepInterval is 'Positive', the waveform sweeps in the interval between 0
and B, where B is the sweeping bandwidth. If SweepInterval is 'Symmetric', the
waveform sweeps in the interval between –B/2 and B/2.

Default: 'Positive'

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second, as a positive scalar.

Default: Speed of light

ReferenceRange

Reference range of stretch processing

Specify the center of ranges of interest, in meters, as a positive scalar. The reference
range must be within the unambiguous range of one pulse. This property is tunable.

Default: 5000

RangeSpan

Span of ranges of interest

Specify the length of the interval for ranges of interest, in meters, as a positive scalar.
The range span is centered at the range value specified in the ReferenceRange
property.

 phased.StretchProcessor System object

1-1733

Default: 500

Methods

clone Create stretch processor with same
property values

getNumInputs Number of expected inputs to step method
getNumOutputs Number of outputs from step method
isLocked Locked status for input attributes and

nontunable properties
release Allow property value and input

characteristics changes
step Perform stretch processing for linear FM

waveform

Examples

Detection of Target Using Stretch Processing

Use stretch processing to locate a target at a range of 4950 m.

Simulate the signal.

hwav = phased.LinearFMWaveform;

x = step(hwav);

c = 3e8; r = 4950;

num_sample = r/(c/(2*hwav.SampleRate));

x = circshift(x,num_sample);

Perform stretch processing.

hs = getStretchProcessor(hwav,5000,200,c);

y = step(hs,x);

Plot the spectrum of the resulting signal.

[Pxx,F] = periodogram(y,[],2048,hs.SampleRate,'centered');

1 Alphabetical List

1-1734

plot(F/1000,10*log10(Pxx)); grid;

xlabel('Frequency (kHz)');

ylabel('Power/Frequency (dB/Hz)');

title('Periodogram Power Spectrum Density Estimate');

Detect the range.

[~,rngidx] = findpeaks(pow2db(Pxx/max(Pxx)),...

 'MinPeakHeight',-5);

rngfreq = F(rngidx);

re = stretchfreq2rng(rngfreq,hs.SweepSlope,...

 hs.ReferenceRange,c);

• Range Estimation Using Stretch Processing

../examples/range-estimation-using-stretch-processing.html

 phased.StretchProcessor System object

1-1735

References

[1] Richards, M. A. Fundamentals of Radar Signal Processing. New York: McGraw-Hill,
2005.

See Also
phased.LinearFMWaveform | phased.MatchedFilter | stretchfreq2rng

More About
• “Stretch Processing”

Introduced in R2012a

1 Alphabetical List

1-1736

clone
System object: phased.StretchProcessor
Package: phased

Create stretch processor with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates an object, C, having the same property values and same states as
H. If H is locked, so is C.

 getNumInputs

1-1737

getNumInputs
System object: phased.StretchProcessor
Package: phased

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of inputs
(not counting the object itself) that you must use when calling the step method. This
value changes when you alter properties that turn inputs on or off.

1 Alphabetical List

1-1738

getNumOutputs
System object: phased.StretchProcessor
Package: phased

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value changes when you alter properties that turn outputs on or off.

 isLocked

1-1739

isLocked
System object: phased.StretchProcessor
Package: phased

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF, for the StretchProcessor System
object.

isLocked returns a logical value that indicates whether input attributes and
nontunable properties for the object are locked. The object performs an internal
initialization the first time that you execute step. This initialization locks nontunable
properties and input specifications, such as the dimensions, complexity, and data type of
the input data. After locking, isLocked returns a true value.

1 Alphabetical List

1-1740

release
System object: phased.StretchProcessor
Package: phased

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

 step

1-1741

step
System object: phased.StretchProcessor
Package: phased

Perform stretch processing for linear FM waveform

Syntax
Y = step(H,X)

Description
Y = step(H,X) applies stretch processing along the first dimension of X. Each column
of X represents one receiving pulse.

Input Arguments
H

Stretch processor object.

X

Input signal. Each column represents one receiving pulse.

Output Arguments
Y

Result of stretch processing. The dimensions of Y match the dimensions of X.

Examples
Detection of Target Using Stretch Processing

Use stretch processing to locate a target at a range of 4950 m.

1 Alphabetical List

1-1742

Simulate the signal.

hwav = phased.LinearFMWaveform;

x = step(hwav);

c = 3e8; r = 4950;

num_sample = r/(c/(2*hwav.SampleRate));

x = circshift(x,num_sample);

Perform stretch processing.

hs = getStretchProcessor(hwav,5000,200,c);

y = step(hs,x);

Plot the spectrum of the resulting signal.

[Pxx,F] = periodogram(y,[],2048,hs.SampleRate,'centered');

plot(F/1000,10*log10(Pxx)); grid;

xlabel('Frequency (kHz)');

ylabel('Power/Frequency (dB/Hz)');

title('Periodogram Power Spectrum Density Estimate');

 step

1-1743

Detect the range.

[~,rngidx] = findpeaks(pow2db(Pxx/max(Pxx)),...

 'MinPeakHeight',-5);

rngfreq = F(rngidx);

re = stretchfreq2rng(rngfreq,hs.SweepSlope,...

 hs.ReferenceRange,c);

• Range Estimation Using Stretch Processing

See Also
stretchfreq2rng

../examples/range-estimation-using-stretch-processing.html

1 Alphabetical List

1-1744

More About
• “Stretch Processing”

 phased.SubbandMVDRBeamformer System object

1-1745

phased.SubbandMVDRBeamformer System object
Package: phased

Subband MVDR (Capon) beamformer

Description

The phased.SubbandMVDRBeamformer System object implements a minimum variance
distortionless response beamformer (MVDR). The beamformer performs wideband
beamforming using the subband processing technique. This type of beamformer is also
called a Capon beamformer.

To compute the beamformed signal:

1 Define and set up your subband MVDR beamformer as shown in the “Construction”
on page 1-1142 section.

2 Call step to perform the beamforming operation according to the properties of
phased.SubbandMVDRBeamformer.

The behavior of step is specific to each object in the toolbox.

Construction

sMVDR = phased.SubbandMVDRBeamformer creates a subband MVDR beamformer
System object, sMVDR. The object performs subband MVDR beamforming on the received
signal.

sMVDR = phased.SubbandMVDRBeamformer(Name,Value) creates a subband
MVDR beamformer System object, sMVDR, with each specified property Name set to the
specified Value. You can specify additional name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Properties

SensorArray — Sensor array
phased.ULA (default) | Phased Array System Toolbox sensor array System object

1 Alphabetical List

1-1746

Sensor array, specified as a Phased Array System Toolbox System object. The default
value is a phased.ULA System object taking its default values.
Example: phased.URA

PropagationSpeed — Signal propagation speed
speed of light (default) | real-valued positive scalar

Signal propagation speed, specified as a real-valued positive scalar. Units are in meters
per second.
Example: physconst('LightSpeed')

Data Types: double

OperatingFrequency — Operating frequency
300e6 (default) | positive real-valued scalar

Operating frequency of beamformer, specified as a positive real-valued scalar. Units are
in hertz.
Example: 1e9
Data Types: double

SampleRate — Signal sample rate
1e6 (default) | positive real-valued scalar

Signal sample rate, specified as a real-valued positive scalar. Units are hertz.
Example: 20e6

Data Types: double

NumSubbands — Number of subbands
64 (default) | positive integer

Number of processing subbands, specified as a positive integer. See “Subband Frequency
Processing” on page 1-1749
Example: 64

Data Types: double

DirectionSource — Beamforming direction source
'Property' (default) | 'Input port'

 phased.SubbandMVDRBeamformer System object

1-1747

Beamforming direction source, specified as either 'Property' or 'Input port'.
This property determines how to supply beamforming direction information to the
beamformer.

'Property' Use the Direction property of the object to
determine the beamforming direction.

'Input port' Use the input argument ang of the step method to
determine the beamforming direction.

DiagonalLoadingFactor — Diagonal loading factor
0 (default) | positive real-valued scalar

Diagonal loading factor, specified as a positive real-valued scalar. Diagonal loading (see
“Diagonal Loading” on page 1-1749) is a technique used to achieve robust beamforming
performance, especially when the sample support is small. This property is tunable.
Example: 0.5

Data Types: double

Direction — Beamforming directions
[0;0] (default) | 2-by-1 real-valued vector | 2-by-M real-valued matrix

Beamforming directions, specified as a 2-by-1 real-valued vector or 2-by-M real-valued
matrix. Each column of the matrix has the form [AzimuthAngle;ElevationAngle].
Angle units are in degrees. Azimuth angles lie between –180° and 180° and
elevation angles lie between –90° and 90°. All angles are defined with respect to the
local coordinate system of the array. This property applies only when you set the
DirectionSource property to 'Property'

Example: [40;20]

Data Types: double

TrainingInputPort — Option to use separate training data
false (default) | true

Option to use separate training data, specified as either true or false. Set this property
to true and then use the corresponding input argument XT of the step method. To use
the input signal as training data, set this property to false.

Example: true

1 Alphabetical List

1-1748

Data Types: logical

WeightsOutputPort — Option to enable beamforming weights output
false (default) | true

Option to enable beamforming weights output, specified as either true or false. To
obtain the weights used by the beamformer, set this property to true and use the
corresponding output argument Wts when calling the step method.

Example: true

Data Types: logical

SubbandsOutputPort — Option to enable output of subband center frequencies
false (default) | true

Option to enable output of subband center frequencies, specified as either true or
false. To obtain the subband center frequencies, set this property to true and use the
corresponding output argument Freq when calling step.

Example: true

Data Types: logical

Methods

clone Create System object with identical
property values

getNumInputs Number of expected inputs to step method
getNumOutputs Number of outputs from step method
isLocked Locked status for input attributes and

nontunable properties
release Allow property values and input

characteristics to change
reset Reset states of System object
step Wideband MVDR beamforming

 phased.SubbandMVDRBeamformer System object

1-1749

Definitions

Diagonal Loading

Diagonal loading is a technique to improve beamformer robustness when stability
issues arise from steering vector errors or finite sample size effects. This technique
adds a positive real-valued multiple of the identity matrix to the correlation
matrix of the received array data vector. You can apply diagonal loading using the
DiagonalLoadingFactor property.

Subband Frequency Processing

Subband processing decomposes a wideband signal into multiple subbands and applies
narrowband processing to the signal in each subband. The signals for all subbands are
summed to form the output signal.

When using wideband frequency System objects, you specify the number of subbands,
Nb, in which to decompose the wideband signal. The NumSubbands property specifies the
number of subbands. Subband center frequencies and widths are automatically computed
from the total bandwidth and number of subbands. The total frequency band is centered
on the carrier frequency, fc, specified by the OperatingFrequency property. The overall
bandwidth is given by the sample rate, fs, specified by the SampleRate property. Each
frequency subband width is defined by Δf = fs/NB. The center frequencies of the subbands
are given by

f

f
f

m f N

f
N f

N
m f N

m

c
s

B

c
s

B

=
- + -()

-
-()

+ -()

2
1

1

2
1

D

D

, even

, odd

ÏÏ

Ì
ÔÔ

Ó
Ô
Ô

=, , ,m NB1…

Subbands are ordered by frequency. Frequencies above the carrier appear first, followed
by frequencies below the carrier. This order is consistent with the ordering of the discrete
Fourier transform.

The phased.SubbandMVDRBeamformer System object uses the narrowband MVDR
algorithm for each subband.

1 Alphabetical List

1-1750

Examples

Subband MVDR Beamforming of ULA

Apply subband MVDR beamforming to an underwater acoustic 11-element ULA. The
incident angle of the signal is 10 degrees in azimuth and 30 degrees in elevation. The
signal is an FM chirp having a bandwidth of 1 kHz. The speed of sound is 1500 meters
per second.

Simulate the Signal

sULA = phased.ULA('NumElements',11,'ElementSpacing',0.3);

fs = 2e3;

carrierFreq = 2000;

t = (0:1/fs:2)';

sig = chirp(t,0,2,fs/2);

c = 1500;

sCol = phased.WidebandCollector('Sensor',sULA,'PropagationSpeed',c,...

 'SampleRate',fs,'ModulatedInput',true,...

 'CarrierFrequency',carrierFreq);

incidentAngle = [10;0];

sig1 = step(sCol,sig,incidentAngle);

noise = 0.3*(randn(size(sig1)) + 1j*randn(size(sig1)));

rx = sig1 + noise;

Apply MVDR Beamforming

sMVDR = phased.SubbandMVDRBeamformer('SensorArray',sULA,...

 'Direction',incidentAngle,'OperatingFrequency',carrierFreq,...

 'PropagationSpeed',c,'SampleRate',fs,'TrainingInputPort',true, ...

 'SubbandsOutputPort',true,'WeightsOutputPort',true);

[y,w,subbandfreq] = step(sMVDR, rx, noise);

Plot the signal that is input to the middle sensor (6) against the beamformer output.

plot(t(1:300),real(rx(1:300,6)),'r:',t(1:300),real(y(1:300)))

xlabel('Time')

ylabel('Amplitude')

legend('Original','Beamformed');

 phased.SubbandMVDRBeamformer System object

1-1751

Plot Array Response

Plot the response pattern for five bands

pattern(sULA,subbandfreq(1:5).',-180:180,0,...

 'PropagationSpeed',c,'Weights',w(:,1:5));

1 Alphabetical List

1-1752

References

[1] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002.

See Also
phased.SubbandPhaseShiftBeamformer | phased.MVDRBeamformer |
phased.WidebandCollector | phased.FrostBeamformer | phased.LCMVBeamformer |
phased.PhaseShiftBeamformerphased.SubbandPhaseShiftBeamformer

Introduced in R2015b

 clone

1-1753

clone
System object: phased.SubbandMVDRBeamformer
Package: phased

Create System object with identical property values

Syntax

C = clone(H)

Description

C = clone(H) creates an object, C, having the same property values and same states as
H. If H is locked, so is C.

Input Arguments

H — Subband MVDR beamformer
System object

Subband MVDR beamformer, specified as a System object.
Example: phased.SubbandMVDRBeamformer

Output Arguments

C — Subband MVDR beamformer
System object

Subband MVDR beamformer, returned as a System object.

Introduced in R2015b

1 Alphabetical List

1-1754

getNumInputs
System object: phased.SubbandMVDRBeamformer
Package: phased

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of inputs
(not counting the object itself) that you must use when calling the step method. This
value changes when you alter properties that turn inputs on or off.

Input Arguments

H — Subband MVDR beamformer
System object

Subband MVDR beamformer, specified as a phased.SubbandMVDRBeamformer System
object.
Example: phased.SubbandMVDRBeamformer

Output Arguments

N — Number of expected inputs to step method
positive integer

Number of expected inputs to the step method, returned as a positive integer. The
number does not include the object itself.

 getNumInputs

1-1755

Introduced in R2015b

1 Alphabetical List

1-1756

getNumOutputs
System object: phased.SubbandMVDRBeamformer
Package: phased

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value changes when you alter properties that turn outputs on or off.

Input Arguments

H — Subband MVDR beamformer
System object

Subband MVDR beamformer, specified as a System object.
Example: phased.SubbandMVDRBeamformer

Output Arguments

N — Number of expected outputs
positive integer

Number of outputs expected from calling the step method, returned as a positive integer.

Introduced in R2015b

 isLocked

1-1757

isLocked
System object: phased.SubbandMVDRBeamformer
Package: phased

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(sMVDR)

Description

TF = isLocked(sMVDR) returns the locked status, TF, for the
SubbandMVDRBeamformer System object

isLocked returns a logical value that indicates whether input attributes and
nontunable properties for the object are locked. The object performs an internal
initialization the first time that you execute step. This initialization locks nontunable
properties and input specifications, such as the dimensions, complexity, and data type of
the input data. After locking, isLocked returns a true value.

Input Arguments

sMVDR — Subband MVDR beamformer
System object

Subband MVDR beamformer, specified as a System object.
Example: phased.SubbandMVDRBeamformer()

Output Arguments

TF — Locked status
boolean

1 Alphabetical List

1-1758

Locked status of System object, returned as a Boolean. This value is true when the
input attributes and nontunable properties of the object are locked. Otherwise, the
returned value is false.

Introduced in R2015b

 release

1-1759

release
System object: phased.SubbandMVDRBeamformer
Package: phased

Allow property values and input characteristics to change

Syntax

release(sMVDR)

Description

release(sMVDR) releases system resources (such as memory, file handles, or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

Input Arguments

sMVDR — Subband MVDR beamformer
System object

Subband MVDR beamformer, specified as a phased.SubbandMVDRBeamformer System
object.
Example: phased.SubbandMVDRBeamformer

Introduced in R2015b

1 Alphabetical List

1-1760

reset
System object: phased.SubbandMVDRBeamformer
Package: phased

Reset states of System object

Syntax

reset(sMVDR)

Description

reset(sMVDR) resets the internal state of the phased.SubbandMVDRBeamformer
object, sWBFS. If the SeedSource property applies and has the value 'Property', then
this method resets the state of the random number generator.

Input Arguments

sMVDR — Subband MVDR beamformer
System object

Subband MVDR beamformer, specified as a System object.
Example: phased.SubbandMVDRBeamformer

Introduced in R2015b

 step

1-1761

step
System object: phased.SubbandMVDRBeamformer
Package: phased

Wideband MVDR beamforming

Syntax
Y = step(sMVDR,X)

Y = step(sMVDR,X,XT)

Y = step(sMVDR,X,ang)

[Y,Wts] = step(sMVDR, ___)

[Y,Freq] = step(sMVDR, ___)

[Y,Wts,Freq] = step(sMVDR,X,XT,ang)

Description
Y = step(sMVDR,X) performs wideband MVDR beamforming on the input, X, and
returns the beamformed output in Y. This syntax uses X for training samples to calculate
the beamforming weights. Use the Direction property to specify the beamforming
direction.

Y = step(sMVDR,X,XT) uses XT as the training samples to calculate the beamforming
weights. This syntax applies only when you set the TrainingInputPort property to
true. Use the Direction property to specify the beamforming direction.

Y = step(sMVDR,X,ang) uses ang as the beamforming direction. This syntax applies
only when you set the DirectionSource property to 'Input port'.

[Y,Wts] = step(sMVDR, ___) returns the beamforming weights, Wts, when you set
the WeightsOutputPort property to true.

[Y,Freq] = step(sMVDR, ___) returns the center frequencies of the subbands, Freq,
when you set the SubbandsOutputPort property to true. Freq is a length-K column
vector where, K is the number of subbands specified in the NumSubbands property.

You can combine optional input arguments when you set their enabling properties.
Optional input arguments must be listed in the same order as their enabling properties.

1 Alphabetical List

1-1762

For example, [Y,Wts,Freq] = step(sMVDR,X,XT,ang) is valid when you specify
TrainingInputPort to true and specify DirectionSource to 'Input port'.

Note: The object performs an initialization the first time the step method is executed.
This initialization locks nontunable properties and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Input Arguments

sMVDR — Subband MVDR beamformer
System object

Subband MVDR beamformer, specified as a System object.
Example: phased.SubbandMVDRBeamformer

X — Wideband input field
M-by-N complex-valued matrix

Wideband input field, specified as an M-by-N matrix, where N is the number of array
elements. If the sensor array consists of subarrays, N is then the number of subarrays. M
is the number of samples in the data.

If you set the TrainingInputPort to false, then step uses X as training data. In this
case, the dimension M must be greater than N×NB. where NB is the number of subbands
specified in the NumSubbands property.

If you set TrainingInputPort to true, use the XT argument to supply training data. In
this case, the dimension M can be any positive integer.
Example: [1,1;j,1;0.5,0]

Data Types: double
Complex Number Support: Yes

XT — Wideband training samples
P-by-N complex-valued matrix

 step

1-1763

Wideband training samples, specified as a P-by-N matrix where N is the number of
elements. If the sensor array consists of subarrays, then N represents the number of
subarrays.

This argument applies when you set TrainingInputPort to true. The dimension P is
the number of samples in the training data. P must be larger than N×NB, where NB is
the number of subbands specified in the NumSubbands property.

Example: FT = [1,1;j,1;0.5,0]

Data Types: double
Complex Number Support: Yes

ang — Beamforming direction
2-by-L real-valued matrix

Beamforming direction, specified as a 2-by-L real-valued matrix, where L is the
number of beamforming directions. This argument applies only when you set the
DirectionSource property to 'Input port'. Each column takes the form of
[AzimuthAngle;ElevationAngle]. Angle units are in degrees. The azimuth angle
must lie between –180° and 180°. The elevation angle must lie between –90° and 90°.
Angles are defined with respect to the local coordinate system of the array.
Example: F = [40 30; 0 10]

Data Types: double

Output Arguments

Y — Beamformed output
M-by-L complex-valued matrix

Beamformed output, returned as an M-by-L complex-valued matrix. The quantity M is
the number of signal samples and L is the number of beamforming directions specified in
the ang argument.

Wts — Beamforming weights
N-by-K-by-L complex-valued matrix

Beamforming weights, returned as an N-by-K-by-L complex-valued matrix. The quantity
N is the number of sensor elements or subarrays and K is the number of subbands
specified by the NumSubbands property. The quantity L is the number of beamforming

1 Alphabetical List

1-1764

directions. Each column of Wts contains the narrowband beamforming weights used in
the corresponding subband for the corresponding directions. This output applies only
when you set the WeightsOutputPort property to true.

Freq — Center frequencies of subbands
K-by-1 real-valued column vector

Center frequencies of subbands, returned as a K-by-1 real-valued column vector. The
quantity K is the number of subbands specified by the NumSubbands property. To return
this output, set the SubbandsOutputPort property to true.

Examples

Subband MVDR Beamforming of ULA

Apply subband MVDR beamforming to an underwater acoustic 11-element ULA. The
incident angle of the signal is 10 degrees in azimuth and 30 degrees in elevation. The
signal is an FM chirp having a bandwidth of 1 kHz. The speed of sound is 1500 meters
per second.

Simulate the Signal

sULA = phased.ULA('NumElements',11,'ElementSpacing',0.3);

fs = 2e3;

carrierFreq = 2000;

t = (0:1/fs:2)';

sig = chirp(t,0,2,fs/2);

c = 1500;

sCol = phased.WidebandCollector('Sensor',sULA,'PropagationSpeed',c,...

 'SampleRate',fs,'ModulatedInput',true,...

 'CarrierFrequency',carrierFreq);

incidentAngle = [10;0];

sig1 = step(sCol,sig,incidentAngle);

noise = 0.3*(randn(size(sig1)) + 1j*randn(size(sig1)));

rx = sig1 + noise;

Apply MVDR Beamforming

sMVDR = phased.SubbandMVDRBeamformer('SensorArray',sULA,...

 'Direction',incidentAngle,'OperatingFrequency',carrierFreq,...

 'PropagationSpeed',c,'SampleRate',fs,'TrainingInputPort',true, ...

 'SubbandsOutputPort',true,'WeightsOutputPort',true);

 step

1-1765

[y,w,subbandfreq] = step(sMVDR, rx, noise);

Plot the signal that is input to the middle sensor (6) against the beamformer output.

plot(t(1:300),real(rx(1:300,6)),'r:',t(1:300),real(y(1:300)))

xlabel('Time')

ylabel('Amplitude')

legend('Original','Beamformed');

Plot Array Response

Plot the response pattern for five bands

pattern(sULA,subbandfreq(1:5).',-180:180,0,...

 'PropagationSpeed',c,'Weights',w(:,1:5));

1 Alphabetical List

1-1766

Subband MVDR Beamforming of Array with Interference

Apply subband MVDR beamforming to an underwater acoustic 11-element ULA.
Beamform the arriving signals to optimize the gain of a linear FM chirp signal arriving
from 0 degrees azimuth and 0 degrees elevation. The signal has a bandwidth of 2.0 kHz.
In addition, there unit amplitude 2.250 kHz interfering sine wave arriving from 28
degrees azimuth and 0 degrees elevation. Show how the MVDR beamformer nulls the
interfering signal. Display the array pattern for several frequencies in the neighborhood
of 2.250 kHz. The speed of sound is 1500 meters/sec.

Simulate Arriving Signal and Noise

sULA = phased.ULA('NumElements',11,'ElementSpacing',0.3);

fs = 2000;

 step

1-1767

carrierFreq = 2000;

t = (0:1/fs:2)';

sig = chirp(t,0,2,fs/2);

c = 1500;

sCol = phased.WidebandCollector('Sensor',sULA,'PropagationSpeed',c,...

 'SampleRate',fs,'ModulatedInput',true,...

 'CarrierFrequency',carrierFreq);

incidentAngle = [0;0];

sig1 = step(sCol,sig,incidentAngle);

noise = 0.3*(randn(size(sig1)) + 1j*randn(size(sig1)));

Simulate Interfering Signal

Combine both the desired and interfering signals.

fint = 250;

sigint = sin(2*pi*fint*t);

interfangle = [28;0];

sigint1 = step(sCol,sigint,interfangle);

rx = sig1 + sigint1 + noise;

Apply MVDR beamforming

Use the combined noise and interfering signal as training data.

sMVDR = phased.SubbandMVDRBeamformer('SensorArray',sULA,...

 'Direction',incidentAngle,'OperatingFrequency',carrierFreq,...

 'PropagationSpeed',c,'SampleRate',fs,'TrainingInputPort',true,...

 'NumSubbands',64,...

 'SubbandsOutputPort',true,'WeightsOutputPort',true);

[y,w,subbandfreq] = step(sMVDR, rx, sigint1 + noise);

tidx = [1:300];

plot(t(tidx),real(rx(tidx,6)),'r:',t(tidx),real(y(tidx)))

xlabel('Time')

ylabel('Amplitude')

legend('Original','Beamformed');

1 Alphabetical List

1-1768

Plot Array Response Showing Beampattern Null

Plot the response pattern for five bands near 2.250 kHz.

fdx = [5,7,9,11,13];

pattern(sULA,subbandfreq(fdx).',-50:50,0,...

 'PropagationSpeed',c,'Weights',w(:,fdx),...

 'CoordinateSystem','rectangular');

 step

1-1769

The beamformer places a null at 28 degrees for the subband containing 2.250 kHz.

References

[1] Proakis, J. Digital Communications. New York: McGraw-Hill, 2001.

[2] Skolnik, M. Introduction to Radar Systems, 3rd Ed. New York: McGraw-Hill

[3] Saakian, A. Radio Wave Propagation Fundamentals. Norwood, MA: Artech House,
2011.

[4] Balanis, C. Advanced Engineering Electromagnetics. New York: Wiley & Sons, 1989.

1 Alphabetical List

1-1770

[5] Rappaport, T. Wireless Communications: Principles and Practice, 2nd Ed New York:
Prentice Hall, 2002.

See Also
phased.WidebandCollector.step | phased.SubbandPhaseShiftBeamformer.step |
phased.MVDRBeamformer.step

Introduced in R2015b

 phased.SubbandPhaseShiftBeamformer System object

1-1771

phased.SubbandPhaseShiftBeamformer System
object
Package: phased

Subband phase shift beamformer

Description

The SubbandPhaseShiftBeamformer object implements a subband phase shift
beamformer.

To compute the beamformed signal:

1 Define and set up your subband phase shift beamformer. See “Construction” on page
1-1771.

2 Call step to perform the beamforming operation according to the properties of
phased.SubbandPhaseShiftBeamformer. The behavior of step is specific to each
object in the toolbox.

Construction

H = phased.SubbandPhaseShiftBeamformer creates a subband phase shift
beamformer System object, H. The object performs subband phase shift beamforming on
the received signal.

H = phased.SubbandPhaseShiftBeamformer(Name,Value) creates a subband
phase shift beamformer object, H, with each specified property Name set to the
specified Value. You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties

SensorArray

Sensor array

1 Alphabetical List

1-1772

Sensor array specified as an array System object belonging to the phased package. A
sensor array can contain subarrays.

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second, as a positive scalar.

Default: Speed of light

OperatingFrequency

System operating frequency

Specify the operating frequency of the beamformer in hertz as a scalar. The default value
of this property corresponds to 300 MHz.

Default: 3e8

SampleRate

Signal sampling rate

Specify the signal sampling rate (in hertz) as a positive scalar.

Default: 1e6

NumSubbands

Number of subbands

Specify the number of subbands used in the subband processing as a positive integer.

Default: 64

DirectionSource

Source of beamforming direction

 phased.SubbandPhaseShiftBeamformer System object

1-1773

Specify whether the beamforming direction for the beamformer comes from the
Direction property of this object or from an input argument in step. Values of this
property are:

'Property' The Direction property of this object specifies the
beamforming direction.

'Input port' An input argument in each invocation of step
specifies the beamforming direction.

Default: 'Property'

Direction

Beamforming directions

Specify the beamforming directions of the beamformer as a two-row matrix. Each column
of the matrix has the form [AzimuthAngle; ElevationAngle] (in degrees). Each azimuth
angle must be between –180 and 180 degrees, and each elevation angle must be between
–90 and 90 degrees. This property applies when you set the DirectionSource property
to 'Property'.

Default: [0; 0]

WeightsOutputPort

Output beamforming weights

To obtain the weights used in the beamformer, set this property to true and use the
corresponding output argument when invoking step. If you do not want to obtain the
weights, set this property to false.

Default: false

SubbandsOutputPort

Output subband center frequencies

To obtain the center frequencies of each subband, set this property to true and use the
corresponding output argument when invoking step. If you do not want to obtain the
center frequencies, set this property to false.

1 Alphabetical List

1-1774

Default: false

Methods

clone Create subband phase shift beamformer
object with same property values

getNumInputs Number of expected inputs to step method
getNumOutputs Number of outputs from step method
isLocked Locked status for input attributes and

nontunable properties
release Allow property value and input

characteristics changes
step Beamforming using subband phase shifting

Examples

Apply subband phase shift beamformer to an 11-element ULA. The incident angle of the
signal is 10 degrees in azimuth and 30 degrees in elevation.

% Signal simulation

ha = phased.ULA('NumElements',11,'ElementSpacing',0.3);

ha.Element.FrequencyRange = [20 20000];

fs = 1e3; carrierFreq = 2e3; t = (0:1/fs:2)';

x = chirp(t,0,2,fs);

c = 1500; % Wave propagation speed (m/s)

hc = phased.WidebandCollector('Sensor',ha,...

 'PropagationSpeed',c,'SampleRate',fs,...

 'ModulatedInput',true,'CarrierFrequency',carrierFreq);

incidentAngle = [10; 30];

x = step(hc,x,incidentAngle);

noise = 0.3*(randn(size(x)) + 1j*randn(size(x)));

rx = x+noise;

% Beamforming

hbf = phased.SubbandPhaseShiftBeamformer('SensorArray',ha,...

 'Direction',incidentAngle,...

 'OperatingFrequency',carrierFreq,'PropagationSpeed',c,...

 phased.SubbandPhaseShiftBeamformer System object

1-1775

 'SampleRate',fs,'SubbandsOutputPort',true,...

 'WeightsOutputPort',true);

[y,w,subbandfreq] = step(hbf,rx);

% Plot signals

plot(t(1:300),real(rx(1:300,6)),'r:',t(1:300),real(y(1:300)));

xlabel('Time'); ylabel('Amplitude');

legend('Original','Beamformed');

% Plot response pattern for five bands

figure;

plotResponse(ha,subbandfreq(1:5).',c,'Weights',w(:,1:5));

legend('location','SouthEast')

1 Alphabetical List

1-1776

Algorithms

The subband phase shift beamformer separates the signal into several subbands
and applies narrowband phase shift beamforming to the signal in each subband. The
beamformed signals in all the subbands are regrouped to form the output signal.

For further details, see [1].

 phased.SubbandPhaseShiftBeamformer System object

1-1777

References

[1] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002.

See Also
phased.Collector | phased.PhaseShiftBeamformer | phased.TimeDelayBeamformer |
phased.WidebandCollector | phitheta2azel | uv2azel

Introduced in R2012a

1 Alphabetical List

1-1778

clone
System object: phased.SubbandPhaseShiftBeamformer
Package: phased

Create subband phase shift beamformer object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates an object, C, having the same property values and same states as
H. If H is locked, so is C.

 getNumInputs

1-1779

getNumInputs
System object: phased.SubbandPhaseShiftBeamformer
Package: phased

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of inputs
(not counting the object itself) that you must use when calling the step method. This
value changes when you alter properties that turn inputs on or off.

1 Alphabetical List

1-1780

getNumOutputs
System object: phased.SubbandPhaseShiftBeamformer
Package: phased

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value changes when you alter properties that turn outputs on or off.

 isLocked

1-1781

isLocked
System object: phased.SubbandPhaseShiftBeamformer
Package: phased

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF, for the
SubbandPhaseShiftBeamformer System object.

isLocked returns a logical value that indicates whether input attributes and
nontunable properties for the object are locked. The object performs an internal
initialization the first time that you execute step. This initialization locks nontunable
properties and input specifications, such as the dimensions, complexity, and data type of
the input data. After locking, isLocked returns a true value.

1 Alphabetical List

1-1782

release
System object: phased.SubbandPhaseShiftBeamformer
Package: phased

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

 step

1-1783

step
System object: phased.SubbandPhaseShiftBeamformer
Package: phased

Beamforming using subband phase shifting

Syntax

Y = step(H,X)

Y = step(H,X,ANG)

[Y,W] = step(___)

[Y,FREQ] = step(___)

[Y,W,FREQ] = step(___)

Description

Y = step(H,X) performs subband phase shift beamforming on the input, X, and returns
the beamformed output in Y.

Y = step(H,X,ANG) uses ANG as the beamforming direction. This syntax is available
when you set the DirectionSource property to 'Input port'.

[Y,W] = step(___) returns the beamforming weights, W. This syntax is available
when you set the WeightsOutputPort property to true.

[Y,FREQ] = step(___) returns the center frequencies of subbands, FREQ. This syntax
is available when you set the SubbandsOutputPort property to true.

[Y,W,FREQ] = step(___) returns beamforming weights and center frequencies of
subbands. This syntax is available when you set the WeightsOutputPort property to
true and set the SubbandsOutputPort property to true.

Note: The object performs an initialization the first time the step method is executed.
This initialization locks nontunable properties and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change

1 Alphabetical List

1-1784

nontunable properties or inputs, you must first call the release method to unlock the
object.

Input Arguments

H

Beamformer object.

X

Input signal, specified as an M-by-N matrix. If the sensor array contains subarrays, N is
the number of subarrays; otherwise, N is the number of elements.

ANG

Beamforming directions, specified as a two-row matrix. Each column has the form
[AzimuthAngle; ElevationAngle], in degrees. Each azimuth angle must be between –180
and 180 degrees, and each elevation angle must be between –90 and 90 degrees.

Output Arguments

Y

Beamformed output. Y is an M-by-L matrix, where M is the number of rows of X and L is
the number of beamforming directions.

W

Beamforming weights. W has dimensions N-by-K-by-L. K is the number of subbands in
the NumSubbands property. L is the number of beamforming directions. If the sensor
array contains subarrays, N is the number of subarrays; otherwise, N is the number of
elements. Each column of W specifies the narrowband beamforming weights used in the
corresponding subband for the corresponding direction.

FREQ

Center frequencies of subbands. FREQ is a column vector of length K, where K is the
number of subbands in the NumSubbands property.

 step

1-1785

Examples

Apply subband phase shift beamformer to an 11-element ULA. The incident angle of the
signal is 10 degrees in azimuth and 30 degrees in elevation.

% Signal simulation

ha = phased.ULA('NumElements',11,'ElementSpacing',0.3);

ha.Element.FrequencyRange = [20 20000];

fs = 1e3; carrierFreq = 2e3; t = (0:1/fs:2)';

x = chirp(t,0,2,fs);

c = 1500; % Wave propagation speed (m/s)

hc = phased.WidebandCollector('Sensor',ha,...

 'PropagationSpeed',c,'SampleRate',fs,...

 'ModulatedInput',true,'CarrierFrequency',carrierFreq);

incidentAngle = [10; 30];

x = step(hc,x,incidentAngle);

noise = 0.3*(randn(size(x)) + 1j*randn(size(x)));

rx = x+noise;

% Beamforming

hbf = phased.SubbandPhaseShiftBeamformer('SensorArray',ha,...

 'Direction',incidentAngle,...

 'OperatingFrequency',carrierFreq,'PropagationSpeed',c,...

 'SampleRate',fs,'SubbandsOutputPort',true,...

 'WeightsOutputPort',true);

[y,w,subbandfreq] = step(hbf,rx);

Algorithms

The subband phase shift beamformer separates the signal into several subbands
and applies narrowband phase shift beamforming to the signal in each subband. The
beamformed signals in all the subbands are regrouped to form the output signal.

For further details, see [1].

References

[1] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002.

1 Alphabetical List

1-1786

See Also
phitheta2azel | uv2azel

 phased.SumDifferenceMonopulseTracker System object

1-1787

phased.SumDifferenceMonopulseTracker System
object
Package: phased

Sum and difference monopulse for ULA

Description

The SumDifferenceMonopulseTracker object implements a sum and difference
monopulse algorithm on a uniform linear array.

To estimate the direction of arrival (DOA):

1 Define and set up your sum and difference monopulse DOA estimator. See
“Construction” on page 1-1787.

2 Call step to estimate the DOA according to the properties of
phased.SumDifferenceMonopulseTracker. The behavior of step is specific to
each object in the toolbox.

Construction

H = phased.SumDifferenceMonopulseTracker creates a tracker System object,
H. The object uses sum and difference monopulse algorithms on a uniform linear array
(ULA).

H = phased.SumDifferenceMonopulseTracker(Name,Value) creates a ULA
monopulse tracker object, H, with each specified property Name set to the specified
Value. You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties

SensorArray

Handle to sensor array

1 Alphabetical List

1-1788

Specify the sensor array as a handle. The sensor array must be a phased.ULA object.

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second, as a positive scalar.

Default: Speed of light

OperatingFrequency

System operating frequency

Specify the operating frequency of the system in hertz as a positive scalar. The default
value corresponds to 300 MHz.

Default: 3e8

NumPhaseShifterBits

Number of phase shifter quantization bits

The number of bits used to quantize the phase shift component of beamformer or steering
vector weights. Specify the number of bits as a non-negative integer. A value of zero
indicates that no quantization is performed.

Default: 0

Methods

clone Create ULA monopulse tracker object with
same property values

getNumInputs Number of expected inputs to step method
getNumOutputs Number of outputs from step method
isLocked Locked status for input attributes and

nontunable properties

 phased.SumDifferenceMonopulseTracker System object

1-1789

release Allow property value and input
characteristics changes

step Perform monopulse tracking using ULA

Examples

Determine the direction of a target at around 60 degrees broadside angle of a ULA.

ha = phased.ULA('NumElements',4);

hstv = phased.SteeringVector('SensorArray',ha);

hmp = phased.SumDifferenceMonopulseTracker('SensorArray',ha);

x = step(hstv,hmp.OperatingFrequency,60.1).';

est_dir = step(hmp,x,60);

Algorithms

The sum-and-difference monopulse algorithm is used to the estimate the arrival direction
of a narrowband signal impinging upon a uniform linear array (ULA). First, compute
the conventional response of an array steered to an arrival direction φ0. For a ULA,
the arrival direction is specified by the broadside angle. To specify that the maximum
response axis (MRA) point towards the φ0 direction, set the weights to be

ws
ikd ik d ik N d

e e e= º()-1 0 0 02 1, , , ,sin sin () sinf f f

where d is the element spacing and k = 2π/λ is the wavenumber. An incoming plane
wave, coming from any arbitrary direction φ, is represented by

v = º()-1 2 1, , , ,sin sin () sin
e e e

ikd ik d ik N df f f

The conventional response of the this array to any incoming plane wave is given by
w v

s

H j() and is shown in the polar plot below as the Sum Pattern. The array is designed
to steer towards φ0 = 30°.

The second pattern, called the Difference Pattern, is obtained by using phased-
reversed weights. The weights are determined by phase-reversing the latter half of the

1 Alphabetical List

1-1790

conventional steering vector. For an array with an even number of elements, the phase-
reversed weights are

wd
ikd ik d ikN d ik N d

i e e e e= - º - +1 0 0 02 2 2 1, , , , ,sin sin / sin (/) sinf f f ff f0 01, , () sinº -()-
e

ik N d

(For an array with an odd number of elements, the middle weight is set to zero). The
multiplicative factor –i is used for convenience. The response of the difference array to
the incoming vector is

w v
d

H j()

and is show in the polar plot below

 phased.SumDifferenceMonopulseTracker System object

1-1791

The monopulse response curve is obtained by dividing the difference pattern by the sum
pattern and taking the real part.

R Re
d

H

s
H

()
()

()
j

j

j
=

Ê

Ë
ÁÁ

ˆ

¯
˜̃

w v

w v

To use the monopulse response curve to obtain the arrival angle of a narrowband signal,
x, compute

z Re
d

H

s
H

=
Ê

Ë
ÁÁ

ˆ

¯
˜̃

w x

w x

and invert the response curve, φ = R-1(z), to obtain φ.

The response curve is not single valued and can be inverted only when arrival angles
lie within the mainlobe. The figure below shows the center portion of the monopulse
response curve in the mainlobe for a 4-element ULA array.

1 Alphabetical List

1-1792

There are two desirable properties of the monopulse response curve. The first is that it
have a steep slope. A steep slope insures robustness against noise. The second property
is that the mainlobe be as wide as possible. A steep slope is ensure by a larger array but
leads to a smaller mainlobe. You will need to trade off one property with the other.

For further details, see [1].

References

[1] Seliktar, Y. Space-Time Adaptive Monopulse Processing. Ph.D. Thesis. Georgia
Institute of Technology, Atlanta, 1998.

 phased.SumDifferenceMonopulseTracker System object

1-1793

[2] Rhodes, D. Introduction to Monopulse. Dedham, MA: Artech House, 1980.

See Also
phased.BeamscanEstimator | phased.SumDifferenceMonopulseTracker2D

Introduced in R2012a

1 Alphabetical List

1-1794

clone
System object: phased.SumDifferenceMonopulseTracker
Package: phased

Create ULA monopulse tracker object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates an object, C, having the same property values and same states as
H. If H is locked, so is C.

 getNumInputs

1-1795

getNumInputs
System object: phased.SumDifferenceMonopulseTracker
Package: phased

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of inputs
(not counting the object itself) that you must use when calling the step method. This
value changes when you alter properties that turn inputs on or off.

1 Alphabetical List

1-1796

getNumOutputs
System object: phased.SumDifferenceMonopulseTracker
Package: phased

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value changes when you alter properties that turn outputs on or off.

 isLocked

1-1797

isLocked
System object: phased.SumDifferenceMonopulseTracker
Package: phased

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF, for the
SumDifferenceMonopulseTracker System object.

isLocked returns a logical value that indicates whether input attributes and
nontunable properties for the object are locked. The object performs an internal
initialization the first time that you execute step. This initialization locks nontunable
properties and input specifications, such as the dimensions, complexity, and data type of
the input data. After locking, isLocked returns a true value.

1 Alphabetical List

1-1798

release
System object: phased.SumDifferenceMonopulseTracker
Package: phased

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

 step

1-1799

step
System object: phased.SumDifferenceMonopulseTracker
Package: phased

Perform monopulse tracking using ULA

Syntax
ESTANG = step(H,X,STANG)

Description
ESTANG = step(H,X,STANG) estimates the incoming direction ESTANG of the input
signal, X, based on an initial guess of the direction.

Note: The object performs an initialization the first time the step method is executed.
This initialization locks nontunable properties and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Input Arguments
H

Tracker object of type phased.SumDifferenceMonopulseTracker.

X

Input signal, specified as a row vector whose number of columns corresponds to number
of channels.

STANG

Initial guess of the direction, specified as a scalar that represents the broadside
angle in degrees. A typical initial guess is the current steering angle. The value of

1 Alphabetical List

1-1800

STANG is between –90 and 90. The angle is defined in the array's local coordinate
system. For details regarding the local coordinate system of the ULA, type
phased.ULA.coordinateSystemInfo.

Output Arguments

ESTANG

Estimate of incoming direction, returned as a scalar that represents the broadside angle
in degrees. The value is between –90 and 90. The angle is defined in the array's local
coordinate system.

Examples

Determine the direction of a target at around 60 degrees broadside angle of a ULA.

ha = phased.ULA('NumElements',4);

hstv = phased.SteeringVector('SensorArray',ha);

hmp = phased.SumDifferenceMonopulseTracker('SensorArray',ha);

x = step(hstv,hmp.OperatingFrequency,60.1).';

est_dir = step(hmp,x,60);

Algorithms

The sum-and-difference monopulse algorithm is used to the estimate the arrival direction
of a narrowband signal impinging upon a uniform linear array (ULA). First, compute
the conventional response of an array steered to an arrival direction φ0. For a ULA,
the arrival direction is specified by the broadside angle. To specify that the maximum
response axis (MRA) point towards the φ0 direction, set the weights to be

ws
ikd ik d ik N d

e e e= º()-1 0 0 02 1, , , ,sin sin () sinf f f

where d is the element spacing and k = 2π/λ is the wavenumber. An incoming plane
wave, coming from any arbitrary direction φ, is represented by

 step

1-1801

v = º()-1 2 1, , , ,sin sin () sin
e e e

ikd ik d ik N df f f

The conventional response of the this array to any incoming plane wave is given by
w v

s

H j() and is shown in the polar plot below as the Sum Pattern. The array is designed
to steer towards φ0 = 30°.

The second pattern, called the Difference Pattern, is obtained by using phased-
reversed weights. The weights are determined by phase-reversing the latter half of the
conventional steering vector. For an array with an even number of elements, the phase-
reversed weights are

wd
ikd ik d ikN d ik N d

i e e e e= - º - +1 0 0 02 2 2 1, , , , ,sin sin / sin (/) sinf f f ff f0 01, , () sinº -()-
e

ik N d

(For an array with an odd number of elements, the middle weight is set to zero). The
multiplicative factor –i is used for convenience. The response of the difference array to
the incoming vector is

w v
d

H j()

and is show in the polar plot below

1 Alphabetical List

1-1802

The monopulse response curve is obtained by dividing the difference pattern by the sum
pattern and taking the real part.

R Re
d

H

s
H

()
()

()
j

j

j
=

Ê

Ë
ÁÁ

ˆ

¯
˜̃

w v

w v

To use the monopulse response curve to obtain the arrival angle of a narrowband signal,
x, compute

z Re
d

H

s
H

=
Ê

Ë
ÁÁ

ˆ

¯
˜̃

w x

w x

 step

1-1803

and invert the response curve, φ = R-1(z), to obtain φ.

The response curve is not single valued and can be inverted only when arrival angles
lie within the mainlobe. The figure below shows the center portion of the monopulse
response curve in the mainlobe for a 4-element ULA array.

There are two desirable properties of the monopulse response curve. The first is that it
have a steep slope. A steep slope insures robustness against noise. The second property
is that the mainlobe be as wide as possible. A steep slope is ensure by a larger array but
leads to a smaller mainlobe. You will need to trade off one property with the other.

For further details, see [1].

1 Alphabetical List

1-1804

References

[1] Seliktar, Y. Space-Time Adaptive Monopulse Processing. Ph.D. Thesis. Georgia
Institute of Technology, Atlanta, 1998.

[2] Rhodes, D. Introduction to Monopulse. Dedham, MA: Artech House, 1980.

 phased.SumDifferenceMonopulseTracker2D System object

1-1805

phased.SumDifferenceMonopulseTracker2D System
object
Package: phased

Sum and difference monopulse for URA

Description

The SumDifferenceMonopulseTracker2D object implements a sum and difference
monopulse algorithm for a uniform rectangular array.

To estimate the direction of arrival (DOA):

1 Define and set up your sum and difference monopulse DOA estimator. See
“Construction” on page 1-1805.

2 Call step to estimate the DOA according to the properties of
phased.SumDifferenceMonopulseTracker2D. The behavior of step is specific to
each object in the toolbox.

Construction

H = phased.SumDifferenceMonopulseTracker2D creates a tracker System object,
H. The object uses sum and difference monopulse algorithms on a uniform rectangular
array (URA).

H = phased.SumDifferenceMonopulseTracker2D(Name,Value) creates a
URA monopulse tracker object, H, with each specified property Name set to the
specified Value. You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties

SensorArray

Handle to sensor array

1 Alphabetical List

1-1806

Specify the sensor array as a handle. The sensor array must be a phased.URA object.

Default: phased.URA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second, as a positive scalar.

Default: Speed of light

OperatingFrequency

System operating frequency

Specify the operating frequency of the system in hertz as a positive scalar. The default
value corresponds to 300 MHz.

Default: 3e8

NumPhaseShifterBits

Number of phase shifter quantization bits

The number of bits used to quantize the phase shift component of beamformer or steering
vector weights. Specify the number of bits as a non-negative integer. A value of zero
indicates that no quantization is performed.

Default: 0

Methods

clone Create URA monopulse tracker object with
same property values

getNumInputs Number of expected inputs to step method
getNumOutputs Number of outputs from step method
isLocked Locked status for input attributes and

nontunable properties

 phased.SumDifferenceMonopulseTracker2D System object

1-1807

release Allow property value and input
characteristics changes

step Perform monopulse tracking using URA

Examples

Determine the direction of a target at around 60 degrees azimuth and 20 degrees
elevation of a URA.

ha = phased.URA('Size',4);

hstv = phased.SteeringVector('SensorArray',ha);

hmp = phased.SumDifferenceMonopulseTracker2D('SensorArray',ha);

x = step(hstv,hmp.OperatingFrequency,[60.1; 19.5]).';

est_dir = step(hmp,x,[60; 20]);

Algorithms

The sum-and-difference monopulse algorithm is used to the estimate the arrival direction
of a narrowband signal impinging upon a uniform linear array (ULA). First, compute
the conventional response of an array steered to an arrival direction φ0. For a ULA,
the arrival direction is specified by the broadside angle. To specify that the maximum
response axis (MRA) point towards the φ0 direction, set the weights to be

ws
ikd ik d ik N d

e e e= º()-1 0 0 02 1, , , ,sin sin () sinf f f

where d is the element spacing and k = 2π/λ is the wavenumber. An incoming plane
wave, coming from any arbitrary direction φ, is represented by

v = º()-1 2 1, , , ,sin sin () sin
e e e

ikd ik d ik N df f f

The conventional response of the this array to any incoming plane wave is given by
w v

s

H j() and is shown in the polar plot below as the Sum Pattern. The array is designed
to steer towards φ0 = 30°.

The second pattern, called the Difference Pattern, is obtained by using phased-
reversed weights. The weights are determined by phase-reversing the latter half of the

1 Alphabetical List

1-1808

conventional steering vector. For an array with an even number of elements, the phase-
reversed weights are

wd
ikd ik d ikN d ik N d

i e e e e= - º - +1 0 0 02 2 2 1, , , , ,sin sin / sin (/) sinf f f ff f0 01, , () sinº -()-
e

ik N d

(For an array with an odd number of elements, the middle weight is set to zero). The
multiplicative factor –i is used for convenience. The response of the difference array to
the incoming vector is

w v
d

H j()

and is show in the polar plot below

 phased.SumDifferenceMonopulseTracker2D System object

1-1809

The monopulse response curve is obtained by dividing the difference pattern by the sum
pattern and taking the real part.

R Re
d

H

s
H

()
()

()
j

j

j
=

Ê

Ë
ÁÁ

ˆ

¯
˜̃

w v

w v

To use the monopulse response curve to obtain the arrival angle of a narrowband signal,
x, compute

z Re
d

H

s
H

=
Ê

Ë
ÁÁ

ˆ

¯
˜̃

w x

w x

and invert the response curve, φ = R-1(z), to obtain φ.

The response curve is not single valued and can be inverted only when arrival angles
lie within the mainlobe. The figure below shows the center portion of the monopulse
response curve in the mainlobe for a 4-element ULA array.

1 Alphabetical List

1-1810

There are two desirable properties of the monopulse response curve. The first is that it
have a steep slope. A steep slope insures robustness against noise. The second property
is that the mainlobe be as wide as possible. A steep slope is ensure by a larger array but
leads to a smaller mainlobe. You will need to trade off one property with the other.

For further details, see [1].

References

[1] Seliktar, Y. Space-Time Adaptive Monopulse Processing. Ph.D. Thesis. Georgia
Institute of Technology, Atlanta, 1998.

 phased.SumDifferenceMonopulseTracker2D System object

1-1811

[2] Rhodes, D. Introduction to Monopulse. Dedham, MA: Artech House, 1980.

See Also
phased.BeamscanEstimator | phased.SumDifferenceMonopulseTracker

Introduced in R2012a

1 Alphabetical List

1-1812

clone
System object: phased.SumDifferenceMonopulseTracker2D
Package: phased

Create URA monopulse tracker object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates an object, C, having the same property values and same states as
H. If H is locked, so is C.

 getNumInputs

1-1813

getNumInputs
System object: phased.SumDifferenceMonopulseTracker2D
Package: phased

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of inputs
(not counting the object itself) that you must use when calling the step method. This
value changes when you alter properties that turn inputs on or off.

1 Alphabetical List

1-1814

getNumOutputs
System object: phased.SumDifferenceMonopulseTracker2D
Package: phased

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value changes when you alter properties that turn outputs on or off.

 isLocked

1-1815

isLocked
System object: phased.SumDifferenceMonopulseTracker2D
Package: phased

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF, for the
SumDifferenceMonopulseTracker2D System object.

isLocked returns a logical value that indicates whether input attributes and
nontunable properties for the object are locked. The object performs an internal
initialization the first time that you execute step. This initialization locks nontunable
properties and input specifications, such as the dimensions, complexity, and data type of
the input data. After locking, isLocked returns a true value.

1 Alphabetical List

1-1816

release
System object: phased.SumDifferenceMonopulseTracker2D
Package: phased

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

 step

1-1817

step
System object: phased.SumDifferenceMonopulseTracker2D
Package: phased

Perform monopulse tracking using URA

Syntax
ESTANG = step(H,X,STANG)

Description
ESTANG = step(H,X,STANG) estimates the incoming direction ESTANG of the input
signal, X, based on an initial guess of the direction.

Note: The object performs an initialization the first time the step method is executed.
This initialization locks nontunable properties and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Input Arguments
H

Tracker object of type phased.SumDifferenceMonopulseTracker2D.

X

Input signal, specified as a row vector whose number of columns corresponds to number
of channels.

STANG

Initial guess of the direction, specified as a 2-by-1 vector in the form [AzimuthAngle;
ElevationAngle] in degrees. A typical initial guess is the current steering

1 Alphabetical List

1-1818

angle. Azimuth angles must be between –180 and 180. Elevation angles must
be between –90 and 90. Angles are measured in the local coordinate system of
the array. For details regarding the local coordinate system of the URA, type
phased.URA.coordinateSystemInfo.

Output Arguments

ESTANG

Estimate of incoming direction, returned as a 2-by-1 vector in the form [AzimuthAngle;
ElevationAngle] in degrees. Azimuth angles are between –180 and 180. Elevation
angles are between –90 and 90. Angles are measured in the local coordinate system of the
array.

Examples

Determine the direction of a target at around 60 degrees azimuth and 20 degrees
elevation of a URA.

ha = phased.URA('Size',4);

hstv = phased.SteeringVector('SensorArray',ha);

hmp = phased.SumDifferenceMonopulseTracker2D('SensorArray',ha);

x = step(hstv,hmp.OperatingFrequency,[60.1; 19.5]).';

est_dir = step(hmp,x,[60; 20]);

Algorithms

The sum-and-difference monopulse algorithm is used to the estimate the arrival direction
of a narrowband signal impinging upon a uniform linear array (ULA). First, compute
the conventional response of an array steered to an arrival direction φ0. For a ULA,
the arrival direction is specified by the broadside angle. To specify that the maximum
response axis (MRA) point towards the φ0 direction, set the weights to be

ws
ikd ik d ik N d

e e e= º()-1 0 0 02 1, , , ,sin sin () sinf f f

 step

1-1819

where d is the element spacing and k = 2π/λ is the wavenumber. An incoming plane
wave, coming from any arbitrary direction φ, is represented by

v = º()-1 2 1, , , ,sin sin () sin
e e e

ikd ik d ik N df f f

The conventional response of the this array to any incoming plane wave is given by
w v

s

H j() and is shown in the polar plot below as the Sum Pattern. The array is designed
to steer towards φ0 = 30°.

The second pattern, called the Difference Pattern, is obtained by using phased-
reversed weights. The weights are determined by phase-reversing the latter half of the
conventional steering vector. For an array with an even number of elements, the phase-
reversed weights are

wd
ikd ik d ikN d ik N d

i e e e e= - º - +1 0 0 02 2 2 1, , , , ,sin sin / sin (/) sinf f f ff f0 01, , () sinº -()-
e

ik N d

(For an array with an odd number of elements, the middle weight is set to zero). The
multiplicative factor –i is used for convenience. The response of the difference array to
the incoming vector is

w v
d

H j()

and is show in the polar plot below

1 Alphabetical List

1-1820

The monopulse response curve is obtained by dividing the difference pattern by the sum
pattern and taking the real part.

R Re
d

H

s
H

()
()

()
j

j

j
=

Ê

Ë
ÁÁ

ˆ

¯
˜̃

w v

w v

To use the monopulse response curve to obtain the arrival angle of a narrowband signal,
x, compute

z Re
d

H

s
H

=
Ê

Ë
ÁÁ

ˆ

¯
˜̃

w x

w x

 step

1-1821

and invert the response curve, φ = R-1(z), to obtain φ.

The response curve is not single valued and can be inverted only when arrival angles
lie within the mainlobe. The figure below shows the center portion of the monopulse
response curve in the mainlobe for a 4-element ULA array.

There are two desirable properties of the monopulse response curve. The first is that it
have a steep slope. A steep slope insures robustness against noise. The second property
is that the mainlobe be as wide as possible. A steep slope is ensure by a larger array but
leads to a smaller mainlobe. You will need to trade off one property with the other.

For further details, see [1].

1 Alphabetical List

1-1822

References

[1] Seliktar, Y. Space-Time Adaptive Monopulse Processing. Ph.D. Thesis. Georgia
Institute of Technology, Atlanta, 1998.

[2] Rhodes, D. Introduction to Monopulse. Dedham, MA: Artech House, 1980.

See Also
azel2phitheta | azel2uv | phitheta2azel | uv2azel

 phased.TimeDelayBeamformer System object

1-1823

phased.TimeDelayBeamformer System object
Package: phased

Time delay beamformer

Description

The TimeDelayBeamformer object implements a time delay beamformer.

To compute the beamformed signal:

1 Define and set up your time delay beamformer. See “Construction” on page 1-1823.
2 Call step to perform the beamforming operation according to the properties of

phased.TimeDelayBeamformer. The behavior of step is specific to each object in
the toolbox.

Construction

H = phased.TimeDelayBeamformer creates a time delay beamformer System object,
H. The object performs delay and sum beamforming on the received signal using time
delays.

H = phased.TimeDelayBeamformer(Name,Value) creates a time delay
beamformer object, H, with each specified property Name set to the specified
Value. You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties

SensorArray

Handle to sensor array

Specify the sensor array as a handle. The sensor array must be an array object in the
phased package. The array cannot contain subarrays.

1 Alphabetical List

1-1824

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second, as a positive scalar.

Default: Speed of light

SampleRate

Signal sampling rate

Specify the signal sampling rate (in hertz) as a positive scalar.

Default: 1e6

DirectionSource

Source of beamforming direction

Specify whether the beamforming direction comes from the Direction property of this
object or from an input argument in step. Values of this property are:

'Property' The Direction property of this object specifies the
beamforming direction.

'Input port' An input argument in each invocation of step
specifies the beamforming direction.

Default: 'Property'

Direction

Beamforming direction

Specify the beamforming direction of the beamformer as a column vector of length 2. The
direction is specified in the format of [AzimuthAngle; ElevationAngle] (in degrees).
The azimuth angle should be between –180 and 180. The elevation angle should be

 phased.TimeDelayBeamformer System object

1-1825

between –90 and 90. This property applies when you set the DirectionSource property
to 'Property'.

Default: [0; 0]

WeightsOutputPort

Output beamforming weights

To obtain the weights used in the beamformer, set this property to true and use the
corresponding output argument when invoking step. If you do not want to obtain the
weights, set this property to false.

Default: false

Methods

clone Create time delay beamformer object with
same property values

getNumInputs Number of expected inputs to step method
getNumOutputs Number of outputs from step method
isLocked Locked status for input attributes and

nontunable properties
release Allow property value and input

characteristics changes
step Perform time delay beamforming

Examples

Time-Delay Beamformer Applied to ULA

Apply a time-delay beamformer to an 11-element uniform linear acoustic array. The
arrival angle of the signal is -50 degrees in azimuth and 30 degrees in elevation. The
arriving signal is a 0.3 second segment of a linear FM chirp having a 500 Hz bandwidth.
Assume the speed of sound in air is 340.0 m/s.

1 Alphabetical List

1-1826

Simulate the arriving signal at the wideband collector.

sIso = phased.CustomMicrophoneElement('FrequencyVector',[20,20000],'FrequencyResponse',[1,1]);

sULA = phased.ULA('Element',sIso,'NumElements',11,'ElementSpacing',0.04);

fs = 8000;

t = 0:1/fs:0.3;

x = chirp(t,0,1,500);

c = 340;

sWBC = phased.WidebandCollector('Sensor',sULA,...

 'PropagationSpeed',c,'SampleRate',fs,'ModulatedInput',false);

incidentAngle = [-50;30];

x = step(sWBC,x.',incidentAngle);

Add white gaussian random noise to the signal.

sigma = 0.2;

noise = sigma*randn(size(x));

rx = x + noise;

Beamform the incident signals using a time-delay beamformer.

sBF = phased.TimeDelayBeamformer('SensorArray',sULA,...

 'SampleRate',fs,'PropagationSpeed',c,...

 'Direction',incidentAngle);

y = step(sBF,rx);

Plot the beamformed signal against the incident signal at the middle sensor of the array.

plot(t,rx(:,6),'r:',t,y)

xlabel('Time (sec)')

ylabel('Amplitude')

legend('Original','Beamformed');

 phased.TimeDelayBeamformer System object

1-1827

• “Wideband Beamforming”

References

[1] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002.

See Also
phased.FrostBeamformer | phased.PhaseShiftBeamformer |
phased.SubbandPhaseShiftBeamformer | phased.TimeDelayLCMVBeamformer |
phitheta2azel | uv2azel

1 Alphabetical List

1-1828

Introduced in R2012a

 clone

1-1829

clone
System object: phased.TimeDelayBeamformer
Package: phased

Create time delay beamformer object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates an object, C, having the same property values and same states as
H. If H is locked, so is C.

1 Alphabetical List

1-1830

getNumInputs
System object: phased.TimeDelayBeamformer
Package: phased

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of inputs
(not counting the object itself) that you must use when calling the step method. This
value changes when you alter properties that turn inputs on or off.

 getNumOutputs

1-1831

getNumOutputs
System object: phased.TimeDelayBeamformer
Package: phased

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value changes when you alter properties that turn outputs on or off.

1 Alphabetical List

1-1832

isLocked
System object: phased.TimeDelayBeamformer
Package: phased

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF, for the TimeDelayBeamformer
System object.

isLocked returns a logical value that indicates whether input attributes and
nontunable properties for the object are locked. The object performs an internal
initialization the first time that you execute step. This initialization locks nontunable
properties and input specifications, such as the dimensions, complexity, and data type of
the input data. After locking, isLocked returns a true value.

 release

1-1833

release
System object: phased.TimeDelayBeamformer
Package: phased

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

1 Alphabetical List

1-1834

step

System object: phased.TimeDelayBeamformer
Package: phased

Perform time delay beamforming

Syntax

Y = step(H,X)

Y = step(H,X,ANG)

[Y,W] = step(___)

Description

Y = step(H,X) performs time delay beamforming on the input, X, and returns the
beamformed output in Y. X is an M-by-N matrix where N is the number of elements of the
sensor array. Y is a column vector of length M.

Y = step(H,X,ANG) uses ANG as the beamforming direction. This syntax is available
when you set the DirectionSource property to'Input port'. ANG is a column vector
of length 2 in the form of [AzimuthAngle; ElevationAngle] (in degrees). The
azimuth angle must be between –180 and 180 degrees, and the elevation angle must be
between –90 and 90 degrees.

[Y,W] = step(___) returns additional output, W, as the beamforming weights.
This syntax is available when you set the WeightsOutputPort property to true. W
is a column vector of length N. For a time delay beamformer, the weights are constant
because the beamformer simply adds all the channels together and scales the result to
preserve the signal power.

Note: The object performs an initialization the first time the step method is executed.
This initialization locks nontunable properties and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change

 step

1-1835

nontunable properties or inputs, you must first call the release method to unlock the
object.

Examples

Time-Delay Beamformer Applied to ULA

Apply a time-delay beamformer to an 11-element uniform linear acoustic array. The
arrival angle of the signal is -50 degrees in azimuth and 30 degrees in elevation. The
arriving signal is a 0.3 second segment of a linear FM chirp having a 500 Hz bandwidth.
Assume the speed of sound in air is 340.0 m/s.

Simulate the arriving signal at the wideband collector.

sIso = phased.CustomMicrophoneElement('FrequencyVector',[20,20000],'FrequencyResponse',[1,1]);

sULA = phased.ULA('Element',sIso,'NumElements',11,'ElementSpacing',0.04);

fs = 8000;

t = 0:1/fs:0.3;

x = chirp(t,0,1,500);

c = 340;

sWBC = phased.WidebandCollector('Sensor',sULA,...

 'PropagationSpeed',c,'SampleRate',fs,'ModulatedInput',false);

incidentAngle = [-50;30];

x = step(sWBC,x.',incidentAngle);

Add white gaussian random noise to the signal.

sigma = 0.2;

noise = sigma*randn(size(x));

rx = x + noise;

Beamform the incident signals using a time-delay beamformer.

sBF = phased.TimeDelayBeamformer('SensorArray',sULA,...

 'SampleRate',fs,'PropagationSpeed',c,...

 'Direction',incidentAngle);

y = step(sBF,rx);

Plot the beamformed signal against the incident signal at the middle sensor of the array.

plot(t,rx(:,6),'r:',t,y)

xlabel('Time (sec)')

ylabel('Amplitude')

1 Alphabetical List

1-1836

legend('Original','Beamformed');

See Also
phitheta2azel | uv2azel

 phased.TimeDelayLCMVBeamformer System object

1-1837

phased.TimeDelayLCMVBeamformer System object

Package: phased

Time delay LCMV beamformer

Description

The TimeDelayLCMVBeamformer object implements a time-delay linear constraint
minimum variance beamformer.

To compute the beamformed signal:

1 Define and set up your time-delay LCMV beamformer. See “Construction” on page
1-1837.

2 Call step to perform the beamforming operation according to the properties of
phased.TimeDelayLCMVBeamformer. The behavior of step is specific to each
object in the toolbox.

Construction

H = phased.TimeDelayLCMVBeamformer creates a time-delay linear constraint
minimum variance (LCMV) beamformer System object, H. The object performs time delay
LCMV beamforming on the received signal.

H = phased.TimeDelayLCMVBeamformer(Name,Value) creates a time-delay
LCMV beamformer object, H, with each specified property Name set to the specified
Value. You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties

SensorArray

Handle to sensor array

1 Alphabetical List

1-1838

Specify the sensor array as a handle. The sensor array must be an array object in the
phased package. The array cannot contain subarrays.

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second, as a positive scalar.

Default: Speed of light

SampleRate

Signal sampling rate

Specify the signal sampling rate (in hertz) as a positive scalar.

Default: 1e6

FilterLength

FIR filter length

Specify the length of the FIR filter behind each sensor element in the array as a positive
integer.

Default: 2

Constraint

Constraint matrix

Specify the constraint matrix used for time-delay LCMV beamformer as an M-by-K
matrix. Each column of the matrix is a constraint and M is the number of degrees of
freedom of the beamformer. For a time-delay LCMV beamformer, the number of degrees
of freedom is given by the product of the number of elements of the array and the filter
length specified by the value of the FilterLength property.

Default: [1;1]

 phased.TimeDelayLCMVBeamformer System object

1-1839

DesiredResponse

Desired response vector

Specify the desired response used for time-delay LCMV beamformer as a column vector
of length K, where K is the number of constraints in the Constraint property. Each
element in the vector defines the desired response of the constraint specified in the
corresponding column of the Constraint property.

Default: 1, which is equivalent to a distortionless response

DiagonalLoadingFactor

Diagonal loading factor

Specify the diagonal loading factor as a positive scalar. Diagonal loading is a technique
used to achieve robust beamforming performance, especially when the sample support is
small. This property is tunable.

Default: 0

TrainingInputPort

Add input to specify training data

To specify additional training data, set this property to true and use the corresponding
input argument when you invoke step. To use the input signal as the training data, set
this property to false.

Default: false

DirectionSource

Source of beamforming direction

Specify whether the beamforming direction comes from the Direction property of this
object or from an input argument in step. Values of this property are:

'Property' The Direction property of this object specifies the
beamforming direction.

1 Alphabetical List

1-1840

'Input port' An input argument in each invocation of step
specifies the beamforming direction.

Default: 'Property'

Direction

Beamforming direction

Specify the beamforming direction of the beamformer as a column vector of length 2. The
direction is specified in the format of [AzimuthAngle; ElevationAngle] (in degrees).
The azimuth angle should be between –180° and 180°. The elevation angle should be
between –90° and 90°. This property applies when you set the DirectionSource
property to 'Property'.

Default: [0; 0]

WeightsOutputPort

Output beamforming weights

To obtain the weights used in the beamformer, set this property to true and use the
corresponding output argument when invoking step. If you do not want to obtain the
weights, set this property to false.

Default: false

Methods

clone Create new time delay LCMV beamformer
object with identical property values

getNumInputs Number of expected inputs to step method
getNumOutputs Number of outputs from step method
isLocked Locked status for input attributes and

nontunable properties
release Allow property value and input

characteristics changes

 phased.TimeDelayLCMVBeamformer System object

1-1841

step Perform time-delay LCMV beamforming

Examples

Time-delay LCMV Beamformer

Apply a time delay LCMV beamformer to an 11-element acoustic ULA array. The
elements are omnidirectional microphones. The incident angle of the signal is -50 degrees
in azimuth and 30 degrees in elevation. The incident signal is an FM chirp with 500 Hz
bandwidth. The propagation speed is a typical speed of sound in air, 340 m/s.

Simulate the signal and add noise.

nElem = 11;

sMic = phased.OmnidirectionalMicrophoneElement(...

 'FrequencyRange',[20 20000]);

sULA = phased.ULA('Element',sMic,'NumElements',nElem,'ElementSpacing',0.04);

fs = 8000;

t = 0:1/fs:0.3;

x = chirp(t,0,1,500);

c = 340;

sWBC = phased.WidebandCollector('Sensor',sULA,...

 'PropagationSpeed',c,'SampleRate',fs,...

 'ModulatedInput',false);

incidentAngle = [-50;30];

x = step(sWBC,x.',incidentAngle);

noise = 0.2*randn(size(x));

rx = x + noise;

Create and apply the time-delay LCMV beamformer. Specify a filterlength of 5.

filterLength = 5;

constraintMatrix = kron(eye(filterLength),ones(nElem,1));

desiredResponseVector = eye(filterLength,1);

sBF = phased.TimeDelayLCMVBeamformer('SensorArray',sULA,...

 'PropagationSpeed',c,'SampleRate',fs,'FilterLength',filterLength,...

 'Direction',incidentAngle,'Constraint',constraintMatrix,...

 'DesiredResponse',desiredResponseVector);

y = step(sBF,rx);

Compare the beamformer output to the input to the middle sensor.

plot(t,rx(:,6),'r:',t,y)

1 Alphabetical List

1-1842

xlabel('Time')

ylabel('Amplitude')

legend('Original','Beamformed');

• “Wideband Beamforming”

Algorithms

The beamforming algorithm is the time-domain counterpart of the narrowband linear
constraint minimum variance (LCMV) beamformer. The algorithm does the following:

1 Steers the array to the beamforming direction.

 phased.TimeDelayLCMVBeamformer System object

1-1843

2 Applies an FIR filter to the output of each sensor to achieve the specified constraints.
The filter is specific to each sensor.

References

[1] Frost, O. “An Algorithm For Linearly Constrained Adaptive Array Processing”,
Proceedings of the IEEE. Vol. 60, Number 8, August, 1972, pp. 926–935.

[2] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002.

See Also
phased.FrostBeamformer | phased.PhaseShiftBeamformer |
phased.SubbandPhaseShiftBeamformer | phased.TimeDelayBeamformer |
phitheta2azel | uv2azel

Introduced in R2012a

1 Alphabetical List

1-1844

clone
System object: phased.TimeDelayLCMVBeamformer
Package: phased

Create new time delay LCMV beamformer object with identical property values

Syntax

C = clone(H)

Description

C = clone(H) creates an object, C, having the same property values and same states as
H. If H is locked, so is C.

 getNumInputs

1-1845

getNumInputs
System object: phased.TimeDelayLCMVBeamformer
Package: phased

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of inputs
(not counting the object itself) that you must use when calling the step method. This
value changes when you alter properties that turn inputs on or off.

1 Alphabetical List

1-1846

getNumOutputs
System object: phased.TimeDelayLCMVBeamformer
Package: phased

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value changes when you alter properties that turn outputs on or off.

 isLocked

1-1847

isLocked
System object: phased.TimeDelayLCMVBeamformer
Package: phased

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF, for the TimeDelayLCMVBeamformer
System object.

isLocked returns a logical value that indicates whether input attributes and
nontunable properties for the object are locked. The object performs an internal
initialization the first time that you execute step. This initialization locks nontunable
properties and input specifications, such as the dimensions, complexity, and data type of
the input data. After locking, isLocked returns a true value.

1 Alphabetical List

1-1848

release
System object: phased.TimeDelayLCMVBeamformer
Package: phased

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

 step

1-1849

step

System object: phased.TimeDelayLCMVBeamformer
Package: phased

Perform time-delay LCMV beamforming

Syntax

Y = step(H,X)

Y = step(H,X,XT)

Y = step(H,X,ANG)

[Y,W] = step(___)

Description

Y = step(H,X) performs time-delay LCMV beamforming on the input, X, and returns
the beamformed output in Y. X is an M-by-N matrix where N is the number of elements
of the sensor array. M must be larger than the FIR filter length specified in the
FilterLength property. Y is a column vector of length M.

Y = step(H,X,XT) uses XT as the training samples to calculate the beamforming
weights when you set the TrainingInputPort property to true. XT is an M-by-N
matrix where N is the number of elements of the sensor array. M must be larger than the
FIR filter length specified in the FilterLength property.

Y = step(H,X,ANG) uses ANG as the beamforming direction, when you set the
DirectionSource property to 'Input port'. ANG is a column vector of length 2 in the
form of [AzimuthAngle; ElevationAngle] (in degrees). The azimuth angle must be
between –180° and 180°, and the elevation angle must be between –90° and 90°.

You can combine optional input arguments when their enabling properties are set: Y =
step(H,X,XT,ANG)

[Y,W] = step(___) returns additional output, W, as the beamforming weights when
you set the WeightsOutputPort property to true. W is a column vector of length L,

1 Alphabetical List

1-1850

where L is the number of degrees of freedom of the beamformer. For a time-delay LCMV
beamformer, the number of degrees of freedom is given by the product of the number of
elements of the array and the filter length specified by the value of the FilterLength
property.

Note: The object performs an initialization the first time the step method is executed.
This initialization locks nontunable properties and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Examples

Time-delay LCMV Beamformer

Apply a time delay LCMV beamformer to an 11-element acoustic ULA array. The
elements are omnidirectional microphones. The incident angle of the signal is -50 degrees
in azimuth and 30 degrees in elevation. The incident signal is an FM chirp with 500 Hz
bandwidth. The propagation speed is a typical speed of sound in air, 340 m/s.

Simulate the signal and add noise.

nElem = 11;

sMic = phased.OmnidirectionalMicrophoneElement(...

 'FrequencyRange',[20 20000]);

sULA = phased.ULA('Element',sMic,'NumElements',nElem,'ElementSpacing',0.04);

fs = 8000;

t = 0:1/fs:0.3;

x = chirp(t,0,1,500);

c = 340;

sWBC = phased.WidebandCollector('Sensor',sULA,...

 'PropagationSpeed',c,'SampleRate',fs,...

 'ModulatedInput',false);

incidentAngle = [-50;30];

x = step(sWBC,x.',incidentAngle);

noise = 0.2*randn(size(x));

rx = x + noise;

Create and apply the time-delay LCMV beamformer. Specify a filterlength of 5.

 step

1-1851

filterLength = 5;

constraintMatrix = kron(eye(filterLength),ones(nElem,1));

desiredResponseVector = eye(filterLength,1);

sBF = phased.TimeDelayLCMVBeamformer('SensorArray',sULA,...

 'PropagationSpeed',c,'SampleRate',fs,'FilterLength',filterLength,...

 'Direction',incidentAngle,'Constraint',constraintMatrix,...

 'DesiredResponse',desiredResponseVector);

y = step(sBF,rx);

Compare the beamformer output to the input to the middle sensor.

plot(t,rx(:,6),'r:',t,y)

xlabel('Time')

ylabel('Amplitude')

legend('Original','Beamformed');

1 Alphabetical List

1-1852

Algorithms

The beamforming algorithm is the time-domain counterpart of the narrowband linear
constraint minimum variance (LCMV) beamformer. The algorithm does the following:

1 Steers the array to the beamforming direction.
2 Applies an FIR filter to the output of each sensor to achieve the specified constraints.

The filter is specific to each sensor.

See Also
phitheta2azel | uv2azel

 phased.TimeVaryingGain System object

1-1853

phased.TimeVaryingGain System object
Package: phased

Time varying gain control

Description

The TimeVaryingGain object applies a time varying gain to input signals. Time varying
gain (TVG) is sometimes called automatic gain control (AGC).

To apply the time varying gain to the signal:

1 Define and set up your time varying gain controller. See “Construction” on page
1-1853.

2 Call step to apply the time varying gain according to the properties of
phased.TimeVaryingGain. The behavior of step is specific to each object in the
toolbox.

Construction

H = phased.TimeVaryingGain creates a time varying gain control System object, H.
The object applies a time varying gain to the input signal to compensate for the signal
power loss due to the range.

H = phased.TimeVaryingGain(Name,Value) creates an object, H, with each specified
property Name set to the specified Value. You can specify additional name-value pair
arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties

RangeLoss

Loss at each input sample range

Specify the loss (in decibels) due to the range for each sample in the input signal as a
vector.

1 Alphabetical List

1-1854

Default: 0

ReferenceLoss

Loss at reference range

Specify the loss (in decibels) at a given reference range as a scalar.

Default: 0

Methods

clone Create time varying gain object with same
property values

getNumInputs Number of expected inputs to step method
getNumOutputs Number of outputs from step method
isLocked Locked status for input attributes and

nontunable properties
release Allow property value and input

characteristics changes
step Apply time varying gains to input signal

Examples

Apply time varying gain to a signal to compensate for signal power loss due to range.

rngloss = 10:22; refloss = 16; % in dB

t = (1:length(rngloss))';

x = 1./db2mag(rngloss(:));

H = phased.TimeVaryingGain('RangeLoss',rngloss,...

 'ReferenceLoss',refloss);

y = step(H,x);

% Plot signals

tref = find(rngloss==refloss);

stem([t t],[abs(x) abs(y)]);

hold on;

 phased.TimeVaryingGain System object

1-1855

stem(tref,x(tref),'filled','r');

xlabel('Time (s)'); ylabel('Magnitude (V)');

grid on;

legend('Before time varying gain',...

 'After time varying gain',...

 'Reference range');

References

[1] Edde, B. Radar: Principles, Technology, Applications. Englewood Cliffs, NJ: Prentice
Hall, 1993.

1 Alphabetical List

1-1856

[2] Skolnik, M. Introduction to Radar Systems, 3rd Ed. New York: McGraw-Hill, 2001.

See Also
phased.MatchedFilter | pulsint

Introduced in R2012a

 clone

1-1857

clone
System object: phased.TimeVaryingGain
Package: phased

Create time varying gain object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates an object, C, having the same property values and same states as
H. If H is locked, so is C.

1 Alphabetical List

1-1858

getNumInputs
System object: phased.TimeVaryingGain
Package: phased

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of inputs
(not counting the object itself) that you must use when calling the step method. This
value changes when you alter properties that turn inputs on or off.

 getNumOutputs

1-1859

getNumOutputs
System object: phased.TimeVaryingGain
Package: phased

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value changes when you alter properties that turn outputs on or off.

1 Alphabetical List

1-1860

isLocked
System object: phased.TimeVaryingGain
Package: phased

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the TimeVaryingGain System
object.

isLocked returns a logical value that indicates whether input attributes and
nontunable properties for the object are locked. The object performs an internal
initialization the first time that you execute step. This initialization locks nontunable
properties and input specifications, such as the dimensions, complexity, and data type of
the input data. After locking, isLocked returns a true value.

 release

1-1861

release
System object: phased.TimeVaryingGain
Package: phased

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

1 Alphabetical List

1-1862

step
System object: phased.TimeVaryingGain
Package: phased

Apply time varying gains to input signal

Syntax

Y = step(H,X)

Description

Y = step(H,X) applies time varying gains to the input signal X. The process equalizes
power levels across all samples to match a given reference range. The compensated
signal is returned in Y. X can be a column vector, a matrix, or a cube. The gain is applied
to each column in X independently. The number of rows in X must match the length of
the loss vector specified in the RangeLoss property. Y has the same dimensionality as X.

Note: The object performs an initialization the first time the step method is executed.
This initialization locks nontunable properties and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Examples

Apply time varying gain to a signal to compensate for signal power loss due to range.

rngloss = 10:22; refloss = 16; % in dB

t = (1:length(rngloss))';

x = 1./db2mag(rngloss(:));

H = phased.TimeVaryingGain('RangeLoss',rngloss,...

 'ReferenceLoss',refloss);

y = step(H,x);

 step

1-1863

% Plot signals

tref = find(rngloss==refloss);

stem([t t],[abs(x) abs(y)]);

hold on;

stem(tref,x(tref),'filled','r');

xlabel('Time (s)'); ylabel('Magnitude (V)');

grid on;

legend('Before time varying gain',...

 'After time varying gain',...

 'Reference range');

1 Alphabetical List

1-1864

phased.Transmitter System object
Package: phased

Transmitter

Description

The Transmitter object implements a waveform transmitter.

To compute the transmitted signal:

1 Define and set up your waveform transmitter. See “Construction” on page 1-1864.
2 Call step to compute the transmitted signal according to the properties of

phased.Transmitter. The behavior of step is specific to each object in the toolbox.

Construction

H = phased.Transmitter creates a transmitter System object, H. This object
transmits the input waveform samples with specified peak power.

H = phased.Transmitter(Name,Value) creates a transmitter object, H, with each
specified property Name set to the specified Value. You can specify additional name-
value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties

PeakPower

Peak power

Specify the transmit peak power (in watts) as a positive scalar.

Default: 5000

Gain

Transmit gain

 phased.Transmitter System object

1-1865

Specify the transmit gain (in decibels) as a real scalar.

Default: 20

LossFactor

Loss factor

Specify the transmit loss factor (in decibels) as a nonnegative scalar.

Default: 0

InUseOutputPort

Enable transmitter status output

To obtain the transmitter in-use status for each output sample, set this property to true
and use the corresponding output argument when invoking step. In this case, 1's indicate
the transmitter is on, and 0's indicate the transmitter is off. If you do not want to obtain
the transmitter in-use status, set this property to false.

Default: false

CoherentOnTransmit

Preserve coherence among pulses

Specify whether to preserve coherence among transmitted pulses. When you set this
property to true, the transmitter does not introduce any random phase to the output
pulses. When you set this property to false, the transmitter adds a random phase noise
to each transmitted pulse. The random phase noise is introduced by multiplication of the
pulse by ejϕwhere ϕ is a uniform random variable on the interval [0,2π].

Default: true

PhaseNoiseOutputPort

Enable pulse phase noise output

To obtain the introduced transmitter random phase noise for each output sample, set
this property to true and use the corresponding output argument when invoking step.
You can use in the receiver to simulate coherent on receive systems. If you do not want

1 Alphabetical List

1-1866

to obtain the random phase noise, set this property to false. This property applies when
you set the CoherentOnTransmit property to false.

Default: false

SeedSource

Source of seed for random number generator

'Auto' The default MATLAB random number generator produces
the random numbers. Use 'Auto' if you are using this
object with Parallel Computing Toolbox software.

'Property' The object uses its own private random number generator
to produce random numbers. The Seed property of this
object specifies the seed of the random number generator.
Use 'Property' if you want repeatable results and are
not using this object with Parallel Computing Toolbox
software.

This property applies when you set the CoherentOnTransmit property to false.

Default: 'Auto'

Seed

Seed for random number generator

Specify the seed for the random number generator as a scalar integer between 0 and 232–
1. This property applies when you set the CoherentOnTransmit property to false and
the SeedSource property to 'Property'.

Default: 0

Methods

clone Create transmitter object with same
property values

getNumInputs Number of expected inputs to step method
getNumOutputs Number of outputs from step method

 phased.Transmitter System object

1-1867

isLocked Locked status for input attributes and
nontunable properties

release Allow property value and input
characteristics changes

reset Reset states of transmitter object
step Transmit pulses

Examples

Transmit a pulse containing a linear FM waveform with a bandwidth of 5 MHz. The
sample rate is 10 MHz and the pulse repetition frequency is 10 kHz.

fs = 1e7;

hwav = phased.LinearFMWaveform('SampleRate',fs,...

 'PulseWidth',1e-5,'SweepBandwidth',5e6);

x = step(hwav);

htx = phased.Transmitter('PeakPower',5e3);

y = step(htx,x);

References

[1] Edde, B. Radar: Principles, Technology, Applications. Englewood Cliffs, NJ: Prentice
Hall, 1993.

[2] Richards, M. A. Fundamentals of Radar Signal Processing. New York: McGraw-Hill,
2005.

[3] Skolnik, M. Introduction to Radar Systems, 3rd Ed. New York: McGraw-Hill, 2001.

See Also
phased.Radiator | phased.ReceiverPreamp

Introduced in R2012a

1 Alphabetical List

1-1868

clone
System object: phased.Transmitter
Package: phased

Create transmitter object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates an object, C, having the same property values and same states as
H. If H is locked, so is C.

 getNumInputs

1-1869

getNumInputs
System object: phased.Transmitter
Package: phased

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of inputs
(not counting the object itself) that you must use when calling the step method. This
value changes when you alter properties that turn inputs on or off.

1 Alphabetical List

1-1870

getNumOutputs
System object: phased.Transmitter
Package: phased

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value changes when you alter properties that turn outputs on or off.

 isLocked

1-1871

isLocked
System object: phased.Transmitter
Package: phased

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF, for the Transmitter System object.

isLocked returns a logical value that indicates whether input attributes and
nontunable properties for the object are locked. The object performs an internal
initialization the first time that you execute step. This initialization locks nontunable
properties and input specifications, such as the dimensions, complexity, and data type of
the input data. After locking, isLocked returns a true value.

1 Alphabetical List

1-1872

release
System object: phased.Transmitter
Package: phased

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles, or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

 reset

1-1873

reset
System object: phased.Transmitter
Package: phased

Reset states of transmitter object

Syntax

reset(H)

Description

reset(H) resets the states of the Transmitter object, H. This method resets the
random number generator state if the SeedSource property is applicable and has the
value 'Property'.

1 Alphabetical List

1-1874

step
System object: phased.Transmitter
Package: phased

Transmit pulses

Syntax
Y = step(H,X)

[Y,STATUS] = step(H,X)

[Y,PHNOISE] = step(H,X)

Description
Y = step(H,X) returns the transmitted signal Y, based on the input waveform X. Y is
the amplified X where the amplification is based on the characteristics of the transmitter,
such as the peak power and the gain.

[Y,STATUS] = step(H,X) returns additional output STATUS as the on/off status of
the transmitter when the InUseOutputPort property is true. STATUS is a logical
vector where true indicates the transmitter is on for the corresponding sample time, and
false indicates the transmitter is off.

[Y,PHNOISE] = step(H,X) returns the additional output PHNOISE as the random
phase noise added to each transmitted sample when the CoherentOnTransmit property
is false and the PhaseNoiseOutputPort property is true. PHNOISE is a vector which
has the same dimension as Y. Each element in PHNOISE contains the random phase
between 0 and 2*pi, added to the corresponding sample in Y by the transmitter.

You can combine optional output arguments when their enabling properties are set.
Optional outputs must be listed in the same order as the order of the enabling properties.
For example:

[Y,STATUS,PHNOISE] = step(H,X)

Note: The object performs an initialization the first time the step method is executed.
This initialization locks nontunable properties and input specifications, such as

 step

1-1875

dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Examples

Transmit a pulse containing a linear FM waveform. The sample rate is 10 MHz and the
pulse repetition frequency is 50 kHz. The transmitter peak power is 5 kw.

fs = 1e7;

hwav = phased.LinearFMWaveform('SampleRate',fs,...

 'PulseWidth',1e-5,'SweepBandwidth',5e6);

x = step(hwav);

htx = phased.Transmitter('PeakPower',5e3);

y = step(htx,x);

1 Alphabetical List

1-1876

phased.TwoRayChannel System object
Package: phased

Two-ray propagation channel

Description

The phased.TwoRayChannel models a narrowband two-ray propagation channel. A
two-ray propagation channel is the simplest type of multipath channel. You can use a
two-ray channel to simulate propagation of signals in a homogeneous, isotropic medium
with a single reflecting boundary. This type of medium has two propagation paths: a
line-of-sight (direct) propagation path from one point to another and a ray path reflected
from the boundary. You can use this System object for short-range radar and mobile
communications applications where the signals propagate along straight paths and
the earth is assumed to be flat. You can also use this object for sonar and microphone
applications. For acoustic applications, you can choose the fields to be non-polarized
and adjust the propagation speed to be the speed of sound in air or water. You can use
phased.TwoRayChannel to model propagation from several points simultaneously.

The phased.TwoRayChannel System object applies range-dependent time delays to the
signals, and as well as gains or losses, phase shifts, and boundary reflection loss. The
System object applies Doppler shift when either the source or destination is moving.

Signals at the channel output can be kept separate or be combined — controlled by
the CombinedRaysOutput property. In the separate option, both fields arrive at the
destination separately and are not combined. For the combined option, the two signals
at the source propagate separately but are coherently summed at the destination into
a single quantity. This option is convenient when the difference between the sensor or
array gains in the directions of the two paths is not significant and need not be taken into
account.

Unlike the phased.FreeSpace System object, the phased.TwoRayChannel System object
does not support two-way propagation.

To compute the propagation delay for specified source and receiver points:

1 Define and set up your two-ray channel using the “Construction” on page 1-1877
procedure that follows.

 phased.TwoRayChannel System object

1-1877

2 Call the step method to compute the propagated signal using the properties of the
phased.TwoRayChannel System object.

The behavior of step is specific to each object in the toolbox.

Construction

s2Ray = phased.TwoRayChannel creates a two-ray propagation channel System
object, s2Ray.

s2Ray = phased.TwoRayChannel(Name,Value) creates a System object, s2Ray, with
each specified property Name set to the specified Value. You can specify additional name
and value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties

PropagationSpeed — Signal propagation speed
speed of light (default) | positive real-valued scalar

Signal propagation speed, specified as a positive real-valued scalar. Units are meters per
second.
Example: physconst('LightSpeed')

OperatingFrequency — Signal carrier frequency
300e6 (default) | positive real-valued scalar

Signal carrier frequency, specified as a real-valued positive scalar. Units are in hertz.
Example: 1e9

Data Types: double

SampleRate — Signal sample rate
1e6 (default) | positive real-valued scalar

Signal sample rate, specified as a real-valued positive scalar. Units are in hertz. The
System object uses this quantity to calculate the propagation delay in terms of samples.

1 Alphabetical List

1-1878

Example: 1e6

Data Types: double

EnablePolarization — Enable polarized fields
false (default) | true

Enable polarized fields, specified as a logical variable. Set this property to true to enable
polarization. Set this property to false to ignore polarization.

Example: true

Data Types: logical

GroundReflectionCoefficient — Ground reflection coefficient
-1 (default) | complex-valued scalar | complex-valued 1-by-N row vector

Ground reflection coefficient for the field at the reflection point, specified as a complex-
valued scalar or a complex-valued 1-by-N row vector. Each coefficient has an absolute
value less than or equal to one. The quantity N is the number of two-ray channels.
Units are dimensionless. This property applies when you set the EnablePolarization
property to false. For polarized signals, use the GroundRelativePermittivity
property.
Example: -0.5

Data Types: double
Complex Number Support: Yes

GroundRelativePermittivity — Ground relative permittivity
15 (default) | positive real-valued scalar

Relative permittivity of the ground at the reflection point, specified as a positive real-
valued scalar or a 1-by-N real-valued row vector of positive values where N is the number
of two-ray channels. Units are dimensionless. Relative permittivity is defined as the ratio
of actual ground permittivity to the permittivity of free space. This property applies when
you set the EnablePolarization property to true. To model nonpolarized signals, use
the GroundReflectionCoefficient property.

Example: 5

Data Types: double

CombinedRaysOutput — Option to combine two rays at output
true (default) | false

 phased.TwoRayChannel System object

1-1879

Option to combine the two rays at channel output, specified as a Boolean. If true,
coherently add the line-of-sight propagated signal and the reflected path signal when
forming the output signal. Use this mode when you do not need to include the directional
gain of an antenna or array in your simulation.
Example: false

Data Types: logical

MaximumDistanceSource — Source of maximum distance value
'Auto' (default) | 'Property'

Source of maximum distance value, specified as one of 'Auto' or 'Property'. This
choice selects how the maximum one-way propagation distance is determined. The
maximum one-way propagation distance is used to allocate sufficient memory for delay
computation. When you set this property to 'Auto, the System object automatically
allocates memory. When you set this property to 'Property', you specify the maximum
one-way propagation distance using the value of the MaximumDistance property.

Example: 'Property'

Data Types: char

MaximumDistance — Maximum one-way propagation distance
10000 (default) | positive real-valued scalar

Maximum one-way propagation distance, specified as a real-valued positive scalar. Units
are meters. This property applies when you set the MaximumDistanceSource property
to 'Property'. Any signal that propagates more than the maximum one-way distance is
ignored. The maximum distance should be greater than or equal to the largest position-
to-position distance.
Example: 5000

Data Types: double

Methods

clone Create System object with identical
property values

getNumInputs Number of expected inputs to step method

1 Alphabetical List

1-1880

getNumOutputs Number of outputs from step method
isLocked Locked status for input attributes and

nontunable properties
release Allow property values and input

characteristics to change
reset Reset states of System object
step Propagate signal from point to point using

two-ray channel model

Definitions

Two-Ray Propagation Paths

A two-ray propagation channel is the next step up in complexity from a free-space
channel and is the simplest case of a multipath propagation environment. The free-
space channel models a straight-line line-of-sight path from point 1 to point 2. In a
two-ray channel, the medium is specified as a homogeneous, isotropic medium with
a reflecting planar boundary. The boundary is always set at z = 0. There are at most
two rays propagating from point 1 to point 2. The first ray path propagates along the
same line-of-sight path as in the free-space channel (see the phased.FreeSpace System
object). The line-of-sight path is often called the direct path. The second ray reflects off
the boundary before propagating to point 2. Reflection angles are specified by the law
of reflection which equates the angle of incidence to the angle of reflection. In short-
range simulations such as cellular communications systems, automotive radars, ground
terminal radar, and sonar, you can assume that the reflecting surface, the ground or
ocean surface, is flat.

The phased.TwoRayChannel System object models propagation time delay, phase shift,
Doppler shift, and loss effects for both paths. For the reflected path, loss effects include
reflection loss at the boundary.

The figure illustrates two propagation paths. From the source position, ss, and the
receiver position, sr, you can compute the arrival angles of both paths, θ′los and θ′rp.
The arrival angles are the elevation and azimuth angles of the arriving radiation with
respect to a local coordinate system. In this case, the local coordinate system coincides
with the global coordinate system. You can also compute the transmitting angles, θlos

 phased.TwoRayChannel System object

1-1881

and θrp. In the global coordinates, the angle of reflection at the boundary is the same
as the angle θrp or θ′rp. The reflection angle is important to know when you use angle-
dependent reflection-loss data. You can determine the reflection angle by using the
rangeangle function and setting the reference axes to the global coordinate system.
The total path length for the line-of-sight path is shown in the figure by Rlos which is
equal to the geometric distance between source and receiver. The total path length for
the reflected path is given by Rrp= R1 + R2. The quantity L is the ground range between
source and receiver.

You can easily derive exact formulas for path lengths and angles in terms of the ground
range and objects heights in the global coordinate system.

1 Alphabetical List

1-1882

r

r r

r

R x x

R R z z L

R
z

z z
z z L

R
z

z

s r

los r s

r

r z
r s

s

s

= -

= = -() +

=
+

+() +

=
+

2 2

1

2 2

2 zz
z z L

R R R z z L

z z

L

r
r s

rp r s

los
s r

rp

+() +

= + = +() +

=
-()

=

2 2

1 2

2 2

tan

tan

q

q --
+()

¢ = -

¢ =

z z

L

s r

los los

rp rp

q q

q q

Ground Reflection and Propagation Loss

Propagation loss occurs when a signal is reflected from a boundary. You can obtain a
simple model of ground reflection loss by representing the electromagnetic field as a
scalar field. This approach also works for acoustic and sonar systems. Suppose that E is
a scalar free-space electromagnetic field having amplitude E0 at a reference distance R0
from a transmitter (for example, one meter). The propagating free-space field at distance
Rlos from the transmitter is given by

E E
R

R
e

los

los

i t R c
los=

Ê

Ë
Á

ˆ

¯
˜

-()
0

0 w /

for the line-of-sight path. You can express the ground-reflected E-field as

E L E
R

R
erp G

rp

i t R crp=
Ê

Ë
ÁÁ

ˆ

¯
˜̃

-()
0

0 w /

where Rrp is the reflected path distance. The quantity LG represents the loss due to
reflection at the ground plane. To specify LG, use the GroundReflectionCoefficient

 phased.TwoRayChannel System object

1-1883

property. In general, LG depends on the incidence angle of the field. If you have empirical
information about the angular dependence of LG, you can use rangeangle to compute
the incidence angle of the reflected path. The total field at the destination is the sum of
the line-of-sight and reflected-path fields.

When the origin and destination are stationary relative to each other, you can write
the output Y of step as Y(t) = F(t-τ)/L. The quantity τ is the signal delay and L is the
free-space path loss. The delay τ is given by R/c, where R is either the line-of-sight
propagation path distance or the reflected path distance, and c is the propagation speed.
The path loss is given by

L
R

fsp =
()

,
4 2

2

p

l

where λ is the signal wavelength.

For electromagnetic waves, a more complicated but more realistic model uses a vector
representation of the polarized field. You can decompose the incident electric field into a
component parallel to the plane of incidence, Ep, and a component perpendicular to the
plane of incidence, Es. The ground reflection coefficients for these components differ and
can be written in terms of the ground permittivity and incidence angle.

G
Z Z

Z Z

Z

Z

Z

Z

p =
-

+
=

-

+

1 1 2 2

1 1 2 2

1
2

1

2

1
2

cos cos

cos cos

cos cos

cos

q q

q q

q q

q
11

2

2 1 1 2

2 1 1 2

2
2

1

1

cos

cos cos

cos cos

cos cos

co

q

q q

q q

q q

G
Z Z

Z Z

Z

Z
s =

-

+
=

-

ss cosq q

m

e

m

e

2
2

1

1

1
1

1

2
2

2

+

=

=

Z

Z

Z

Z

where Z is the impedance of the medium. Because the magnetic permeability of the
ground is almost identical to that of air or free space, the ratio of impedances depends
primarily on the ratio of electric permittivities

1 Alphabetical List

1-1884

G

G

p

s

=
-

+

=
-

+

r q q

r q q

r q q

r q q

cos cos

cos cos

cos cos

cos cos

1 2

1 2

2 1

2 1

where the quantity ρ = ε2/ε1 is the ground relative permittivity set by the
GroundRelativePermittivity property. The angle θ1 is the incidence angle and the
angle θ2 is the refraction angle at the boundary. You can determine θ2 using Snell’s law of
refraction.

After reflection, the full field is reconstructed from the different reflected components.

Examples

Scalar Field Propagating in Two-Ray Channel

This example illustrates the two-ray propagation of a signal, showing how the signals
from the line-of-sight and reflected path arrive at the receiver at different times.

Create a nonpolarized electromagnetic field consisting of two rectangular waveform
pulses at a carrier frequency of 100 MHz. Assume the pulse width is 10 ms and the
sampling rate is 1 MHz. The bandwidth of the pulse is 0.1 MHz. Assume a 50% duty
cycle in so that the pulse width is one-half the pulse repetition interval. Create a two-
pulse wave train. Set the GroundReflectionCoefficient to 0.9 to model strong
ground reflectivity. Propagate the field from a stationary source to a stationary receiver.
The vertical separation of the source and receiver is approximately 10 km.

c = physconst('LightSpeed');

fs = 1e6;

pw = 10e-6;

pri = 2*pw;

PRF = 1/pri;

fc = 100e6;

lambda = c/fc;

Using the RectangularWaveform System object™, create and plot the propagated
signal.

waveform = phased.RectangularWaveform('SampleRate',fs,'PulseWidth',pw,...

 'PRF',PRF,'OutputFormat','Pulses','NumPulses',2);

 phased.TwoRayChannel System object

1-1885

wav = step(waveform);

n = size(wav,1);

figure;

plot([0:(n-1)],real(wav),'b.-');

xlabel('Time (samples)')

ylabel('Waveform magnitude')

Place the source and receiver about 1000 meters apart horizontally and approximately 10
km apart vertically.

pos1 = [1000;0;10000];

pos2 = [0;100;100];

vel1 = [0;0;0];

vel2 = [0;0;0];

1 Alphabetical List

1-1886

Compute the predicted signal delays in units of samples.

[rng,ang] = rangeangle(pos2,pos1,'two-ray');

delay = rng/c*fs

delay =

 33.1926 33.8563

Create a two-ray propagation channel System Object™. Then propagate the same signal
along the line-of-sight and reflected ray paths.

sTwoRay = phased.TwoRayChannel('SampleRate',fs,...

 'GroundReflectionCoefficient',.9,'OperatingFrequency',fc,...

 'CombinedRaysOutput',false);

prop_signal = step(sTwoRay,[wav,wav],pos1,pos2,vel1,vel2);

1 Plot the signal propagated along the line-of-sight.
2 Then, overlay a plot of the signal propagated along the reflected path.
3 Finally, overlay a plot of the coherent sum of the two signals.

figure;

n = size(prop_signal,1);

delay = [0:(n-1)];

plot(delay,abs([prop_signal(:,1)]),'g')

hold on

plot(delay,abs([prop_signal(:,2)]),'r')

plot(delay,abs([prop_signal(:,1) + prop_signal(:,2)]),'b')

hold off

legend('Line-of-sight','Reflected','Combined','Location','NorthWest');

xlabel('Delay [samples]')

ylabel('Signal Magnitude')

 phased.TwoRayChannel System object

1-1887

The plot shows that the delay of the reflected path signal which agree with the predicted
delay. The coherently combined signal is less than either of the propagated signals
indicating that there is some interference between the two signals.

References

[1] Saakian, A. Radio Wave Propagation Fundamentals. Norwood, MA: Artech House,
2011.

[2] Balanis, C. Advanced Engineering Electromagnetics. New York: Wiley & Sons, 1989.

1 Alphabetical List

1-1888

[3] Rappaport, T. Wireless Communications: Principles and Practice, 2nd Ed New York:
Prentice Hall, 2002.

See Also
phased.FreeSpace | phased.RadarTarget | | fspl | rangeangle

Introduced in R2015b

 clone

1-1889

clone
System object: phased.TwoRayChannel
Package: phased

Create System object with identical property values

Syntax

C = clone(H)

Description

C = clone(H) creates an object, C, having the same property values and same states as
H. If H is locked, so is C.

Input Arguments

H — Two-ray channel
System object

Two-ray channel, specified as a System object.
Example: phased.TwoRayChannel

Output Arguments

C — Two-ray channel
System object

Two-ray channel, returned as a System object.

Introduced in R2015b

1 Alphabetical List

1-1890

getNumInputs
System object: phased.TwoRayChannel
Package: phased

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of inputs
(not counting the object itself) that you must use when calling the step method. This
value changes when you alter properties that turn inputs on or off.

Input Arguments

H — Two-ray channel
phased.TwoRayChannel System object

Two-ray channel, specified as a phased.TwoRayChannel System object.
Example: phased.TwoRayChannel()

Output Arguments

N — Number of expected inputs to step method
positive integer

Number of expected inputs to the step method, returned as a positive integer. The
number does not include the object itself.

Introduced in R2015b

 getNumOutputs

1-1891

getNumOutputs
System object: phased.TwoRayChannel
Package: phased

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value changes when you alter properties that turn outputs on or off.

Input Arguments

H — Two-ray channel
phased.TwoRayChannel System object

Two-ray channel, specified as a phased.TwoRayChannel System object.
Example: phased.TwoRayChannel()

Output Arguments

N — Number of expected outputs
positive integer

Number of outputs expected from calling the step method, returned as a positive integer.

Introduced in R2015b

1 Alphabetical List

1-1892

isLocked
System object: phased.TwoRayChannel
Package: phased

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(s2Ray)

Description

TF = isLocked(s2Ray) returns the locked status, TF, for the TwoRayChannel System
object

isLocked returns a logical value that indicates whether input attributes and
nontunable properties for the object are locked. The object performs an internal
initialization the first time that you execute step. This initialization locks nontunable
properties and input specifications, such as the dimensions, complexity, and data type of
the input data. After locking, isLocked returns a true value.

Input Arguments

s2Ray — Two-ray channel
System object

Two-ray channel, specified as a System object.
Example: phased.TwoRayChannel()

Output Arguments

TF — Locked status
boolean

 isLocked

1-1893

Locked status of phased.TwoRayChannel System object, returned as the Boolean value
true when the input attributes and nontunable properties of the object are locked.
Otherwise, the returned value is false.

Introduced in R2015b

1 Alphabetical List

1-1894

release
System object: phased.TwoRayChannel
Package: phased

Allow property values and input characteristics to change

Syntax

release(s2Ray)

Description

release(s2Ray) releases system resources (such as memory, file handles, or hardware
connections) and enables you to change properties and input characteristics.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

Input Arguments

s2Ray — Two-ray channel
System object

Two-ray channel, specified as a phased.TwoRayChannel System object.
Example: phased.TwoRayChannel

Introduced in R2015b

 reset

1-1895

reset
System object: phased.TwoRayChannel
Package: phased

Reset states of System object

Syntax

reset(s2Ray)

Description

reset(s2Ray) resets the internal state of the phased.TwoRayChannel object, S. This
method resets the random number generator state if SeedSource is a property of this
System object and has the value 'Property'.

Input Arguments

s2Ray — Two-ray channel
System object

Two-ray channel, specified as a System object.
Example: phased.TwoRayChannel

Introduced in R2015b

1 Alphabetical List

1-1896

step
System object: phased.TwoRayChannel
Package: phased

Propagate signal from point to point using two-ray channel model

Syntax

prop_sig = step(s2Ray,sig,origin_pos,dest_pos,origin_vel,dest_vel)

Description

prop_sig = step(s2Ray,sig,origin_pos,dest_pos,origin_vel,dest_vel)

returns the resulting signal, prop_sig, when a narrowband signal, sig, propagates
through a two-ray channel from the origin_pos position to the dest_pos position.
Either the origin_pos or dest_pos arguments can have multiple points but you
cannot specify both as having multiple points. The velocity of the signal origin is specified
in origin_vel and the velocity of the signal destination is specified in dest_vel.
The dimensions of origin_vel and dest_vel must agree with the dimensions of
origin_pos and dest_pos, respectively.

Electromagnetic fields propagated through a two-ray channel can be polarized or
nonpolarized. For, nonpolarized fields, such as an acoustic field, the propagating signal
field, sig, is a vector or matrix. When the fields are polarized, sig is an array of
structures. Every structure element represents an electric field vector in Cartesian form.

In the two-ray environment, there are two signal paths connecting every signal origin
and destination pair. For N signal origins (or N signal destinations), there are 2N
number of paths. The signals for each origin-destination pair do not have to be related.
The signals along the two paths for any single source-destination pair can also differ due
to phase or amplitude differences.

You can keep the two signals at the destination separate or combined — controlled
by the CombinedRaysOutput property. Combined means that the signals at the
source propagate separately along the two paths but are coherently summed at the
destination into a single quantity. To use the separate option, set CombinedRaysOutput

 step

1-1897

to false. To use the combined option, set CombinedRaysOutput to true. This option is
convenient when the difference between the sensor or array gains in the directions of the
two paths is not significant and need not be taken into account.

Note: The object performs an initialization the first time the step method is executed.
This initialization locks nontunable properties and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Input Arguments

s2Ray — Two-ray channel
System object

Two-ray channel, specified as a System object.
Example: phased.TwoRayChannel

sig — Narrowband signal
M-by-N complex-valued matrix | M-by-2N complex-valued matrix | 1-by-N struct
array containing complex-valued fields | 1-by-2N struct array containing complex-
valued fields

• Narrowband nonpolarized scalar signal, specified as an

• M-by-N complex-valued matrix. Each column contains a common signal
propagated along both the line-of-sight path and the reflected path. You can use
this form when both path signals are the same.

• M-by-2N complex-valued matrix. Each adjacent pair of columns represents
a different channel. Within each pair, the first column represents the signal
propagated along the line-of-sight path and the second column represents the
signal propagated along the reflected path.

• Narrowband polarized signal, specified as a

• 1-by-N struct array containing complex-valued fields. Each struct contains
a common polarized signal propagated along both the line-of-sight path and
the reflected path. Each structure element contains an M-by-1 column vector of

1 Alphabetical List

1-1898

electromagnetic field components (sig.X,sig.Y,sig.Z). You can use this form
when both path signals are the same.

• 1-by-2N struct array containing complex-valued fields. Each adjacent pair
of array columns represents a different channel. Within each pair, the first
column represents the signal along the line-of-sight path and the second
column represents the signal along the reflected path. Each structure element
contains an M-by-1 column vector of electromagnetic field components
(sig.X,sig.Y,sig.Z).

The quantity M is the number of samples of the signal and N is the number of two-ray
channels. Each channel corresponds to a source-destination pair.

For polarized fields, the struct element contains three M-by-1 complex-valued column
vectors, sig.X, sig.Y, and sig.Z. These vectors represent the x, y, and z Cartesian
components of the polarized signal.
Example: [1,1;j,1;0.5,0]

Data Types: double
Complex Number Support: Yes

origin_pos — Origin of the signal or signals
3-by-1 real-valued column vector | 3-by-N real-valued matrix

Origin of the signal or signals, specified as a 3-by-1 real-valued column vector or 3-by-N
real-valued matrix. The quantity N is the number of two-ray channels. If origin_pos
is a column vector, it takes the form [x;y;z]. If origin_pos is a matrix, each column
specifies a different signal origin and has the form [x;y;z]. Position units are meters.

origin_pos and dest_pos cannot both be specified as matrices — at least one must be
a 3-by-1 column vector.
Example: [1000;100;500]

Data Types: double

dest_pos — Destination position of the signal or signals
3-by-1 real-valued column vector | 3-by-N real-valued matrix

Destination position of the signal or signals, specified as a 3-by-1 real-valued column
vector or 3-by-N real-valued matrix. The quantity N is the number of two-ray channels
propagating from or to N signal origins. If dest_pos is a 3-by-1 column vector, it takes

 step

1-1899

the form [x;y;z]. If dest_pos is a matrix, each column specifies a different signal
destination and takes the form [x;y;z] Position units are in meters.

You cannot specify origin_pos and dest_pos as matrices. At least one must be a 3-
by-1 column vector.
Example: [0;0;0]

Data Types: double

origin_vel — Velocity of signal origin
3-by-1 real-valued column vector | 3-by-N real-valued matrix

Velocity of signal origin, specified as a 3-by-1 real-valued column vector or 3-by-N
real-valued matrix. The dimensions of origin_vel must match the dimensions of
origin_pos. If origin_vel is a column vector, it takes the form [Vx;Vy;Vz]. If
origin_vel is a 3-by-N matrix, each column specifies a different origin velocity and has
the form [Vx;Vy;Vz]. Velocity units are in meters per second.

Example: [10;0;5]

Data Types: double

dest_vel — Velocity of signal destinations
3-by-1 real-valued column vector | 3-by-N real-valued matrix

Velocity of signal destinations, specified as a 3-by-1 real-valued column vector or 3–
by-N real-valued matrix. The dimensions of dest_vel must match the dimensions of
dest_pos. If dest_vel is a column vector, it takes the form [Vx;Vy;Vz]. If dest_vel
is a 3-by-N matrix, each column specifies a different destination velocity and has the
form [Vx;Vy;Vz] Velocity units are in meters per second.

Example: [0;0;0]

Data Types: double

Output Arguments

prop_sig — Propagated signal
M-by-N complex-valued matrix | M-by-2N complex-valued matrix | 1-by-N struct
array containing complex-valued fields | 1-by-2N struct array containing complex-
valued fields

1 Alphabetical List

1-1900

• Narrowband nonpolarized scalar signal, returned as an:

• M-by-N complex-valued matrix. To return this format, set the
CombinedRaysOutput property to true. Each matrix column contains the
coherently combined signals from the line-of-sight path and the reflected path.

• M-by-2N complex-valued matrix. To return format set the CombinedRaysOutput
property to false. Alternate columns of the matrix contain the signals from the
line-of-sight path and the reflected path.

• Narrowband polarized scalar signal, returned as:

• 1-by-N struct array containing complex-valued fields. To return this format,
set the CombinedRaysOutput property to true. Each column of the array
contains the coherently combined signals from the line-of-sight path and the
reflected path. Each structure element contains the electromagnetic field vector
(prop_sig.X,prop_sig.Y,prop_sig.Z).

• 1-by-2N struct array containing complex-valued fields. To return this
format, set the CombinedRaysOutput property to false. Alternate
columns contains the signals from the line-of-sight path and the reflected
path. Each structure element contains the electromagnetic field vector
(prop_sig.X,prop_sig.Y,prop_sig.Z).

The output prop_sig contains signal samples arriving at the signal destination within
the current input time frame. Whenever it takes longer than the current time frame for
the signal to propagate from the origin to the destination, the output may not contain all
contributions from the input of the current time frame. The remaining output will appear
in the next call to step.

Examples
Compare Two-Ray with Free Space Propagation

Propagate a signal in a two-ray channel environment from a radar at (0,0,10) meters
to a target at (300,200,30) meters. Assume that the radar and target are stationary
and that the transmitting antenna has a cosine pattern. Compare the combined signals
from the two paths with the single signal resulting from free space propagation. Set the
CombinedRaysOutput to true to produce a combined propagated signal.

Create a Rectangular Waveform

Set the sample rate to 2 MHz.

 step

1-1901

fs = 2e6;

sRW = phased.RectangularWaveform('SampleRate',fs);

wavfrm = step(sRW);

Create the Transmitting Antenna and Radiator

Set up a phased.Radiator System object™ to transmit from a cosine antenna

sCosAnt = phased.CosineAntennaElement;

sRad = phased.Radiator('Sensor',sCosAnt);

Specify Transmitter and Target Coordinates

posTx = [0;0;10];

posTgt = [300;200;30];

velTx = [0;0;0];

velTgt = [0;0;0];

Free Space Propagation

Compute the transmitting direction toward the target for the free-space model. Then,
radiate the signal.

[~,angFS] = rangeangle(posTgt,posTx);

wavTx = step(sRad,wavfrm,angFS);

Propagate the signal to the target.

sFS = phased.FreeSpace('SampleRate',sRW.SampleRate);

yfs = step(sFS,wavTx,posTx,posTgt,velTx,velTgt);

release(sRad);

Two-Ray Propagation

Compute the two transmit angles toward the target for line-of-sight (LOS) path and
reflected paths. Compute the transmitting directions toward the target for the two rays.
Then, radiate the signals.

[~,angTwoRay] = rangeangle(posTgt,posTx,'two-ray');

wavTwoRay = step(sRad,wavfrm,angTwoRay);

Propagate the signals to the target.

s2Ray = phased.TwoRayChannel('SampleRate',sRW.SampleRate,...

 'CombinedRaysOutput',true);

y2ray = step(s2Ray,wavTwoRay,posTx,posTgt,velTx,velTgt);

1 Alphabetical List

1-1902

Plot the Propagated Signals

Plot the combined signal against the free-space signal

plot(abs([y2ray yfs]))

legend('Two-ray','Free space')

xlabel('Samples')

ylabel('Signal Magnitude')

Two-Ray Propagation of LFM Waveform

Propagate a linear FM signal in a two-ray channel. The signal propagates from a
transmitter located at (1000,10,10) meters in the global coordinate system to a

 step

1-1903

receiver at (10000,200,30) meters. Assume that the transmitter and the receiver are
stationary and that they both have cosine antenna patterns. Plot the received signal.

Set Up Radar Scenario

Create the required System objects.

wav = phased.LinearFMWaveform('SampleRate',1000000,...

 'OutputFormat','Pulses','NumPulses',2);

sCosAnt = phased.CosineAntennaElement;

sTx = phased.Radiator('Sensor',sCosAnt);

sRx = phased.Collector('Sensor',sCosAnt);

sTwoRayCh = phased.TwoRayChannel('SampleRate',wav.SampleRate,...

 'CombinedRaysOutput',false,'GroundReflectionCoefficient',0.95);

Set up the scene geometry. Specify transmitter and receiver positions and velocities. The
transmitter and receiver are stationary.

posTx = [1000;10;10];

posRx = [10000;200;30];

velTx = [0;0;0];

velRx = [0;0;0];

Specify the transmitting and receiving radar antenna orientations with respect to the
global coordinates. The transmitting antenna points along the +x direction and the
receiving antenna points near but not directly in the -x direction.

laxTx = eye(3);

laxRx = rotx(5)*rotz(170);

Compute the transmission angles which are the angles that the two rays traveling
toward the receiver leave the transmitter. The phased.Radiator System object™ uses
these angles to apply separate antenna gains to the two signals. Because the antenna
gains depend on path direction, you must transmit and receive the two rays separately.

[~,angTx] = rangeangle(posRx,posTx,laxTx,'two-ray');

Create and Radiate Signals from Transmitter

Radiate the signals along the transmission directions.

wavfrm = step(wav);

wavtrans = step(sTx,wavfrm,angTx);

1 Alphabetical List

1-1904

Propagate signals to receiver via two-ray channel.

wavrcv = step(sTwoRayCh,wavtrans,posTx,posRx,velTx,velRx);

Collect Signal at Receiver

Compute the angle at which the two rays traveling from the transmitter arrive at the
receiver. The phased.Collector System object™ uses these angles to apply separate
antenna gains to the two signals.

[~,angRcv] = rangeangle(posTx,posRx,laxRx,'two-ray');

Collect and combine the two received rays.

yR = step(sRx,wavrcv,angRcv);

Plot Received Signal

dt = 1/wav.SampleRate;

n = size(yR,1);

plot([0:(n-1)]*dt*1000000,real(yR))

xlabel('Time ({\mu}sec)')

ylabel('Signal Magnitude')

 step

1-1905

Polarized Field Propagation in Two-Ray Channel

Create a polarized electromagnetic field consisting of rectangular waveform pulses.
Propagate the field from a stationary source with a crossed-dipole antenna element to a
stationary receiver approximately 10 km vertically separated. The receiving antenna is
also a crossed-dipole. Plot the received signal.

Set Radar Waveform Parameters

Assume the pulse width is 10 ms and the sampling rate is 1 MHz. The bandwidth of the
pulse is 0.1 MHz. Assume a 50% duty cycle in which the pulse width is one-half the pulse
repetition interval. Create a two-pulse wave train. Assume a carrier frequency of 100
MHz.

1 Alphabetical List

1-1906

c = physconst('LightSpeed');

fs = 10e6;

pw = 10e-6;

pri = 2*pw;

PRF = 1/pri;

fc = 100e6;

lambda = c/fc;

Set Up Required System Objects

Use a GroundRelativePermittivity of 10.

sLFM = phased.LinearFMWaveform('SampleRate',fs,'PulseWidth',pw,...

 'PRF',PRF,'OutputFormat','Pulses','NumPulses',2,'SweepBandwidth',1e6,...

 'SweepDirection','Up','Envelope','Rectangular','SweepInterval',...

 'Positive');

sCD = phased.CrossedDipoleAntennaElement(...

 'FrequencyRange',[50,200]*1e6);

sRad = phased.Radiator('Sensor',sCD,'OperatingFrequency',fc,...

 'EnablePolarization',true);

sTwoRayCh = phased.TwoRayChannel('SampleRate',fs,...

 'OperatingFrequency',fc,'CombinedRaysOutput',false,...

 'EnablePolarization',true,'GroundRelativePermittivity',10);

sCol = phased.Collector('Sensor',sCD,'OperatingFrequency',fc,...

 'EnablePolarization',true);

Set Up Scene Geometry

Specify transmitter and receiver positions, velocities, and orientations. Place the source
and receiver about 1000 m apart horizontally and approximately 50 m apart vertically.

posTx = [0;100;100];

posRx = [1000;0;150];

velTx = [0;0;0];

velRx = [0;0;0];

laxRx = rotz(180);

laxTx = rotx(1)*eye(3);

Create and Radiate Signals from Transmitter

Compute the transmission angles for the two rays traveling toward the receiver.
These angles are defined with respect to the transmitter local coordinate system. The
phased.Radiator System object™ uses these angles to apply separate antenna gains to
the two signals.

 step

1-1907

[rng,angsTx] = rangeangle(posRx,posTx,laxTx,'two-ray');% Create and plot the signal to propagate along both paths

wavfrm = step(sLFM);

Plot the transmitted Waveform

n = size(wavfrm,1);

plot([0:(n-1)]/fs*1000000,real(wavfrm))

xlabel('Time ({\mu}sec)')

ylabel('Waveform')

sig = step(sRad,wavfrm,angsTx,laxTx);

Propagate signals to receiver via two-ray channel

prop_sig = step(sTwoRayCh,sig,posTx,posRx,velTx,velRx);

1 Alphabetical List

1-1908

Receive Propagated Signal

Compute the reception angles for the two rays arriving at the receiver. These angles are
defined with respect to the receiver local coordinate system. The phased.Collector
System object™ uses these angles to apply separate antenna gains to the two signals.

[~,angsRx] = rangeangle(posTx,posRx,laxRx,'two-ray');

Collect and combine received rays.

y = step(sCol,prop_sig,angsRx,laxRx);

Plot received waveform

plot([0:(n-1)]/fs*1000000,real(y))

xlabel('Time ({\mu}sec)')

ylabel('Received Waveform')

 step

1-1909

References

[1] Proakis, J. Digital Communications. New York: McGraw-Hill, 2001.

[2] Skolnik, M. Introduction to Radar Systems, 3rd Ed. New York: McGraw-Hill

[3] Saakian, A.Radio Wave Propagation Fundamentals. Norwood, MA: Artech House,
2011.

[4] Balanis, C.Advanced Engineering Electromagnetics. New York: Wiley & Sons, 1989.

1 Alphabetical List

1-1910

[5] Rappaport, T.Wireless Communications: Principles and Practice, 2nd Ed New York:
Prentice Hall, 2002.

See Also
phased.FreeSpace.step

Introduced in R2015b

 phased.UCA System object

1-1911

phased.UCA System object

Package: phased

Uniform circular array

Description

The phased.UCA System object creates a uniform circular array (UCA) System object. A
UCA is formed from identical sensor elements equally spaced around a circle.

To compute the response for each element in the array for specified directions:

1 Define and set up your uniform circular array. See “Construction” on page 1-1911.
2 Call step to compute the response according to the properties of phased.UCA. The

behavior of step is specific to each object in the toolbox.

Construction

sUCA = phased.UCA creates a uniform circular array (UCA) System object, sUCA,
consisting of five identical isotropic antenna elements,phased.IsotropicAntennaElement.
The elements are equally spaced around a circle of radius 0.5 meters.

sUCA = phased.UCA(Name,Value) creates a System object, sUCA, with each specified
property Name set to the specified Value. You can specify additional name-value pair
arguments in any order as (Name1,Value1,...,NameN,ValueN).

sUCA = phased.UCA(N,R) creates a UCA System object, sUCA, with the NumElements
property set to N and the Radius property set to R. This syntax creates a UCA consisting
of isotropic antenna elements, phased.IsotropicAntennaElement.

sUCA = phased.UCA(N,R,Name,Value) creates a UCA System object, sUCA, with
the NumElements property set to N, the Radius property set to R, and other specified
property Names set to the specified Values.

1 Alphabetical List

1-1912

Properties

Element — Sensor array element
phased.IsotropicAntennaElement (default) | Phased Array System Toolbox antenna
element | Phased Array System Toolbox microphone element

Sensor array element, specified as a Phased Array System Toolbox antenna or
microphone element System object. You can specify antenna elements which do or do not
support polarization.
Example: phased.ShortDipoleAntennaElement()

NumElements — Number of array elements
5 (default) | integer greater than one

Number of array elements, specified as an integer greater than one.
Example: 3

Radius — Array radius
0.5 (default) | positive scalar

Array radius, specified as a positive scalar in meters.
Example: 2.5

ArrayNormal — Array normal direction
'z' (default) | 'x' | 'y'

Array normal direction, specified as one of 'x', 'y', or 'z'. UCA elements lie in a plane
orthogonal to the array normal direction. Element boresight vectors lie in the same plane
and point radially outward from the origin.

ArrayNormal Property Value Element Positions and Boresight Directions

'x' Array elements lie on the yz-plane. All
element boresight vectors lie in the yz-
plane and point outward from the array
center.

'y' Array elements lie on the zx-plane. All
element boresight vectors lie in the zx-
plane and point outward from the array
center.

 phased.UCA System object

1-1913

ArrayNormal Property Value Element Positions and Boresight Directions

'z' Array elements lie on the xy-plane. All
element boresight vectors lie in the xy-
plane and point outward from the array
center.

Example: 'y'

Taper — Element tapering
1 (default) | complex-valued scalar | complex-valued 1-by-N row vector | complex-valued
N-by-1 column vector

Element tapering or weighting, specified as a complex-valued scalar, 1-by-N row vector,
or N-by-1 column vector. The quantity N represents the number of elements of the array.
Tapers, also known as weights, are applied to each sensor element in the sensor array
and modify both the amplitude and phase of the received data. If 'Taper' is a scalar,
the same taper value is applied to all element. If 'Taper' is a vector, each taper value is
applied to the corresponding sensor element.
Example: [1 2 3 2 1]

Methods

clone Create UCA object with same property
values

directivity Directivity of uniform circular array
collectPlaneWave Simulate received plane waves
getElementNormal Normal vectors for array elements
getElementPosition Positions of array elements
getElementSpacing Spacing between array elements
getNumElements Number of elements in array
getNumInputs Number of expected inputs to step method
getNumOutputs Number of outputs from step method
getTaper Array element tapers

1 Alphabetical List

1-1914

isLocked Locked status for input attributes and
nontunable properties

isPolarizationCapable Polarization capability
pattern Plot UCA array pattern
patternAzimuth Plot UCA array directivity or pattern

versus azimuth
patternElevation Plot UCA array directivity or pattern

versus elevation
release Allow property values and input

characteristics to change
step Output responses of array elements
viewArray View array geometry

Examples

Pattern of 11-Element UCA Antenna Array

Create an 11-element UCA of radius 1.5 meters. Show the azimuth and elevation
directivities.

Evaluate the fields at 45 degrees azimuth and 0 degrees elevation.

sSD = phased.ShortDipoleAntennaElement(...

 'FrequencyRange',[50e6,1000e6],...

 'AxisDirection','Z');

sUCA = phased.UCA('NumElements',11,'Radius',1.5,'Element',sSD);

fc = 500e6;

ang = [45;0];

resp = step(sUCA,fc,ang);

disp(resp.V)

 -1.2247

 -1.2247

 -1.2247

 -1.2247

 -1.2247

 -1.2247

 -1.2247

 phased.UCA System object

1-1915

 -1.2247

 -1.2247

 -1.2247

 -1.2247

Display the azimuth directivity pattern at 500 MHz for azimuth angles between -180 and
180 degrees.

c = physconst('LightSpeed');

pattern(sUCA,fc,[-180:180],0,'Type','directivity','PropagationSpeed',c)

Display the elevation directivity pattern at 500 MHz for elevation angles between -90
and 90 degrees.

1 Alphabetical List

1-1916

pattern(sUCA,fc,[0],[-90:90],'Type','directivity','PropagationSpeed',c)

• Phased Array Gallery

Algorithms

A UCA is formed from N identical sensor elements equally spaced around a circle of
radius R. The circle lies in the xy-plane of the local coordinate system whose origin lies at
the center of the circle. The positions of the elements are defined with respect to the local
array coordinate system. The circular array lies in the xy-plane of the coordinate system.
The normal to the UCA plane lies along the positive z-axis. The elements are oriented so
that their main response directions (normals) point radially outward in the xy-plane.

../examples/phased-array-gallery.html

 phased.UCA System object

1-1917

If the number of elements of the array is odd, the middle element lies on the x-axis. If the
number of elements is even, the midpoint between the two middle elements lies on the x-
axis. For an array of N elements, the azimuth angle of the position of the nth element is
given by

j
n

N n N n N= - - + - ◊ =(() /) / , ,1 2 1 360 1 …

The azimuth angle is defined as the angle, in the xy-plane, from the x-axis toward the y-
axis. The elevation angle is defined as the angle from the xy-plane toward the z-axis. The
angular distance between any two adjacent elements is 360/N degrees. Azimuth angle
values are in degrees. Elevation angles for all array elements are zero.

References

[1] Brookner, E., ed. Radar Technology. Lexington, MA: LexBook, 1996.

[2] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002, pp.
274–304.

1 Alphabetical List

1-1918

See Also
phased.ULA | phased.CustomMicrophoneElement |
phased.OmnidirectionalMicrophoneElement | phased.ConformalArray |
phased.CosineAntennaElement | phased.CrossedDipoleAntennaElement
| phased.CustomAntennaElement | phased.IsotropicAntennaElement |
phased.ShortDipoleAntennaElement | phased.URA

Introduced in R2015a

 clone

1-1919

clone
System object: phased.UCA
Package: phased

Create UCA object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates an object, C, having the same property values and same states as
H. If H is locked, so is C.

Input Arguments

H — Uniform circular array
System object

Uniform circular array specified as a phased.UCA System object.
Example: phased.UCA()

Output Arguments

C — Uniform circular array
System object

Clone of input uniform circular array returned as a phased.UCA System object.

Introduced in R2015a

1 Alphabetical List

1-1920

directivity

System object: phased.UCA
Package: phased

Directivity of uniform circular array

Syntax

D = directivity(sArray,FREQ,ANGLE)

D = directivity(sArray,FREQ,ANGLE,Name,Value)

Description

D = directivity(sArray,FREQ,ANGLE) returns the “Directivity (dBi)” on page
1-1923 of a uniform circular array (UCA) of antenna or microphone elements, sArray,
at frequencies specified by FREQ and in angles of direction specified by ANGLE.

D = directivity(sArray,FREQ,ANGLE,Name,Value) returns the directivity with
additional options specified by one or more Name,Value pair arguments.

Input Arguments

sArray — Uniform circular array
System object

Uniform circular array, specified as a phased.UCA System object.
Example: sArray= phased.UCA;

FREQ — Frequency for computing directivity and patterns
positive scalar | 1-by-L real-valued row vector

Frequencies for computing directivity and patterns, specified as a positive scalar or 1-
by-L real-valued row vector. Frequency units are in hertz.

 directivity

1-1921

• For an antenna or microphone element, FREQ must lie within the range of
values specified by the FrequencyRange or FrequencyVector property of the
element. Otherwise, the element produces no response and the directivity is
returned as –Inf. Most elements use the FrequencyRange property except for
phased.CustomAntennaElement and phased.CustomMicrophoneElement, which use
the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements
that make up the array. Otherwise, the array produces no response and the
directivity is returned as –Inf.

Example: [1e8 2e8]

Data Types: double

ANGLE — Angles for computing directivity
1-by-M real-valued row vector | 2-by-M real-valued matrix

Angles for computing directivity, specified as a 1-by-M real-valued row vector or a 2-
by-M real-valued matrix, where M is the number of angular directions. Angle units
are in degrees. If ANGLE is a 2-by-M matrix, then each column specifies a direction in
azimuth and elevation, [az;el]. The azimuth angle must lie between –180° and 180°.
The elevation angle must lie between –90° and 90°.

If ANGLE is a 1-by-M vector, then each entry represents an azimuth angle, with the
elevation angle assumed to be zero.

The azimuth angle is the angle between the x-axis and the projection of the direction
vector onto the xy plane. This angle is positive when measured from the x-axis toward the
y-axis. The elevation angle is the angle between the direction vector and xy plane. This
angle is positive when measured towards the z-axis.
Example: [45 60; 0 10]

Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

1 Alphabetical List

1-1922

'PropagationSpeed' — Signal propagation speed
speed of light (default) | positive scalar

Signal propagation speed, specified as the comma-separated pair consisting of
'PropagationSpeed' and a positive scalar in meters per second.

Example: 'PropagationSpeed',physconst('LightSpeed')

Data Types: double

'Weights' — Array weights
1 (default) | N-by-1 complex-valued column vector | N-by-L complex-valued matrix

Array weights, specified as the comma-separated pair consisting of 'Weights' and an
N-by-1 complex-valued column vector or N-by-L complex-valued matrix. Array weights
are applied to the elements of the array to produce array steering, tapering, or both. The
dimension N is the number of elements in the array. The dimension L is the number of
frequencies specified by FREQ.

Weights Dimension FREQ Dimension Purpose

N-by-1 complex-valued
column vector

Scalar or 1-by-L row vector Applies a set of weights for
the single frequency or for all
L frequencies.

N-by-L complex-valued
matrix

1-by-L row vector Applies each of the L
columns of 'Weights' for
the corresponding frequency
in FREQ.

Note: Use complex weights to steer the array response toward different directions. You
can create weights using the phased.SteeringVector System object or you can compute
your own weights. In general, you apply Hermitian conjugation before using weights in
any Phased Array System Toolbox function or System object such as phased.Radiator
or phased.Collector. However, for the directivity, pattern, patternAzimuth, and
patternElevation methods of any array System object use the steering vector without
conjugation.

Example: 'Weights',ones(N,M)

Data Types: double

 directivity

1-1923

Complex Number Support: Yes

Output Arguments

D — Directivity
M-by-L matrix

Directivity, returned as an M-by-L matrix whose columns contain the directivities at the
M angles specified by ANGLE. Each column corresponds to one of the L frequency values
specified in FREQ. Directivity units are in dBi.

Definitions

Directivity (dBi)

Directivity describes the directionality of the radiation pattern of a sensor element
or array of sensor elements. Higher directivity is desired when you want to transmit
more radiation in a specific direction. Directivity is the ratio of the transmitted radiant
intensity in a specified direction to the radiant intensity transmitted by an isotropic
radiator with the same total transmitted power

D
U

P
=

()
4p

q jrad

total

,

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal
is the total power transmitted by an isotropic radiator. For a receiving element or array,
directivity measures the sensitivity toward radiation arriving from a specific direction.
The principle of reciprocity shows that the directivity of an element or array used for
reception equals the directivity of the same element or array used for transmission.
When converted to decibels, the directivity is denoted as dBi. For information on
directivity, read the notes on “Element directivity” and “Array directivity”.

Computing directivity requires integrating the far-field transmitted radiant intensity
over all directions in space to obtain the total transmitted power. There is a difference
between how that integration is performed when Antenna Toolbox antennas are used
in a phased array and when Phased Array System Toolbox antennas are used. When
an array contains Antenna Toolbox antennas, the directivity computation is performed

1 Alphabetical List

1-1924

using a triangular mesh created from 500 regularly spaced points over a sphere. For
Phased Array System Toolbox antennas, the integration uses a uniform rectangular
mesh of points spaced 1° apart in azimuth and elevation over a sphere. There may be
significant differences in computed directivity, especially for large arrays.

Examples

Directivity of a UCA

Compute the directivity of two uniform circular arrays (UCA) at zero degrees azimuth
and elevation. The first array consists of isotropic antenna elements. The second array
consists of cosine antenna elements. In addition, compute the directivity of the cosine
element array steered to a 45 degrees elevation.

Array of isotropic antenna elements

First, create a 10-element UCA with a radius of one-half meter consisting of isotropic
antenna elements. Set the signal frequency to 300 MHz.

c = physconst('LightSpeed');

fc = 300e6;

sIso = phased.IsotropicAntennaElement;

sArray = phased.UCA('Element',sIso,'NumElements',10,'Radius',0.5);

ang = [0;0];

d = directivity(sArray,fc,ang,'PropagationSpeed',c)

d =

 -1.1423

Array of cosine antenna elements

Next, create a 10-element UCA of cosine antenna elements also with a 0.5 meter radius.

sCos = phased.CosineAntennaElement('CosinePower',[3,3]);

sArray1 = phased.UCA('Element',sCos,'NumElements',10,'Radius',0.5);

ang = [0;0];

d = directivity(sArray1,fc,ang,'PropagationSpeed',c)

d =

 directivity

1-1925

 3.2550

The directivity is increased due to the added directivity of the cosine antenna elements

Steered array of cosine antenna elements

Finally, steer the cosine antenna array toward 45 degrees elevation, and then examine
the directivity at 45 degrees.

ang = [0;45];

lambda = c/fc;

w = steervec(getElementPosition(sArray1)/lambda,ang);

d = directivity(sArray1,fc,ang,'PropagationSpeed',c,...

 'Weights',w)

d =

 -3.1410

The directivity is decreased because of the combined reduction of directivity of the
elements and the array.

See Also
phased.UCA.pattern | phased.UCA.patternAzimuth | phased.UCA.patternElevation

Introduced in R2015a

1 Alphabetical List

1-1926

collectPlaneWave
System object: phased.UCA
Package: phased

Simulate received plane waves

Syntax
Y = collectPlaneWave(H,X,ANG)

Y = collectPlaneWave(H,X,ANG,FREQ)

Y = collectPlaneWave(H,X,ANG,FREQ,C)

Description
Y = collectPlaneWave(H,X,ANG) returns the received signals at the sensor array, H,
when the input signals indicated by X arrive at the array from the directions specified in
ANG.

Y = collectPlaneWave(H,X,ANG,FREQ), in addition, specifies the incoming signal
carrier frequency in FREQ.

Y = collectPlaneWave(H,X,ANG,FREQ,C), in addition, specifies the signal
propagation speed in C.

Input Arguments
H — Uniform circular array
System object

Uniform circular array specified as a phased.UCA System object.
Example: H = phased.UCA();

X — Incoming signals
M-column matrix

Incoming signals, specified as an M-column matrix. Each column of X represents an
individual incoming signal.

 collectPlaneWave

1-1927

Example: [1,5;2,10;3,10]

Data Types: double
Complex Number Support: Yes

ANG — Arrival directions of incoming signals
1-by-M real-valued vector | 2-by-M real-valued matrix

Arrival directions of incoming signals, specified as a 1-by-M vector or a 2-by-M matrix,
where M is the number of incoming signals. Each column specifies the direction of arrival
of the corresponding signal in X. If ANG is a 2-by-M matrix, each column specifies the
direction in azimuth and elevation of the incoming signal [az;el]. Angular units are
in degrees. The azimuth angle must lie between –180° and 180° and the elevation angle
must lie between –90° and 90°.

If ANG is a 1-by-M vector, then each entry represents a set of azimuth angles, with the
elevation angles assumed to be zero.

The azimuth angle is the angle between the x-axis and the projection of the arrival
direction vector onto the xy plane. When measured from the x-axis toward the y-axis, the
azimuth angle is positive.

The elevation angle is the angle between the arrival direction vector and the xy-plane.
When measured toward the z axis, the elevation angle is positive.
Example: [20,30;15,25]

Data Types: double

FREQ — Signal carrier frequency
3e8 (default) | positive scalar

Signal carrier frequency, specified as a positive scalar in hertz.
Data Types: double

C — Signal propagation speed
speed of light (default) | positive scalar

Signal propagation speed, specified as a positive scalar in meters per second.
Example: physconst('LightSpeed')

Data Types: double

1 Alphabetical List

1-1928

Output Arguments
Y — Received signals
N-column complex-valued row vector

Received signals, returned as an N-column complex-valued row vector. The quantity N
is the number of elements in the array. Each column of Y contains the combined received
signals at the corresponding array element.

Examples
Simulate Received Signal at 5-element UCA

Create a random signal arriving at a 5-element UCA from 10 degrees azimuth and
30 degrees azimuth. Both signals have an elevation angle of 0 degrees. Assume the
propagation speed is the speed of light and the carrier frequency of the signal is 100
MHz. The signals are two random noise signals of three samples each.

sUCA = phased.UCA('NumElements',5,'Radius',2.0);

y = collectPlaneWave(sUCA,randn(3,2),[10 30],100e6,...

 physconst('LightSpeed'));

disp(y)

 Columns 1 through 4

 -0.8817 + 1.0528i 1.0037 - 0.3636i -1.0579 - 0.8531i -1.0698 + 0.5187i

 -1.6512 + 1.3471i 1.7358 + 0.7662i -1.2932 - 1.6792i -1.0279 + 1.6997i

 2.5071 - 2.4424i -2.7270 - 0.2435i 2.4009 + 2.4977i 2.1808 - 2.1178i

 Column 5

 -0.6388 - 0.9769i

 -1.8283 - 0.7336i

 2.3743 + 1.8105i

Algorithms
collectPlaneWave modulates the input signal with a phase corresponding to the
delay caused by the direction of arrival. The method does not account for the response of
individual elements in the array.

 collectPlaneWave

1-1929

For further details, see [1].

References

[1] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002.

See Also
phitheta2azel | uv2azel

Introduced in R2015a

1 Alphabetical List

1-1930

getElementNormal
System object: phased.UCA
Package: phased

Normal vectors for array elements

Syntax

normvec = getElementNormal(sArray)

normvec = getElementNormal(sArray,elemidx)

Description

normvec = getElementNormal(sArray) returns the element normals of
the phased.UCA System object, sArray. normv is a 2-by-N matrix, where N is
the number of elements in sArray. Each column of normv specifies the normal
direction of the corresponding element in the local coordinate system in the form
[azimuth;elevation]. Units are degrees. For details regarding the local coordinate
system of a UCA, type

phased.UCA.coordinateSystemInfo;

at the command line.

normvec = getElementNormal(sArray,elemidx) returns only the normals of the
elements that are specified in the element index vector elemidx.

Input Arguments

sArray — Uniform circular array
phased.UCA System object

Uniform circular array, specified as a phased.UCA System object.
Example: phased.UCA

elemidx — Element index vector
all elements (default) | vector of positive integers

 getElementNormal

1-1931

Element index vector, specified as a vector of positive integers each of which takes a
value from 1 to N. The dimension N is the number of elements of the array.
Example: [1,2,3]

Output Arguments

normvec — Normal vector
2-by-M real-valued matrix

Normal vector of array elements, returned as a 2-by-M real matrix. Each column
of normvec specifies the normal direction of the corresponding element in the local
coordinate system in the form [azimuth;elevation]. Units are degrees. If the input
argument elemidx is not specified, M is the number of elements of the array, N. If
elemidx is specified, M is the dimension of elemidx.

Examples

UCA Element Normal Vectors

Construct three different 7-element UCA with a radius of 0.5 meters, and obtain the
normal vectors of the middle three elements. Choose the array normal vectors to point
along the x-, y-, and z-axes.

First, choose the array normal along the x-axis.

sUCA1 = phased.UCA('NumElements',7,'Radius',0.5,'ArrayNormal','x');

pos = getElementPosition(sUCA1,[3,4,5])

normvec = getElementNormal(sUCA1,[3,4,5])

pos =

 0 0 0

 0.3117 0.5000 0.3117

 -0.3909 0 0.3909

normvec =

1 Alphabetical List

1-1932

 90.0000 90.0000 90.0000

 -51.4286 0 51.4286

These outputs show that the array elements lie in the yz-plane. The normal vectors of the
array elements also lie in the yz-plane and point outward like spokes on a wheel.

Next, choose the array normal along the y-axis.

sUCA2 = phased.UCA('NumElements',7,'Radius',0.5,'ArrayNormal','y');

pos = getElementPosition(sUCA2,[3,4,5])

normvec = getElementNormal(sUCA2,[3,4,5])

pos =

 0.3117 0.5000 0.3117

 0 0 0

 -0.3909 0 0.3909

normvec =

 0 0 0

 -51.4286 0 51.4286

These outputs show that the array elements lie in the zx-plane. The normal vectors of the
array elements also lie in the zx-plane and also point outward.

Finally, set the array normal along the z-axis. This is the default value of array normal.

sUCA3 = phased.UCA('NumElements',7,'Radius',0.5,'ArrayNormal','z');

pos = getElementPosition(sUCA3,[3,4,5])

normvec = getElementNormal(sUCA3,[3,4,5])

pos =

 0.3117 0.5000 0.3117

 -0.3909 0 0.3909

 0 0 0

normvec =

 getElementNormal

1-1933

 -51.4286 0 51.4286

 0 0 0

These outputs show that the array elements lie in the xy-plane. The normal vectors of the
array elements also lie in the xy-plane and also point outward.

Introduced in R2015a

1 Alphabetical List

1-1934

getElementPosition
System object: phased.UCA
Package: phased

Positions of array elements

Syntax

pos = getElementPosition(sUCA)

pos = getElementPosition(sUCA,elemidx)

Description

pos = getElementPosition(sUCA) returns the element positions of the phased.UCA
System object, sUCA. pos is a 3-by-N matrix, where N is the number of elements in sUCA.
Each column of pos defines the position of an element in the local coordinate system, in
meters, using the form [x;y;z]. The origin of the local coordinate system is the center of
the circular array.

pos = getElementPosition(sUCA,elemidx) returns only the positions of the
elements that are specified in the element index vector elemidx.

Input Arguments

sUCA — Uniform circular array
phased.UCA System object

Uniform circular array, specified as a phased.UCA System object.
Example: phased.UCA

elemidx — Element index vector
all elements (default) | vector of positive integers

Element index vector, specified as a vector of positive integers each of which takes a
value from 1 to N. The quantity N is the number of elements of the array.

 getElementPosition

1-1935

Example: [1,2,3]

Output Arguments

pos — Positions of array elements
3-by-M real matrix

Positions of array elements, returned as a 3-by-M real matrix. If the input argument
elemidx is not specified, M is the number of elements of the array, N. If elemidx is
specified, M is the dimension of elemidx.

Examples

Positions of UCA ELements

Construct a 7-element UCA with a radius of 0.5 meters, and obtain the positions of the
middle three elements.

sArray = phased.UCA('NumElements',7,'Radius',0.5);

pos = getElementPosition(sArray,[3,4,5])

pos =

 0.3117 0.5000 0.3117

 -0.3909 0 0.3909

 0 0 0

The output verifies that the position of the middle element of an array with an odd
number of elements lies on the x-axis.

Introduced in R2015a

1 Alphabetical List

1-1936

getElementSpacing
System object: phased.UCA
Package: phased

Spacing between array elements

Syntax

dist = getElementSpacing(sArray)

dist = getElementSpacing(sArray,disttype)

Description

dist = getElementSpacing(sArray) returns the arc length between adjacent
elements of the phased.UCA System object, sArray.

dist = getElementSpacing(sArray,disttype) returns either the arc length or
chord length between adjacent elements depending on the specification of disttype.

Input Arguments

sArray — Uniform circular array
phased.UCA System object

Uniform circular array, specified as a phased.UCA System object.
Example: phased.UCA()

disttype — Distance type
'arc' (default) | 'chord'

Distance type to define path between adjacent array elements, specified as a string
having values of 'arc' or 'chord'. If disttype is specified as 'arc', the returned
distance is the arc length between adjacent elements. If disttype is specified as
'chord', the returned distance is the chord length between adjacent elements.

Example: 'chord'

 getElementSpacing

1-1937

Output Arguments

spacing — Spacing between elements
scalar

Spacing between elements, returned as a scalar. A uniform circular array has a unique
distance between all pairs of adjacent elements. The distance depends only upon the
radius of the array, R, and the angle between two adjacent elements, Δφ . The angle
between two adjacent elements is computed from the number of elements, Δφ = 2π/N. If
disttype is specified as 'arc', the method returns
RΔφ.
If disttype is specified as 'chord', the method returns
2Rsin(Δφ/2).
The chord distance is always less than the arc distance.

Examples

Spacing Between UCA Elements

Construct a 10-element UCA with a radius of 1.5 meters, and obtain the arc distance
between any two adjacent elements. Then, obtain the chord distance.

sArray = phased.UCA('NumElements',10,'Radius',1.5);

dist = getElementSpacing(sArray,'arc')

dist =

 0.9425

dist = getElementSpacing(sArray,'chord')

dist =

 0.9271

Introduced in R2015a

1 Alphabetical List

1-1938

getNumElements
System object: phased.UCA
Package: phased

Number of elements in array

Syntax
N = getNumElements(H)

Description

N = getNumElements(H) returns the number of elements, N, in the UCA object H.

Input Arguments
H — Uniform circular array
phased.UCA System object

Uniform circular array, specified as a phased.UCA System object.
Example: H = phased.UCA();

Output Arguments
N — Number of elements
positive integer

Number of elements of array, returned as a positive integer.

Examples
Number of Elements of UCA

Create a UCA with the default number of elements. Verify that there are five elements.

 getNumElements

1-1939

sArray = phased.UCA();

N = getNumElements(sArray)

N =

 5

Introduced in R2015a

1 Alphabetical List

1-1940

getNumInputs
System object: phased.UCA
Package: phased

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of inputs
(not counting the object itself) that you must use when calling the step method. This
value changes when you alter properties that turn inputs on or off.

Input Arguments

H — Uniform circular array
phased.UCA System object

Uniform circular array, specified as a phased.UCA System object.
Example: phased.UCA()

Output Arguments

N — Number of expected inputs to step method
positive integer

Number of expected inputs to the step method, returned as a positive integer. The
number does not include the object itself.

Introduced in R2015a

 getNumOutputs

1-1941

getNumOutputs
System object: phased.UCA
Package: phased

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value changes when you alter properties that turn outputs on or off.

Input Arguments

H — Uniform circular array
phased.UCA System object

Uniform circular array, specified as a phased.UCA System object.
Example: phased.UCA()

Output Arguments

N — Number of expected outputs
positive integer

Number of outputs expected from calling the step method, returned as a positive
integer.

Introduced in R2015a

1 Alphabetical List

1-1942

getTaper

System object: phased.UCA
Package: phased

Array element tapers

Syntax

WTS = getTaper(H)

Description

WTS = getTaper(H) returns the tapers, WTS, applied to each element of the phased
uniform circular array (UCA), H. Tapers are often referred to as weights.

Input Arguments

H — Uniform circular array
System object

Uniform circular array, specified as a phased.ULA System object.
Example: H = phased.UCA();

Output Arguments

WTS — Array element tapers
N-by-1 complex-valued vector

Array element tapers, returned as an N-by-1 complex-valued vector, where N is the
number of elements in the array.

 getTaper

1-1943

Examples

Show UCA Element Tapers

Construct a 7-element UCA array of isotropic antenna alements with a Taylor window
taper. Design the array to have a radius of 0.5 meters. Then, draw the array showing the
element taper shading.

Nelem = 7;

R = 0.5;

taper = taylorwin(Nelem);

sArray = phased.UCA(Nelem,R,'Taper',taper.');

w = getTaper(sArray)

viewArray(sArray,'ShowTaper',true);

w =

 0.4520

 0.9009

 1.3680

 1.5581

 1.3680

 0.9009

 0.4520

1 Alphabetical List

1-1944

Both the output and figure above shows that the taper magnitudes are largest near the
middle element.

Introduced in R2015a

 isLocked

1-1945

isLocked

System object: phased.UCA
Package: phased

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(S)

Description

TF = isLocked(S) returns the locked status, TF, for the UCA System object S.

isLocked returns a logical value that indicates whether input attributes and
nontunable properties for the object are locked. The object performs an internal
initialization the first time that you execute step. This initialization locks nontunable
properties and input specifications, such as the dimensions, complexity, and data type of
the input data. After locking, isLocked returns a true value.

Input Arguments

S — Uniform circular array
phased.UCA System object

Uniform circular array, specified as a phased.UCA System object.
Example: phased.UCA()

Output Arguments

TF — Locked status of UCA System object
boolean

1 Alphabetical List

1-1946

Locked status of UCA System object, returned as a boolean value true when the input
attributes and nontunable properties of the object are locked. Otherwise, the returned
value is false.

Introduced in R2015a

 isPolarizationCapable

1-1947

isPolarizationCapable

System object: phased.UCA
Package: phased

Polarization capability

Syntax

flag = isPolarizationCapable(H)

Description

flag = isPolarizationCapable(H) returns a Boolean value, flag, indicating
whether the array supports polarization. An array supports polarization when all of its
constituent sensor elements support polarization.

Input Arguments

H — Uniform line array
System object

Uniform line array specified as a phased.UCA System object.

Output Arguments

flag — Polarization-capability flag
boolean

Polarization-capability flag returned as a boolean value true when the array supports
polarization or false when it does not.

1 Alphabetical List

1-1948

Examples

Show UCA is Polarization Capable

Determine whether a UCA array of short-dipole antenna elements supports polarization.

sSD = phased.ShortDipoleAntennaElement(...

 'FrequencyRange',[1e9 10e9]);

sUCA = phased.UCA('NumElements',7,'Radius',0.5,'Element',sSD);

isPolarizationCapable(sUCA)

ans =

 1

The result shows that a UCA of short-dipole antenna elements supports polarization.

Introduced in R2015a

http://www.mathworks.com/help/phased/ref/phased.shortdipoleantennaelement-class.html

 pattern

1-1949

pattern

System object: phased.UCA
Package: phased

Plot UCA array pattern

Syntax

pattern(sArray,FREQ)

pattern(sArray,FREQ,AZ)

pattern(sArray,FREQ,AZ,EL)

pattern(___ ,Name,Value)

[PAT,AZ_ANG,EL_ANG] = pattern(___)

Description

pattern(sArray,FREQ) plots the 3-D array directivity pattern (in dBi) for the array
specified in sArray. The operating frequency is specified in FREQ.

pattern(sArray,FREQ,AZ) plots the array directivity pattern at the specified azimuth
angle.

pattern(sArray,FREQ,AZ,EL) plots the array directivity pattern at specified azimuth
and elevation angles.

pattern(___ ,Name,Value) plots the array pattern with additional options specified
by one or more Name,Value pair arguments.

[PAT,AZ_ANG,EL_ANG] = pattern(___) returns the array pattern in PAT. The
AZ_ANG output contains the coordinate values corresponding to the rows of PAT. The
EL_ANG output contains the coordinate values corresponding to the columns of PAT.
If the 'CoordinateSystem' parameter is set to 'uv', then AZ_ANG contains the
U coordinates of the pattern and EL_ANG contains the V coordinates of the pattern.
Otherwise, they are in angular units in degrees. UV units are dimensionless.

1 Alphabetical List

1-1950

Note: This method replaces the previous plotResponse method. To replace plots using
plotResponse plots with equivalent plots using pattern, see “Convert plotResponse to
pattern” on page 1-1955

Input Arguments

sArray — Uniform circular array
System object

Uniform circular array, specified as a phased.UCA System object.
Example: sArray= phased.UCA;

FREQ — Frequency for computing directivity and patterns
positive scalar | 1-by-L real-valued row vector

Frequencies for computing directivity and patterns, specified as a positive scalar or 1-
by-L real-valued row vector. Frequency units are in hertz.

• For an antenna or microphone element, FREQ must lie within the range of
values specified by the FrequencyRange or FrequencyVector property of the
element. Otherwise, the element produces no response and the directivity is
returned as –Inf. Most elements use the FrequencyRange property except for
phased.CustomAntennaElement and phased.CustomMicrophoneElement, which use
the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements
that make up the array. Otherwise, the array produces no response and the
directivity is returned as –Inf.

Example: [1e8 2e8]

Data Types: double

AZ — Azimuth angles
[-180:180] (default) | 1-by-M real-valued row vector

Azimuth angles for computing directivity and pattern, specified as a 1-by-M real-
valued row vector where M is the number of azimuth angles. Angle units are in degrees.
Azimuth angles must lie between –180° and 180°.

 pattern

1-1951

The azimuth angle is the angle between the x-axis and the projection of the direction
vector onto the xy plane. When measured from the x-axis toward the y-axis, this angle is
positive.
Example: [-45:2:45]

Data Types: double

EL — Elevation angles
[-90:90] (default) | 1-by-N real-valued row vector

Elevation angles for computing directivity and pattern, specified as a 1-by-N real-valued
row vector where N is the number of desired elevation directions. Angle units are in
degrees. The elevation angle must lie between –90° and 90°.

The elevation angle is the angle between the direction vector and xy-plane. When
measured towards the z-axis, this angle is positive.
Example: [-75:1:70]

Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'CoordinateSystem' — Plotting coordinate system
'polar' (default) | 'rectangular' | 'uv'

Plotting coordinate system of the pattern, specified as the comma-separated pair
consisting of 'CoordinateSystem' and one of 'polar', 'rectangular', or
'uv'. When 'CoordinateSystem' is set to 'polar' or 'rectangular', the
AZ and EL arguments specify the pattern azimuth and elevation, respectively. AZ
values must lie between –180° and 180°. EL values must lie between –90° and 90°. If
'CoordinateSystem' is set to 'uv', AZ and EL then specify U and V coordinates,
respectively. AZ and EL must lie between -1 and 1.

Example: 'uv'

Data Types: char

1 Alphabetical List

1-1952

'Type' — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and
one of

• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed

pattern is for the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field

pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'

Data Types: char

'Normalize' — Display normalize pattern
true (default) | false

Display normalized pattern, specified as the comma-separated pair consisting of
'Normalize' and a Boolean. Set this parameter to true to display a normalized pattern.
When you set 'Type' to 'directivity', this parameter does not apply. Directivity
patterns are already normalized.
Example:
Data Types: logical

'PlotStyle' — Plotting style
'overlay' (default) | 'waterfall'

Plotting style, specified as the comma-separated pair consisting of 'Plotstyle' and
either 'overlay' or 'waterfall'. This parameter applies when you specify multiple
frequencies in FREQ in 2-D plots. You can draw 2-D plots by setting one of the arguments
AZ or EL to a scalar.

Example:
Data Types: char

'Polarization' — Polarized field component
'combined' (default) | 'H' | 'V'

 pattern

1-1953

Polarized field component to display, specified as the comma-separated pair consisting
of 'Polarization' and 'combined', 'H', or 'V'. This parameter applies only when
the sensors are polarization-capable and when the 'Type' parameter is not set to
'directivity'. This table shows the meaning of the display options

'Polarization' Display

'combined' Combined H and V polarization
components

'H' H polarization component
'V' V polarization component

Example: 'V'

Data Types: char

'PropagationSpeed' — Signal propagation speed
speed of light (default) | positive scalar

Signal propagation speed, specified as the comma-separated pair consisting of
'PropagationSpeed' and a positive scalar in meters per second.

Example: 'PropagationSpeed',physconst('LightSpeed')

Data Types: double

'Weights' — Array weights
1 (default) | N-by-1 complex-valued column vector | N-by-L complex-valued matrix

Array weights, specified as the comma-separated pair consisting of 'Weights' and an
N-by-1 complex-valued column vector or N-by-L complex-valued matrix. Array weights
are applied to the elements of the array to produce array steering, tapering, or both. The
dimension N is the number of elements in the array. The dimension L is the number of
frequencies specified by FREQ.

Weights Dimension FREQ Dimension Purpose

N-by-1 complex-valued
column vector

Scalar or 1-by-L row vector Applies a set of weights for
the single frequency or for all
L frequencies.

N-by-L complex-valued
matrix

1-by-L row vector Applies each of the L
columns of 'Weights' for

1 Alphabetical List

1-1954

Weights Dimension FREQ Dimension Purpose

the corresponding frequency
in FREQ.

Note: Use complex weights to steer the array response toward different directions. You
can create weights using the phased.SteeringVector System object or you can compute
your own weights. In general, you apply Hermitian conjugation before using weights in
any Phased Array System Toolbox function or System object such as phased.Radiator
or phased.Collector. However, for the directivity, pattern, patternAzimuth, and
patternElevation methods of any array System object use the steering vector without
conjugation.

Example: 'Weights',ones(N,M)

Data Types: double
Complex Number Support: Yes

Output Arguments

PAT — Array pattern
M-by-N real-valued matrix

Array pattern, returned as an M-by-N real-valued matrix. The dimensions of PAT
correspond to the dimensions of the output arguments AZ_ANG and EL_ANG.

AZ_ANG — Azimuth angles
scalar | 1-by-M real-valued row vector

Azimuth angles for displaying directivity or response pattern, returned as a scalar or 1-
by-M real-valued row vector corresponding to the dimension set in AZ. The rows of PAT
correspond to the values in AZ_ANG.

EL_ANG — Elevation angles
scalar | 1-by-N real-valued row vector

Elevation angles for displaying directivity or response, returned as a scalar or 1-by-N
real-valued row vector corresponding to the dimension set in EL. The columns of PAT
correspond to the values in EL_ANG.

 pattern

1-1955

More About

Directivity

Directivity describes the directionality of the radiation pattern of a sensor element
or array of sensor elements. Higher directivity is desired when you want to transmit
more radiation in a specific direction. Directivity is the ratio of the transmitted radiant
intensity in a specified direction to the radiant intensity transmitted by an isotropic
radiator with the same total transmitted power

D
U

P
=

()
4p

q jrad

total

,

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal
is the total power transmitted by an isotropic radiator. For a receiving element or array,
directivity measures the sensitivity toward radiation arriving from a specific direction.
The principle of reciprocity shows that the directivity of an element or array used for
reception equals the directivity of the same element or array used for transmission.
When converted to decibels, the directivity is denoted as dBi. For information on
directivity, read the notes on “Element directivity” and “Array directivity”.

Computing directivity requires integrating the far-field transmitted radiant intensity
over all directions in space to obtain the total transmitted power. There is a difference
between how that integration is performed when Antenna Toolbox antennas are used
in a phased array and when Phased Array System Toolbox antennas are used. When
an array contains Antenna Toolbox antennas, the directivity computation is performed
using a triangular mesh created from 500 regularly spaced points over a sphere. For
Phased Array System Toolbox antennas, the integration uses a uniform rectangular
mesh of points spaced 1° apart in azimuth and elevation over a sphere. There may be
significant differences in computed directivity, especially for large arrays.

Convert plotResponse to pattern

For antenna, microphone, and array System objects, the pattern method replaces the
plotResponse method. In addition, two new simplified methods exist just to draw
2-D azimuth and elevation pattern plots. These methods are azimuthPattern and
elevationPattern.

1 Alphabetical List

1-1956

The following table is a guide for converting your code from using plotResponse to
pattern. Notice that some of the inputs have changed from input arguments to Name-
Value pairs and conversely. The general pattern method syntax is

pattern(H,FREQ,AZ,EL,'Name1','Value1',...,'NameN','ValueN')

plotResponse Inputs plotResponse Description pattern Inputs

H argument Antenna, microphone, or array
System object.

H argument (no change)

FREQ argument Operating frequency. FREQ argument (no change)
V argument Propagation speed. This

argument is used only for
arrays.

'PropagationSpeed' name-
value pair. This parameter is
only used for arrays.

'Format' and 'RespCut'
name-value pairs

These options work together to
let you create a plot in angle
space (line or polar style) or
UV space. They also determine
whether the plot is 2-D or 3-
D. This table shows you how to
create different types of plots
using plotResponse.

Display space

Angle space
(2D)

Set
'RespCut'

to 'Az' or

'El'. Set
'Format' to
'line' or
'polar'.

Set the display
axis using
either the
the
'AzimuthAngles'

or
'ElevationAngles'

'CoordinateSystem' name-
value pair used together with
the AZ and EL input arguments.

'CoordinateSystem' has
the same options as the
plotResponse method
'Format'name-value pair,
except that 'line' is now
named 'rectangular'. The
table shows how to create
different types of plots using
pattern.

Display space

Angle space
(2D)

Set
'Coordinate

System' to
'rectangular'

or 'polar'.
Specify either
AZ or EL as a
scalar.

Angle space
(3D)

Set
'Coordinate

 pattern

1-1957

plotResponse Inputs plotResponse Description pattern Inputs

Display space

name-value
pairs.

Angle space
(3D)

Set
'RespCut'

to '3D'. Set
'Format' to
'line' or
'polar'.

Set the display
axis using
both the
'AzimuthAngles'

and'ElevationAngles'
name-value
pairs.

UV space (2D) Set
'RespCut'

to'U'. Set
'Format'

to 'UV'. Set
the display
range using
the 'UGrid'
name-value
pair.

UV space (3D) Set
'RespCut'

to'3D'. Set
'Format' to
'UV'. Set the
display range
using both
the 'UGrid'
and 'VGrid'

Display space

System' to
'rectangular'

or 'polar'.
Specify both
AZ and EL as
vectors.

UV space (2D) Set
'Coordinate

System' to
'uv'. Use AZ
to specify a U-
space vector.
Use EL to
specify a V-
space scalar.

UV space (3D) Set
'Coordinate

System' to
'uv'. Use AZ
to specify a U-
space vector.
Use EL to
specify a V-
space vector.

If you set CoordinateSystem
to 'uv', enter the UV grid
values using AZ and EL.

1 Alphabetical List

1-1958

plotResponse Inputs plotResponse Description pattern Inputs

Display space

name-value
pairs.

'CutAngle' name-value pair Constant angle at to take an
azimuth or elevation cut. When
producing a 2-D plot and when
'RespCut' is set to 'Az' or
'El', use 'CutAngle' to set
the slice across which to view
the plot.

No equivalent name-value pair.
To create a cut, specify either AZ
or EL as a scalar, not a vector.

'NormalizeResponse' name-
value pair

Normalizes the plot.
When 'Unit' is set to
'dbi', you cannot specify
'NormalizeResponse'.

'Normalize' name-value
pair. When 'Type' is set to
'directivity',

you cannot specify
'Normalize'.
.

'OverlayFreq' name-value
pair

Plot multiple frequencies on
the same 2-D plot. Available
only when 'Format' is
set to 'line' or 'uv' and
'RespCut' is not set to '3D'.
The value true produces an
overlay plot and the value
false produces a waterfall
plot.

'PlotStyle' name-value pair
plots multiple frequencies on the
same 2-D plot.

The values 'overlay' and
'waterfall' correspond to
'OverlayFreq' values of
true and false. The option
'waterfall' is allowed only
when 'CoordinateSystem' is
set to 'rectangular' or 'uv'.

'Polarization' name-value
pair

Determines how to plot
polarized fields. Options are
'None', 'Combined', 'H', or
'V'.

'Polarization' name-value
pair determines how to plot
polarized fields. The 'None'
option is removed. The options
'Combined', 'H', or 'V' are
unchanged.

 pattern

1-1959

plotResponse Inputs plotResponse Description pattern Inputs

'Unit' name-value pair Determines the plot units.
Choose 'db', 'mag', 'pow',
or 'dbi', where the default is
'db'.

'Type' name-value pair, uses
equivalent options with different
names

plotResponse pattern

'db' 'powerdb'

'mag' 'efield'

'pow' 'power'

'dbi' 'directivity'

'Weights' name-value pair Array element tapers (or
weights).

'Weights' name-value pair (no
change).

'AzimuthAngles' name-value
pair

Azimuth angles used to display
the antenna or array response.

AZ argument

'ElevationAngles' name-
value pair

Elevation angles used to
display the antenna or array
response.

EL argument

'UGrid' name-value pair Contains U coordinates in UV-
space.

AZ argument when
'CoordinateSystem' name-
value pair is set to 'uv'

'VGrid' name-value pair Contains V-coordinates in UV-
space.

EL argument when
'CoordinateSystem' name-
value pair is set to 'uv'

Examples

Pattern of 11-Element UCA Antenna Array

Create an 11-element UCA of radius 1.5 meters. Show the azimuth and elevation
directivities.

Evaluate the fields at 45 degrees azimuth and 0 degrees elevation.

sSD = phased.ShortDipoleAntennaElement(...

 'FrequencyRange',[50e6,1000e6],...

1 Alphabetical List

1-1960

 'AxisDirection','Z');

sUCA = phased.UCA('NumElements',11,'Radius',1.5,'Element',sSD);

fc = 500e6;

ang = [45;0];

resp = step(sUCA,fc,ang);

disp(resp.V)

 -1.2247

 -1.2247

 -1.2247

 -1.2247

 -1.2247

 -1.2247

 -1.2247

 -1.2247

 -1.2247

 -1.2247

 -1.2247

Display the azimuth directivity pattern at 500 MHz for azimuth angles between -180 and
180 degrees.

c = physconst('LightSpeed');

pattern(sUCA,fc,[-180:180],0,'Type','directivity','PropagationSpeed',c)

 pattern

1-1961

Display the elevation directivity pattern at 500 MHz for elevation angles between -90
and 90 degrees.

pattern(sUCA,fc,[0],[-90:90],'Type','directivity','PropagationSpeed',c)

1 Alphabetical List

1-1962

Pattern of 10-Element UCA Antenna Array in UV Space

Create a 10-element UCA antenna array consisting of cosine antenna elements. Display
the 3-D power pattern in UV space.

sCos = phased.CosineAntennaElement('FrequencyRange',[100e6 1e9],...

 'CosinePower',[2.5,2.5]);

sUCA = phased.UCA('NumElements',10,...

 'Radius',1.5,...

 'Element',sCos);

c = physconst('LightSpeed');

fc = 500e6;

pattern(sUCA,fc,[-1:.01:1],[-1:.01:1],...

 'CoordinateSystem','uv',...

 pattern

1-1963

 'Type','powerdb',...

 'PropagationSpeed',c)

See Also
phased.UCA.patternAzimuth | phased.UCA.patternElevation

Introduced in R2015a

1 Alphabetical List

1-1964

patternAzimuth

System object: phased.UCA
Package: phased

Plot UCA array directivity or pattern versus azimuth

Syntax

patternAzimuth(sArray,FREQ)

patternAzimuth(sArray,FREQ,EL)

patternAzimuth(sArray,FREQ,EL,Name,Value)

PAT = patternAzimuth(___)

Description

patternAzimuth(sArray,FREQ) plots the 2-D array directivity pattern versus
azimuth (in dBi) for the array sArray at zero degrees elevation angle. The argument
FREQ specifies the operating frequency.

patternAzimuth(sArray,FREQ,EL), in addtion, plots the 2-D array directivity
pattern versus azimuth (in dBi) for the array sArray at the elevation angle specified by
EL. When EL is a vector, multiple overlaid plots are created.

patternAzimuth(sArray,FREQ,EL,Name,Value) plots the array pattern with
additional options specified by one or more Name,Value pair arguments.

PAT = patternAzimuth(___) returns the array pattern. PAT is a matrix whose
entries represent the pattern at corresponding sampling points specified by the
'Azimuth' parameter and the EL input argument.

Input Arguments

sArray — Uniform circular array
System object

 patternAzimuth

1-1965

Uniform circular array, specified as a phased.UCA System object.
Example: sArray= phased.UCA;

FREQ — Frequency for computing directivity and pattern
positive scalar

Frequency for computing directivity and pattern, specified as a positive scalar. Frequency
units are in hertz.

• For an antenna or microphone element, FREQ must lie within the range of values
specified by the FrequencyRange or the FrequencyVector property of the
element. Otherwise, the element produces no response and the directivity is
returned as –Inf. Most elements use the FrequencyRange property except for
phased.CustomAntennaElement and phased.CustomMicrophoneElement, which use
the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements
that make up the array. Otherwise, the array produces no response and the
directivity is returned as –Inf.

Example: 1e8

Data Types: double

EL — Elevation angles
1-by-N real-valued row vector

Elevation angles for computing array directivity and pattern, specified as a 1-by-N real-
valued row vector, where N is the number of requested elevation directions. Angle units
are in degrees. The elevation angle must lie between –90° and 90°.

The elevation angle is the angle between the direction vector and the xy plane. When
measured toward the z-axis, this angle is positive.
Example: [0,10,20]

Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

1 Alphabetical List

1-1966

quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Type' — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and
one of

• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed

pattern is for the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field

pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'

Data Types: char

'PropagationSpeed' — Signal propagation speed
speed of light (default) | positive scalar

Signal propagation speed, specified as the comma-separated pair consisting of
'PropagationSpeed' and a positive scalar in meters per second.

Example: 'PropagationSpeed',physconst('LightSpeed')

Data Types: double

'Weights' — Array weights
M-by-1 complex-valued column vector

Array weights, specified as the comma-separated pair consisting of 'Weights' and an
M-by-1 complex-valued column vector. Array weights are applied to the elements of the
array to produce array steering, tapering, or both. The dimension M is the number of
elements in the array.

Note: Use complex weights to steer the array response toward different directions. You
can create weights using the phased.SteeringVector System object or you can compute

 patternAzimuth

1-1967

your own weights. In general, you apply Hermitian conjugation before using weights in
any Phased Array System Toolbox function or System object such as phased.Radiator
or phased.Collector. However, for the directivity, pattern, patternAzimuth, and
patternElevation methods of any array System object use the steering vector without
conjugation.

Example: 'Weights',ones(10,1)

Data Types: double
Complex Number Support: Yes

'Azimuth' — Azimuth angles
[-180:180] (default) | 1-by-P real-valued row vector

Azimuth angles, specified as the comma-separated pair consisting of 'Azimuth' and a 1-
by-P real-valued row vector. Azimuth angles define where the array pattern is calculated.
Example: 'Azimuth',[-90:2:90]

Data Types: double

Output Arguments

PAT — Array directivity or pattern
L-by-N real-valued matrix

Array directivity or pattern, returned as an L-by-N rea-valued matrix. The dimension
L is the number of azimuth values determined by the 'Azimuth' name-value pair
argument. The dimension N is the number of elevation angles, as determined by the EL
input argument.

Definitions

Directivity

Directivity describes the directionality of the radiation pattern of a sensor element
or array of sensor elements. Higher directivity is desired when you want to transmit

1 Alphabetical List

1-1968

more radiation in a specific direction. Directivity is the ratio of the transmitted radiant
intensity in a specified direction to the radiant intensity transmitted by an isotropic
radiator with the same total transmitted power

D
U

P
=

()
4p

q jrad

total

,

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal
is the total power transmitted by an isotropic radiator. For a receiving element or array,
directivity measures the sensitivity toward radiation arriving from a specific direction.
The principle of reciprocity shows that the directivity of an element or array used for
reception equals the directivity of the same element or array used for transmission.
When converted to decibels, the directivity is denoted as dBi. For information on
directivity, read the notes on “Element directivity” and “Array directivity”.

Computing directivity requires integrating the far-field transmitted radiant intensity
over all directions in space to obtain the total transmitted power. There is a difference
between how that integration is performed when Antenna Toolbox antennas are used
in a phased array and when Phased Array System Toolbox antennas are used. When
an array contains Antenna Toolbox antennas, the directivity computation is performed
using a triangular mesh created from 500 regularly spaced points over a sphere. For
Phased Array System Toolbox antennas, the integration uses a uniform rectangular
mesh of points spaced 1° apart in azimuth and elevation over a sphere. There may be
significant differences in computed directivity, especially for large arrays.

Examples

Plot Azimuth Pattern of UCA

Create a 6-element UCA of short-dipole antenna elements. Design the array to have a
radius of 0.5 meters. Plot an azimuth cut of directivity at 0 and 10 degrees elevation.
Assume the operating frequency is 500 MHz.

fc = 500e6;

sCDant = phased.ShortDipoleAntennaElement('FrequencyRange',[100,900]*1e6);

sUCA = phased.UCA('NumElements',6,'Radius',0.5,'Element',sCDant);

patternAzimuth(sUCA,fc,[0 30])

 patternAzimuth

1-1969

You can plot a smaller range of azimuth angles by setting the Azimuth property.

patternAzimuth(sUCA,fc,[0 30],'Azimuth',[-90:90])

1 Alphabetical List

1-1970

See Also
phased.UCA.pattern | phased.UCA.patternElevation

Introduced in R2015a

 patternElevation

1-1971

patternElevation
System object: phased.UCA
Package: phased

Plot UCA array directivity or pattern versus elevation

Syntax

patternElevation(sArray,FREQ)

patternElevation(sArray,FREQ,AZ)

patternElevation(sArray,FREQ,AZ,Name,Value)

PAT = patternElevation(___)

Description

patternElevation(sArray,FREQ) plots the 2-D array directivity pattern versus
elevation (in dBi) for the array sArray at zero degrees azimuth angle. When AZ is a
vector, multiple overlaid plots are created. The argument FREQ specifies the operating
frequency.

patternElevation(sArray,FREQ,AZ), in addition, plots the 2-D element directivity
pattern versus elevation (in dBi) at the azimuth angle specified by AZ. When AZ is a
vector, multiple overlaid plots are created.

patternElevation(sArray,FREQ,AZ,Name,Value) plots the array pattern with
additional options specified by one or more Name,Value pair arguments.

PAT = patternElevation(___) returns the array pattern. PAT is a matrix whose
entries represent the pattern at corresponding sampling points specified by the
'Elevation' parameter and the AZ input argument.

Input Arguments

sArray — Uniform circular array
System object

1 Alphabetical List

1-1972

Uniform circular array, specified as a phased.UCA System object.
Example: sArray= phased.UCA;

FREQ — Frequency for computing directivity and pattern
positive scalar

Frequency for computing directivity and pattern, specified as a positive scalar. Frequency
units are in hertz.

• For an antenna or microphone element, FREQ must lie within the range of values
specified by the FrequencyRange or the FrequencyVector property of the
element. Otherwise, the element produces no response and the directivity is
returned as –Inf. Most elements use the FrequencyRange property except for
phased.CustomAntennaElement and phased.CustomMicrophoneElement, which use
the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements
that make up the array. Otherwise, the array produces no response and the
directivity is returned as –Inf.

Example: 1e8

Data Types: double

AZ — Azimuth angles for computing directivity and pattern
1-by-N real-valued row vector

Azimuth angles for computing array directivity and pattern, specified as a 1-by-M real-
valued row vector where N is the number of desired azimuth directions. Angle units are
in degrees. The azimuth angle must lie between –180° and 180°.

The azimuth angle is the angle between the x-axis and the projection of the direction
vector onto the xy plane. This angle is positive when measured from the x-axis toward the
y-axis.
Example: [0,10,20]

Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

 patternElevation

1-1973

quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Type' — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and
one of

• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed

pattern is for the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field

pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'

Data Types: char

'PropagationSpeed' — Signal propagation speed
speed of light (default) | positive scalar

Signal propagation speed, specified as the comma-separated pair consisting of
'PropagationSpeed' and a positive scalar in meters per second.

Example: 'PropagationSpeed',physconst('LightSpeed')

Data Types: double

'Weights' — Array weights
M-by-1 complex-valued column vector

Array weights, specified as the comma-separated pair consisting of 'Weights' and an
M-by-1 complex-valued column vector. Array weights are applied to the elements of the
array to produce array steering, tapering, or both. The dimension M is the number of
elements in the array.

Note: Use complex weights to steer the array response toward different directions. You
can create weights using the phased.SteeringVector System object or you can compute
your own weights. In general, you apply Hermitian conjugation before using weights in

1 Alphabetical List

1-1974

any Phased Array System Toolbox function or System object such as phased.Radiator
or phased.Collector. However, for the directivity, pattern, patternAzimuth, and
patternElevation methods of any array System object use the steering vector without
conjugation.

Example: 'Weights',ones(10,1)

Data Types: double
Complex Number Support: Yes

'Elevation' — Elevation angles
[-90:90] (default) | 1-by-P real-valued row vector

Elevation angles, specified as the comma-separated pair consisting of 'Elevation'
and a 1-by-P real-valued row vector. Elevation angles define where the array pattern is
calculated.
Example: 'Elevation',[-90:2:90]

Data Types: double

Output Arguments

PAT — Array directivity or pattern
L-by-N real-valued matrix

Array directivity or pattern, returned as an L-by-N real-valued matrix. The dimension
L is the number of elevation angles determined by the 'Elevation' name-value pair
argument. The dimension N is the number of azimuth angles determined by the AZ
argument.

Definitions

Directivity

Directivity describes the directionality of the radiation pattern of a sensor element
or array of sensor elements. Higher directivity is desired when you want to transmit

 patternElevation

1-1975

more radiation in a specific direction. Directivity is the ratio of the transmitted radiant
intensity in a specified direction to the radiant intensity transmitted by an isotropic
radiator with the same total transmitted power

D
U

P
=

()
4p

q jrad

total

,

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal
is the total power transmitted by an isotropic radiator. For a receiving element or array,
directivity measures the sensitivity toward radiation arriving from a specific direction.
The principle of reciprocity shows that the directivity of an element or array used for
reception equals the directivity of the same element or array used for transmission.
When converted to decibels, the directivity is denoted as dBi. For information on
directivity, read the notes on “Element directivity” and “Array directivity”.

Computing directivity requires integrating the far-field transmitted radiant intensity
over all directions in space to obtain the total transmitted power. There is a difference
between how that integration is performed when Antenna Toolbox antennas are used
in a phased array and when Phased Array System Toolbox antennas are used. When
an array contains Antenna Toolbox antennas, the directivity computation is performed
using a triangular mesh created from 500 regularly spaced points over a sphere. For
Phased Array System Toolbox antennas, the integration uses a uniform rectangular
mesh of points spaced 1° apart in azimuth and elevation over a sphere. There may be
significant differences in computed directivity, especially for large arrays.

Examples

Plot Elevation Pattern of UCA

Create a 6-element UCA of short-dipole antenna elements. Design the array to have a
radius of 0.5 meters. Plot an elevation cut of directivity at 0 and 90 degrees azimuth.
Assume the operating frequency is 500 MHz.

fc = 500e6;

sCDant = phased.ShortDipoleAntennaElement('FrequencyRange',[100,900]*1e6);

sUCA = phased.UCA('NumElements',6,'Radius',0.5,'Element',sCDant);

patternElevation(sUCA,fc,[0 90])

1 Alphabetical List

1-1976

You can plot a smaller range of elevation angles by setting the Elevation property.

patternElevation(sUCA,fc,[0 45],'Elevation',[0:90])

 patternElevation

1-1977

See Also
phased.UCA.pattern | phased.UCA.patternAzimuth

Introduced in R2015a

1 Alphabetical List

1-1978

release
System object: phased.UCA
Package: phased

Allow property values and input characteristics to change

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles, or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

Input Arguments

H — Uniform circular array
System object

Uniform circular array specified as a Phased Array System Toolbox System object.
Example: H = phased.UCA();

Introduced in R2015a

 step

1-1979

step
System object: phased.UCA
Package: phased

Output responses of array elements

Syntax

RESP = step(sArray,FREQ,ANG)

Description

RESP = step(sArray,FREQ,ANG) returns the responses, RESP, of the array elements,
at operating frequencies specified in FREQ and directions specified in ANG.

Note: The object performs an initialization the first time the step method is executed.
This initialization locks nontunable properties and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Input Arguments

sArray — Uniform circular array
System object

Uniform circular array, specified as a phased.UCA System object.
Example: sArray= phased.UCA;

FREQ — Operating frequency
positive scalar | 1-by-L real-valued row vector

Operating frequency of array specified, specified as a positive scalar or 1-by-L real-valued
row vector. Frequency units are in hertz.

1 Alphabetical List

1-1980

• For antenna or microphone elements, FREQ must lie within the range of values
specified by the FrequencyRange or FrequencyVector property of the
element. Otherwise, the element produces no response and the array response is
returned as zero. Most elements use the FrequencyRange property except for
phased.CustomAntennaElement and phased.CustomMicrophoneElement, which use
the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements
that make up the array. Otherwise, the array produces no response and the
directivity is returned as zero.

Example: [1e8 2e8]

Data Types: double

ANG — Response directions
1-by-M real-valued row vector | 2-by-M real-valued matrix

Response directions, specified as either a 2-by-M real-valued matrix or a real-valued row
vector of length M.

If ANG is a 2-by-M matrix, each column of the matrix specifies the direction in the
form [azimuth; elevation]. The azimuth angle must lie between –180° and 180°,
inclusive. The elevation angle must lie between –90° and 90°, inclusive. Angle units are
in degrees.

If ANG is a row vector of length M, each element specifies the azimuth angle of the
direction. In this case, the corresponding elevation angle is assumed to be 0°.
Example: [20;15]

Data Types: double

Output Arguments

RESP — Voltage responses of phased array
complex-valued N-by-M-by-L matrix | complex-valued structure

Voltage responses of a phased array, specified as a complex-valued matrix or a struct
with complex-valued fields. The output depends on whether the array supports
polarization or not.

 step

1-1981

• If the array elements do not support polarization, the voltage response, RESP, has the
dimensions N-by-M-by-L.

• N (rows) is the number of elements in the array
• M (columns) is the number of angles specified in ANG
• L (pages) is the number of frequencies specified in FREQ

For each array element, the columns of RESP contain the array element responses for
the corresponding direction specified in ANG. Each of the L pages of RESP contains the
array element responses for the corresponding frequency specified in FREQ.

• If the array supports polarization, RESP is a MATLAB struct containing two fields,
RESP.H and RESP.V. The field, RESP.H, represents the array’s horizontal polarization
response, while RESP.V represents the array’s vertical polarization response. Each
field has the dimensions N-by-M-by-L.

• N (rows) is the number of elements in the array
• M (columns) is the number of angles specified in ANG
• L (pages) is the number of frequencies specified in FREQ

For each array element, the columns of RESP.H or RESP.V contain the array element
responses for the corresponding direction specified in ANG. Each of the L pages of
RESP.H or RESP.V contains the array element responses for the corresponding
frequency specified in FREQ.

Examples

Response of UCA Array

Create a 5-element uniform circular array (UCA) of cosine antenna elements having a
0.5 meter radius. Find the element responses at the 0 degrees azimuth and elevation at a
300 MHz operating frequency.

c = physconst('LightSpeed');

fc = 300e6;

sCos = phased.CosineAntennaElement('CosinePower',[1,1]);

sArray = phased.UCA('Element',sCos,'NumElements',5,'Radius',0.5);

ang = [0;0];

resp = step(sArray,fc,ang)

1 Alphabetical List

1-1982

resp =

 0

 0.3090

 1.0000

 0.3090

 0

Introduced in R2015a

 viewArray

1-1983

viewArray
System object: phased.UCA
Package: phased

View array geometry

Syntax

viewArray(H)

viewArray(H,Name,Value)

hPlot = viewArray(___)

Description

viewArray(H) plots the geometry of the array specified in H.

viewArray(H,Name,Value) plots the geometry of the array, with additional options
specified by one or more Name,Value pair arguments.

hPlot = viewArray(___) returns the handle of the array elements in the figure
window. All input arguments described for the previous syntaxes also apply here.

Input Arguments

H — Uniform circular array
System object

Uniform circular array specified as a phased.UCA System object.
Example: phased.UCA()

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

1 Alphabetical List

1-1984

quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'ShowIndex' — Element indices to show
'None' (default) | vector of positive integers | 'All'

Element indices to show in the figure, specified as the comma-separated pair consisting
of 'ShowIndex' and a vector of positive integers. Each number in the vector must be an
integer between 1 and the number of elements. To show all of indices of the array, specify
'All'. To suppress all indices, specify 'None'.

Example: [1,2,3]

Data Types: double

'ShowNormals' — Option to show normal vectors
false (default) | true

Option to show normal directions, specified as the comma-separated pair consisting of
'ShowNormals' and a Boolean value.

• true — show the normal directions of all elements in the array
• false — plot the elements without showing normal directions

Example: false

Data Types: logical

'ShowTaper' — Option to show taper magnitude
false (default) | true

Option to show taper magnitude, specified as the comma-separated pair consisting of
'ShowTaper' and a Boolean value.

• true — change the element color brightness in proportion to the element taper
magnitude

• false — plot all elements using the same color

Example: true

Data Types: logical

'Title' — Plot title
'Array Geometry' (default) | string

 viewArray

1-1985

Plot title, specified as the comma-separated pair consisting of 'Title' and a string.

Example: 'My array plot'

Output Arguments

hPlot — Handle of array elements
scalar

Handle of array elements in the figure window, specified as a scalar.

Examples

View UCA Array

Construct an 7-element UCA of isotropic antenna elements with a Taylor window taper.
Design the array to have a radius of 0.5 meters. Then, draw the array showing the
element normals, element indices, and element taper shading.

Nelem = 7;

R = 0.5;

taper = taylorwin(Nelem);

sArray = phased.UCA(Nelem,R,'Taper',taper.');

w = getTaper(sArray);

viewArray(sArray,'ShowNormals',true,'ShowIndex','All','ShowTaper',true);

1 Alphabetical List

1-1986

• Phased Array Gallery

See Also
phased.ArrayResponse

Introduced in R2015a

../examples/phased-array-gallery.html

 phased.ULA System object

1-1987

phased.ULA System object
Package: phased

Uniform linear array

Description
The phased.ULA System object creates a uniform linear array (ULA).

To compute the response for each element in the array for specified directions:

1 Define and set up your uniform linear array. See “Construction” on page 1-1987.
2 Call step to compute the response according to the properties of phased.ULA. The

behavior of step is specific to each object in the toolbox.

Construction
H = phased.ULA creates a uniform linear array (ULA) System object, H. The object
models a ULA formed with identical sensor elements. The origin of the local coordinate
system is the phase center of the array. The positive x-axis is the direction normal to the
array, and the elements of the array are located along the y-axis.

H = phased.ULA(Name,Value) creates object, H, with each specified property Name
set to the specified Value. You can specify additional name-value pair arguments in any
order as (Name1,Value1,...,NameN,ValueN).

H = phased.ULA(N,D,Name,Value) creates a ULA object, H, with the NumElements
property set to N, the ElementSpacing property set to D, and other specified property
Names set to the specified Values. N and D are value-only arguments. When specifying a
value-only argument, specify all preceding value-only arguments. You can specify name-
value pair arguments in any order.

Properties

Element

Element of array

1 Alphabetical List

1-1988

Specify the element of the sensor array as a handle. The element must be an element
object in the phased package.

Default: Isotropic antenna element with default array properties

NumElements

Number of elements

An integer containing the number of elements in the array.

Default: 2

ElementSpacing

Element spacing

A scalar containing the spacing (in meters) between two adjacent elements in the array.

Default: 0.5

ArrayAxis

Array axis

Array axis, specified as one of 'x', 'y', or 'z'. ULA array elements are located along
the selected coordinate system axis.

Element normal vectors are determined by the selected array axis

ArrayAxis Property Value Element Normal Direction

'x' azimuth = 90°, elevation = 0° (y-axis)
'y' azimuth = 0°, elevation = 0° (x-axis)
'z' azimuth = 0°, elevation = 0° (x-axis)

Default: 'y'

Taper

Element tapering

 phased.ULA System object

1-1989

Element tapering or weighting, specified as a complex-valued scalar, 1-by-N row vector,
or N-by-1 column vector. In this vector, N represents the number of elements of the
array. Tapers, also known as weights, are applied to each sensor element in the sensor
array and modify both the amplitude and phase of the received data. If 'Taper' is a
scalar, the same taper value is applied to all elements. If 'Taper' is a vector, each taper
value is applied to the corresponding sensor element.

Default: 1

Methods

clone Create ULA object with same property
values

directivity Directivity of uniform linear array
collectPlaneWave Simulate received plane waves
getElementPosition Positions of array elements
getElementNormal Normal vector to array elements
getNumElements Number of elements in array
getNumInputs Number of expected inputs to step method
getNumOutputs Number of outputs from step method
getTaper Array element tapers
isLocked Locked status for input attributes and

nontunable properties
isPolarizationCapable Polarization capability
plotResponse Plot response pattern of array
pattern Plot array pattern
patternAzimuth Plot ULA array directivity or pattern

versus azimuth
patternElevation Plot ULA array directivity or pattern

versus elevation
plotGratingLobeDiagram Plot grating lobe diagram of array
release Allow property value and input

characteristics

1 Alphabetical List

1-1990

step Output responses of array elements
viewArray View array geometry

Examples

Plot Pattern of 4-Element Antenna Array

Create a 4-element undersampled ULA and find the response of each element at
boresight. Plot the array pattern at 1 GHz for azimuth angles between -180 and 180
degrees. The default element spacing is 0.5 meters.

sULA = phased.ULA('NumElements',4);

fc = 1e9;

ang = [0;0];

resp = step(sULA,fc,ang)

resp =

 1

 1

 1

 1

c = physconst('LightSpeed');

pattern(sULA,fc,[-180:180],0,'PropagationSpeed',c,...

 'CoordinateSystem','rectangular',...

 'Type','powerdb','Normalize',true)

 phased.ULA System object

1-1991

Plot Pattern of 10-Element Microphone ULA

Construct a 10-element uniform linear array of omnidirectional microphones spaced 3 cm
apart. Then, plot the array pattern at 100 Hz.

sMic = phased.OmnidirectionalMicrophoneElement(...

 'FrequencyRange',[20 20e3]);

Nele = 10;

sULA = phased.ULA('NumElements',Nele,...

 'ElementSpacing',3e-2,...

 'Element',sMic);

fc = 100;

ang = [0; 0];

resp = step(sULA,fc,ang);

1 Alphabetical List

1-1992

c = 340;

pattern(sULA,fc,[-180:180],0,'PropagationSpeed',c,...

 'CoordinateSystem','polar',...

 'Type','powerdb',...

 'Normalize',true);

Plot Pattern of Array of Polarized Short-Dipole Antennas

Build a tapered uniform line array of 5 short-dipole sensor elements. Because short
dipoles support polarization, the array should as well. Verify that it supports polarization
by looking at the output of the isPolarizationCapable method.

sSD = phased.ShortDipoleAntennaElement(...

 phased.ULA System object

1-1993

 'FrequencyRange',[100e6 1e9],'AxisDirection','Z');

sULA = phased.ULA('NumElements',5,'Element',sSD,...

 'Taper',[.5,.7,1,.7,.5]);

isPolarizationCapable(sULA)

ans =

 1

Then, draw the array using the viewArray method.

viewArray(sULA,'ShowTaper',true,'ShowIndex','All')

1 Alphabetical List

1-1994

Compute the horizontal and vertical responses.

fc = 150e6;

ang = [10];

resp = step(sULA,fc,ang);

Display the horizontal polarization response.

resp.H

ans =

 0

 0

 0

 0

 0

Display the vertical polarization response.

resp.V

ans =

 -0.6124

 -0.8573

 -1.2247

 -0.8573

 -0.6124

Plot an azimuth cut of the vertical polarization response.

c = physconst('LightSpeed');

pattern(sULA,fc,[-180:180],0,...

 'PropagationSpeed',c,...

 'CoordinateSystem','polar',...

 'Polarization','V',...

 'Type','powerdb',...

 'Normalize',true)

 phased.ULA System object

1-1995

• Phased Array Gallery

References

[1] Brookner, E., ed. Radar Technology. Lexington, MA: LexBook, 1996.

[2] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002.

See Also
phased.ConformalArray |
phased.CosineAntennaElementphased.CrossedDipoleAntennaElement |

../examples/phased-array-gallery.html

1 Alphabetical List

1-1996

phased.CustomAntennaElement |
phased.IsotropicAntennaElementphased.ShortDipoleAntennaElement |
phased.PartitionedArray | phased.ReplicatedSubarray | phased.URA

Introduced in R2012a

 clone

1-1997

clone
System object: phased.ULA
Package: phased

Create ULA object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates an object, C, having the same property values and same states as
H. If H is locked, so is C.

1 Alphabetical List

1-1998

directivity

System object: phased.ULA
Package: phased

Directivity of uniform linear array

Syntax

D = directivity(H,FREQ,ANGLE)

D = directivity(H,FREQ,ANGLE,Name,Value)

Description

D = directivity(H,FREQ,ANGLE) computes the “Directivity (dBi)” on page 1-2001
of a uniform linear array (ULA) of antenna or microphone elements, H, at frequencies
specified by FREQ and in angles of direction specified by ANGLE.

D = directivity(H,FREQ,ANGLE,Name,Value) returns the directivity with
additional options specified by one or more Name,Value pair arguments.

Input Arguments

H — Uniform linear array
System object

Uniform linear array specified as a phased.ULA System object.
Example: H = phased.ULA;

FREQ — Frequency for computing directivity and patterns
positive scalar | 1-by-L real-valued row vector

Frequencies for computing directivity and patterns, specified as a positive scalar or 1-
by-L real-valued row vector. Frequency units are in hertz.

 directivity

1-1999

• For an antenna or microphone element, FREQ must lie within the range of
values specified by the FrequencyRange or FrequencyVector property of the
element. Otherwise, the element produces no response and the directivity is
returned as –Inf. Most elements use the FrequencyRange property except for
phased.CustomAntennaElement and phased.CustomMicrophoneElement, which use
the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements
that make up the array. Otherwise, the array produces no response and the
directivity is returned as –Inf.

Example: [1e8 2e8]

Data Types: double

ANGLE — Angles for computing directivity
1-by-M real-valued row vector | 2-by-M real-valued matrix

Angles for computing directivity, specified as a 1-by-M real-valued row vector or a 2-
by-M real-valued matrix, where M is the number of angular directions. Angle units
are in degrees. If ANGLE is a 2-by-M matrix, then each column specifies a direction in
azimuth and elevation, [az;el]. The azimuth angle must lie between –180° and 180°.
The elevation angle must lie between –90° and 90°.

If ANGLE is a 1-by-M vector, then each entry represents an azimuth angle, with the
elevation angle assumed to be zero.

The azimuth angle is the angle between the x-axis and the projection of the direction
vector onto the xy plane. This angle is positive when measured from the x-axis toward the
y-axis. The elevation angle is the angle between the direction vector and xy plane. This
angle is positive when measured towards the z-axis.
Example: [45 60; 0 10]

Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

1 Alphabetical List

1-2000

'PropagationSpeed' — Signal propagation speed
speed of light (default) | positive scalar

Signal propagation speed, specified as the comma-separated pair consisting of
'PropagationSpeed' and a positive scalar in meters per second.

Example: 'PropagationSpeed',physconst('LightSpeed')

Data Types: double

'Weights' — Array weights
1 (default) | N-by-1 complex-valued column vector | N-by-L complex-valued matrix

Array weights, specified as the comma-separated pair consisting of 'Weights' and an
N-by-1 complex-valued column vector or N-by-L complex-valued matrix. Array weights
are applied to the elements of the array to produce array steering, tapering, or both. The
dimension N is the number of elements in the array. The dimension L is the number of
frequencies specified by FREQ.

Weights Dimension FREQ Dimension Purpose

N-by-1 complex-valued
column vector

Scalar or 1-by-L row vector Applies a set of weights for
the single frequency or for all
L frequencies.

N-by-L complex-valued
matrix

1-by-L row vector Applies each of the L
columns of 'Weights' for
the corresponding frequency
in FREQ.

Note: Use complex weights to steer the array response toward different directions. You
can create weights using the phased.SteeringVector System object or you can compute
your own weights. In general, you apply Hermitian conjugation before using weights in
any Phased Array System Toolbox function or System object such as phased.Radiator
or phased.Collector. However, for the directivity, pattern, patternAzimuth, and
patternElevation methods of any array System object use the steering vector without
conjugation.

Example: 'Weights',ones(N,M)

Data Types: double

 directivity

1-2001

Complex Number Support: Yes

Output Arguments

D — Directivity
M-by-L matrix

Directivity, returned as an M-by-L matrix whose columns contain the directivities at the
M angles specified by ANGLE. Each column corresponds to one of the L frequency values
specified in FREQ. Directivity units are in dBi.

Definitions

Directivity (dBi)

Directivity describes the directionality of the radiation pattern of a sensor element
or array of sensor elements. Higher directivity is desired when you want to transmit
more radiation in a specific direction. Directivity is the ratio of the transmitted radiant
intensity in a specified direction to the radiant intensity transmitted by an isotropic
radiator with the same total transmitted power

D
U

P
=

()
4p

q jrad

total

,

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal
is the total power transmitted by an isotropic radiator. For a receiving element or array,
directivity measures the sensitivity toward radiation arriving from a specific direction.
The principle of reciprocity shows that the directivity of an element or array used for
reception equals the directivity of the same element or array used for transmission.
When converted to decibels, the directivity is denoted as dBi. For information on
directivity, read the notes on “Element directivity” and “Array directivity”.

Computing directivity requires integrating the far-field transmitted radiant intensity
over all directions in space to obtain the total transmitted power. There is a difference
between how that integration is performed when Antenna Toolbox antennas are used
in a phased array and when Phased Array System Toolbox antennas are used. When
an array contains Antenna Toolbox antennas, the directivity computation is performed

1 Alphabetical List

1-2002

using a triangular mesh created from 500 regularly spaced points over a sphere. For
Phased Array System Toolbox antennas, the integration uses a uniform rectangular
mesh of points spaced 1° apart in azimuth and elevation over a sphere. There may be
significant differences in computed directivity, especially for large arrays.

Examples

Directivity of Uniform Linear Array

Compute the directivities of two different uniform linear arrays (ULA). One array
consists of isotropic antenna elements and the second array consists of cosine antenna
elements. In addition, compute the directivity when the first array is steered in a
specified direction. For each case, calculated the directivities for a set of seven different
azimuth directions all at zero degrees elevation. Set the frequency to 800 MHz.

Array of isotropic antenna elements

First, create a 10-element ULA of isotropic antenna elements spaced 1/2-wavelength
apart.

c = physconst('LightSpeed');

fc = 3e8;

lambda = c/fc;

ang = [-30,-20,-10,0,10,20,30; 0,0,0,0,0,0,0];

myAnt1 = phased.IsotropicAntennaElement;

myArray1 = phased.ULA(10,lambda/2,'Element',myAnt1);

Compute the directivity

d = directivity(myArray1,fc,ang,'PropagationSpeed',c)

d =

 -6.9886

 -6.2283

 -6.5176

 10.0011

 -6.5176

 -6.2283

 -6.9886

 directivity

1-2003

Array of cosine antenna elements

Next, create a 10-element ULA of cosine antenna elements spaced 1/2-wavelength apart.

myAnt2 = phased.CosineAntennaElement('CosinePower',[1.8,1.8]);

myArray2 = phased.ULA(10,lambda/2,'Element',myAnt2);

Compute the directivity

d = directivity(myArray2,fc,ang,'PropagationSpeed',c)

d =

 -1.9838

 0.0529

 0.4968

 17.2548

 0.4968

 0.0529

 -1.9838

The directivity of the cosine ULA is greater than the directivity of the isotropic ULA
because of the larger directivity of the cosine antenna element.

Steered array of isotropic antenna elements

Finally, steer the isotropic antenna array to 30 degrees in azimuth and compute the
directivity.

w = steervec(getElementPosition(myArray1)/lambda,[30;0]);

d = directivity(myArray1,fc,ang,'PropagationSpeed',c,...

 'Weights',w)

d =

 -292.9682

 -13.9783

 -9.5713

 -6.9897

 -4.5787

 -2.0536

 10.0000

1 Alphabetical List

1-2004

The directivity is greatest in the steered direction.

See Also
phased.ULA.pattern | phased.ULA.patternAzimuth | phased.ULA.patternElevation

 collectPlaneWave

1-2005

collectPlaneWave

System object: phased.ULA
Package: phased

Simulate received plane waves

Syntax

Y = collectPlaneWave(H,X,ANG)

Y = collectPlaneWave(H,X,ANG,FREQ)

Y = collectPlaneWave(H,X,ANG,FREQ,C)

Description

Y = collectPlaneWave(H,X,ANG) returns the received signals at the sensor array, H,
when the input signals indicated by X arrive at the array from the directions specified in
ANG.

Y = collectPlaneWave(H,X,ANG,FREQ), in addition, specifies the incoming signal
carrier frequency in FREQ.

Y = collectPlaneWave(H,X,ANG,FREQ,C), in addition, specifies the signal
propagation speed in C.

Input Arguments

H

Array object.

X

Incoming signals, specified as an M-column matrix. Each column of X represents an
individual incoming signal.

1 Alphabetical List

1-2006

ANG

Directions from which incoming signals arrive, in degrees. ANG can be either a 2-by-M
matrix or a row vector of length M.

If ANG is a 2-by-M matrix, each column specifies the direction of arrival of the
corresponding signal in X. Each column of ANG is in the form [azimuth; elevation].
The azimuth angle must be between –180° and 180°, inclusive. The elevation angle must
be between –90° and 90°, inclusive.

If ANG is a row vector of length M, each entry in ANG specifies the azimuth angle. In this
case, the corresponding elevation angle is assumed to be 0°.

FREQ

Carrier frequency of signal in hertz. FREQ must be a scalar.

Default: 3e8

C

Propagation speed of signal in meters per second.

Default: Speed of light

Output Arguments

Y

Received signals. Y is an N-column matrix, where N is the number of elements in the
array H. Each column of Y is the received signal at the corresponding array element, with
all incoming signals combined.

Examples

Simulate the received signal at a 4-element ULA.

The signals arrive from 10 degrees and 30 degrees azimuth. Both signals have an
elevation angle of 0 degrees. Assume the propagation speed is the speed of light and the
carrier frequency of the signal is 100 MHz.

 collectPlaneWave

1-2007

ha = phased.ULA(4);

y = collectPlaneWave(ha,randn(4,2),[10 30],1e8,...

 physconst('LightSpeed'));

Algorithms

collectPlaneWave modulates the input signal with a phase corresponding to the
delay caused by the direction of arrival. The method does not account for the response of
individual elements in the array.

For further details, see [1].

References

[1] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002.

See Also
phitheta2azel | uv2azel

1 Alphabetical List

1-2008

getElementPosition
System object: phased.ULA
Package: phased

Positions of array elements

Syntax

pos = getElementPosition(sULA)

pos = getElementPosition(sULA,elemidx)

Description

pos = getElementPosition(sULA) returns the element positions of the phased.ULA
System object, sULA. pos is a 3-by-N matrix, where N is the number of elements in sULA.
Each column of pos defines the position of an element in the local coordinate system
taking the form[x;y;z]. Units are meters. The origin of the local coordinate system is
the phase center of the array.

pos = getElementPosition(sULA,elemidx) returns only the positions of the
elements that are specified in the element index vector elemidx. This syntax can use
any of the input arguments in the previous syntax.

Examples

ULA Element Positions

Construct a ULA with 5 elements along the z-axis. Obtain the element positions.

sULA = phased.ULA('NumElements',5,'ArrayAxis','z');

pos = getElementPosition(sULA)

pos =

 0 0 0 0 0

 getElementPosition

1-2009

 0 0 0 0 0

 -1.0000 -0.5000 0 0.5000 1.0000

1 Alphabetical List

1-2010

getElementNormal
System object: phased.ULA
Package: phased

Normal vector to array elements

Syntax
normvec = getElementNormal(sULA)

normvec = getElementNormal(sULA,elemidx)

Description
normvec = getElementNormal(sULA) returns the normal vectors of the array
elements of the phased.ULA System object, sULA. The output argument normvec is
a 2-by-N matrix, where N is the number of elements in array, sULA. Each column of
normvec defines the normal direction of an element in the local coordinate system in the
form[az;el]. Units are degrees. Array elements are located along the axis selected in
the ArrayAxis property. Element normal vectors are parallel to the array normal. The
normal to a ULA array depends upon the selected ArrayAxis property.

ArrayAxis Property Value Array Normal Direction

'x' azimuth = 90°, elevation = 0° (y-axis)
'y' azimuth = 0°, elevation = 0° (x-axis)
'z' azimuth = 0°, elevation = 0° (x-axis)

The origin of the local coordinate system is defined by the phase center of the array.

normvec = getElementNormal(sULA,elemidx) returns only the normal vectors of
the elements specified in the element index vector, elemidx. This syntax can use any of
the input arguments in the previous syntax.

Input Arguments
sULA — Uniform line array
phased.ULA System object

 getElementNormal

1-2011

Uniform line array, specified as a phased.ULA System object.

Example: sULA = phased.ULA

elemidx — Element indices
all array elements (default) | integer-valued 1-by-M row vector | integer-valued M-by-1
column vector

Element indices , specified as a 1-by-M or M-by-1 vector. Index values lie in the range
1 to N where N is the number of elements of the array. When elemidx is specified,
getElementNormal returns the normal vectors of the elements contained in elemidx.

Example: [1,5,4]

Output Arguments

normvec — Element normal vectors
2-by-P real-valued vector

Element normal vectors, specified as a 2-by-P real-valued vector. Each column of
normvec takes the form [az,el]. When elemidx is not specified, P equals the array
dimension. When elemidx is specified, P equals the length of elemidx, M.

Examples

ULA Element Normals

Construct three ULA's with elements along the x-, y-, and z-axes. Obtain the element
normals.

First, choose the array axis along the x-axis.

sULA1 = phased.ULA('NumElements',5,'ArrayAxis','x');

norm = getElementNormal(sULA1)

norm =

 90 90 90 90 90

 0 0 0 0 0

1 Alphabetical List

1-2012

The element normal vectors point along the y-axis.

Next, choose the array axis along the y-axis.

sULA2 = phased.ULA('NumElements',5,'ArrayAxis','y');

norm = getElementNormal(sULA2)

norm =

 0 0 0 0 0

 0 0 0 0 0

The element normal vectors point along the x-axis.

Finally, set the array axis along the z-axis. Obtain the normal vectors of the odd-
numbered elements.

sULA3 = phased.ULA('NumElements',5,'ArrayAxis','z');

norm = getElementNormal(sULA3,[1,3,5])

norm =

 0 0 0

 0 0 0

The element normal vectors also point along the x-axis.

Introduced in R2016a

 getNumElements

1-2013

getNumElements
System object: phased.ULA
Package: phased

Number of elements in array

Syntax

N = getNumElements(H)

Description

N = getNumElements(H) returns the number of elements, N, in the ULA object H.

Examples

Construct a default ULA, and obtain the number of elements in that array.

 ha = phased.ULA;

 N = getNumElements(ha)

1 Alphabetical List

1-2014

getNumInputs
System object: phased.ULA
Package: phased

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of inputs
(not counting the object itself) that you must use when calling the step method. This
value changes when you alter properties that turn inputs on or off.

 getNumOutputs

1-2015

getNumOutputs
System object: phased.ULA
Package: phased

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value changes when you alter properties that turn outputs on or off.

1 Alphabetical List

1-2016

getTaper

System object: phased.ULA
Package: phased

Array element tapers

Syntax

wts = getTaper(h)

Description

wts = getTaper(h) returns the tapers, wts, applied to each element of the phased
uniform line array (ULA), h. Tapers are often referred to as weights.

Input Arguments

h — Uniform line array
phased.ULA System object

Uniform line array specified as a phased.ULA System object.

Output Arguments

wts — Array element tapers
N-by-1 complex-valued vector

Array element tapers returned as an N-by-1 complex-valued vector, where N is the
number of elements in the array.

 getTaper

1-2017

Examples

ULA with Taylor Window Taper

Construct a 5-element ULA with a Taylor window taper. Then, obtain the element taper
values.

 taper = taylorwin(5)';

 ha = phased.ULA(5,'Taper',taper);

 w = getTaper(ha)

w =

 0.5181

 1.2029

 1.5581

 1.2029

 0.5181

1 Alphabetical List

1-2018

isLocked
System object: phased.ULA
Package: phased

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF, for the ULA System object.

isLocked returns a logical value that indicates whether input attributes and
nontunable properties for the object are locked. The object performs an internal
initialization the first time that you execute step. This initialization locks nontunable
properties and input specifications, such as the dimensions, complexity, and data type of
the input data. After locking, isLocked returns a true value.

 isPolarizationCapable

1-2019

isPolarizationCapable

System object: phased.ULA
Package: phased

Polarization capability

Syntax

flag = isPolarizationCapable(h)

Description

flag = isPolarizationCapable(h) returns a Boolean value, flag, indicating
whether the array supports polarization. An array supports polarization if all of its
constituent sensor elements support polarization.

Input Arguments

h — Uniform line array

Uniform line array specified as a phased.ULA System object.

Output Arguments

flag — Polarization-capability flag

Polarization-capability flag returned as a Boolean value true if the array supports
polarization or false if it does not.

1 Alphabetical List

1-2020

Examples

ULA of Short-Dipole Antenna Elements Supports Polarization

Show that an array of phased.ShortDipoleAntennaElement antenna elements supports
polarization.

h = phased.ShortDipoleAntennaElement(...

 'FrequencyRange',[1e9 10e9]);

ha = phased.ULA('NumElements',3,'Element',h);

isPolarizationCapable(ha)

ans =

 1

The returned value true (1) shows that this array supports polarization.

 plotResponse

1-2021

plotResponse
System object: phased.ULA
Package: phased

Plot response pattern of array

Syntax

plotResponse(H,FREQ,V)

plotResponse(H,FREQ,V,Name,Value)

hPlot = plotResponse(___)

Description

plotResponse(H,FREQ,V) plots the array response pattern along the azimuth cut,
where the elevation angle is 0. The operating frequency is specified in FREQ. The
propagation speed is specified in V.

plotResponse(H,FREQ,V,Name,Value) plots the array response with additional
options specified by one or more Name,Value pair arguments.

hPlot = plotResponse(___) returns handles of the lines or surface in the figure
window, using any of the input arguments in the previous syntaxes.

Input Arguments

H

Array object

FREQ

Operating frequency in Hertz specified as a scalar or 1-by-K row vector. Values must lie
within the range specified by a property of H. That property is named FrequencyRange
or FrequencyVector, depending on the type of element in the array. The element has
no response at frequencies outside that range. If you set the 'RespCut' property of H to

1 Alphabetical List

1-2022

'3D', FREQ must be a scalar. When FREQ is a row vector, plotResponse draws multiple
frequency responses on the same axes.

V

Propagation speed in meters per second.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'CutAngle'

Cut angle as a scalar. This argument is applicable only when RespCut is 'Az' or
'El'. If RespCut is 'Az', CutAngle must be between –90 and 90. If RespCut is 'El',
CutAngle must be between –180 and 180.

Default: 0

'Format'

Format of the plot, using one of 'Line', 'Polar', or 'UV'. If you set Format to 'UV',
FREQ must be a scalar.

Default: 'Line'

'NormalizeResponse'

Set this value to true to normalize the response pattern. Set this value to false to plot
the response pattern without normalizing it. This parameter is not applicable when you
set the Unit parameter value to 'dbi'.

Default: true

'OverlayFreq'

Set this value to true to overlay pattern cuts in a 2-D line plot. Set this value to false
to plot pattern cuts against frequency in a 3-D waterfall plot. If this value is false, FREQ
must be a vector with at least two entries.

 plotResponse

1-2023

This parameter applies only when Format is not 'Polar' and RespCut is not '3D'.

Default: true

'Polarization'

Specify the polarization options for plotting the array response pattern. The allowable
values are |'None' | 'Combined' | 'H' | 'V' | where

• 'None' specifies plotting a nonpolarized response pattern
• 'Combined' specifies plotting a combined polarization response pattern
• 'H' specifies plotting the horizontal polarization response pattern
• 'V' specifies plotting the vertical polarization response pattern

For arrays that do not support polarization, the only allowed value is 'None'. This
parameter is not applicable when you set the Unit parameter value to 'dbi'.

Default: 'None'

'RespCut'

Cut of the response. Valid values depend on Format, as follows:

• If Format is 'Line' or 'Polar', the valid values of RespCut are 'Az', 'El', and
'3D'. The default is 'Az'.

• If Format is 'UV', the valid values of RespCut are 'U' and '3D'. The default is 'U'.

If you set RespCut to '3D', FREQ must be a scalar.

'Unit'

The unit of the plot. Valid values are 'db', 'mag', 'pow', or 'dbi'. This parameter
determines the type of plot that is produced.

Unit value Plot type

db power pattern in dB
scale

mag field pattern
pow power pattern

1 Alphabetical List

1-2024

Unit value Plot type

dbi directivity

Default: 'db'

'Weights'

Weight values applied to the array, specified as a length-N column vector or N-by-M
matrix. The dimension N is the number of elements in the array. The interpretation of M
depends upon whether the input argument FREQ is a scalar or row vector.

Weights Dimensions FREQ Dimension Purpose

N-by-1 column vector Scalar or 1-by-M row vector Apply one set of weights for
the same single frequency or
all M frequencies.

Scalar Apply all of the M different
columns in Weights for the
same single frequency.

N-by-M matrix 1-by-M row vector Apply each of the M different
columns in Weights for the
corresponding frequency in
FREQ.

'AzimuthAngles'

Azimuth angles for plotting array response, specified as a row vector. The
AzimuthAngles parameter sets the display range and resolution of azimuth angles for
visualizing the radiation pattern. This parameter is allowed only when the RespCut
parameter is set to 'Az' or '3D' and the Format parameter is set to 'Line' or
'Polar'. The values of azimuth angles should lie between –180° and 180° and must be
in nondecreasing order. When you set the RespCut parameter to '3D', you can set the
AzimuthAngles and ElevationAngles parameters simultaneously.

Default: [-180:180]

'ElevationAngles'

Elevation angles for plotting array response, specified as a row vector. The
ElevationAngles parameter sets the display range and resolution of elevation

 plotResponse

1-2025

angles for visualizing the radiation pattern. This parameter is allowed only when the
RespCut parameter is set to 'El' or '3D' and the Format parameter is set to 'Line'
or 'Polar'. The values of elevation angles should lie between –90° and 90° and must be
in nondecreasing order. When yous set the RespCut parameter to '3D', you can set the
ElevationAngles and AzimuthAngles parameters simultaneously.

Default: [-90:90]

'UGrid'

U coordinate values for plotting array response, specified as a row vector. The UGrid
parameter sets the display range and resolution of the U coordinates for visualizing
the radiation pattern in U/V space. This parameter is allowed only when the Format
parameter is set to 'UV' and the RespCut parameter is set to 'U' or '3D'. The values of
UGrid should be between –1 and 1 and should be specified in nondecreasing order. You
can set the UGrid and VGrid parameters simultaneously.

Default: [-1:0.01:1]

'VGrid'

V coordinate values for plotting array response, specified as a row vector. The VGrid
parameter sets the display range and resolution of the V coordinates for visualizing
the radiation pattern in U/V space. This parameter is allowed only when the Format
parameter is set to 'UV' and the RespCut parameter is set to '3D'. The values of VGrid
should be between –1 and 1 and should be specified in nondecreasing order. You can set
VGrid and UGrid parameters simultaneously.

Default: [-1:0.01:1]

Examples

Plot Azimuth Response of 4-Element ULA

Construct a 4-element ULA of isotropic elements (the default) and plot its azimuth
response in polar form. By default, the azimuth cut is at 0 degrees elevation. Assume the
operating frequency is 1 GHz and the wave propagation speed is the speed of light. The
nominal element spacing is 1/2 meter which means that the array is undersampled at
this frequency.

ha = phased.ULA(4);

1 Alphabetical List

1-2026

fc = 1e9;

c = physconst('LightSpeed');

plotResponse(ha,fc,c,'RespCut','Az','Format','Polar');

Plot Response of ULA at Two Frequencies

This example shows how to plot an azimuth cut of the response of a uniform linear
array at 0 degrees elevation using a line plot. The plot shows the responses at operating
frequencies of 300 MHz and 400 MHz.

h = phased.ULA;

fc = [3e8 4e8];

c = physconst('LightSpeed');

plotResponse(h,fc,c);

 plotResponse

1-2027

Plot Azimuth Response of Tapered 11-Element ULA

This example shows how to construct an 11-element ULA array of backbaffled
omnidirectional microphones for beamforming the direction of arrival of sound in air.
The elements are spaced four centimeters apart and have a frequency response lying
in the 2000-8000 Hz frequency range. Use the plotResponse method to display an
azimuth cut of the array's response at 5000 Hz. Use the 'Weights' parameter to apply
both uniform tapering and Taylor window tapering to the array at the same frequency.
Finally, use the 'AzimuthAngles' parameter to limit the display from -45 to 45 degrees
in 0.1 degree increments. A typical value for the speed of sound in air is 343 meters/
second.

s_omni = phased.OmnidirectionalMicrophoneElement(...

1 Alphabetical List

1-2028

 'FrequencyRange',[2000,8000],...

 'BackBaffled',true);

s_ula = phased.ULA(11,'Element',s_omni,...

 'ElementSpacing',0.04);

c = 343.0;

fc = 5000;

wts = taylorwin(11);

plotResponse(s_ula,fc,c,'RespCut','Az',...

 'Format','Polar',...

 'Weights',[ones(11,1),wts],...

 'AzimuthAngles',[-45:.1:45]);

 plotResponse

1-2029

The plot shows that the Taylor tapered set of weights reduces the adjacent sidelobes
while broadening the main lobe compared to a uniformly tapered array.

Plot Directivity of 11-Element ULA of Cosine Pattern Antennas

This example shows how to construct an 11-element ULA of cosine antenna elements
that are spaced one-half wavelength apart. Then, using the plotResponse method,
plot an azimuth cut of the array's directivity by setting the 'Unit' parameter to 'dbi'.
Assume the operating frequency is 1.5 GHz and the wave propagation speed is the speed
of light.

fc = 1.5e9;

c = physconst('Lightspeed');

lambda = c/fc;

sCos = phased.CosineAntennaElement('FrequencyRange',...

 [1e9 2e9],'CosinePower',[2.5,3.5]);

sULA = phased.ULA(11,0.5*lambda,'Element',sCos);

plotResponse(sULA,fc,c,'RespCut','Az','Unit','dbi');

1 Alphabetical List

1-2030

See Also
azel2uv | uv2azel

 pattern

1-2031

pattern

System object: phased.ULA
Package: phased

Plot array pattern

Syntax

pattern(sArray,FREQ)

pattern(sArray,FREQ,AZ)

pattern(sArray,FREQ,AZ,EL)

pattern(___ ,Name,Value)

[PAT,AZ_ANG,EL_ANG] = pattern(___)

Description

pattern(sArray,FREQ) plots the 3-D array directivity pattern (in dBi) for the array
specified in sArray. The operating frequency is specified in FREQ.

pattern(sArray,FREQ,AZ) plots the array directivity pattern at the specified azimuth
angle.

pattern(sArray,FREQ,AZ,EL) plots the array directivity pattern at specified azimuth
and elevation angles.

pattern(___ ,Name,Value) plots the array pattern with additional options specified
by one or more Name,Value pair arguments.

[PAT,AZ_ANG,EL_ANG] = pattern(___) returns the array pattern in PAT. The
AZ_ANG output contains the coordinate values corresponding to the rows of PAT. The
EL_ANG output contains the coordinate values corresponding to the columns of PAT.
If the 'CoordinateSystem' parameter is set to 'uv', then AZ_ANG contains the
U coordinates of the pattern and EL_ANG contains the V coordinates of the pattern.
Otherwise, they are in angular units in degrees. UV units are dimensionless.

1 Alphabetical List

1-2032

Note: This method replaces the previous plotResponse method. To replace plots using
plotResponse plots with equivalent plots using pattern, see “Convert plotResponse to
pattern” on page 1-2037

Input Arguments

sArray — Uniform linear array
System object

Uniform linear array, specified as a phased.ULA System object.
Example: sArray= phased.ULA;

FREQ — Frequency for computing directivity and patterns
positive scalar | 1-by-L real-valued row vector

Frequencies for computing directivity and patterns, specified as a positive scalar or 1-
by-L real-valued row vector. Frequency units are in hertz.

• For an antenna or microphone element, FREQ must lie within the range of
values specified by the FrequencyRange or FrequencyVector property of the
element. Otherwise, the element produces no response and the directivity is
returned as –Inf. Most elements use the FrequencyRange property except for
phased.CustomAntennaElement and phased.CustomMicrophoneElement, which use
the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements
that make up the array. Otherwise, the array produces no response and the
directivity is returned as –Inf.

Example: [1e8 2e8]

Data Types: double

AZ — Azimuth angles
[-180:180] (default) | 1-by-M real-valued row vector

Azimuth angles for computing directivity and pattern, specified as a 1-by-M real-
valued row vector where M is the number of azimuth angles. Angle units are in degrees.
Azimuth angles must lie between –180° and 180°.

 pattern

1-2033

The azimuth angle is the angle between the x-axis and the projection of the direction
vector onto the xy plane. When measured from the x-axis toward the y-axis, this angle is
positive.
Example: [-45:2:45]

Data Types: double

EL — Elevation angles
[-90:90] (default) | 1-by-N real-valued row vector

Elevation angles for computing directivity and pattern, specified as a 1-by-N real-valued
row vector where N is the number of desired elevation directions. Angle units are in
degrees. The elevation angle must lie between –90° and 90°.

The elevation angle is the angle between the direction vector and xy-plane. When
measured towards the z-axis, this angle is positive.
Example: [-75:1:70]

Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'CoordinateSystem' — Plotting coordinate system
'polar' (default) | 'rectangular' | 'uv'

Plotting coordinate system of the pattern, specified as the comma-separated pair
consisting of 'CoordinateSystem' and one of 'polar', 'rectangular', or
'uv'. When 'CoordinateSystem' is set to 'polar' or 'rectangular', the
AZ and EL arguments specify the pattern azimuth and elevation, respectively. AZ
values must lie between –180° and 180°. EL values must lie between –90° and 90°. If
'CoordinateSystem' is set to 'uv', AZ and EL then specify U and V coordinates,
respectively. AZ and EL must lie between -1 and 1.

Example: 'uv'

Data Types: char

1 Alphabetical List

1-2034

'Type' — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and
one of

• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed

pattern is for the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field

pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'

Data Types: char

'Normalize' — Display normalize pattern
true (default) | false

Display normalized pattern, specified as the comma-separated pair consisting of
'Normalize' and a Boolean. Set this parameter to true to display a normalized pattern.
When you set 'Type' to 'directivity', this parameter does not apply. Directivity
patterns are already normalized.
Example:
Data Types: logical

'PlotStyle' — Plotting style
'overlay' (default) | 'waterfall'

Plotting style, specified as the comma-separated pair consisting of 'Plotstyle' and
either 'overlay' or 'waterfall'. This parameter applies when you specify multiple
frequencies in FREQ in 2-D plots. You can draw 2-D plots by setting one of the arguments
AZ or EL to a scalar.

Example:
Data Types: char

'Polarization' — Polarized field component
'combined' (default) | 'H' | 'V'

 pattern

1-2035

Polarized field component to display, specified as the comma-separated pair consisting
of 'Polarization' and 'combined', 'H', or 'V'. This parameter applies only when
the sensors are polarization-capable and when the 'Type' parameter is not set to
'directivity'. This table shows the meaning of the display options

'Polarization' Display

'combined' Combined H and V polarization
components

'H' H polarization component
'V' V polarization component

Example: 'V'

Data Types: char

'PropagationSpeed' — Signal propagation speed
speed of light (default) | positive scalar

Signal propagation speed, specified as the comma-separated pair consisting of
'PropagationSpeed' and a positive scalar in meters per second.

Example: 'PropagationSpeed',physconst('LightSpeed')

Data Types: double

'Weights' — Array weights
1 (default) | N-by-1 complex-valued column vector | N-by-L complex-valued matrix

Array weights, specified as the comma-separated pair consisting of 'Weights' and an
N-by-1 complex-valued column vector or N-by-L complex-valued matrix. Array weights
are applied to the elements of the array to produce array steering, tapering, or both. The
dimension N is the number of elements in the array. The dimension L is the number of
frequencies specified by FREQ.

Weights Dimension FREQ Dimension Purpose

N-by-1 complex-valued
column vector

Scalar or 1-by-L row vector Applies a set of weights for
the single frequency or for all
L frequencies.

N-by-L complex-valued
matrix

1-by-L row vector Applies each of the L
columns of 'Weights' for

1 Alphabetical List

1-2036

Weights Dimension FREQ Dimension Purpose

the corresponding frequency
in FREQ.

Note: Use complex weights to steer the array response toward different directions. You
can create weights using the phased.SteeringVector System object or you can compute
your own weights. In general, you apply Hermitian conjugation before using weights in
any Phased Array System Toolbox function or System object such as phased.Radiator
or phased.Collector. However, for the directivity, pattern, patternAzimuth, and
patternElevation methods of any array System object use the steering vector without
conjugation.

Example: 'Weights',ones(N,M)

Data Types: double
Complex Number Support: Yes

Output Arguments

PAT — Array pattern
M-by-N real-valued matrix

Array pattern, returned as an M-by-N real-valued matrix. The dimensions of PAT
correspond to the dimensions of the output arguments AZ_ANG and EL_ANG.

AZ_ANG — Azimuth angles
scalar | 1-by-M real-valued row vector

Azimuth angles for displaying directivity or response pattern, returned as a scalar or 1-
by-M real-valued row vector corresponding to the dimension set in AZ. The rows of PAT
correspond to the values in AZ_ANG.

EL_ANG — Elevation angles
scalar | 1-by-N real-valued row vector

Elevation angles for displaying directivity or response, returned as a scalar or 1-by-N
real-valued row vector corresponding to the dimension set in EL. The columns of PAT
correspond to the values in EL_ANG.

 pattern

1-2037

More about

Directivity (dBi)

Directivity describes the directionality of the radiation pattern of a sensor element
or array of sensor elements. Higher directivity is desired when you want to transmit
more radiation in a specific direction. Directivity is the ratio of the transmitted radiant
intensity in a specified direction to the radiant intensity transmitted by an isotropic
radiator with the same total transmitted power

D
U

P
=

()
4p

q jrad

total

,

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal
is the total power transmitted by an isotropic radiator. For a receiving element or array,
directivity measures the sensitivity toward radiation arriving from a specific direction.
The principle of reciprocity shows that the directivity of an element or array used for
reception equals the directivity of the same element or array used for transmission.
When converted to decibels, the directivity is denoted as dBi. For information on
directivity, read the notes on “Element directivity” and “Array directivity”.

Computing directivity requires integrating the far-field transmitted radiant intensity
over all directions in space to obtain the total transmitted power. There is a difference
between how that integration is performed when Antenna Toolbox antennas are used
in a phased array and when Phased Array System Toolbox antennas are used. When
an array contains Antenna Toolbox antennas, the directivity computation is performed
using a triangular mesh created from 500 regularly spaced points over a sphere. For
Phased Array System Toolbox antennas, the integration uses a uniform rectangular
mesh of points spaced 1° apart in azimuth and elevation over a sphere. There may be
significant differences in computed directivity, especially for large arrays.

Convert plotResponse to pattern

For antenna, microphone, and array System objects, the pattern method replaces
the plotResponse method. In addition, two new simplified methods exist just to
draw 2-D azimuth and elevation pattern plots. These are the azimuthPattern and
elevationPattern methods.

1 Alphabetical List

1-2038

The following table is a guide for converting your code from using plotResponse to
pattern. You should notice that some of the inputs have changed from input arguments
to Name-Value pairs and vice versa. The general pattern method syntax is

pattern(H,FREQ,AZ,EL,'Name1','Value1',...,'NameN','ValueN')

plotResponse Inputs plotResponse Description pattern Inputs

H argument Antenna, microphone, or array
System object.

H argument (no change)

FREQ argument Operating frequency. FREQ argument (no change)
V argument Propagation speed. This

argument is used only for
arrays.

'PropagationSpeed' name-
value pair. This parameter is
only used for arrays.

'Format' and 'RespCut'
name-value pairs

These options work together to
let you create a plot in angle
space (line or polar style) or
UV space. They also determine
whether the plot is 2-D or 3-
D. This table shows you how to
create different types of plots
using plotResponse.

Display space

Angle space
(2D)

Set
'RespCut'

to 'Az' or

'El'. Set
'Format' to
'line' or
'polar'.

Set the display
axis using
either the
the
'AzimuthAngles'

or
'ElevationAngles'

'CoordinateSystem' name-
value pair used together with
the AZ and EL input arguments.

'CoordinateSystem' has
the same options as the
plotResponse method
'Format'name-value pair,
except that 'line' is now
named 'rectangular'. The
table shows how to create
different types of plots using
pattern.

Display space

Angle space
(2D)

Set
'Coordinate

System' to
'rectangular'

or 'polar'.
Specify either
AZ or EL as a
scalar.

Angle space
(3D)

Set
'Coordinate

 pattern

1-2039

plotResponse Inputs plotResponse Description pattern Inputs

Display space

name-value
pairs.

Angle space
(3D)

Set
'RespCut'

to '3D'. Set
'Format' to
'line' or
'polar'.

Set the display
axis using
both the
'AzimuthAngles'

and'ElevationAngles'
name-value
pairs.

UV space (2D) Set
'RespCut'

to'U'. Set
'Format'

to 'UV'. Set
the display
range using
the 'UGrid'
name-value
pair.

UV space (3D) Set
'RespCut'

to'3D'. Set
'Format' to
'UV'. Set the
display range
using both
the 'UGrid'
and 'VGrid'

Display space

System' to
'rectangular'

or 'polar'.
Specify both
AZ and EL as
vectors.

UV space (2D) Set
'Coordinate

System' to
'uv'. Use AZ
to specify a U-
space vector.
Use EL to
specify a V-
space scalar.

UV space (3D) Set
'Coordinate

System' to
'uv'. Use AZ
to specify a U-
space vector.
Use EL to
specify a V-
space vector.

If you set CoordinateSystem
to 'uv', enter the UV grid
values using AZ and EL.

1 Alphabetical List

1-2040

plotResponse Inputs plotResponse Description pattern Inputs

Display space

name-value
pairs.

'CutAngle' name-value pair Constant angle at to take an
azimuth or elevation cut. When
producing a 2-D plot and when
'RespCut' is set to 'Az' or
'El', use 'CutAngle' to set
the slice across which to view
the plot.

No equivalent name-value pair.
To create a cut, specify either AZ
or EL as a scalar, not a vector.

'NormalizeResponse' name-
value pair

Normalizes the plot.
When 'Unit' is set to
'dbi', you cannot specify
'NormalizeResponse'.

'Normalize' name-value
pair. When 'Type' is set to
'directivity',

you cannot specify
'Normalize'.
.

'OverlayFreq' name-value
pair

Plot multiple frequencies on
the same 2-D plot. Available
only when 'Format' is
set to 'line' or 'uv' and
'RespCut' is not set to '3D'.
The value true produces an
overlay plot and the value
false produces a waterfall
plot.

'PlotStyle' name-value pair
plots multiple frequencies on the
same 2-D plot.

The values 'overlay' and
'waterfall' correspond to
'OverlayFreq' values of
true and false. The option
'waterfall' is allowed only
when 'CoordinateSystem' is
set to 'rectangular' or 'uv'.

'Polarization' name-value
pair

Determines how to plot
polarized fields. Options are
'None', 'Combined', 'H', or
'V'.

'Polarization' name-value
pair determines how to plot
polarized fields. The 'None'
option is removed. The options
'Combined', 'H', or 'V' are
unchanged.

 pattern

1-2041

plotResponse Inputs plotResponse Description pattern Inputs

'Unit' name-value pair Determines the plot units.
Choose 'db', 'mag', 'pow',
or 'dbi', where the default is
'db'.

'Type' name-value pair, uses
equivalent options with different
names

plotResponse pattern

'db' 'powerdb'

'mag' 'efield'

'pow' 'power'

'dbi' 'directivity'

'Weights' name-value pair Array element tapers (or
weights).

'Weights' name-value pair (no
change).

'AzimuthAngles' name-value
pair

Azimuth angles used to display
the antenna or array response.

AZ argument

'ElevationAngles' name-
value pair

Elevation angles used to
display the antenna or array
response.

EL argument

'UGrid' name-value pair Contains U coordinates in UV-
space.

AZ argument when
'CoordinateSystem' name-
value pair is set to 'uv'

'VGrid' name-value pair Contains V-coordinates in UV-
space.

EL argument when
'CoordinateSystem' name-
value pair is set to 'uv'

Examples

Plot Pattern of 9-Element ULA Antenna Array of Short Dipoles

Create an 9-element ULA of short dipole antenna elements spaced 0.2 meters apart.
Display the azimuth and elevation directivities. The operating frequency is 500 MHz.
Plot the directivities in polar coordinates.

Evaluate the fields at 45 degrees azimuth and 0 degrees elevation.

sSD = phased.ShortDipoleAntennaElement(...

1 Alphabetical List

1-2042

 'FrequencyRange',[50e6,1000e6],...

 'AxisDirection','Z');

sULA = phased.ULA('NumElements',9,'ElementSpacing',1.5,'Element',sSD);

fc = 500e6;

ang = [45;0];

resp = step(sULA,fc,ang);

disp(resp.V)

 -1.2247

 -1.2247

 -1.2247

 -1.2247

 -1.2247

 -1.2247

 -1.2247

 -1.2247

 -1.2247

Display the azimuth directivity pattern at 500 MHz for azimuth angles between -180 and
180 degrees.

c = physconst('LightSpeed');

pattern(sULA,fc,[-180:180],0,...

 'Type','directivity',...

 'PropagationSpeed',c)

 pattern

1-2043

Display the elevation directivity pattern at 500 MHz for elevation angles between -90
and 90 degrees.

pattern(sULA,fc,[0],[-90:90],...

 'Type','directivity',...

 'PropagationSpeed',c)

1 Alphabetical List

1-2044

Plot Pattern of 10-Element ULA Antenna Array in UV Space

Create a 10-element ULA antenna array consisting of cosine antenna elements spaced
10 cm apart. Display the 3-D power pattern in UV space. The operating frequency is 500
MHz.

sCos = phased.CosineAntennaElement('FrequencyRange',[100e6 1e9],...

 'CosinePower',[2.5,2.5]);

sULA = phased.ULA('NumElements',10,...

 'ElementSpacing',.1,...

 'Element',sCos);

c = physconst('LightSpeed');

fc = 500e6;

pattern(sULA,fc,[-1:.01:1],[-1:.01:1],...

 pattern

1-2045

 'CoordinateSystem','uv',...

 'Type','powerdb',...

 'PropagationSpeed',c)

See Also
phased.ULA.patternAzimuth | phased.ULA.patternElevation

Introduced in R2015a

1 Alphabetical List

1-2046

patternAzimuth

System object: phased.ULA
Package: phased

Plot ULA array directivity or pattern versus azimuth

Syntax

patternAzimuth(sArray,FREQ)

patternAzimuth(sArray,FREQ,EL)

patternAzimuth(sArray,FREQ,EL,Name,Value)

PAT = patternAzimuth(___)

Description

patternAzimuth(sArray,FREQ) plots the 2-D array directivity pattern versus
azimuth (in dBi) for the array sArray at zero degrees elevation angle. The argument
FREQ specifies the operating frequency.

patternAzimuth(sArray,FREQ,EL), in addtion, plots the 2-D array directivity
pattern versus azimuth (in dBi) for the array sArray at the elevation angle specified by
EL. When EL is a vector, multiple overlaid plots are created.

patternAzimuth(sArray,FREQ,EL,Name,Value) plots the array pattern with
additional options specified by one or more Name,Value pair arguments.

PAT = patternAzimuth(___) returns the array pattern. PAT is a matrix whose
entries represent the pattern at corresponding sampling points specified by the
'Azimuth' parameter and the EL input argument.

Input Arguments

sArray — Uniform linear array
System object

 patternAzimuth

1-2047

Uniform linear array, specified as a phased.ULA System object.
Example: sArray= phased.ULA;

FREQ — Frequency for computing directivity and pattern
positive scalar

Frequency for computing directivity and pattern, specified as a positive scalar. Frequency
units are in hertz.

• For an antenna or microphone element, FREQ must lie within the range of values
specified by the FrequencyRange or the FrequencyVector property of the
element. Otherwise, the element produces no response and the directivity is
returned as –Inf. Most elements use the FrequencyRange property except for
phased.CustomAntennaElement and phased.CustomMicrophoneElement, which use
the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements
that make up the array. Otherwise, the array produces no response and the
directivity is returned as –Inf.

Example: 1e8

Data Types: double

EL — Elevation angles
1-by-N real-valued row vector

Elevation angles for computing array directivity and pattern, specified as a 1-by-N real-
valued row vector, where N is the number of requested elevation directions. Angle units
are in degrees. The elevation angle must lie between –90° and 90°.

The elevation angle is the angle between the direction vector and the xy plane. When
measured toward the z-axis, this angle is positive.
Example: [0,10,20]

Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

1 Alphabetical List

1-2048

quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Type' — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and
one of

• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed

pattern is for the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field

pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'

Data Types: char

'PropagationSpeed' — Signal propagation speed
speed of light (default) | positive scalar

Signal propagation speed, specified as the comma-separated pair consisting of
'PropagationSpeed' and a positive scalar in meters per second.

Example: 'PropagationSpeed',physconst('LightSpeed')

Data Types: double

'Weights' — Array weights
M-by-1 complex-valued column vector

Array weights, specified as the comma-separated pair consisting of 'Weights' and an
M-by-1 complex-valued column vector. Array weights are applied to the elements of the
array to produce array steering, tapering, or both. The dimension M is the number of
elements in the array.

Note: Use complex weights to steer the array response toward different directions. You
can create weights using the phased.SteeringVector System object or you can compute

 patternAzimuth

1-2049

your own weights. In general, you apply Hermitian conjugation before using weights in
any Phased Array System Toolbox function or System object such as phased.Radiator
or phased.Collector. However, for the directivity, pattern, patternAzimuth, and
patternElevation methods of any array System object use the steering vector without
conjugation.

Example: 'Weights',ones(10,1)

Data Types: double
Complex Number Support: Yes

'Azimuth' — Azimuth angles
[-180:180] (default) | 1-by-P real-valued row vector

Azimuth angles, specified as the comma-separated pair consisting of 'Azimuth' and a 1-
by-P real-valued row vector. Azimuth angles define where the array pattern is calculated.
Example: 'Azimuth',[-90:2:90]

Data Types: double

Output Arguments

PAT — Array directivity or pattern
L-by-N real-valued matrix

Array directivity or pattern, returned as an L-by-N rea-valued matrix. The dimension
L is the number of azimuth values determined by the 'Azimuth' name-value pair
argument. The dimension N is the number of elevation angles, as determined by the EL
input argument.

Definitions

Directivity (dBi)

Directivity describes the directionality of the radiation pattern of a sensor element
or array of sensor elements. Higher directivity is desired when you want to transmit

1 Alphabetical List

1-2050

more radiation in a specific direction. Directivity is the ratio of the transmitted radiant
intensity in a specified direction to the radiant intensity transmitted by an isotropic
radiator with the same total transmitted power

D
U

P
=

()
4p

q jrad

total

,

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal
is the total power transmitted by an isotropic radiator. For a receiving element or array,
directivity measures the sensitivity toward radiation arriving from a specific direction.
The principle of reciprocity shows that the directivity of an element or array used for
reception equals the directivity of the same element or array used for transmission.
When converted to decibels, the directivity is denoted as dBi. For information on
directivity, read the notes on “Element directivity” and “Array directivity”.

Computing directivity requires integrating the far-field transmitted radiant intensity
over all directions in space to obtain the total transmitted power. There is a difference
between how that integration is performed when Antenna Toolbox antennas are used
in a phased array and when Phased Array System Toolbox antennas are used. When
an array contains Antenna Toolbox antennas, the directivity computation is performed
using a triangular mesh created from 500 regularly spaced points over a sphere. For
Phased Array System Toolbox antennas, the integration uses a uniform rectangular
mesh of points spaced 1° apart in azimuth and elevation over a sphere. There may be
significant differences in computed directivity, especially for large arrays.

Examples

Plot Azimuth Pattern of ULA

Create a 7-element ULA of short-dipole antenna elements spaced 10 cm apart. Plot an
azimuth cut of directivity at 0 and 10 degrees elevation. Assume the operating frequency
is 500 MHz.

fc = 500e6;

sCDant = phased.ShortDipoleAntennaElement('FrequencyRange',[100,900]*1e6);

sULA = phased.ULA('NumElements',7,'ElementSpacing',0.1,'Element',sCDant);

patternAzimuth(sULA,fc,[0 30])

 patternAzimuth

1-2051

You can plot a smaller range of azimuth angles by setting the Azimuth property.

patternAzimuth(sULA,fc,[0 30],'Azimuth',[-90:90])

1 Alphabetical List

1-2052

See Also
phased.ULA.pattern | phased.ULA.patternElevation

Introduced in R2015a

 patternElevation

1-2053

patternElevation
System object: phased.ULA
Package: phased

Plot ULA array directivity or pattern versus elevation

Syntax

patternElevation(sArray,FREQ)

patternElevation(sArray,FREQ,AZ)

patternElevation(sArray,FREQ,AZ,Name,Value)

PAT = patternElevation(___)

Description

patternElevation(sArray,FREQ) plots the 2-D array directivity pattern versus
elevation (in dBi) for the array sArray at zero degrees azimuth angle. When AZ is a
vector, multiple overlaid plots are created. The argument FREQ specifies the operating
frequency.

patternElevation(sArray,FREQ,AZ), in addition, plots the 2-D element directivity
pattern versus elevation (in dBi) at the azimuth angle specified by AZ. When AZ is a
vector, multiple overlaid plots are created.

patternElevation(sArray,FREQ,AZ,Name,Value) plots the array pattern with
additional options specified by one or more Name,Value pair arguments.

PAT = patternElevation(___) returns the array pattern. PAT is a matrix whose
entries represent the pattern at corresponding sampling points specified by the
'Elevation' parameter and the AZ input argument.

Input Arguments

sArray — Uniform linear array
System object

1 Alphabetical List

1-2054

Uniform linear array, specified as a phased.ULA System object.
Example: sArray= phased.ULA;

FREQ — Frequency for computing directivity and pattern
positive scalar

Frequency for computing directivity and pattern, specified as a positive scalar. Frequency
units are in hertz.

• For an antenna or microphone element, FREQ must lie within the range of values
specified by the FrequencyRange or the FrequencyVector property of the
element. Otherwise, the element produces no response and the directivity is
returned as –Inf. Most elements use the FrequencyRange property except for
phased.CustomAntennaElement and phased.CustomMicrophoneElement, which use
the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements
that make up the array. Otherwise, the array produces no response and the
directivity is returned as –Inf.

Example: 1e8

Data Types: double

AZ — Azimuth angles for computing directivity and pattern
1-by-N real-valued row vector

Azimuth angles for computing array directivity and pattern, specified as a 1-by-M real-
valued row vector where N is the number of desired azimuth directions. Angle units are
in degrees. The azimuth angle must lie between –180° and 180°.

The azimuth angle is the angle between the x-axis and the projection of the direction
vector onto the xy plane. This angle is positive when measured from the x-axis toward the
y-axis.
Example: [0,10,20]

Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

 patternElevation

1-2055

quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Type' — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and
one of

• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed

pattern is for the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field

pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'

Data Types: char

'PropagationSpeed' — Signal propagation speed
speed of light (default) | positive scalar

Signal propagation speed, specified as the comma-separated pair consisting of
'PropagationSpeed' and a positive scalar in meters per second.

Example: 'PropagationSpeed',physconst('LightSpeed')

Data Types: double

'Weights' — Array weights
M-by-1 complex-valued column vector

Array weights, specified as the comma-separated pair consisting of 'Weights' and an
M-by-1 complex-valued column vector. Array weights are applied to the elements of the
array to produce array steering, tapering, or both. The dimension M is the number of
elements in the array.

Note: Use complex weights to steer the array response toward different directions. You
can create weights using the phased.SteeringVector System object or you can compute
your own weights. In general, you apply Hermitian conjugation before using weights in

1 Alphabetical List

1-2056

any Phased Array System Toolbox function or System object such as phased.Radiator
or phased.Collector. However, for the directivity, pattern, patternAzimuth, and
patternElevation methods of any array System object use the steering vector without
conjugation.

Example: 'Weights',ones(10,1)

Data Types: double
Complex Number Support: Yes

'Elevation' — Elevation angles
[-90:90] (default) | 1-by-P real-valued row vector

Elevation angles, specified as the comma-separated pair consisting of 'Elevation'
and a 1-by-P real-valued row vector. Elevation angles define where the array pattern is
calculated.
Example: 'Elevation',[-90:2:90]

Data Types: double

Output Arguments

PAT — Array directivity or pattern
L-by-N real-valued matrix

Array directivity or pattern, returned as an L-by-N real-valued matrix. The dimension
L is the number of elevation angles determined by the 'Elevation' name-value pair
argument. The dimension N is the number of azimuth angles determined by the AZ
argument.

Definitions

Directivity (dBi)

Directivity describes the directionality of the radiation pattern of a sensor element
or array of sensor elements. Higher directivity is desired when you want to transmit

 patternElevation

1-2057

more radiation in a specific direction. Directivity is the ratio of the transmitted radiant
intensity in a specified direction to the radiant intensity transmitted by an isotropic
radiator with the same total transmitted power

D
U

P
=

()
4p

q jrad

total

,

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal
is the total power transmitted by an isotropic radiator. For a receiving element or array,
directivity measures the sensitivity toward radiation arriving from a specific direction.
The principle of reciprocity shows that the directivity of an element or array used for
reception equals the directivity of the same element or array used for transmission.
When converted to decibels, the directivity is denoted as dBi. For information on
directivity, read the notes on “Element directivity” and “Array directivity”.

Computing directivity requires integrating the far-field transmitted radiant intensity
over all directions in space to obtain the total transmitted power. There is a difference
between how that integration is performed when Antenna Toolbox antennas are used
in a phased array and when Phased Array System Toolbox antennas are used. When
an array contains Antenna Toolbox antennas, the directivity computation is performed
using a triangular mesh created from 500 regularly spaced points over a sphere. For
Phased Array System Toolbox antennas, the integration uses a uniform rectangular
mesh of points spaced 1° apart in azimuth and elevation over a sphere. There may be
significant differences in computed directivity, especially for large arrays.

Examples

Plot Elevation Pattern of ULA

Create a 6-element ULA of short-dipole antenna elements with element spacing of 10 cm.
Plot an elevation cut of directivity at 0 and 90 degrees azimuth. Assume the operating
frequency is 500 MHz.

fc = 500e6;

c = physconst('LightSpeed');

sSD = phased.ShortDipoleAntennaElement('FrequencyRange',[100,900]*1e6);

sULA = phased.ULA('NumElements',6,'ElementSpacing',0.1,'Element',sSD);

patternElevation(sULA,fc,[0 90],'PropagationSpeed',c)

1 Alphabetical List

1-2058

You can plot a smaller range of elevation angles by setting the Elevation property.

patternElevation(sULA,fc,[0 45],'Elevation',[0:90],'PropagationSpeed',c)

 patternElevation

1-2059

See Also
phased.ULA.pattern | phased.ULA.patternAzimuth

Introduced in R2015a

1 Alphabetical List

1-2060

plotGratingLobeDiagram
System object: phased.ULA
Package: phased

Plot grating lobe diagram of array

Syntax

plotGratingLobeDiagram(H,FREQ)

plotGratingLobeDiagram(H,FREQ,ANGLE)

plotGratingLobeDiagram(H,FREQ,ANGLE,C)

plotGratingLobeDiagram(H,FREQ,ANGLE,C,F0)

hPlot = plotGratingLobeDiagram(___)

Description

plotGratingLobeDiagram(H,FREQ) plots the grating lobe diagram of an array in
the u-v coordinate system. The System object H specifies the array. The argument FREQ
specifies the signal frequency and phase-shifter frequency. The array, by default, is
steered to 0° azimuth and 0° elevation.

A grating lobe diagram displays the positions of the peaks of the narrowband array
pattern. The array pattern depends only upon the geometry of the array and not upon
the types of elements which make up the array. Visible and nonvisible grating lobes are
displayed as open circles. Only grating lobe peaks near the location of the mainlobe are
shown. The mainlobe itself is displayed as a filled circle.

plotGratingLobeDiagram(H,FREQ,ANGLE), in addition, specifies the array steering
angle, ANGLE.

plotGratingLobeDiagram(H,FREQ,ANGLE,C), in addition, specifies the propagation
speed by C.

plotGratingLobeDiagram(H,FREQ,ANGLE,C,F0), in addition, specifies an array
phase-shifter frequency, F0, that differs from the signal frequency, FREQ. This argument
is useful when the signal no longer satisfies the narrowband assumption and, allows you
to estimate the size of beam squint.

 plotGratingLobeDiagram

1-2061

hPlot = plotGratingLobeDiagram(___) returns the handle to the plot for any of
the input syntax forms.

Input Arguments

H

Antenna or microphone array, specified as a System object.

FREQ

Signal frequency, specified as a scalar. Frequency units are hertz. Values must lie
within a range specified by the frequency property of the array elements contained in
H.Element. The frequency property is named FrequencyRange or FrequencyVector,
depending on the element type.

ANGLE

Array steering angle, specified as either a 2-by-1 vector or a scalar. If ANGLE is a vector,
it takes the form [azimuth;elevation]. The azimuth angle must lie in the range
[-180°,180°]. The elevation angle must lie in the range [-90°,90°]. All angle values
are specified in degrees. If the argument ANGLE is a scalar, it specifies only the azimuth
angle where the corresponding elevation angle is 0°.

Default: [0;0]

C

Signal propagation speed, specified as a scalar. Units are meters per second.

Default: Speed of light in vacuum

F0

Phase-shifter frequency of the array, specified as a scalar. Frequency units are hertz
When this argument is omitted, the phase-shifter frequency is assumed to be the signal
frequency, FREQ.

Default: FREQ

1 Alphabetical List

1-2062

Examples

Create Grating Lobe Diagram for ULA

Plot the grating lobe diagram for a 4-element uniform linear array having element
spacing less than one-half wavelength. Grating lobes are plotted in u-v coordinates.

Assume the operating frequency of the array is 3 GHz and the spacing between elements
is 0.45 of the wavelength. All elements are isotropic antenna elements. Steer the array in
the direction 45 degrees in azimuth and 0 degrees in elevation.

c = physconst('LightSpeed');

f = 3e9;

lambda = c/f;

sIso = phased.IsotropicAntennaElement;

sULA = phased.ULA('Element',sIso,'NumElements',4,...

 'ElementSpacing',0.45*lambda);

plotGratingLobeDiagram(sULA,f,[45;0],c);

 plotGratingLobeDiagram

1-2063

The main lobe of the array is indicated by a filled black circle. The grating lobes in the
visible and nonvisible regions are indicated by empty black circles. The visible region is
defined by the direction cosine limits between [-1,1] and is marked by the two vertical
black lines. Because the array spacing is less than one-half wavelength, there are no
grating lobes in the visible region of space. There are an infinite number of grating lobes
in the nonvisible regions, but only those in the range [-3,3] are shown.

The grating-lobe free region, shown in green, is the range of directions of the main lobe
for which there are no grating lobes in the visible region. In this case, it coincides with
the visible region.

1 Alphabetical List

1-2064

The white area of the diagram indicates a region where no grating lobes are possible.

Create Grating Lobe Diagram for Undersampled ULA

Plot the grating lobe diagram for a 4-element uniform linear array having element
spacing greater than one-half wavelength. Grating lobes are plotted in u-v coordinates.

Assume the operating frequency of the array is 3 GHz and the spacing between elements
is 0.65 of a wavelength. All elements are isotropic antenna elements. Steer the array in
the direction 45 degrees in azimuth and 0 degrees in elevation.

c = physconst('LightSpeed');

f = 3e9;

lambda = c/f;

sIso = phased.IsotropicAntennaElement;

sULA = phased.ULA('Element',sIso,'NumElements',4,'ElementSpacing',0.65*lambda);

plotGratingLobeDiagram(sULA,f,[45;0],c);

 plotGratingLobeDiagram

1-2065

The main lobe of the array is indicated by a filled black circle. The grating lobes in the
visible and nonvisible regions are indicated by empty black circles. The visible region,
marked by the two black vertical lines, corresponds to arrival angles between -90 and 90
degrees. The visible region is defined by the direction cosine limits . Because
the array spacing is greater than one-half wavelength, there is now a grating lobe in the
visible region of space. There are an infinite number of grating lobes in the nonvisible
regions, but only those for which are shown.

1 Alphabetical List

1-2066

The grating-lobe free region, shown in green, is the range of directions of the main lobe
for which there are no grating lobes in the visible region. In this case, it lies inside the
visible region.

Create Grating Lobe Diagram for ULA With Different Phase-Shifter Frequency

Plot the grating lobe diagram for a 4-element uniform linear array having element
spacing greater than one-half wavelength. Apply a phase-shifter frequency that differs
from the signal frequency. Grating lobes are plotted in u-v coordinates.

Assume the signal frequency is 3 GHz and the spacing between elements is 0.65 . All
elements are isotropic antenna elements. The phase-shifter frequency is set to 3.5 GHz.
Steer the array in the direction azimuth, elevation.

c = physconst('LightSpeed');

f = 3e9;

f0 = 3.5e9;

lambda = c/f;

sIso = phased.IsotropicAntennaElement;

sULA = phased.ULA('Element',sIso,'NumElements',4,...

 'ElementSpacing',0.65*lambda);

plotGratingLobeDiagram(sULA,f,[45;0],c,f0);

 plotGratingLobeDiagram

1-2067

As a result of adding the shifted frequency, the mainlobe shifts right towards larger
values. The beam no longer points toward the actual source arrival angle.

The mainlobe of the array is indicated by a filled black circle. The grating lobes in the
visible and nonvisible regions are indicated by empty black circles. The visible region,
marked by the two black vertical lines, corresponds to arrival angles between and

. The visible region is defined by the direction cosine limits . Because the
array spacing is greater than one-half wavelength, there is now a grating lobe in the
visible region of space. There are an infinite number of grating lobes in the nonvisible
regions, but only those for which are shown.

1 Alphabetical List

1-2068

The grating-lobe free region, shown in green, is the range of directions of the main lobe
for which there are no grating lobes in the visible region. In this case, it lies inside the
visible region.

Concepts

Grating Lobes

Spatial undersampling of a wavefield by an array gives rise to visible grating lobes.
If you think of the wavenumber, k, as analogous to angular frequency, then you must
sample the signal at spatial intervals smaller than π/kmax (or λmin/2) in order to remove
aliasing. The appearance of visible grating lobes is also known as spatial aliasing. The
variable kmax is the largest wavenumber value present in the signal.

The directions of maximum spatial response of a ULA are determined by the peaks of the
array’s array pattern (alternatively called the beam pattern or array factor). Peaks other
than the mainlobe peak are called grating lobes. For a ULA, the array pattern depends
only on the wavenumber component of the wavefield along the array axis (the y-direction
for the phased.ULA System object). The wavenumber component is related to the look-
direction of an arriving wavefield by ky = –2π sin φ/λ. The angle φ is the broadside angle
—the angle that the look-direction makes with a plane perpendicular to the array. The
look-direction points away from the array to the wavefield source.

The array pattern possesses an infinite number of periodically-spaced peaks that are
equal in strength to the mainlobe peak. If you steer the array to the φ0 direction, the
array pattern for a ULA has its mainlobe peak at the wavenumber value of ky0 = –2π
sin φ0/λ. The array pattern has strong grating lobe peaks at kym = ky0 + 2π m/d, for any
integer value m. Expressed in terms of direction cosines, the grating lobes occur at um =
u0 + mλ/d, where u0 = sin φ0. The direction cosine, u0, is the cosine of the angle that the
look-direction makes with the y-axis and is equal to sin φ0 when expressed in terms of the
look-direction.

In order to correspond to a physical look-direction, um must satisfy, –1 ≤ um ≤ 1. You can
compute a physical look-direction angle φm from sin φm = um as long as –1 ≤ um ≤ 1. The
spacing of grating lobes depends upon λ/d. When λ/d is small enough, multiple grating
lobe peaks can correspond to physical look-directions.

The presence or absence of visible grating lobes for the ULA is summarized in this table.

 plotGratingLobeDiagram

1-2069

Element Spacing Grating Lobes

λ/d ≥ 2 No visible grating lobes for any mainlobe
direction.

1 ≤ λ/d < 2 Visible grating lobes can exist for some
range of mainlobe directions.

λ/d < 1 Visible grating lobes exist for every
mainlobe direction.

References

[1] Van Trees, H.L. Optimum Array Processing. New York: Wiley-Interscience, 2002.

See Also
azel2uv | uv2azel

1 Alphabetical List

1-2070

release
System object: phased.ULA
Package: phased

Allow property value and input characteristics

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

 step

1-2071

step
System object: phased.ULA
Package: phased

Output responses of array elements

Syntax

RESP = step(H,FREQ,ANG)

Description

RESP = step(H,FREQ,ANG) returns the array element responses, RESP, at the
operating frequencies specified in FREQ and in directions specified in ANG.

Note: The object performs an initialization the first time the step method is executed.
This initialization locks nontunable properties and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Input Arguments

H

Array object

FREQ

Operating frequencies of array in hertz. FREQ is a row vector of length L. Typical values
are within the range specified by a property of H.Element. That property is named
FrequencyRange or FrequencyVector, depending on the type of element in the array.
The element has zero response at frequencies outside that range.

1 Alphabetical List

1-2072

ANG

Directions in degrees. ANG is either a 2-by-M matrix or a row vector of length M.

If ANG is a 2-by-M matrix, each column of the matrix specifies the direction in the
form [azimuth; elevation]. The azimuth angle must lie between –180° and 180°,
inclusive. The elevation angle must lie between –90° and 90°, inclusive.

If ANG is a row vector of length M, each element specifies the azimuth angle of the
direction. In this case, the corresponding elevation angle is assumed to be 0°.

Output Arguments

RESP

Voltage responses of the phased array. The output depends on whether the array
supports polarization or not.

• If the array is not capable of supporting polarization, the voltage response, RESP,
has the dimensions N-by-M-by-L. N is the number of elements in the array. The
dimension M is the number of angles specified in ANG. L is the number of frequencies
specified in FREQ. For any element, the columns of RESP contain the responses of the
array elements for the corresponding direction specified in ANG. Each of the L pages
of RESP contains the responses of the array elements for the corresponding frequency
specified in FREQ.

• If the array is capable of supporting polarization, the voltage response, RESP, is a
MATLAB struct containing two fields, RESP.H and RESP.V. The field, RESP.H,
represents the array’s horizontal polarization response, while RESP.V represents the
array’s vertical polarization response. Each field has the dimensions N-by-M-by-L.
N is the number of elements in the array, and M is the number of angles specified in
ANG. L is the number of frequencies specified in FREQ. Each column of RESP contains
the responses of the array elements for the corresponding direction specified in ANG.
Each of the L pages of RESP contains the responses of the array elements for the
corresponding frequency specified in FREQ.

 step

1-2073

Examples

Response of Antenna ULA

Create a 4-element ULA of isotropic antenna elements and find the response of each
element at boresight. Plot the array response at 1 GHz for azimuth angles between -180
and 180 degrees.

ha = phased.ULA('NumElements',4);

fc = 1e9;

ang = [0;0];

resp = step(ha,fc,ang);

c = physconst('LightSpeed');

pattern(ha,fc,[-180:180],0,...

 'PropagationSpeed',c,...

 'CoordinateSystem','rectangular')

1 Alphabetical List

1-2074

Step Response of Microphone ULA Array

Find the response of a ULA array of 10 omnidirectional microphones spaced 1.5 meters
apart. Set the frequency response of the microphone to the range 20 Hz to 20 kHz
and choose the signal frequency to be 100 Hz. Using the step method, determine the
response of each element at boresight: 0 degrees azimuth and 0 degrees elevation.

sMic = phased.OmnidirectionalMicrophoneElement(...

 'FrequencyRange',[20 20e3]);

Nelem = 10;

sULA = phased.ULA('NumElements',Nelem,...

 'ElementSpacing',1.5,...

 'Element',sMic);

fc = 100;

 step

1-2075

ang = [0;0];

resp = step(sULA,fc,ang)

resp =

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

Plot the array directivity. Assume the speed of sound in air to be 340 m/s.

c = 340;

pattern(sULA,fc,[-180:180],0,'PropagationSpeed',c,'CoordinateSystem','polar')

1 Alphabetical List

1-2076

See Also
phitheta2azel | uv2azel

 viewArray

1-2077

viewArray
System object: phased.ULA
Package: phased

View array geometry

Syntax

viewArray(H)

viewArray(H,Name,Value)

hPlot = viewArray(___)

Description

viewArray(H) plots the geometry of the array specified in H.

viewArray(H,Name,Value) plots the geometry of the array, with additional options
specified by one or more Name,Value pair arguments.

hPlot = viewArray(___) returns the handle of the array elements in the figure
window. All input arguments described for the previous syntaxes also apply here.

Input Arguments

H

Array object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

1 Alphabetical List

1-2078

'ShowIndex'

Vector specifying the element indices to show in the figure. Each number in the vector
must be an integer between 1 and the number of elements. You can also specify the
string 'All' to show indices of all elements of the array or 'None' to suppress indices.

Default: 'None'

'ShowNormals'

Set this value to true to show the normal directions of all elements of the array. Set this
value to false to plot the elements without showing normal directions.

Default: false

'ShowTaper'

Set this value to true to specify whether to change the element color brightness in
proportion to the element taper magnitude. When this value is set to false, all elements
are drawn with the same color.

Default: false

'Title'

String specifying the title of the plot.

Default: 'Array Geometry'

Output Arguments

hPlot

Handle of array elements in figure window.

Examples

Geometry and Indices of ULA Elements

This example shows how to draw a 6-element ULA. Use the 'ShowIndex' parameter to
show the indices of the first and third elements.

 viewArray

1-2079

sULA = phased.ULA(6);

viewArray(sULA,'ShowIndex',[1 3]);

• Phased Array Gallery

See Also
phased.ArrayResponse

../examples/phased-array-gallery.html

1 Alphabetical List

1-2080

phased.URA System object

Package: phased

Uniform rectangular array

Description

The URA object constructs a uniform rectangular array (URA).

To compute the response for each element in the array for specified directions:

1 Define and set up your uniform rectangular array. See “Construction” on page
1-2080.

2 Call step to compute the response according to the properties of phased.URA. The
behavior of step is specific to each object in the toolbox.

Construction

H = phased.URA creates a uniform rectangular array System object, H. The object
models a URA formed with identical sensor elements. Array elements are distributed
in the yz-plane in a rectangular lattice. The array look direction (boresight) is along the
positive x-axis.

H = phased.URA(Name,Value) creates the object, H, with each specified property
Name set to the specified Value. You can specify additional name-value pair arguments
in any order as (Name1,Value1,...,NameN,ValueN).

H = phased.URA(SZ,D,Name,Value) creates a URA object, H, with the Size property
set to SZ, the ElementSpacing property set to D and other specified property Names set
to the specified Values. SZ and D are value-only arguments. When specifying a value-only
argument, specify all preceding value-only arguments. You can specify name-value pair
arguments in any order.

 phased.URA System object

1-2081

Properties

Element

Phased array toolbox system object

Element specified as a Phased Array System Toolbox object. This object can be an
antenna or microphone element.

Default: Isotropic antenna element with default properties

Size

Size of array

A 1-by-2 integer vector or a single integer containing the size of the array. If Size is a 1-
by-2 vector, the vector has the form [NumberOfRows, NumberOfColumns]. If Size is a
scalar, the array has the same number of elements in each row and column. For a URA,
array elements are indexed from top to bottom along a column and continuing to the next
columns from left to right. In this illustration, a 'Size' value of [3,2] array has three
rows and two columns.

Size and Element Indexing Order

for Uniform Rectangular Arrays

Example: Size = [3,2]

1

2

3

4

6

5

Z

Y

1 Alphabetical List

1-2082

Default: [2 2]

ElementSpacing

Element spacing

A 1-by-2 vector or a scalar containing the element spacing of the array,
expressed in meters. If ElementSpacing is a 1-by-2 vector, it is in the form of
[SpacingBetweenRows,SpacingBetweenColumns]. See “Spacing Between Columns”
on page 1-2084 and “Spacing Between Rows” on page 1-2084. If ElementSpacing is a
scalar, both spacings are the same.

Default: [0.5 0.5]

Lattice

Element lattice

Specify the element lattice as one of 'Rectangular' | 'Triangular'. When you
set the Lattice property to 'Rectangular', all elements in the URA are aligned in
both row and column directions. When you set the Lattice property to 'Triangular',
elements in even rows are displaced toward the positive row axis direction. The
displacement is one-half the element spacing along the row.

Default: 'Rectangular'

ArrayNormal

Array normal direction

Array normal direction, specified as one of 'x', 'y', or 'z'.

URA elements lie in a plane orthogonal to the selected array normal direction. Element
boresight directions point along the array normal direction

ArrayNormal Property Value Element Positions and Boresight Directions

'x' Array elements lie on the yz-plane. All
element boresight vectors point along the x-
axis.

 phased.URA System object

1-2083

ArrayNormal Property Value Element Positions and Boresight Directions

'y' Array elements lie on the zx-plane. All
element boresight vectors point along the y-
axis.

'z' Array elements lie on the xy-plane. All
element boresight vectors point along the z-
axis.

Default: 'x'

Taper

Element tapers

Element tapers, specified as a complex-valued scalar, or 1-by-MN row vector, MN-by-1
column vector, or M-by-N matrix. Tapers are applied to each element in the sensor array.
Tapers are often referred to as element weights. M is the number of elements along the z-
axis, and N is the number of elements along y-axis. M and N correspond to the values of
[NumberofRows, NumberOfColumns] in the Size property. If Taper is a scalar, the
same taper value is applied to all elements. If the value of Taper is a vector or matrix,
taper values are applied to the corresponding elements. Tapers are used to modify both
the amplitude and phase of the received data.

Default: 1

Methods

clone Create URA object with same property
values

directivity Directivity of uniform rectangular array
collectPlaneWave Simulate received plane waves
getElementNormal Normal vector to array elements
getElementPosition Positions of array elements
getNumElements Number of elements in array
getNumInputs Number of expected inputs to step method

1 Alphabetical List

1-2084

getNumOutputs Number of outputs from step method
getTaper Array element tapers
isLocked Locked status for input attributes and

nontunable properties
pattern Plot URA array pattern
patternAzimuth Plot URA array directivity or pattern

versus azimuth
patternElevation Plot URA array directivity or pattern

versus elevation
isPolarizationCapable Polarization capability
plotResponse Plot response pattern of array
plotGratingLobeDiagram Plot grating lobe diagram of array
release Allow property value and input

characteristics
step Output responses of array elements
viewArray View array geometry

Definitions

Spacing Between Columns

The spacing between columns is the distance between adjacent elements in the same
row.

Spacing Between Rows

The spacing between rows is the distance along the column axis direction between
adjacent rows.

 phased.URA System object

1-2085

Spacing Between

Rows

Spacing Between

Columns

1 Alphabetical List

1-2086

Examples

Azimuth Response of a 3-by-2 URA at Boresight

Construct a 3-by-2 rectangular lattice URA. By default, the array consists of isotropic
antenna elements. Find the response of each element at boresight, 0 degrees azimuth
and elevation. Assume the operating frequency is 1 GHz.

ha = phased.URA('Size',[3 2]);

fc = 1e9;

ang = [0;0];

resp = step(ha,fc,ang);

disp(resp)

 1

 1

 1

 1

 1

 1

Plot the azimuth pattern of the array.

c = physconst('LightSpeed');

pattern(ha,fc,[-180:180],0,'PropagationSpeed',c,...

 'CoordinateSystem','polar',...

 'Type','powerdb',...

 'Normalize',true)

 phased.URA System object

1-2087

Compare Triangular and Rectangular Lattice URA's

This example shows how to find and plot the positions of the elements of a 5-row-by-6-
column URA with a triangular lattice and a URA with a rectangular lattice. The element
spacing is 0.5 meters for both lattices.

Create the arrays.

h_tri = phased.URA('Size',[5 6],'Lattice','Triangular');

h_rec = phased.URA('Size',[5 6],'Lattice','Rectangular');

Get the element y,z positions for each array. All the x coordinates are zero.

pos_tri = getElementPosition(h_tri);

1 Alphabetical List

1-2088

pos_rec = getElementPosition(h_rec);

pos_yz_tri = pos_tri(2:3,:);

pos_yz_rec = pos_rec(2:3,:);

Plot the element positions in the yz-plane.

figure;

gcf.Position = [100 100 300 400];

subplot(2,1,1);

plot(pos_yz_tri(1,:), pos_yz_tri(2,:), '.')

axis([-1.5 1.5 -2 2])

xlabel('y'); ylabel('z')

title('Triangular Lattice')

subplot(2,1,2);

plot(pos_yz_rec(1,:), pos_yz_rec(2,:), '.')

axis([-1.5 1.5 -2 2])

xlabel('y'); ylabel('z')

title('Rectangular Lattice')

 phased.URA System object

1-2089

Adding Tapers to an Array

Construct a 5-by-2 element URA with a Taylor window taper along each column. The
tapers form a 5-by-2 matrix.

taper = taylorwin(5);

ha = phased.URA([5,2],'Taper',[taper,taper]);

w = getTaper(ha)

w =

 0.5181

 1.2029

1 Alphabetical List

1-2090

 1.5581

 1.2029

 0.5181

 0.5181

 1.2029

 1.5581

 1.2029

 0.5181

• Phased Array Gallery

References

[1] Brookner, E., ed. Radar Technology. Lexington, MA: LexBook, 1996.

[2] Brookner, E., ed. Practical Phased Array Antenna Systems. Boston: Artech House,
1991.

[3] Mailloux, R. J. “Phased Array Theory and Technology,” Proceedings of the IEEE, Vol.,
70, Number 3s, pp. 246–291.

[4] Mott, H. Antennas for Radar and Communications, A Polarimetric Approach. New
York: John Wiley & Sons, 1992.

[5] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002.

See Also
phased.ConformalArray | phased.CosineAntennaElement |
phased.CustomAntennaElement | phased.HeterogeneousULA |
phased.HeterogeneousURA | phased.IsotropicAntennaElement |
phased.PartitionedArray | phased.ReplicatedSubarray | phased.ULA

Introduced in R2012a

../examples/phased-array-gallery.html

 clone

1-2091

clone
System object: phased.URA
Package: phased

Create URA object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates an object, C, having the same property values and same states as
H. If H is locked, so is C.

1 Alphabetical List

1-2092

directivity

System object: phased.URA
Package: phased

Directivity of uniform rectangular array

Syntax

D = directivity(H,FREQ,ANGLE)

D = directivity(H,FREQ,ANGLE,Name,Value)

Description

D = directivity(H,FREQ,ANGLE) computes the “Directivity” on page 1-2095 of a
uniform rectangular array (URA) of antenna or microphone elements, H, at frequencies
specified by the FREQ and in angles of direction specified by the ANGLE.

D = directivity(H,FREQ,ANGLE,Name,Value) computes the directivity with
additional options specified by one or more Name,Value pair arguments.

Input Arguments

H — Uniform rectangular array
System object

Uniform rectangular array specified as a phased.URA System object.
Example: H = phased.URA

FREQ — Frequency for computing directivity and patterns
positive scalar | 1-by-L real-valued row vector

Frequencies for computing directivity and patterns, specified as a positive scalar or 1-
by-L real-valued row vector. Frequency units are in hertz.

 directivity

1-2093

• For an antenna or microphone element, FREQ must lie within the range of
values specified by the FrequencyRange or FrequencyVector property of the
element. Otherwise, the element produces no response and the directivity is
returned as –Inf. Most elements use the FrequencyRange property except for
phased.CustomAntennaElement and phased.CustomMicrophoneElement, which use
the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements
that make up the array. Otherwise, the array produces no response and the
directivity is returned as –Inf.

Example: [1e8 2e8]

Data Types: double

ANGLE — Angles for computing directivity
1-by-M real-valued row vector | 2-by-M real-valued matrix

Angles for computing directivity, specified as a 1-by-M real-valued row vector or a 2-
by-M real-valued matrix, where M is the number of angular directions. Angle units
are in degrees. If ANGLE is a 2-by-M matrix, then each column specifies a direction in
azimuth and elevation, [az;el]. The azimuth angle must lie between –180° and 180°.
The elevation angle must lie between –90° and 90°.

If ANGLE is a 1-by-M vector, then each entry represents an azimuth angle, with the
elevation angle assumed to be zero.

The azimuth angle is the angle between the x-axis and the projection of the direction
vector onto the xy plane. This angle is positive when measured from the x-axis toward the
y-axis. The elevation angle is the angle between the direction vector and xy plane. This
angle is positive when measured towards the z-axis.
Example: [45 60; 0 10]

Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

1 Alphabetical List

1-2094

'PropagationSpeed' — Signal propagation speed
speed of light (default) | positive scalar

Signal propagation speed, specified as the comma-separated pair consisting of
'PropagationSpeed' and a positive scalar in meters per second.

Example: 'PropagationSpeed',physconst('LightSpeed')

Data Types: double

'Weights' — Array weights
1 (default) | N-by-1 complex-valued column vector | N-by-L complex-valued matrix

Array weights, specified as the comma-separated pair consisting of 'Weights' and an
N-by-1 complex-valued column vector or N-by-L complex-valued matrix. Array weights
are applied to the elements of the array to produce array steering, tapering, or both. The
dimension N is the number of elements in the array. The dimension L is the number of
frequencies specified by FREQ.

Weights Dimension FREQ Dimension Purpose

N-by-1 complex-valued
column vector

Scalar or 1-by-L row vector Applies a set of weights for
the single frequency or for all
L frequencies.

N-by-L complex-valued
matrix

1-by-L row vector Applies each of the L
columns of 'Weights' for
the corresponding frequency
in FREQ.

Note: Use complex weights to steer the array response toward different directions. You
can create weights using the phased.SteeringVector System object or you can compute
your own weights. In general, you apply Hermitian conjugation before using weights in
any Phased Array System Toolbox function or System object such as phased.Radiator
or phased.Collector. However, for the directivity, pattern, patternAzimuth, and
patternElevation methods of any array System object use the steering vector without
conjugation.

Example: 'Weights',ones(N,M)

Data Types: double

 directivity

1-2095

Complex Number Support: Yes

Output Arguments

D — Directivity
M-by-L matrix

Directivity, returned as an M-by-L matrix whose columns contain the directivities at the
M angles specified by ANGLE. Each column corresponds to one of the L frequency values
specified in FREQ. Directivity units are in dBi.

Definitions

Directivity

Directivity describes the directionality of the radiation pattern of a sensor element
or array of sensor elements. Higher directivity is desired when you want to transmit
more radiation in a specific direction. Directivity is the ratio of the transmitted radiant
intensity in a specified direction to the radiant intensity transmitted by an isotropic
radiator with the same total transmitted power

D
U

P
=

()
4p

q jrad

total

,

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal
is the total power transmitted by an isotropic radiator. For a receiving element or array,
directivity measures the sensitivity toward radiation arriving from a specific direction.
The principle of reciprocity shows that the directivity of an element or array used for
reception equals the directivity of the same element or array used for transmission.
When converted to decibels, the directivity is denoted as dBi. For information on
directivity, read the notes on “Element directivity” and “Array directivity”.

Computing directivity requires integrating the far-field transmitted radiant intensity
over all directions in space to obtain the total transmitted power. There is a difference
between how that integration is performed when Antenna Toolbox antennas are used
in a phased array and when Phased Array System Toolbox antennas are used. When
an array contains Antenna Toolbox antennas, the directivity computation is performed

1 Alphabetical List

1-2096

using a triangular mesh created from 500 regularly spaced points over a sphere. For
Phased Array System Toolbox antennas, the integration uses a uniform rectangular
mesh of points spaced 1° apart in azimuth and elevation over a sphere. There may be
significant differences in computed directivity, especially for large arrays.

Examples

Directivity of Uniform Rectangular Array

Compute the directivity of two uniform rectangular arrays (URA). The first array
consists of isotropic antenna elements. The second array consists of cosine antenna
elements. In addition, compute the directivity of the first array steered to a specific
direction.

Array of isotropic antenna elements

First, create a 10-by-10-element URA of isotropic antenna elements spaced one-quarter
wavelength apart. Set the signal frequency to 800 MHz.

c = physconst('LightSpeed');

fc = 3e8;

lambda = c/fc;

myAntIso = phased.IsotropicAntennaElement;

myArray1 = phased.URA;

myArray1.Element = myAntIso;

myArray1.Size = [10,10];

myArray1.ElementSpacing = [lambda*0.25,lambda*0.25];

ang = [0;0];

d = directivity(myArray1,fc,ang,'PropagationSpeed',c)

d =

 15.7753

Array of cosine antenna elements

Next, create a 10-by-10-element URA of cosine antenna elements also spaced one-quarter
wavelength apart.

myAntCos = phased.CosineAntennaElement('CosinePower',[1.8,1.8]);

 directivity

1-2097

myArray2 = phased.URA;

myArray2.Element = myAntCos;

myArray2.Size = [10,10];

myArray2.ElementSpacing = [lambda*0.25,lambda*0.25];

ang = [0;0];

d = directivity(myArray2,fc,ang,'PropagationSpeed',c)

d =

 19.7295

The directivity is increased due to the directivity of the cosine antenna elements.

Steered array of isotropic antenna elements

Finally, steer the isotropic antenna array to 30 degrees in azimuth and examine the
directivity at the steered angle.

ang = [30;0];

w = steervec(getElementPosition(myArray1)/lambda,ang);

d = directivity(myArray1,fc,ang,'PropagationSpeed',c,...

 'Weights',w)

d =

 15.3309

The directivity is maximum in the steered direction and equals the directivity of the
unsteered array at boresight.

See Also
phased.URA.pattern | phased.URA.patternAzimuth | phased.URA.patternElevation

1 Alphabetical List

1-2098

collectPlaneWave

System object: phased.URA
Package: phased

Simulate received plane waves

Syntax

Y = collectPlaneWave(H,X,ANG)

Y = collectPlaneWave(H,X,ANG,FREQ)

Y = collectPlaneWave(H,X,ANG,FREQ,C)

Description

Y = collectPlaneWave(H,X,ANG) returns the received signals at the sensor array, H,
when the input signals indicated by X arrive at the array from the directions specified in
ANG.

Y = collectPlaneWave(H,X,ANG,FREQ), in addition, specifies the incoming signal
carrier frequency in FREQ.

Y = collectPlaneWave(H,X,ANG,FREQ,C), in addition, specifies the signal
propagation speed in C.

Input Arguments

H

Array object.

X

Incoming signals, specified as an M-column matrix. Each column of X represents an
individual incoming signal.

 collectPlaneWave

1-2099

ANG

Directions from which incoming signals arrive, in degrees. ANG can be either a 2-by-M
matrix or a row vector of length M.

If ANG is a 2-by-M matrix, each column specifies the direction of arrival of the
corresponding signal in X. Each column of ANG is in the form [azimuth; elevation].
The azimuth angle must be between –180° and 180°, inclusive. The elevation angle must
be between –90° and 90°, inclusive.

If ANG is a row vector of length M, each entry in ANG specifies the azimuth angle. In this
case, the corresponding elevation angle is assumed to be 0°.

FREQ

Carrier frequency of signal in hertz. FREQ must be a scalar.

Default: 3e8

C

Propagation speed of signal in meters per second.

Default: Speed of light

Output Arguments

Y

Received signals. Y is an N-column matrix, where N is the number of elements in the
array H. Each column of Y is the received signal at the corresponding array element, with
all incoming signals combined.

Examples

Simulate the received signal at a 6-element URA. The array has a rectangular lattice
with two elements in the row direction and three elements in the column direction.

The signals arrive from 10 degrees and 30 degrees azimuth. Both signals have an
elevation angle of 0 degrees. Assume the propagation speed is the speed of light and the
carrier frequency of the signal is 100 MHz.

1 Alphabetical List

1-2100

hURA = phased.URA([2 3]);

y = collectPlaneWave(hURA,randn(4,2),[10 30],1e8,...

 physconst('LightSpeed'));

Algorithms

collectPlaneWave modulates the input signal with a phase corresponding to the delay
caused by the direction of arrival. This method does not account for the response of
individual elements in the array.

For further details, see [1].

References

[1] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002.

See Also
phitheta2azel | uv2azel

 getElementNormal

1-2101

getElementNormal
System object: phased.URA
Package: phased

Normal vector to array elements

Syntax

normvec = getElementNormal(sURA)

normvec = getElementNormal(sURA,elemidx)

Description

normvec = getElementNormal(sURA) returns the normal vectors of the array
elements of the phased.URA System object, sURA. The output argument normvec is
a 2-by-N matrix, where N is the number of elements in array, sURA. Each column of
normvec defines the normal direction of an element in the local coordinate system in the
form[az;el]. Units are degrees. Array elements are located in the plane selected in the
ArrayNormal property. Element normal vectors are parallel to the array normal. The
normal to a URA array depends upon the selected ArrayNormal property.

ArrayNormal Property Value Array Normal Direction Array Plane

'x' azimuth = 0°, elevation = 0°
(x-axis)

yz

'y' azimuth = 90°, elevation =
0° (y-axis)

zx

'z' azimuth = 0°, elevation =
90° (z-axis)

xy

The origin of the local coordinate system is defined by the phase center of the array.

normvec = getElementNormal(sURA,elemidx) returns only the normal vectors of
the elements specified in the element index vector, elemidx. This syntax can use any of
the input arguments in the previous syntax.

1 Alphabetical List

1-2102

Input Arguments

sURA — Uniform rectangular array
phased.sURA System object

Uniform line array, specified as a phased.URA System object.

Example: sULA = phased.URA

elemidx — Element indices
all array elements (default) | integer-valued 1-by-M row vector | integer-valued M-by-1
column vector

Element indices , specified as a 1-by-M or M-by-1 vector. Index values lie in the range
1 to N where N is the number of elements of the array. When elemidx is specified,
getElementNormal returns the normal vectors of the elements contained in elemidx.

Example: [1,5,4]

Output Arguments

normvec — Element normal vectors
2-by-P real-valued vector

Element normal vectors, specified as a 2-by-P real-valued vector. Each column of
normvec takes the form [az,el]. When elemidx is not specified, P equals the array
dimension. When elemidx is specified, P equals the length of elemidx, M. You can
determine element indices using the phased.URA.viewArray method.

Examples

URA Element Normals

Construct three 2-by-2 URA's with element normals along the x-, y-, and z-axes. Obtain
the element positions and normal directions.

First, choose the array normal along the x-axis.

sURA1 = phased.URA('Size',[2,2],'ArrayNormal','x');

 getElementNormal

1-2103

pos = getElementPosition(sURA1)

normvec = getElementNormal(sURA1)

pos =

 0 0 0 0

 -0.2500 -0.2500 0.2500 0.2500

 0.2500 -0.2500 0.2500 -0.2500

normvec =

 0 0 0 0

 0 0 0 0

All elements lie in the yz-plane and the element normal vectors point along the x-axis
(0°,0°).

Next, choose the array normal along the y-axis.

sURA2 = phased.URA('Size',[2,2],'ArrayNormal','y');

pos = getElementPosition(sURA2)

normvec = getElementNormal(sURA2)

pos =

 -0.2500 -0.2500 0.2500 0.2500

 0 0 0 0

 0.2500 -0.2500 0.2500 -0.2500

normvec =

 90 90 90 90

 0 0 0 0

All elements lie in the zx-plane and the element normal vectors point along the y-axis
(90°,0°).

Finally, set the array normal along the z-axis. Obtain the normal vectors of the odd-
numbered elements.

1 Alphabetical List

1-2104

sURA3 = phased.URA('Size',[2,2],'ArrayNormal','z');

pos = getElementPosition(sURA3)

normvec = getElementNormal(sURA3,[1,3])

pos =

 -0.2500 -0.2500 0.2500 0.2500

 0.2500 -0.2500 0.2500 -0.2500

 0 0 0 0

normvec =

 0 0

 90 90

All elements lie in the xy-plane and the element normal vectors point along the z-axis
(0°,90°).

Introduced in R2016a

 getElementPosition

1-2105

getElementPosition
System object: phased.URA
Package: phased

Positions of array elements

Syntax

POS = getElementPosition(H)

POS = getElementPosition(H,ELEIDX)

Description

POS = getElementPosition(H) returns the element positions of the URA H. POS is a
3-by-N matrix where N is the number of elements in H. Each column of POS defines the
position of an element in the local coordinate system, in meters, using the form [x; y; z].

For details regarding the local coordinate system of the URA, enter
phased.URA.coordinateSystemInfo.

POS = getElementPosition(H,ELEIDX) returns the positions of the elements that
are specified in the element index vector, ELEIDX. The index of a URA runs down each
column, then to the next column to the right. For example, in a URA with 4 elements in
each row and 3 elements in each column, the element in the third row and second column
has an index value of 6.

Examples

Construct a default URA with a rectangular lattice, and obtain the element positions.

 ha = phased.URA;

 pos = getElementPosition(ha)

1 Alphabetical List

1-2106

getNumElements
System object: phased.URA
Package: phased

Number of elements in array

Syntax

N = getNumElements(H)

Description

N = getNumElements(H) returns the number of elements, N, in the URA object H.

Examples

Construct a default URA, and obtain the number of elements.

ha = phased.URA;

N = getNumElements(ha)

 getNumInputs

1-2107

getNumInputs
System object: phased.URA
Package: phased

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of inputs
(not counting the object itself) that you must use when calling the step method. This
value changes when you alter properties that turn inputs on or off.

1 Alphabetical List

1-2108

getNumOutputs
System object: phased.URA
Package: phased

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value changes when you alter properties that turn outputs on or off.

 getTaper

1-2109

getTaper

System object: phased.URA
Package: phased

Array element tapers

Syntax

wts = getTaper(h)

Description

wts = getTaper(h) returns the tapers, wts, applied to each element of the phased
uniform rectangular array (URA), h. Tapers are often referred to as weights.

Input Arguments

h — Uniform rectangular array
phased.URA System object

Uniform rectangular array specified as phased.URA System object.

Output Arguments

wts — Array element tapers
N-by-1 complex-valued vector

Array element tapers returned as an N-by-1, complex-valued vector, where N is the
number of elements in the array.

1 Alphabetical List

1-2110

Examples

URA Array Element Tapering

Construct a 5-by-2 element URA with a Taylor window taper along each column. Then,
draw the array showing the element taper shading.

taper = taylorwin(5);

ha = phased.URA([5,2],'Taper',[taper,taper]);

w = getTaper(ha)

viewArray(ha,'ShowTaper',true);

w =

 0.5181

 1.2029

 1.5581

 1.2029

 0.5181

 0.5181

 1.2029

 1.5581

 1.2029

 0.5181

 getTaper

1-2111

1 Alphabetical List

1-2112

isLocked
System object: phased.URA
Package: phased

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF, for the URA System object.

isLocked returns a logical value that indicates whether input attributes and
nontunable properties for the object are locked. The object performs an internal
initialization the first time that you execute step. This initialization locks nontunable
properties and input specifications, such as the dimensions, complexity, and data type of
the input data. After locking, isLocked returns a true value.

 pattern

1-2113

pattern

System object: phased.URA
Package: phased

Plot URA array pattern

Syntax

pattern(sArray,FREQ)

pattern(sArray,FREQ,AZ)

pattern(sArray,FREQ,AZ,EL)

pattern(___ ,Name,Value)

[PAT,AZ_ANG,EL_ANG] = pattern(___)

Description

pattern(sArray,FREQ) plots the 3-D array directivity pattern (in dBi) for the array
specified in sArray. The operating frequency is specified in FREQ.

pattern(sArray,FREQ,AZ) plots the array directivity pattern at the specified azimuth
angle.

pattern(sArray,FREQ,AZ,EL) plots the array directivity pattern at specified azimuth
and elevation angles.

pattern(___ ,Name,Value) plots the array pattern with additional options specified
by one or more Name,Value pair arguments.

[PAT,AZ_ANG,EL_ANG] = pattern(___) returns the array pattern in PAT. The
AZ_ANG output contains the coordinate values corresponding to the rows of PAT. The
EL_ANG output contains the coordinate values corresponding to the columns of PAT.
If the 'CoordinateSystem' parameter is set to 'uv', then AZ_ANG contains the
U coordinates of the pattern and EL_ANG contains the V coordinates of the pattern.
Otherwise, they are in angular units in degrees. UV units are dimensionless.

1 Alphabetical List

1-2114

Note: This method replaces the previous plotResponse method. To replace plots using
plotResponse plots with equivalent plots using pattern, see “Convert plotResponse to
pattern” on page 1-1955

Input Arguments

sArray — Uniform rectangular array
System object

Uniform rectangular array, specified as a phased.URA System object.
Example: sArray= phased.URA;

FREQ — Frequency for computing directivity and patterns
positive scalar | 1-by-L real-valued row vector

Frequencies for computing directivity and patterns, specified as a positive scalar or 1-
by-L real-valued row vector. Frequency units are in hertz.

• For an antenna or microphone element, FREQ must lie within the range of
values specified by the FrequencyRange or FrequencyVector property of the
element. Otherwise, the element produces no response and the directivity is
returned as –Inf. Most elements use the FrequencyRange property except for
phased.CustomAntennaElement and phased.CustomMicrophoneElement, which use
the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements
that make up the array. Otherwise, the array produces no response and the
directivity is returned as –Inf.

Example: [1e8 2e8]

Data Types: double

AZ — Azimuth angles
[-180:180] (default) | 1-by-M real-valued row vector

Azimuth angles for computing directivity and pattern, specified as a 1-by-M real-
valued row vector where M is the number of azimuth angles. Angle units are in degrees.
Azimuth angles must lie between –180° and 180°.

 pattern

1-2115

The azimuth angle is the angle between the x-axis and the projection of the direction
vector onto the xy plane. When measured from the x-axis toward the y-axis, this angle is
positive.
Example: [-45:2:45]

Data Types: double

EL — Elevation angles
[-90:90] (default) | 1-by-N real-valued row vector

Elevation angles for computing directivity and pattern, specified as a 1-by-N real-valued
row vector where N is the number of desired elevation directions. Angle units are in
degrees. The elevation angle must lie between –90° and 90°.

The elevation angle is the angle between the direction vector and xy-plane. When
measured towards the z-axis, this angle is positive.
Example: [-75:1:70]

Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'CoordinateSystem' — Plotting coordinate system
'polar' (default) | 'rectangular' | 'uv'

Plotting coordinate system of the pattern, specified as the comma-separated pair
consisting of 'CoordinateSystem' and one of 'polar', 'rectangular', or
'uv'. When 'CoordinateSystem' is set to 'polar' or 'rectangular', the
AZ and EL arguments specify the pattern azimuth and elevation, respectively. AZ
values must lie between –180° and 180°. EL values must lie between –90° and 90°. If
'CoordinateSystem' is set to 'uv', AZ and EL then specify U and V coordinates,
respectively. AZ and EL must lie between -1 and 1.

Example: 'uv'

Data Types: char

1 Alphabetical List

1-2116

'Type' — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and
one of

• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed

pattern is for the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field

pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'

Data Types: char

'Normalize' — Display normalize pattern
true (default) | false

Display normalized pattern, specified as the comma-separated pair consisting of
'Normalize' and a Boolean. Set this parameter to true to display a normalized pattern.
When you set 'Type' to 'directivity', this parameter does not apply. Directivity
patterns are already normalized.
Example:
Data Types: logical

'PlotStyle' — Plotting style
'overlay' (default) | 'waterfall'

Plotting style, specified as the comma-separated pair consisting of 'Plotstyle' and
either 'overlay' or 'waterfall'. This parameter applies when you specify multiple
frequencies in FREQ in 2-D plots. You can draw 2-D plots by setting one of the arguments
AZ or EL to a scalar.

Example:
Data Types: char

'Polarization' — Polarized field component
'combined' (default) | 'H' | 'V'

 pattern

1-2117

Polarized field component to display, specified as the comma-separated pair consisting
of 'Polarization' and 'combined', 'H', or 'V'. This parameter applies only when
the sensors are polarization-capable and when the 'Type' parameter is not set to
'directivity'. This table shows the meaning of the display options

'Polarization' Display

'combined' Combined H and V polarization
components

'H' H polarization component
'V' V polarization component

Example: 'V'

Data Types: char

'PropagationSpeed' — Signal propagation speed
speed of light (default) | positive scalar

Signal propagation speed, specified as the comma-separated pair consisting of
'PropagationSpeed' and a positive scalar in meters per second.

Example: 'PropagationSpeed',physconst('LightSpeed')

Data Types: double

'Weights' — Array weights
1 (default) | N-by-1 complex-valued column vector | N-by-L complex-valued matrix

Array weights, specified as the comma-separated pair consisting of 'Weights' and an
N-by-1 complex-valued column vector or N-by-L complex-valued matrix. Array weights
are applied to the elements of the array to produce array steering, tapering, or both. The
dimension N is the number of elements in the array. The dimension L is the number of
frequencies specified by FREQ.

Weights Dimension FREQ Dimension Purpose

N-by-1 complex-valued
column vector

Scalar or 1-by-L row vector Applies a set of weights for
the single frequency or for all
L frequencies.

N-by-L complex-valued
matrix

1-by-L row vector Applies each of the L
columns of 'Weights' for

1 Alphabetical List

1-2118

Weights Dimension FREQ Dimension Purpose

the corresponding frequency
in FREQ.

Note: Use complex weights to steer the array response toward different directions. You
can create weights using the phased.SteeringVector System object or you can compute
your own weights. In general, you apply Hermitian conjugation before using weights in
any Phased Array System Toolbox function or System object such as phased.Radiator
or phased.Collector. However, for the directivity, pattern, patternAzimuth, and
patternElevation methods of any array System object use the steering vector without
conjugation.

Example: 'Weights',ones(N,M)

Data Types: double
Complex Number Support: Yes

Output Arguments

PAT — Array pattern
M-by-N real-valued matrix

Array pattern, returned as an M-by-N real-valued matrix. The dimensions of PAT
correspond to the dimensions of the output arguments AZ_ANG and EL_ANG.

AZ_ANG — Azimuth angles
scalar | 1-by-M real-valued row vector

Azimuth angles for displaying directivity or response pattern, returned as a scalar or 1-
by-M real-valued row vector corresponding to the dimension set in AZ. The rows of PAT
correspond to the values in AZ_ANG.

EL_ANG — Elevation angles
scalar | 1-by-N real-valued row vector

Elevation angles for displaying directivity or response, returned as a scalar or 1-by-N
real-valued row vector corresponding to the dimension set in EL. The columns of PAT
correspond to the values in EL_ANG.

 pattern

1-2119

More About

Directivity

Directivity describes the directionality of the radiation pattern of a sensor element
or array of sensor elements. Higher directivity is desired when you want to transmit
more radiation in a specific direction. Directivity is the ratio of the transmitted radiant
intensity in a specified direction to the radiant intensity transmitted by an isotropic
radiator with the same total transmitted power

D
U

P
=

()
4p

q jrad

total

,

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal
is the total power transmitted by an isotropic radiator. For a receiving element or array,
directivity measures the sensitivity toward radiation arriving from a specific direction.
The principle of reciprocity shows that the directivity of an element or array used for
reception equals the directivity of the same element or array used for transmission.
When converted to decibels, the directivity is denoted as dBi. For information on
directivity, read the notes on “Element directivity” and “Array directivity”.

Computing directivity requires integrating the far-field transmitted radiant intensity
over all directions in space to obtain the total transmitted power. There is a difference
between how that integration is performed when Antenna Toolbox antennas are used
in a phased array and when Phased Array System Toolbox antennas are used. When
an array contains Antenna Toolbox antennas, the directivity computation is performed
using a triangular mesh created from 500 regularly spaced points over a sphere. For
Phased Array System Toolbox antennas, the integration uses a uniform rectangular
mesh of points spaced 1° apart in azimuth and elevation over a sphere. There may be
significant differences in computed directivity, especially for large arrays.

Convert plotResponse to pattern

For antenna, microphone, and array System objects, the pattern method replaces the
plotResponse method. In addition, two new simplified methods exist just to draw 2-
D azimuth and elevation pattern plots. These methods are the azimuthPattern and
elevationPattern methods.

1 Alphabetical List

1-2120

The following table is a guide for converting your code from using plotResponse to
pattern. Notice that some of the inputs have changed from input arguments to Name-
Value pairs and conversely. The general pattern method syntax is

pattern(H,FREQ,AZ,EL,'Name1','Value1',...,'NameN','ValueN')

plotResponse Inputs plotResponse Description pattern Inputs

H argument Antenna, microphone, or array
System object.

H argument (no change)

FREQ argument Operating frequency. FREQ argument (no change)
V argument Propagation speed. This

argument is used only for
arrays.

'PropagationSpeed' name-
value pair. This parameter is
only used for arrays.

'Format' and 'RespCut'
name-value pairs

These options work together to
let you create a plot in angle
space (line or polar style) or
UV space. They also determine
whether the plot is 2-D or 3-
D. This table shows you how to
create different types of plots
using plotResponse.

Display space

Angle space
(2D)

Set
'RespCut'

to 'Az' or

'El'. Set
'Format' to
'line' or
'polar'.

Set the display
axis using
either the
the
'AzimuthAngles'

or
'ElevationAngles'

'CoordinateSystem' name-
value pair used together with
the AZ and EL input arguments.

'CoordinateSystem' has
the same options as the
plotResponse method
'Format'name-value pair,
except that 'line' is now
named 'rectangular'. The
table shows how to create
different types of plots using
pattern.

Display space

Angle space
(2D)

Set
'Coordinate

System' to
'rectangular'

or 'polar'.
Specify either
AZ or EL as a
scalar.

Angle space
(3D)

Set
'Coordinate

 pattern

1-2121

plotResponse Inputs plotResponse Description pattern Inputs

Display space

name-value
pairs.

Angle space
(3D)

Set
'RespCut'

to '3D'. Set
'Format' to
'line' or
'polar'.

Set the display
axis using
both the
'AzimuthAngles'

and'ElevationAngles'
name-value
pairs.

UV space (2D) Set
'RespCut'

to'U'. Set
'Format'

to 'UV'. Set
the display
range using
the 'UGrid'
name-value
pair.

UV space (3D) Set
'RespCut'

to'3D'. Set
'Format' to
'UV'. Set the
display range
using both
the 'UGrid'
and 'VGrid'

Display space

System' to
'rectangular'

or 'polar'.
Specify both
AZ and EL as
vectors.

UV space (2D) Set
'Coordinate

System' to
'uv'. Use AZ
to specify a U-
space vector.
Use EL to
specify a V-
space scalar.

UV space (3D) Set
'Coordinate

System' to
'uv'. Use AZ
to specify a U-
space vector.
Use EL to
specify a V-
space vector.

If you set CoordinateSystem
to 'uv', enter the UV grid
values using AZ and EL.

1 Alphabetical List

1-2122

plotResponse Inputs plotResponse Description pattern Inputs

Display space

name-value
pairs.

'CutAngle' name-value pair Constant angle at to take an
azimuth or elevation cut. When
producing a 2-D plot and when
'RespCut' is set to 'Az' or
'El', use 'CutAngle' to set
the slice across which to view
the plot.

No equivalent name-value pair.
To create a cut, specify either AZ
or EL as a scalar, not a vector.

'NormalizeResponse' name-
value pair

Normalizes the plot.
When 'Unit' is set to
'dbi', you cannot specify
'NormalizeResponse'.

'Normalize' name-value
pair. When 'Type' is set to
'directivity',

you cannot specify
'Normalize'.
.

'OverlayFreq' name-value
pair

Plot multiple frequencies on
the same 2-D plot. Available
only when 'Format' is
set to 'line' or 'uv' and
'RespCut' is not set to '3D'.
The value true produces an
overlay plot and the value
false produces a waterfall
plot.

'PlotStyle' name-value pair
plots multiple frequencies on the
same 2-D plot.

The values 'overlay' and
'waterfall' correspond to
'OverlayFreq' values of
true and false. The option
'waterfall' is allowed only
when 'CoordinateSystem' is
set to 'rectangular' or 'uv'.

'Polarization' name-value
pair

Determines how to plot
polarized fields. Options are
'None', 'Combined', 'H', or
'V'.

'Polarization' name-value
pair determines how to plot
polarized fields. The 'None'
option is removed. The options
'Combined', 'H', or 'V' are
unchanged.

 pattern

1-2123

plotResponse Inputs plotResponse Description pattern Inputs

'Unit' name-value pair Determines the plot units.
Choose 'db', 'mag', 'pow',
or 'dbi', where the default is
'db'.

'Type' name-value pair, uses
equivalent options with different
names

plotResponse pattern

'db' 'powerdb'

'mag' 'efield'

'pow' 'power'

'dbi' 'directivity'

'Weights' name-value pair Array element tapers (or
weights).

'Weights' name-value pair (no
change).

'AzimuthAngles' name-value
pair

Azimuth angles used to display
the antenna or array response.

AZ argument

'ElevationAngles' name-
value pair

Elevation angles used to
display the antenna or array
response.

EL argument

'UGrid' name-value pair Contains U coordinates in UV-
space.

AZ argument when
'CoordinateSystem' name-
value pair is set to 'uv'

'VGrid' name-value pair Contains V-coordinates in UV-
space.

EL argument when
'CoordinateSystem' name-
value pair is set to 'uv'

Examples

Pattern of 5x7-Element URA Antenna Array

Create a 5x7-element URA operating at 1 GHz. Assume the elements are spaced one-half
wavelength apart. Show the 3-D array patterns.

Create the array

sSD = phased.ShortDipoleAntennaElement(...

 'FrequencyRange',[50e6,1000e6],...

1 Alphabetical List

1-2124

 'AxisDirection','Z');

fc = 500e6;

c = physconst('LightSpeed');

lam = c/fc;

sURA = phased.URA('Element',sSD,...

 'Size',[5,7],...

 'ElementSpacing',0.5*lam);

Call the step method

Evaluate the fields of the first five elements at 45 degrees azimuth and 0 degrees
elevation.

ang = [45;0];

resp = step(sURA,fc,ang);

disp(resp.V(1:5))

 -1.2247

 -1.2247

 -1.2247

 -1.2247

 -1.2247

Display the 3-D directivity pattern at 1 GHz in polar coordinates

pattern(sURA,fc,[-180:180],[-90:90],...

 'CoordinateSystem','polar',...

 'Type','directivity','PropagationSpeed',c)

 pattern

1-2125

Display the 3-D directivity pattern at 1 GHz in UV coordinates

pattern(sURA,fc,[-1.0:.01:1.0],[-1.0:.01:1.0],...

 'CoordinateSystem','uv',...

 'Type','directivity','PropagationSpeed',c)

1 Alphabetical List

1-2126

See Also
phased.URA.patternAzimuth | phased.URA.patternElevation

Introduced in R2015a

 patternAzimuth

1-2127

patternAzimuth

System object: phased.URA
Package: phased

Plot URA array directivity or pattern versus azimuth

Syntax

patternAzimuth(sArray,FREQ)

patternAzimuth(sArray,FREQ,EL)

patternAzimuth(sArray,FREQ,EL,Name,Value)

PAT = patternAzimuth(___)

Description

patternAzimuth(sArray,FREQ) plots the 2-D array directivity pattern versus
azimuth (in dBi) for the array sArray at zero degrees elevation angle. The argument
FREQ specifies the operating frequency.

patternAzimuth(sArray,FREQ,EL), in addtion, plots the 2-D array directivity
pattern versus azimuth (in dBi) for the array sArray at the elevation angle specified by
EL. When EL is a vector, multiple overlaid plots are created.

patternAzimuth(sArray,FREQ,EL,Name,Value) plots the array pattern with
additional options specified by one or more Name,Value pair arguments.

PAT = patternAzimuth(___) returns the array pattern. PAT is a matrix whose
entries represent the pattern at corresponding sampling points specified by the
'Azimuth' parameter and the EL input argument.

Input Arguments

sArray — Uniform rectangular array
System object

1 Alphabetical List

1-2128

Uniform rectangular array, specified as a phased.URA System object.
Example: sArray= phased.URA;

FREQ — Frequency for computing directivity and pattern
positive scalar

Frequency for computing directivity and pattern, specified as a positive scalar. Frequency
units are in hertz.

• For an antenna or microphone element, FREQ must lie within the range of values
specified by the FrequencyRange or the FrequencyVector property of the
element. Otherwise, the element produces no response and the directivity is
returned as –Inf. Most elements use the FrequencyRange property except for
phased.CustomAntennaElement and phased.CustomMicrophoneElement, which use
the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements
that make up the array. Otherwise, the array produces no response and the
directivity is returned as –Inf.

Example: 1e8

Data Types: double

EL — Elevation angles
1-by-N real-valued row vector

Elevation angles for computing array directivity and pattern, specified as a 1-by-N real-
valued row vector, where N is the number of requested elevation directions. Angle units
are in degrees. The elevation angle must lie between –90° and 90°.

The elevation angle is the angle between the direction vector and the xy plane. When
measured toward the z-axis, this angle is positive.
Example: [0,10,20]

Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

 patternAzimuth

1-2129

quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Type' — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and
one of

• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed

pattern is for the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field

pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'

Data Types: char

'PropagationSpeed' — Signal propagation speed
speed of light (default) | positive scalar

Signal propagation speed, specified as the comma-separated pair consisting of
'PropagationSpeed' and a positive scalar in meters per second.

Example: 'PropagationSpeed',physconst('LightSpeed')

Data Types: double

'Weights' — Array weights
M-by-1 complex-valued column vector

Array weights, specified as the comma-separated pair consisting of 'Weights' and an
M-by-1 complex-valued column vector. Array weights are applied to the elements of the
array to produce array steering, tapering, or both. The dimension M is the number of
elements in the array.

Note: Use complex weights to steer the array response toward different directions. You
can create weights using the phased.SteeringVector System object or you can compute
your own weights. In general, you apply Hermitian conjugation before using weights in

1 Alphabetical List

1-2130

any Phased Array System Toolbox function or System object such as phased.Radiator
or phased.Collector. However, for the directivity, pattern, patternAzimuth, and
patternElevation methods of any array System object use the steering vector without
conjugation.

Example: 'Weights',ones(10,1)

Data Types: double
Complex Number Support: Yes

'Azimuth' — Azimuth angles
[-180:180] (default) | 1-by-P real-valued row vector

Azimuth angles, specified as the comma-separated pair consisting of 'Azimuth' and a 1-
by-P real-valued row vector. Azimuth angles define where the array pattern is calculated.
Example: 'Azimuth',[-90:2:90]

Data Types: double

Output Arguments

PAT — Array directivity or pattern
L-by-N real-valued matrix

Array directivity or pattern, returned as an L-by-N rea-valued matrix. The dimension
L is the number of azimuth values determined by the 'Azimuth' name-value pair
argument. The dimension N is the number of elevation angles, as determined by the EL
input argument.

Definitions

Directivity

Directivity describes the directionality of the radiation pattern of a sensor element
or array of sensor elements. Higher directivity is desired when you want to transmit
more radiation in a specific direction. Directivity is the ratio of the transmitted radiant
intensity in a specified direction to the radiant intensity transmitted by an isotropic
radiator with the same total transmitted power

 patternAzimuth

1-2131

D
U

P
=

()
4p

q jrad

total

,

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal
is the total power transmitted by an isotropic radiator. For a receiving element or array,
directivity measures the sensitivity toward radiation arriving from a specific direction.
The principle of reciprocity shows that the directivity of an element or array used for
reception equals the directivity of the same element or array used for transmission.
When converted to decibels, the directivity is denoted as dBi. For information on
directivity, read the notes on “Element directivity” and “Array directivity”.

Computing directivity requires integrating the far-field transmitted radiant intensity
over all directions in space to obtain the total transmitted power. There is a difference
between how that integration is performed when Antenna Toolbox antennas are used
in a phased array and when Phased Array System Toolbox antennas are used. When
an array contains Antenna Toolbox antennas, the directivity computation is performed
using a triangular mesh created from 500 regularly spaced points over a sphere. For
Phased Array System Toolbox antennas, the integration uses a uniform rectangular
mesh of points spaced 1° apart in azimuth and elevation over a sphere. There may be
significant differences in computed directivity, especially for large arrays.

Examples

Azimuth Pattern of 5x7-Element URA Antenna Array

Create a 5x7-element URA of short-dipole antenna elements operating at 1 GHz. Assume
the elements are spaced one-half wavelength apart. Plot the array azimuth directivity
patterns for two different elevation angles, 0 and 15 degrees. The patternAzimuth
method always plots the array pattern in polar coordinates.

Create the array

sSD = phased.ShortDipoleAntennaElement(...

 'FrequencyRange',[50e6,1000e6],...

 'AxisDirection','Z');

fc = 1e9;

c = physconst('LightSpeed');

lam = c/fc;

sURA = phased.URA('Element',sSD,...

1 Alphabetical List

1-2132

 'Size',[5,7],...

 'ElementSpacing',0.5*lam);

Display the pattern

Display the azimuth directivity pattern at 1 GHz in polar coordinates

patternAzimuth(sURA,fc,[0 15],...

 'PropagationSpeed',c,...

 'Type','directivity')

Display a subset of angles

You can plot a smaller range of azimuth angles by setting the Azimuth parameter.

 patternAzimuth

1-2133

patternAzimuth(sURA,fc,[0 15],...

 'PropagationSpeed',c,...

 'Type','directivity',...

 'Azimuth',[-45:45])

See Also
phased.URA.pattern | phased.URA.patternElevation

Introduced in R2015a

1 Alphabetical List

1-2134

patternElevation
System object: phased.URA
Package: phased

Plot URA array directivity or pattern versus elevation

Syntax

patternElevation(sArray,FREQ)

patternElevation(sArray,FREQ,AZ)

patternElevation(sArray,FREQ,AZ,Name,Value)

PAT = patternElevation(___)

Description

patternElevation(sArray,FREQ) plots the 2-D array directivity pattern versus
elevation (in dBi) for the array sArray at zero degrees azimuth angle. When AZ is a
vector, multiple overlaid plots are created. The argument FREQ specifies the operating
frequency.

patternElevation(sArray,FREQ,AZ), in addition, plots the 2-D element directivity
pattern versus elevation (in dBi) at the azimuth angle specified by AZ. When AZ is a
vector, multiple overlaid plots are created.

patternElevation(sArray,FREQ,AZ,Name,Value) plots the array pattern with
additional options specified by one or more Name,Value pair arguments.

PAT = patternElevation(___) returns the array pattern. PAT is a matrix whose
entries represent the pattern at corresponding sampling points specified by the
'Elevation' parameter and the AZ input argument.

Input Arguments

sArray — Uniform rectangular array
System object

 patternElevation

1-2135

Uniform rectangular array, specified as a phased.URA System object.
Example: sArray= phased.URA;

FREQ — Frequency for computing directivity and pattern
positive scalar

Frequency for computing directivity and pattern, specified as a positive scalar. Frequency
units are in hertz.

• For an antenna or microphone element, FREQ must lie within the range of values
specified by the FrequencyRange or the FrequencyVector property of the
element. Otherwise, the element produces no response and the directivity is
returned as –Inf. Most elements use the FrequencyRange property except for
phased.CustomAntennaElement and phased.CustomMicrophoneElement, which use
the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements
that make up the array. Otherwise, the array produces no response and the
directivity is returned as –Inf.

Example: 1e8

Data Types: double

AZ — Azimuth angles for computing directivity and pattern
1-by-N real-valued row vector

Azimuth angles for computing array directivity and pattern, specified as a 1-by-M real-
valued row vector where N is the number of desired azimuth directions. Angle units are
in degrees. The azimuth angle must lie between –180° and 180°.

The azimuth angle is the angle between the x-axis and the projection of the direction
vector onto the xy plane. This angle is positive when measured from the x-axis toward the
y-axis.
Example: [0,10,20]

Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

1 Alphabetical List

1-2136

quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Type' — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and
one of

• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed

pattern is for the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field

pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'

Data Types: char

'PropagationSpeed' — Signal propagation speed
speed of light (default) | positive scalar

Signal propagation speed, specified as the comma-separated pair consisting of
'PropagationSpeed' and a positive scalar in meters per second.

Example: 'PropagationSpeed',physconst('LightSpeed')

Data Types: double

'Weights' — Array weights
M-by-1 complex-valued column vector

Array weights, specified as the comma-separated pair consisting of 'Weights' and an
M-by-1 complex-valued column vector. Array weights are applied to the elements of the
array to produce array steering, tapering, or both. The dimension M is the number of
elements in the array.

Note: Use complex weights to steer the array response toward different directions. You
can create weights using the phased.SteeringVector System object or you can compute
your own weights. In general, you apply Hermitian conjugation before using weights in

 patternElevation

1-2137

any Phased Array System Toolbox function or System object such as phased.Radiator
or phased.Collector. However, for the directivity, pattern, patternAzimuth, and
patternElevation methods of any array System object use the steering vector without
conjugation.

Example: 'Weights',ones(10,1)

Data Types: double
Complex Number Support: Yes

'Elevation' — Elevation angles
[-90:90] (default) | 1-by-P real-valued row vector

Elevation angles, specified as the comma-separated pair consisting of 'Elevation'
and a 1-by-P real-valued row vector. Elevation angles define where the array pattern is
calculated.
Example: 'Elevation',[-90:2:90]

Data Types: double

Output Arguments

PAT — Array directivity or pattern
L-by-N real-valued matrix

Array directivity or pattern, returned as an L-by-N real-valued matrix. The dimension
L is the number of elevation angles determined by the 'Elevation' name-value pair
argument. The dimension N is the number of azimuth angles determined by the AZ
argument.

Definitions

Directivity

Directivity describes the directionality of the radiation pattern of a sensor element
or array of sensor elements. Higher directivity is desired when you want to transmit
more radiation in a specific direction. Directivity is the ratio of the transmitted radiant

1 Alphabetical List

1-2138

intensity in a specified direction to the radiant intensity transmitted by an isotropic
radiator with the same total transmitted power

D
U

P
=

()
4p

q jrad

total

,

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal
is the total power transmitted by an isotropic radiator. For a receiving element or array,
directivity measures the sensitivity toward radiation arriving from a specific direction.
The principle of reciprocity shows that the directivity of an element or array used for
reception equals the directivity of the same element or array used for transmission.
When converted to decibels, the directivity is denoted as dBi. For information on
directivity, read the notes on “Element directivity” and “Array directivity”.

Computing directivity requires integrating the far-field transmitted radiant intensity
over all directions in space to obtain the total transmitted power. There is a difference
between how that integration is performed when Antenna Toolbox antennas are used
in a phased array and when Phased Array System Toolbox antennas are used. When
an array contains Antenna Toolbox antennas, the directivity computation is performed
using a triangular mesh created from 500 regularly spaced points over a sphere. For
Phased Array System Toolbox antennas, the integration uses a uniform rectangular
mesh of points spaced 1° apart in azimuth and elevation over a sphere. There may be
significant differences in computed directivity, especially for large arrays.

Examples

Elevation Pattern of 7x7-Element URA Acoustic Array

Create a 7x7-element URA of backbaffled omnidirectional transducer elements operating
at 2 kHz. Assume the speed of sound in water is 1500 m/s. The elements are spaced
less than one-half wavelength apart. Plot the array elevation directivity patterns for
three different azimuth angles, -20, 0, and 15 degrees. The patternElevation method
always plots the array pattern in polar coordinates.

Create the array

sSD = phased.OmnidirectionalMicrophoneElement(...

 'FrequencyRange',[20,3000],...

 'BackBaffled',true);

 patternElevation

1-2139

fc = 1000;

c = 1500;

lam = c/fc;

sURA = phased.URA('Element',sSD,...

 'Size',[7,7],...

 'ElementSpacing',0.5*lam);

Display the pattern

Display the azimuth directivity pattern at 1 GHz in polar coordinates

patternElevation(sURA,fc,[-20, 0, 15],...

 'PropagationSpeed',c,...

 'Type','directivity')

1 Alphabetical List

1-2140

Display a subset of elevation angles

You can plot a smaller range of elevation angles by setting the Elevation parameter.

patternElevation(sURA,fc,[-20, 0, 15],...

 'PropagationSpeed',c,...

 'Type','directivity',...

 'Elevation',[-45:45])

See Also
phased.URA.pattern | phased.URA.patternAzimuth

Introduced in R2015a

 isPolarizationCapable

1-2141

isPolarizationCapable

System object: phased.URA
Package: phased

Polarization capability

Syntax

flag = isPolarizationCapable(h)

Description

flag = isPolarizationCapable(h) returns a Boolean value, flag, indicating
whether the array supports polarization. An array supports polarization if all of its
constituent sensor elements support polarization.

Input Arguments

h — Uniform rectangular array

Uniform rectangular array specified as phased.URA System object.

Output Arguments

flag — Polarization-capability flag

Polarization-capability flag returned as a Boolean value, true, if the array supports
polarization or, false, if it does not.

1 Alphabetical List

1-2142

Examples

Short-Dipole Antenna Array Polarization

Determine whether an array of phased.ShortDipoleAntennaElement short-dipole
antenna element supports polarization.

h = phased.ShortDipoleAntennaElement(...

 'FrequencyRange',[1e9 10e9]);

ha = phased.URA([3,2],'Element',h);

isPolarizationCapable(ha)

ans =

 1

The returned value true (1) shows that this array supports polarization.

 plotResponse

1-2143

plotResponse
System object: phased.URA
Package: phased

Plot response pattern of array

Syntax

plotResponse(H,FREQ,V)

plotResponse(H,FREQ,V,Name,Value)

hPlot = plotResponse(___)

Description

plotResponse(H,FREQ,V) plots the array response pattern along the azimuth cut,
where the elevation angle is 0. The operating frequency is specified in FREQ. The
propagation speed is specified in V.

plotResponse(H,FREQ,V,Name,Value) plots the array response with additional
options specified by one or more Name,Value pair arguments.

hPlot = plotResponse(___) returns handles of the lines or surface in the figure
window, using any of the input arguments in the previous syntaxes.

Input Arguments

H

Array object

FREQ

Operating frequency in Hertz specified as a scalar or 1-by-K row vector. Values must lie
within the range specified by a property of H. That property is named FrequencyRange
or FrequencyVector, depending on the type of element in the array. The element has
no response at frequencies outside that range. If you set the 'RespCut' property of H to

1 Alphabetical List

1-2144

'3D', FREQ must be a scalar. When FREQ is a row vector, plotResponse draws multiple
frequency responses on the same axes.

V

Propagation speed in meters per second.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'CutAngle'

Cut angle as a scalar. This argument is applicable only when RespCut is 'Az' or
'El'. If RespCut is 'Az', CutAngle must be between –90 and 90. If RespCut is 'El',
CutAngle must be between –180 and 180.

Default: 0

'Format'

Format of the plot, using one of 'Line', 'Polar', or 'UV'. If you set Format to 'UV',
FREQ must be a scalar.

Default: 'Line'

'NormalizeResponse'

Set this value to true to normalize the response pattern. Set this value to false to plot
the response pattern without normalizing it. This parameter is not applicable when you
set the Unit parameter value to 'dbi'.

Default: true

'OverlayFreq'

Set this value to true to overlay pattern cuts in a 2-D line plot. Set this value to false
to plot pattern cuts against frequency in a 3-D waterfall plot. If this value is false, FREQ
must be a vector with at least two entries.

 plotResponse

1-2145

This parameter applies only when Format is not 'Polar' and RespCut is not '3D'.

Default: true

'Polarization'

Specify the polarization options for plotting the array response pattern. The allowable
values are |'None' | 'Combined' | 'H' | 'V' | where

• 'None' specifies plotting a nonpolarized response pattern
• 'Combined' specifies plotting a combined polarization response pattern
• 'H' specifies plotting the horizontal polarization response pattern
• 'V' specifies plotting the vertical polarization response pattern

For arrays that do not support polarization, the only allowed value is 'None'. This
parameter is not applicable when you set the Unit parameter value to 'dbi'.

Default: 'None'

'RespCut'

Cut of the response. Valid values depend on Format, as follows:

• If Format is 'Line' or 'Polar', the valid values of RespCut are 'Az', 'El', and
'3D'. The default is 'Az'.

• If Format is 'UV', the valid values of RespCut are 'U' and '3D'. The default is 'U'.

If you set RespCut to '3D', FREQ must be a scalar.

'Unit'

The unit of the plot. Valid values are 'db', 'mag', 'pow', or 'dbi'. This parameter
determines the type of plot that is produced.

Unit value Plot type

db power pattern in dB
scale

mag field pattern
pow power pattern
dbi directivity

1 Alphabetical List

1-2146

Default: 'db'

'Weights'

Weight values applied to the array, specified as a length-N column vector or N-by-M
matrix. The dimension N is the number of elements in the array. The interpretation of M
depends upon whether the input argument FREQ is a scalar or row vector.

Weights Dimensions FREQ Dimension Purpose

N-by-1 column vector Scalar or 1-by-M row vector Apply one set of weights for
the same single frequency or
all M frequencies.

Scalar Apply all of the M different
columns in Weights for the
same single frequency.

N-by-M matrix 1-by-M row vector Apply each of the M different
columns in Weights for the
corresponding frequency in
FREQ.

'AzimuthAngles'

Azimuth angles for plotting array response, specified as a row vector. The
AzimuthAngles parameter sets the display range and resolution of azimuth angles for
visualizing the radiation pattern. This parameter is allowed only when the RespCut
parameter is set to 'Az' or '3D' and the Format parameter is set to 'Line' or
'Polar'. The values of azimuth angles should lie between –180° and 180° and must be
in nondecreasing order. When you set the RespCut parameter to '3D', you can set the
AzimuthAngles and ElevationAngles parameters simultaneously.

Default: [-180:180]

'ElevationAngles'

Elevation angles for plotting array response, specified as a row vector. The
ElevationAngles parameter sets the display range and resolution of elevation
angles for visualizing the radiation pattern. This parameter is allowed only when the
RespCut parameter is set to 'El' or '3D' and the Format parameter is set to 'Line'
or 'Polar'. The values of elevation angles should lie between –90° and 90° and must be

 plotResponse

1-2147

in nondecreasing order. When yous set the RespCut parameter to '3D', you can set the
ElevationAngles and AzimuthAngles parameters simultaneously.

Default: [-90:90]

'UGrid'

U coordinate values for plotting array response, specified as a row vector. The UGrid
parameter sets the display range and resolution of the U coordinates for visualizing
the radiation pattern in U/V space. This parameter is allowed only when the Format
parameter is set to 'UV' and the RespCut parameter is set to 'U' or '3D'. The values of
UGrid should be between –1 and 1 and should be specified in nondecreasing order. You
can set the UGrid and VGrid parameters simultaneously.

Default: [-1:0.01:1]

'VGrid'

V coordinate values for plotting array response, specified as a row vector. The VGrid
parameter sets the display range and resolution of the V coordinates for visualizing
the radiation pattern in U/V space. This parameter is allowed only when the Format
parameter is set to 'UV' and the RespCut parameter is set to '3D'. The values of VGrid
should be between –1 and 1 and should be specified in nondecreasing order. You can set
VGrid and UGrid parameters simultaneously.

Default: [-1:0.01:1]

Examples

Azimuth Response of URA

This example shows how to construct a rectangular lattice 3-by-2 URA and plot that
array's azimuth response.

ha = phased.URA('Size',[3 2]);

fc = 1e9;

c = physconst('LightSpeed');

plotResponse(ha,fc,c,'RespCut','Az','Format','Polar');

1 Alphabetical List

1-2148

Array Response and Directivity of URA in U/V Space

This example shows how to construct a rectangular lattice 3-by-2 URA. Plot the cut of
the array response in space.

ha = phased.URA('Size',[3 2]);

c = physconst('lightspeed');

plotResponse(ha,1e9,c,'Format','UV');

 plotResponse

1-2149

Plot the directivity.

plotResponse(ha,1e9,c,'Format','UV','Unit','dbi');

1 Alphabetical List

1-2150

Array Response of URA for Subrange of U/V Space

This example shows how to construct a 5-by-5 square URA and plot the 3-D response
in space. However, restrict the range in space using the UGrid and VGrid
parameters.

ha = phased.URA([5,5]);

fc = 5e8;

c = physconst('LightSpeed');

plotResponse(ha,fc,c,'RespCut','3D','Format','UV',...

 'UGrid',[-0.25:.01:.25],'VGrid',[-0.25:.01:.25]);

 plotResponse

1-2151

Array Response of URA with Two Sets of Weights

This example shows how to construct a square 5-by-5 URA array having elements spaced
0.3 meters apart. Apply both uniform weights and tapered weights at a single frequency
using the Weights parameter. Choose the tapered weight values to be smallest at the
edges and increasing towards the center. Then, show that the tapered weight set reduces
the adjacent sidelobes while broadening the main lobe.

ha = phased.URA('Size',[5 5],'ElementSpacing',[0.3,0.3]);

fc = 1e9;

c = physconst('LightSpeed');

wts1 = ones(5,5);

wts1 = wts1(:);

wts1 = wts1/sum(wts1);

1 Alphabetical List

1-2152

wts2 = 0.3*ones(5,5);

wts2(2:4,2:4) = 0.7;

wts2(3,3) = 1;

wts2 = wts2(:);

wts2 = wts2/sum(wts2);

plotResponse(ha,fc,c,'RespCut','Az','Format','Polar','Weights',[wts1,wts2]);

See Also
azel2uv | uv2azel

 plotGratingLobeDiagram

1-2153

plotGratingLobeDiagram
System object: phased.URA
Package: phased

Plot grating lobe diagram of array

Syntax

plotGratingLobeDiagram(H,FREQ)

plotGratingLobeDiagram(H,FREQ,ANGLE)

plotGratingLobeDiagram(H,FREQ,ANGLE,C)

plotGratingLobeDiagram(H,FREQ,ANGLE,C,F0)

hPlot = plotGratingLobeDiagram(___)

Description

plotGratingLobeDiagram(H,FREQ) plots the grating lobe diagram of an array in
the u-v coordinate system. The System object H specifies the array. The argument FREQ
specifies the signal frequency and phase-shifter frequency. The array, by default, is
steered to 0° azimuth and 0° elevation.

A grating lobe diagram displays the positions of the peaks of the narrowband array
pattern. The array pattern depends only upon the geometry of the array and not upon
the types of elements which make up the array. Visible and nonvisible grating lobes are
displayed as open circles. Only grating lobe peaks near the location of the mainlobe are
shown. The mainlobe itself is displayed as a filled circle.

plotGratingLobeDiagram(H,FREQ,ANGLE), in addition, specifies the array steering
angle, ANGLE.

plotGratingLobeDiagram(H,FREQ,ANGLE,C), in addition, specifies the propagation
speed by C.

plotGratingLobeDiagram(H,FREQ,ANGLE,C,F0), in addition, specifies an array
phase-shifter frequency, F0, that differs from the signal frequency, FREQ. This argument
is useful when the signal no longer satisfies the narrowband assumption and, allows you
to estimate the size of beam squint.

1 Alphabetical List

1-2154

hPlot = plotGratingLobeDiagram(___) returns the handle to the plot for any of
the input syntax forms.

Input Arguments

H

Antenna or microphone array, specified as a System object.

FREQ

Signal frequency, specified as a scalar. Frequency units are hertz. Values must lie
within a range specified by the frequency property of the array elements contained in
H.Element. The frequency property is named FrequencyRange or FrequencyVector,
depending on the element type.

ANGLE

Array steering angle, specified as either a 2-by-1 vector or a scalar. If ANGLE is a vector,
it takes the form [azimuth;elevation]. The azimuth angle must lie in the range
[-180°,180°]. The elevation angle must lie in the range [-90°,90°]. All angle values
are specified in degrees. If the argument ANGLE is a scalar, it specifies only the azimuth
angle where the corresponding elevation angle is 0°.

Default: [0;0]

C

Signal propagation speed, specified as a scalar. Units are meters per second.

Default: Speed of light in vacuum

F0

Phase-shifter frequency of the array, specified as a scalar. Frequency units are hertz
When this argument is omitted, the phase-shifter frequency is assumed to be the signal
frequency, FREQ.

Default: FREQ

 plotGratingLobeDiagram

1-2155

Examples

Create Grating Lobe Diagram for Microphone URA

Plot the grating lobe diagram for an 11-by-9-element uniform rectangular array having
element spacing equal to one-half wavelength.

Assume the operating frequency of the array is 10 kHz. All elements are omnidirectional
microphone elements. Steer the array in the direction 20 degrees in azimuth and 30
degrees in elevation. The speed of sound in air is 344.21 m/s at 21 deg C.

cair = 344.21;

f = 10000;

lambda = cair/f;

sMic = phased.OmnidirectionalMicrophoneElement(...

 'FrequencyRange',[20 20000]);

sURA = phased.URA('Element',sMic,'Size',[11,9],...

 'ElementSpacing',0.5*lambda*[1,1]);

plotGratingLobeDiagram(sURA,f,[20;30],cair);

1 Alphabetical List

1-2156

Plot the grating lobes. The main lobe of the array is indicated by a filled black circle. The
grating lobes in visible and nonvisible regions are indicated by unfilled black circles. The
visible region is the region in u-v coordinates for which u2 + v2 ≤ 1. The visible region is
shown as a unit circle centered at the origin. Because the array spacing is less than one-
half wavelength, there are no grating lobes in the visible region of space. There are an
infinite number of grating lobes in the nonvisible regions, but only those in the range
[-3,3] are shown.

The grating-lobe free region, shown in green, is the range of directions of the main lobe
for which there are no grating lobes in the visible region. In this case, it coincides with
the visible region.

 plotGratingLobeDiagram

1-2157

The white areas of the diagram indicate a region where no grating lobes are possible.

Create Grating Lobe Diagram for Undersampled Microphone URA

Plot the grating lobe diagram for an 11-by-9-element uniform rectangular array having
element spacing greater than one-half wavelength. Grating lobes are plotted in u-v
coordinates.

Assume the operating frequency of the array is 10 kHz and the spacing between elements
is 0.75 of a wavelength. All elements are omnidirectional microphone elements. Steer the
array in the direction 20 degrees in azimuth and 30 degrees in elevation. The speed of
sound in air is 344.21 m/s at 21 deg C.

cair = 344.21;

f = 10000;

lambda = cair/f;

sMic = phased.OmnidirectionalMicrophoneElement(...

 'FrequencyRange',[20 20000]);

sURA = phased.URA('Element',sMic,'Size',[11,9],...

 'ElementSpacing',0.75*lambda*[1,1]);

plotGratingLobeDiagram(sURA,f,[20;30],cair);

1 Alphabetical List

1-2158

The main lobe of the array is indicated by a filled black circle. The grating lobes in
visible and nonvisible regions are indicated by unfilled black circles. The visible region
is the region in u-v coordinates for which . The visible region is shown as
a unit circle centered at the origin. Because the array spacing is greater than one-half
wavelength, there are grating lobes in the visible region of space. There are an infinite
number of grating lobes in the nonvisible regions, but only those in the range [-3,3] are
shown.

The grating-lobe free region, shown in green, is the range of directions of the main lobe
for which there are no grating lobes in the visible region. In this case, it lies inside the

 plotGratingLobeDiagram

1-2159

visible region. Because the mainlobe is outside the green area, there is a grating lobe
within the visible region.

Create Grating Lobe Diagram for Microphone URA with Frequency Shift

Plot the grating lobe diagram for an 11-by-9-element uniform rectangular array having
element spacing greater than one-half wavelength. Apply a 20% phase-shifter frequency
offset. Grating lobes are plotted in u-v coordinates.

Assume the operating frequency of the array is 10 kHz and the spacing between elements
is 0.75 of a wavelength. All elements are omnidirectional microphone elements. Steer
the array in the direction 20 degrees in azimuth and 30 degrees in elevation. The shifted
frequency is 12000 Hz. The speed of sound in air is 344.21 m/s at 21 deg C.

cair = 344.21;

f = 10000;

f0 = 12000;

lambda = cair/f;

sMic = phased.OmnidirectionalMicrophoneElement(...

 'FrequencyRange',[20 20000]);

sURA = phased.URA('Element',sMic,'Size',[11,9],...

 'ElementSpacing',0.75*lambda*[1,1]);

plotGratingLobeDiagram(sURA,f,[20;30],cair,f0);

1 Alphabetical List

1-2160

The mainlobe of the array is indicated by a filled black circle. The mainlobe has moved
from its position in the previous example due to the frequency shift. The grating lobes in
visible and nonvisible regions are indicated by unfilled black circles. The visible region
is the region in u-v coordinates for which . The visible region is shown as
a unit circle centered at the origin. Because the array spacing is greater than one-half
wavelength, there are grating lobes in the visible region of space. There are an infinite
number of grating lobes in the nonvisible regions, but only those in the range [-3,3] are
shown.

The grating-lobe free region, shown in green, is the range of directions of the main lobe
for which there are no grating lobes in the visible region. In this case, it lies inside the

 plotGratingLobeDiagram

1-2161

visible region. Because the mainlobe is outside the green area, there is a grating lobe
within the visible region.

Concepts

Grating Lobes

Spatial undersampling of a wavefield by an array gives rise to visible grating lobes.
If you think of the wavenumber, k, as analogous to angular frequency, then you must
sample the signal at spatial intervals smaller than π/kmax (or λmin/2) in order to remove
aliasing. The appearance of visible grating lobes is also known as spatial aliasing. The
variable kmax is the largest wavenumber value present in the signal.

The directions of maximum spatial response of a URA are determined by the peaks of
the array’s array pattern (alternatively called the beam pattern or array factor). Peaks
other than the mainlobe peak are called grating lobes. For a URA, the array pattern
depends only on the wavenumber component of the wavefield in the array plane (the y
and z directions for the phased.URA System object). The wavenumber components are
related to the look-direction of an arriving wavefield by ky = –2π sin az cos el/λ and kz
= –2π sin el/λ. The angle az is azimuth angle of the arriving wavefield. The angle el is
elevation angle of the arriving wavefield. The look-direction points away from the array
to the wavefield source.

The array pattern possesses an infinite number of periodically-spaced peaks that are
equal in strength to the mainlobe peak. If you steer the array to the az0, el0 azimuth
and elevation direction, the array pattern for the URA has its mainlobe peak at the
wavenumber value, ky0 = –2π sin az0 cos el0/λ, kz0 = –2π sin el0/λ. The array pattern
has strong peaks at kym = ky0 + 2π m/dy, kzn = kz0 + 2π n/dz. for integral values of m and
n. The quantities dy and dz are the inter-element spacings in the y- and z-directions,
respectively. Expressed in terms of direction cosines, the grating lobes occur at um = u0 –
mλ/dy and vn = v0 –nλ/dz. The mainlobe direction cosines are given by u0 = sin az0 cos el0
and v0 = sin el0 when expressed in terms of the look-direction.

Grating lobes can be visible or nonvisible, depending upon the value of um
2 + vn

2. When
um

2 + vn
2 ≤ 1, the look direction represent a visible direction. When the value is greater

than one, the grating lobe is nonvisible. For each visible grating lobe, you can compute
a look direction (azm,n,elm,n) from um = sin azm cos elm and vn = sin eln. The spacing of

1 Alphabetical List

1-2162

grating lobes depends upon λ/d. When λ/d is small enough, multiple grating lobe peaks
can correspond to physical look-directions.

References

[1] Van Trees, H.L. Optimum Array Processing. New York: Wiley-Interscience, 2002.

See Also
azel2uv | uv2azel

 release

1-2163

release
System object: phased.URA
Package: phased

Allow property value and input characteristics

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

1 Alphabetical List

1-2164

step
System object: phased.URA
Package: phased

Output responses of array elements

Syntax

RESP = step(H,FREQ,ANG)

Description

RESP = step(H,FREQ,ANG) returns the responses of the array elements, RESP, at the
operating frequencies specified in FREQ and directions specified in ANG.

Note: The object performs an initialization the first time the step method is executed.
This initialization locks nontunable properties and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Input Arguments

H

Array object

FREQ

Operating frequencies of array in hertz. FREQ is a row vector of length L. Typical values
are within the range specified by a property of H.Element. That property is named
FrequencyRange or FrequencyVector, depending on the type of element in the array.
The element has zero response at frequencies outside that range.

 step

1-2165

ANG

Directions in degrees. ANG is either a 2-by-M matrix or a row vector of length M.

If ANG is a 2-by-M matrix, each column of the matrix specifies the direction in the
form [azimuth; elevation]. The azimuth angle must lie between –180° and 180°,
inclusive. The elevation angle must lie between –90° and 90°, inclusive.

If ANG is a row vector of length M, each element specifies the azimuth angle of the
direction. In this case, the corresponding elevation angle is assumed to be 0°.

Output Arguments

RESP

Voltage responses of the phased array. The output depends on whether the array
supports polarization or not.

• If the array is not capable of supporting polarization, the voltage response, RESP,
has the dimensions N-by-M-by-L. N is the number of elements in the array. The
dimension M is the number of angles specified in ANG. L is the number of frequencies
specified in FREQ. For any element, the columns of RESP contain the responses of the
array elements for the corresponding direction specified in ANG. Each of the L pages
of RESP contains the responses of the array elements for the corresponding frequency
specified in FREQ.

• If the array is capable of supporting polarization, the voltage response, RESP, is a
MATLAB struct containing two fields, RESP.H and RESP.V. The field, RESP.H,
represents the array’s horizontal polarization response, while RESP.V represents the
array’s vertical polarization response. Each field has the dimensions N-by-M-by-L.
N is the number of elements in the array, and M is the number of angles specified in
ANG. L is the number of frequencies specified in FREQ. Each column of RESP contains
the responses of the array elements for the corresponding direction specified in ANG.
Each of the L pages of RESP contains the responses of the array elements for the
corresponding frequency specified in FREQ.

1 Alphabetical List

1-2166

Examples

Response of 2-by-2 URA of Short-Dipole Antennas

Construct a 2-by-2 rectangular lattice URA of short-dipole antenna elements. Then, find
the response of each element at boresight. Assume the operating frequency is 1 GHz.

sSD = phased.ShortDipoleAntennaElement;

sURA = phased.URA('Element',sSD,'Size',[2 2]);

fc = 1e9;

ang = [0;0];

resp = step(sURA,fc,ang);

disp(resp.V)

 -1.2247

 -1.2247

 -1.2247

 -1.2247

See Also
phitheta2azel | uv2azel

 viewArray

1-2167

viewArray
System object: phased.URA
Package: phased

View array geometry

Syntax

viewArray(H)

viewArray(H,Name,Value)

hPlot = viewArray(___)

Description

viewArray(H) plots the geometry of the array specified in H.

viewArray(H,Name,Value) plots the geometry of the array, with additional options
specified by one or more Name,Value pair arguments.

hPlot = viewArray(___) returns the handle of the array elements in the figure
window. All input arguments described for the previous syntaxes also apply here.

Input Arguments

H

Array object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

1 Alphabetical List

1-2168

'ShowIndex'

Vector specifying the element indices to show in the figure. Each number in the vector
must be an integer between 1 and the number of elements. You can also specify the
string 'All' to show indices of all elements of the array or 'None' to suppress indices.

Default: 'None'

'ShowNormals'

Set this value to true to show the normal directions of all elements of the array. Set this
value to false to plot the elements without showing normal directions.

Default: false

'ShowTaper'

Set this value to true to specify whether to change the element color brightness in
proportion to the element taper magnitude. When this value is set to false, all elements
are drawn with the same color.

Default: false

'Title'

String specifying the title of the plot.

Default: 'Array Geometry'

Output Arguments

hPlot

Handle of array elements in figure window.

Examples

Geometry, Normal Directions, and Indices of URA Elements

This example shows how to display the element positions, normal directions, and indices
for all elements of a 4-by-4 square URA.

 viewArray

1-2169

ha = phased.URA(4);

viewArray(ha,'ShowNormals',true,'ShowIndex','All');

• Phased Array Gallery

See Also
phased.ArrayResponse

../examples/phased-array-gallery.html

1 Alphabetical List

1-2170

phased.WidebandCollector System object

Package: phased

Wideband signal collector

Description

The WidebandCollector object implements a wideband signal collector.

To compute the collected signal at the sensor(s):

1 Define and set up your wideband signal collector using the syntax defined in
“Construction” on page 1-2170 below.

2 Call step to collect the signal according to the properties of
phased.WidebandCollector. The behavior of step is specific to each object in the
toolbox.

Construction

H = phased.WidebandCollector creates a wideband signal collector System object, H.
The object collects incident wideband signals from given directions using a sensor array
or a single element.

H = phased.WidebandCollector(Name,Value) creates a wideband signal
collector object, H, with each specified property Name set to the specified
Value. You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties

Sensor

Sensor element or sensor array

 phased.WidebandCollector System object

1-2171

Sensor element or sensor array specified as a System object in the Phased Array System
Toolbox. A sensor array can contain subarrays.

Antenna Toolbox antenna

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second, as a positive scalar.

Default: Speed of light

SampleRate

Sample rate

Specify the sample rate, in hertz, as a positive scalar. The default value corresponds to 1
MHz.

Default: 1e6

ModulatedInput

Assume modulated input

Set this property to true to indicate the input signal is demodulated at a carrier
frequency.

Default: true

CarrierFrequency

Carrier frequency

Specify the carrier frequency (in hertz) as a positive scalar. The default value of this
property corresponds to 1 GHz. This property applies when the ModulatedInput
property is true.

Default: 1e9

1 Alphabetical List

1-2172

WeightsInputPort

Enable weights input

To specify weights, set this property to true and use the corresponding input argument
when you invoke step. If you do not want to specify weights, set this property to false.

Default: false

EnablePolarization

Enable polarization

Set this property to true to simulate the collection of polarized waves. Set this property
to false to ignore polarization. This property applies when the sensor specified in the
Sensor property is capable of simulating polarization.

Default: false

NumSubbands

Number of subbands

Number of processing subbands, specified as a positive integer.

Default: 64

Wavefront

Type of incoming wavefront

Specify the type of incoming wavefront as one of 'Plane', or 'Unspecified':

• If you set the Wavefront property to 'Plane', the input signals are multiple plane
waves impinging on the entire array. Each plane wave is received by all collecting
elements. If the Sensor property is an array that contains subarrays, the Wavefront
property must be 'Plane'.

• If you set the Wavefront property to 'Unspecified', the input signals are
individual waves impinging on individual sensors.

Default: 'Plane'

 phased.WidebandCollector System object

1-2173

Methods

clone Create wideband collector object with same
property values

getNumInputs Number of expected inputs to step method
getNumOutputs Number of outputs from step method
isLocked Locked status for input attributes and

nontunable properties
release Allow property value and input

characteristics changes
step Collect signals

Definitions

Subband Frequency Processing

Subband processing decomposes a wideband signal into multiple subbands and applies
narrowband processing to the signal in each subband. The signals for all subbands are
summed to form the output signal.

When using wideband frequency System objects, you specify the number of subbands,
Nb, in which to decompose the wideband signal. The NumSubbands property specifies the
number of subbands. Subband center frequencies and widths are automatically computed
from the total bandwidth and number of subbands. The total frequency band is centered
on the carrier frequency, fc, specified by the OperatingFrequency property. The overall
bandwidth is given by the sample rate, fs, specified by the SampleRate property. Each
frequency subband width is defined by Δf = fs/NB. The center frequencies of the subbands
are given by

f

f
f

m f N

f
N f

N
m f N

m

c
s

B

c
s

B

=
- + -()

-
-()

+ -()

2
1

1

2
1

D

D

, even

, odd

ÏÏ

Ì
ÔÔ

Ó
Ô
Ô

=, , ,m NB1…

1 Alphabetical List

1-2174

Subbands are ordered by frequency. Frequencies above the carrier appear first, followed
by frequencies below the carrier. This order is consistent with the ordering of the discrete
Fourier transform.

The phased.WidebandCollector System object uses the narrowband phased
approximation of the time delays across receiving elements in the far field for each
subband.

Examples

Collect Signal at a Single Antenna

Use the wideband collector to construct the signal impinging upon a single isotropic
antenna from 10 degrees azimuth and 30 degrees elevation.

sIso = phased.IsotropicAntennaElement;

sColl = phased.WidebandCollector('Sensor',sIso);

x = [1;1;1];

incidentAngle = [10;30];

y = step(sColl,x,incidentAngle);

disp(y)

 1.0000 + 0.0000i

 1.0000 + 0.0000i

 1.0000 + 0.0000i

Collect Wideband Signal at 5-Element ULA

Use the wideband collector to construct the signal impinging upon a 5-element ULA of
isotropic antennas from 10 degrees azimuth and 30 degrees elevation.

sULA = phased.ULA('NumElements',5);

sColl = phased.WidebandCollector('Sensor',sULA);

x = [1;1;1];

incidentAngle = [10;30];

y = step(sColl,x,incidentAngle);

disp(y)

 Columns 1 through 4

 -0.9997 + 0.0102i -0.0051 - 0.9999i 1.0000 + 0.0000i -0.0051 + 1.0001i

 -0.9999 + 0.0102i -0.0051 - 1.0000i 1.0000 + 0.0000i -0.0051 + 1.0000i

 phased.WidebandCollector System object

1-2175

 -1.0002 + 0.0102i -0.0051 - 1.0001i 1.0000 - 0.0000i -0.0051 + 0.9999i

 Column 5

 -1.0002 - 0.0102i

 -0.9999 - 0.0102i

 -0.9997 - 0.0102i

Collect Different Signals at 3-Element ULA

Collect three signals incoming into a 3-element array of isotropic antenna elements. Each
antenna collects a separate input signal from a separate direction.

sULA = phased.ULA('NumElements',3);

sColl = phased.WidebandCollector('Sensor',sULA,...

 'Wavefront','Unspecified');

rng default

x = rand(10,3);

incidentAngles = [10 20 45; 0 5 2];

y = step(sColl,x,incidentAngles)

y =

 0.8147 + 0.0000i 0.1576 + 0.0000i 0.6557 + 0.0000i

 0.9058 + 0.0000i 0.9706 + 0.0000i 0.0357 + 0.0000i

 0.1270 + 0.0000i 0.9572 + 0.0000i 0.8491 + 0.0000i

 0.9134 + 0.0000i 0.4854 + 0.0000i 0.9340 + 0.0000i

 0.6324 + 0.0000i 0.8003 + 0.0000i 0.6787 + 0.0000i

 0.0975 + 0.0000i 0.1419 + 0.0000i 0.7577 + 0.0000i

 0.2785 + 0.0000i 0.4218 + 0.0000i 0.7431 + 0.0000i

 0.5469 + 0.0000i 0.9157 + 0.0000i 0.3922 + 0.0000i

 0.9575 + 0.0000i 0.7922 + 0.0000i 0.6555 + 0.0000i

 0.9649 + 0.0000i 0.9595 + 0.0000i 0.1712 + 0.0000i

Algorithms

If the Wavefront property value is 'Plane', phased.WidebandCollector does the
following for each plane wave signal:

1 Decomposes the signal into multiple subbands.

1 Alphabetical List

1-2176

2 Uses the phase approximation of the time delays across collecting elements in the far
field for each subband.

3 Regroups the collected signals in all the subbands to form the output signal.

If the Wavefront property value is 'Unspecified', phased.Wideband Collector
collects each channel independently.

For further details, see [1].

References

[1] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002.

See Also
phased.Collector

Introduced in R2012a

 clone

1-2177

clone
System object: phased.WidebandCollector
Package: phased

Create wideband collector object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates an object, C, having the same property values and same states as
H. If H is locked, so is C.

1 Alphabetical List

1-2178

getNumInputs
System object: phased.WidebandCollector
Package: phased

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of inputs
(not counting the object itself) that you must use when calling the step method. This
value changes when you alter properties that turn inputs on or off.

 getNumOutputs

1-2179

getNumOutputs
System object: phased.WidebandCollector
Package: phased

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value changes when you alter properties that turn outputs on or off.

1 Alphabetical List

1-2180

isLocked
System object: phased.WidebandCollector
Package: phased

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF, for the WidebandCollector System
object.

isLocked returns a logical value that indicates whether input attributes and
nontunable properties for the object are locked. The object performs an internal
initialization the first time that you execute step. This initialization locks nontunable
properties and input specifications, such as the dimensions, complexity, and data type of
the input data. After locking, isLocked returns a true value.

 release

1-2181

release
System object: phased.WidebandCollector
Package: phased

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

1 Alphabetical List

1-2182

step
System object: phased.WidebandCollector
Package: phased

Collect signals

Syntax

Y = step(H,X,ANG)

Y = step(H,X,ANG,LAXES)

Y = step(H,X,ANG,WEIGHTS)

Y = step(H,X,ANG,STEERANGLE)

Y = step(H,X,ANG,LAXES,WEIGHTS,STEERANGLE)

Description

Y = step(H,X,ANG) collects signals X arriving from directions ANG. The collection
process depends on the Wavefront property of H, as follows:

• If Wavefront has the value 'Plane', each collecting element collects all the far field
signals in X. Each column of Y contains the output of the corresponding element in
response to all the signals in X.

• If Wavefront has the value 'Unspecified', each collecting element collects
only one impinging signal from X. Each column of Y contains the output of
the corresponding element in response to the corresponding column of X. The
'Unspecified' option is available when the Sensor property of H does not contain
subarrays.

Y = step(H,X,ANG,LAXES) uses LAXES as the local coordinate system axes directions.
This syntax is available when you set the EnablePolarization property to true.

Y = step(H,X,ANG,WEIGHTS) uses WEIGHTS as the weight vector. This syntax is
available when you set the WeightsInputPort property to true.

Y = step(H,X,ANG,STEERANGLE) uses STEERANGLE as the subarray steering angle.
This syntax is available when you configure H so that H.Sensor is an array that contains
subarrays and H.Sensor.SubarraySteering is either 'Phase' or 'Time'.

 step

1-2183

Y = step(H,X,ANG,LAXES,WEIGHTS,STEERANGLE) combines all input arguments.
This syntax is available when you configure H so that H.WeightsInputPort is true,
H.Sensor is an array that contains subarrays, and H.Sensor.SubarraySteering is
either 'Phase' or 'Time'.

Note: The object performs an initialization the first time the step method is executed.
This initialization locks nontunable properties and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Input Arguments

H

Collector object.

X

Arriving signals. Each column of X represents a separate signal. The specific
interpretation of X depends on the Wavefront property of H.

Wavefront Property
Value

Description

'Plane' Each column of X is a far field signal.
'Unspecified' Each column of X is the signal impinging on the corresponding

element. In this case, the number of columns in X must equal
the number of collecting elements in the Sensor property.

• If the EnablePolarization property value is set to false, X is a matrix. The
number of columns of the matrix equals the number of separate signals.

• If the EnablePolarization property value is set to true, X is a row vector of
MATLAB struct type. The dimension of the struct array equals the number of
separate signals. Each struct member contains three column-vector fields, X, Y, and
Z, representing the x, y, and z components of the polarized wave vector signals in the
global coordinate system.

1 Alphabetical List

1-2184

ANG

Incident directions of signals, specified as a two-row matrix. Each column specifies the
incident direction of the corresponding column of X. Each column of ANG has the form
[azimuth; elevation], in degrees. The azimuth angle must be between –180 and 180
degrees, inclusive. The elevation angle must be between –90 and 90 degrees, inclusive.

LAXES

Local coordinate system. LAXES is a 3-by-3 matrix whose columns specify the local
coordinate system's orthonormal x, y, and z axes, respectively. Each axis is specified in
terms of [x;y;z] with respect to the global coordinate system. This argument is only
used when the EnablePolarization property is set to true.

WEIGHTS

Vector of weights. WEIGHTS is a column vector of length M, where M is the number of
collecting elements.

Default: ones(M,1)

STEERANGLE

Subarray steering angle, specified as a length-2 column vector. The vector has the form
[azimuth; elevation], in degrees. The azimuth angle must be between –180 and 180
degrees, inclusive. The elevation angle must be between –90 and 90 degrees, inclusive.

Output Arguments
Y

Collected signals. Each column of Y contains the output of the corresponding element.
The output is the response to all the signals in X, or one signal in X, depending on the
Wavefront property of H.

Examples
Collect Signal at a Single Antenna

Use the wideband collector to construct the signal impinging upon a single isotropic
antenna from 10 degrees azimuth and 30 degrees elevation.

 step

1-2185

sIso = phased.IsotropicAntennaElement;

sColl = phased.WidebandCollector('Sensor',sIso);

x = [1;1;1];

incidentAngle = [10;30];

y = step(sColl,x,incidentAngle);

disp(y)

 1.0000 + 0.0000i

 1.0000 + 0.0000i

 1.0000 + 0.0000i

Collect Wideband Signal at 5-Element ULA

Use the wideband collector to construct the signal impinging upon a 5-element ULA of
isotropic antennas from 10 degrees azimuth and 30 degrees elevation.

sULA = phased.ULA('NumElements',5);

sColl = phased.WidebandCollector('Sensor',sULA);

x = [1;1;1];

incidentAngle = [10;30];

y = step(sColl,x,incidentAngle);

disp(y)

 Columns 1 through 4

 -0.9997 + 0.0102i -0.0051 - 0.9999i 1.0000 + 0.0000i -0.0051 + 1.0001i

 -0.9999 + 0.0102i -0.0051 - 1.0000i 1.0000 + 0.0000i -0.0051 + 1.0000i

 -1.0002 + 0.0102i -0.0051 - 1.0001i 1.0000 - 0.0000i -0.0051 + 0.9999i

 Column 5

 -1.0002 - 0.0102i

 -0.9999 - 0.0102i

 -0.9997 - 0.0102i

Collect Different Signals at 3-Element ULA

Collect three signals incoming into a 3-element array of isotropic antenna elements. Each
antenna collects a separate input signal from a separate direction.

sULA = phased.ULA('NumElements',3);

sColl = phased.WidebandCollector('Sensor',sULA,...

 'Wavefront','Unspecified');

1 Alphabetical List

1-2186

rng default

x = rand(10,3);

incidentAngles = [10 20 45; 0 5 2];

y = step(sColl,x,incidentAngles)

y =

 0.8147 + 0.0000i 0.1576 + 0.0000i 0.6557 + 0.0000i

 0.9058 + 0.0000i 0.9706 + 0.0000i 0.0357 + 0.0000i

 0.1270 + 0.0000i 0.9572 + 0.0000i 0.8491 + 0.0000i

 0.9134 + 0.0000i 0.4854 + 0.0000i 0.9340 + 0.0000i

 0.6324 + 0.0000i 0.8003 + 0.0000i 0.6787 + 0.0000i

 0.0975 + 0.0000i 0.1419 + 0.0000i 0.7577 + 0.0000i

 0.2785 + 0.0000i 0.4218 + 0.0000i 0.7431 + 0.0000i

 0.5469 + 0.0000i 0.9157 + 0.0000i 0.3922 + 0.0000i

 0.9575 + 0.0000i 0.7922 + 0.0000i 0.6555 + 0.0000i

 0.9649 + 0.0000i 0.9595 + 0.0000i 0.1712 + 0.0000i

Algorithms

If the Wavefront property value is 'Plane', phased.WidebandCollector does the
following for each plane wave signal:

1 Decomposes the signal into multiple subbands.
2 Uses the phase approximation of the time delays across collecting elements in the far

field for each subband.
3 Regroups the collected signals in all the subbands to form the output signal.

If the Wavefront property value is 'Unspecified', phased.Wideband Collector
collects each channel independently.

For further details, see [1].

References

[1] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002.

 phased.WidebandFreeSpace System object

1-2187

phased.WidebandFreeSpace System object

Package: phased

Wideband freespace propagation

Description

The System object models wideband signal propagation from one point to another in a
free-space environment. The System object applies range-dependent time delay, gain
adjustment, and phase shift to the input signal. The object accounts for doppler shift
when either the source or destination is moving. A free-space environment is a boundary-
free medium with a speed of signal propagation independent of position and direction.
The signal propagates along a straight line from source to destination. For example, you
can use this object to model the two-way propagation of a signal from a radar to a target.

For nonpolarized signals, the System object lets you propagate signals from a single
point to multiple points or from multiple points to a single point. Multiple-point–to–
multiple-point propagation is not supported.

To compute the propagated signal in free space:

1 Define and set up your wideband free space environment as shown in the
“Construction” on page 1-2188 section.

2 Call step to propagate the signal through free space according to the properties of
the System object. The behavior of step is specific to each object in the toolbox.

When propagating a round trip signal in free space, you can use one
WidebandFreeSpace System object to compute the two-way propagation delay.
Alternatively, you can use two separate WidebandFreeSpace System objects to compute
one-way propagation delays in each direction. Due to filter distortion, the total round
trip delay when you employ two-way propagation can differ from the delay when you use
two one-way phased.WidebandFreeSpace System objects. It is more accurate to use a
single two-way phased.WidebandFreeSpace System object. To set this option, use the
TwoWayPropagation property.

1 Alphabetical List

1-2188

Construction

sWBFS = phased.WidebandFreeSpace creates a wideband free space System object,
sWBFS.

sWBFS = phased.WidebandFreeSpace(Name,Value) creates a wideband free
space System object, sWBFS, with each specified property Name set to the specified
Value. You can specify additional name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Properties

PropagationSpeed — Signal propagation speed
speed of light (default) | real-valued positive scalar

Signal propagation speed, specified as a real-valued positive scalar. Units are in meters
per second.
Example: physconst('LightSpeed')

Data Types: double

OperatingFrequency — Signal carrier frequency
300e6 (default) | positive real-valued scalar

Signal carrier frequency, specified as a positive real-valued scalar. Units are in hertz.
Example: 1e9

Data Types: double

TwoWayPropagation — Option to enable two-way propagation
false (default) | true

Option to enable two-way propagation, specified as a logical scalar. Set this property to
true to perform round-trip propagation between the origin and destination specified in
step. Set this property to false to perform one-way propagation from the origin to the
destination.
Example: true

Data Types: logical

 phased.WidebandFreeSpace System object

1-2189

SampleRate — Sample rate
1e6 (default) | positive real-valued scalar

Sample rate, specified as a real positive scalar. Units are in hertz.
Example: 2e6
Data Types: double

NumSubbands — Number of processing subbands
64 (default) | positive integer

Number of processing subbands, specified as a positive integer.
Example: 64

Data Types: double

MaximumDistanceSource — Source of maximum distance value
'Auto' (default) | 'Property'

Maximum distance source value, specified as one of 'Auto or 'Property'. This choice
selects how the maximum one-way propagation distance is determined. When you set
this property to 'Auto', the System object automatically allocates sufficient memory to
simulate the propagation delay. When you set this property to 'Property', you specify
the maximum one-way propagation distance using the MaximumDistance property.

Example: 'Property'

Data Types: char

MaximumDistance — Maximum one-way propagation distance
10000 (default) | positive real-valued scalar

Maximum one-way propagation distance, specified as a real-valued positive scalar. Units
are meters. This property applies when you set the MaximumDistanceSource property
to 'Property'. Any signal that propagates more than the maximum one-way distance is
ignored. The maximum distance should be greater than or equal to the largest position-
to-position distance.
Example: 5000
Data Types: double

1 Alphabetical List

1-2190

Methods

clone Create System object with identical
property values

getNumInputs Number of expected inputs to step method
getNumOutputs Number of outputs from step method
isLocked Locked status for input attributes and

nontunable properties
release Allow property values and input

characteristics to change
reset Reset states of phased.WidebandFreeSpace

System object
step Propagate wideband signal from point to

point using free-space channel model

Definitions

Freespace Time Delay and Path Loss

When the origin and destination are stationary relative to each other, the output signal
of a free-space channel can be written as Y(t) = x(t-τ)/Lfsp. The quantity τ is the signal
delay and Lfsp is the free-space path loss. The delay τ is given by R/c, where R is the
propagation distance and c is the propagation speed. The free-space path loss is given by

L
R

fsp =
()

,
4 2

2

p

l

where λ is the signal wavelength.

This formula assumes that the target is in the far field of the transmitting element or
array. In the near field, the free-space path loss formula is not valid and can result in a
loss smaller than one, equivalent to a signal gain. For this reason, the loss is set to unity
for range values, R ≤ λ/4π.

When the origin and destination have relative motion, the processing also introduces a
Doppler frequency shift. The frequency shift is v/λ for one-way propagation and 2v/λ for

 phased.WidebandFreeSpace System object

1-2191

two-way propagation. The quantity v is the relative speed of the destination with respect
to the origin.

For more details on free space channel propagation, see [2].

Subband Frequency Processing

Subband processing decomposes a wideband signal into multiple subbands and applies
narrowband processing to the signal in each subband. The signals for all subbands are
summed to form the output signal.

When using wideband frequency System objects, you specify the number of subbands,
Nb, in which to decompose the wideband signal. The NumSubbands property specifies the
number of subbands. Subband center frequencies and widths are automatically computed
from the total bandwidth and number of subbands. The total frequency band is centered
on the carrier frequency, fc, specified by the OperatingFrequency property. The overall
bandwidth is given by the sample rate, fs, specified by the SampleRate property. Each
frequency subband width is defined by Δf = fs/NB. The center frequencies of the subbands
are given by

f

f
f

m f N

f
N f

N
m f N

m

c
s

B

c
s

B

=
- + -()

-
-()

+ -()

2
1

1

2
1

D

D

, even

, odd

ÏÏ

Ì
ÔÔ

Ó
Ô
Ô

=, , ,m NB1…

Subbands are ordered by frequency. Frequencies above the carrier appear first, followed
by frequencies below the carrier. This order is consistent with the ordering of the discrete
Fourier transform.

The phased.WidebandFreeSpace System object uses narrowband time delay and loss
algorithms for each subband.

Examples

Free-Space Propagation of Wideband Signals

Propagate a wideband signal with three tones in an underwater acoustic with constant
speed of propagation. You can model this environment as free space. The center

1 Alphabetical List

1-2192

frequency is 100 kHz and the frequencies of the three tones are 75 kHz, 100 kHz, and 125
kHz, respectively. Plot the spectrum of the original signal and the propagated signal to
observe the Doppler effect. The sampling frequency is 100 kHz.

c = 1500;

fc = 100e3;

fs = 100e3;

relfreqs = [-25000,0,25000];

Set up a stationary radar and moving target and compute the expected Doppler.

rpos = [0;0;0];

rvel = [0;0;0];

tpos = [30/fs*c; 0;0];

tvel = [45;0;0];

dop = -tvel(1)./(c./(relfreqs + fc));

Create a signal and propagate the signal to the moving target.

t = (0:199)/fs;

x = sum(exp(1i*2*pi*t.'*relfreqs),2);

wbchan = phased.WidebandFreeSpace(...

 'PropagationSpeed',c,...

 'OperatingFrequency',fc,...

 'SampleRate',fs);

y = step(wbchan,x,rpos,tpos,rvel,tvel);

Plot the spectra of the original signal and the Doppler-shifted signal.

periodogram([x y],rectwin(size(x,1)),1024,fs,'centered')

ylim([-150 0])

legend('original','propagated');

 phased.WidebandFreeSpace System object

1-2193

For this wideband signal, you can see that the magnitude of the Doppler shift increases
with frequency. In contrast, for narrowband signals, the Doppler shift is assumed
constant over the band.

References

[1] Proakis, J. Digital Communications. New York: McGraw-Hill, 2001.

[2] Skolnik, M. Introduction to Radar Systems, 3rd Ed. New York: McGraw-Hill, 2001.

1 Alphabetical List

1-2194

See Also
phased.TwoRayChannel | phased.FreeSpace | phased.WidebandRadiator |
phased.WidebandCollector | phased.RadarTarget | fspl

Introduced in R2015b

 clone

1-2195

clone
System object: phased.WidebandFreeSpace
Package: phased

Create System object with identical property values

Syntax

C = clone(H)

Description

C = clone(H) creates an object, C, having the same property values and same states as
H. If H is locked, so is C.

Input Arguments

H — Wideband free space propagator
System object

Wideband free space propagator, specified as a System object.
Example: phased.WidebandFreeSpace

Output Arguments

C — Wideband free space propagator
System object

Wideband free space propagator, returned as a System object.

Introduced in R2015b

1 Alphabetical List

1-2196

getNumInputs
System object: phased.WidebandFreeSpace
Package: phased

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of inputs
(not counting the object itself) that you must use when calling the step method. This
value changes when you alter properties that turn inputs on or off.

Input Arguments

H — Wideband free space propagator
phased.WidebandFreeSpace System object

Wideband free space propagator, specified as a phased.WidebandFreeSpace System
object.
Example: phased.WidebandFreeSpace

Output Arguments

N — Number of expected inputs to step method
positive integer

Number of expected inputs to the step method, returned as a positive integer. The
number does not include the object itself.

 getNumInputs

1-2197

Introduced in R2015b

1 Alphabetical List

1-2198

getNumOutputs
System object: phased.WidebandFreeSpace
Package: phased

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value changes when you alter properties that turn outputs on or off.

Input Arguments

H — Wideband free space propagator
phased.WidebandFreeSpace System object

Wideband free space propagator, specified as a phased.WidebandFreeSpace System
object.
Example: phased.WidebandFreeSpace

Output Arguments

N — Number of expected outputs
positive integer

Number of outputs expected from calling the step method, returned as a positive integer.

Introduced in R2015b

 isLocked

1-2199

isLocked
System object: phased.WidebandFreeSpace
Package: phased

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(sWBFS)

Description

TF = isLocked(sWBFS) returns the locked status, TF, for the WidebandFreeSpace
System object

isLocked returns a logical value that indicates whether input attributes and
nontunable properties for the object are locked. The object performs an internal
initialization the first time that you execute step. This initialization locks nontunable
properties and input specifications, such as the dimensions, complexity, and data type of
the input data. After locking, isLocked returns a true value.

Input Arguments

sWFS — Wideband free space propagator
System object

Wideband free space propagator, specified as a System object.
Example: phased.WidebandFreeSpace

Output Arguments

TF — Locked status
boolean

1 Alphabetical List

1-2200

Locked status of System object, returned as a Boolean. This value is true when the
input attributes and nontunable properties of the object are locked. Otherwise, the
returned value is false.

Introduced in R2015b

 release

1-2201

release
System object: phased.WidebandFreeSpace
Package: phased

Allow property values and input characteristics to change

Syntax

release(sWBFS)

Description

release(sWBFS) releases system resources (such as memory, file handles, or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

Input Arguments

sWBFS — Wideband free space propagator
System object

Wideband free space propagator, specified as a phased.WidebandFreeSpace System
object.
Example: phased.WidebandFreeSpace

Introduced in R2015b

1 Alphabetical List

1-2202

reset
System object: phased.WidebandFreeSpace
Package: phased

Reset states of phased.WidebandFreeSpace System object

Syntax

reset(sWBFS)

Description

reset(sWBFS) resets the internal state of the phased.WidebandFreeSpace object,
sWBFS. If the SeedSource property applies and has the value 'Property', then this
method resets the random number generator state.

Input Arguments

sWBFS — Wideband free space propagator
System object

Wideband free space propagator, specified as a System object.
Example: phased.WidebandFreeSpace

Introduced in R2015b

 step

1-2203

step

System object: phased.WidebandFreeSpace
Package: phased

Propagate wideband signal from point to point using free-space channel model

Syntax

prop_sig = step(sWBFS,sig,origin_pos,dest_pos,origin_vel,dest_vel)

Description

prop_sig = step(sWBFS,sig,origin_pos,dest_pos,origin_vel,dest_vel)

returns the resulting signal, prop_sig, when a wideband signal sig propagates through
a free-space channel from the origin_pos position to the dest_pos position. Either
the origin_pos or dest_pos arguments can specify more than one point but you
cannot specify both as having multiple points. The velocity of the signal origin is specified
in origin_vel and the velocity of the signal destination is specified in dest_vel.
The dimensions of origin_vel and dest_vel must agree with the dimensions of
origin_pos and dest_pos, respectively.

Electromagnetic fields propagated through a free-space channel can be polarized or
nonpolarized. For nonpolarized fields, such as acoustic fields, the propagating signal
field, sig, is a vector or matrix. When the fields are polarized, sig is a struct array.
Every structure element represents an electric field vector signal.

Note: The object performs an initialization the first time the step method is executed.
This initialization locks nontunable properties and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

1 Alphabetical List

1-2204

Input Arguments

sWBFS — Wideband free space propagator
System object

Wideband free space propagator, specified as a System object.
Example: phased.WidebandFreeSpace

sig — Wideband signal
M-by-N complex-valued matrix | 1-by-N struct array containing complex-valued fields

• Wideband nonpolarized signal, specified as an M-by-N complex-valued matrix. Each
column contains a signal propagated along one of the free-space paths.

• Wideband polarized signal, specified as a 1-by-N struct array containing
complex-valued fields. Each struct element contains an M-by-1 column vector of
electromagnetic field components (sig.X,sig.Y,sig.Z) representing a polarized
signal propagating along one of the free-space paths.

The quantity M is the number of signal samples and N is the number of free-space
channels. Each channel corresponds to a source-destination pair.

For polarized fields, each struct element contains three M-by-1 complex-valued column
vectors, sig.X, sig.Y, and sig.Z. These vectors represent the x, y, and z Cartesian
components of the polarized signal.
Example: [1,1;j,1;0.5,0]

Data Types: double
Complex Number Support: Yes

origin_pos — Signal origin
3-by-1 real-valued column vector | 3-by-N real-valued matrix

Origin of the signal or signals, specified as a 3-by-1 real-valued column vector or 3-
by-N real-valued matrix. Position units are in meters. The quantity N is the number of
free-space channels. If origin_pos is a column vector, it takes the form [x;y;z]. If
origin_pos is a matrix, each column specifies a different signal origin and has the form
[x;y;z].

You cannot specify both origin_pos and dest_pos as matrices. At least one must be a
3-by-1 column vector.

 step

1-2205

Example: [1000;100;500]

Data Types: double

dest_pos — Signal destination
3-by-1 real-valued column vector | 3-by-N real-valued matrix

Destination of the signal or signals, specified as a 3-by-1 real-valued column vector or 3-
by-N real-valued matrix. Position units are in meters. The quantity N is the number of
free-space channels. If dest_pos is a 3-by-1 column vector, it takes the form [x;y;z]. If
dest_pos is a matrix, each column specifies a different signal destination and takes the
form [x;y;z].

You cannot specify both origin_pos and dest_pos as matrices. At least one must be a
3-by-1 column vector.
Example: [0;0;0]

Data Types: double

origin_vel — Signal origin velocity
3-by-1 real-valued column vector | 3-by-N real-valued matrix

Velocity of signal origin, specified as a real-valued 3-by-1 column vector or real-valued
3-by-N matrix. Velocity units are in meters per second. The dimension of origin_vel
must match the dimension of origin_pos. If origin_vel is a column vector, it takes
the form [Vx;Vy;Vz]. If origin_vel is a 3–by-N matrix, each column specifies a
different origin velocity and has the form [Vx;Vy;Vz].

Example: [10;0;5]

Data Types: double

dest_vel — Signal destination velocity
3-by-1 real-valued column vector | 3-by-N real-valued matrix

Velocity of signal destinations, specified as a 3-by-1 column vector or 3–by-N matrix.
Velocity units are in meters per second. The dimension of dest_vel must match the
dimension of dest_pos. If dest_vel is a column vector, it takes the form [Vx;Vy;Vz].
If dest_vel is a 3–by-N matrix, each column specifies a different destination velocity
and has the form [Vx;Vy;Vz].

Example: [0;0;0]

Data Types: double

1 Alphabetical List

1-2206

Output Arguments

prop_sig — Wideband propagated signal
M-by-N complex-valued matrix | 1-by-N struct array containing complex-valued fields

• Wideband nonpolarized signal, specified as an M-by-N complex-valued matrix. Each
column contains a signal propagated along one of the free-space paths.

• Wideband polarized signal, specified as a 1-by-N struct array containing
complex-valued fields. Each struct element contains an M-by-1 column vector of
electromagnetic field components (sig.X,sig.Y,sig.Z) representing a polarized
signal propagating along one of the free-space paths.

The output prop_sig contains signal samples arriving at the signal destination within
the current steptime frame. Whenever it takes longer than the current time frame for
the signal to propagate from the origin to the destination, the output may not contain
all contribution from the input. The next call to step will return more of the propagated
signal.

Examples

Free-Space Propagation of Wideband Signals

Propagate a wideband signal with three tones in an underwater acoustic with constant
speed of propagation. You can model this environment as free space. The center
frequency is 100 kHz and the frequencies of the three tones are 75 kHz, 100 kHz, and 125
kHz, respectively. Plot the spectrum of the original signal and the propagated signal to
observe the Doppler effect. The sampling frequency is 100 kHz.

c = 1500;

fc = 100e3;

fs = 100e3;

relfreqs = [-25000,0,25000];

Set up a stationary radar and moving target and compute the expected Doppler.

rpos = [0;0;0];

rvel = [0;0;0];

tpos = [30/fs*c; 0;0];

tvel = [45;0;0];

dop = -tvel(1)./(c./(relfreqs + fc));

 step

1-2207

Create a signal and propagate the signal to the moving target.

t = (0:199)/fs;

x = sum(exp(1i*2*pi*t.'*relfreqs),2);

wbchan = phased.WidebandFreeSpace(...

 'PropagationSpeed',c,...

 'OperatingFrequency',fc,...

 'SampleRate',fs);

y = step(wbchan,x,rpos,tpos,rvel,tvel);

Plot the spectra of the original signal and the Doppler-shifted signal.

periodogram([x y],rectwin(size(x,1)),1024,fs,'centered')

ylim([-150 0])

legend('original','propagated');

1 Alphabetical List

1-2208

For this wideband signal, you can see that the magnitude of the Doppler shift increases
with frequency. In contrast, for narrowband signals, the Doppler shift is assumed
constant over the band.

References

[1] Proakis, J. Digital Communications. New York: McGraw-Hill, 2001.

[2] Skolnik, M. Introduction to Radar Systems. 3rd Ed. New York: McGraw-Hill

[3] Saakian, A. Radio Wave Propagation Fundamentals. Norwood, MA: Artech House,
2011.

[4] Balanis, C. Advanced Engineering Electromagnetics. New York: Wiley & Sons, 1989.

[5] Rappaport, T. Wireless Communications: Principles and Practice. 2nd Ed. New York:
Prentice Hall, 2002.

See Also
phased.FreeSpace.step | phased.TwoRayChannel.step

Introduced in R2015b

 phased.WidebandLOSChannel System object

1-2209

phased.WidebandLOSChannel System object
Package: phased

Wideband LOS propagation channel

Description

The phased.WidebandLOSChannel models the propagation of narrowband
electromagnetic signals through a line-of-sight (LOS) channel from a source to a
destination. In an LOS channel, propagation paths are straight lines from point to
point. The propagation model in the LOS channel includes free-space attenuation in
addition to attenuation due to atmospheric gases, rain, fog, and clouds. You can use
phased.WidebandLOSChannel to model the propagation of signals between multiple
points simultaneously. The System object works for all frequencies. However, the
attenuation models for atmospheric gases and rain are valid for electromagnetic signals
in the frequency range 1–1000 GHz only. The attenuation model for fog and clouds is
valid for 10–1000 GHz. Outside these frequency ranges, the System object uses the
nearest valid value.

The phased.WidebandLOSChannel System object applies range-dependent time delays
to the signals, as well as gains or losses. When either the source or destination is moving,
the System object applies Doppler shifts.

Like the phased.WidebandFreeSpace System object, the phased.WidebandLOSChannel
System object supports two-way propagation.

To compute the propagation delay for specified source and receiver points:

1 Define and set up your Wideband LOS channel using the “Construction” on page
1-2209 procedure. You can set the System object properties during construction or
leave them at their default values.

2 Call the phased.WidebandLOSChannel.step method to compute the propagated
signal using the properties of the phased.WidebandLOSChannel System object.
You can change tunable properties before or after any call to the step method.

Construction

1 Alphabetical List

1-2210

sWBLOS = phased.WidebandLOSChannel creates a Wideband LOS attenuating
propagation channel System object, sWBLOS.

sWBLOS = phased.WidebandLOSChannel(Name,Value) creates a System
object, sWBLOS, with each specified property Name set to the specified Value.
You can specify additional name and value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties

PropagationSpeed — Signal propagation speed
speed of light (default) | positive real-valued scalar

Signal propagation speed, specified as a positive real-valued scalar. Units are in m/s.
Example: 3e8

OperatingFrequency — Signal carrier frequency
300e6 (default) | positive real-valued scalar

Signal carrier frequency, specified as a positive real-valued scalar. Units are in Hz.
Example: 1e9

Data Types: double

SpecifyAtmosphere — Enable atmospheric attenuation model
false (default) | true

Option to enable the atmospheric attenuation model, specified as a logical scalar. Set
this property to true to add signal attenuation caused by atmospheric gases, rain,
fog, or clouds. Set this property to false to ignore atmosphere effects in propagation.
When SpecifyAtmosphere is set to true, the Temperature, DryAirPressure,
WaterVapourDensity, LiquidWaterDensity, and RainRate properties are used. You
can set these properties or use their default values.
Example: true

Temperature — Ambient temperature
15 (default) | real-valued scalar

Ambient temperature, specified as a real-valued scalar. Units are in degrees Celsius.
This property applies only when you set SpecifyAtmosphere to true.

 phased.WidebandLOSChannel System object

1-2211

Example: 20.0

Data Types: double

DryAirPressure — Atmospheric dry air pressure
101.325e3 (default) | positive real-valued scalar

Atmospheric dry air pressure, specified as a positive real-valued scalar. Units are in
pascals (Pa). The default value of this property corresponds to one standard atmosphere.
This property applies only when you set SpecifyAtmosphere to true.

Example: 101.0e3

Data Types: double

WaterVapourDensity — Atmospheric water vapor density
7.5 (default) | positive real-valued scalar

Atmospheric water vapor density, specified as a positive real-valued scalar. Units are in
g/m3. This property applies only when you set SpecifyAtmosphere to true.

Example: 7.4

Data Types: double

LiquidWaterDensity — Liquid water density
0.0 (default) | nonnegative real-valued scalar

Liquid water density of fog or clouds, specified as a nonnegative real-valued scalar. Units
are in g/m3. Typical values for liquid water density are 0.05 for medium fog and 0.5 for
thick fog. This property only applies when you set SpecifyAtmosphere to true.

Example: 0.1

Data Types: double

RainRate — Rainfall rate
0.0 (default) | non-negative real-valued scalar

Rainfall rate, specified as a nonnegative real-valued scalar. Units are in mm/hr. This
property applies only when you set SpecifyAtmosphere to true.

Example: 10.0

Data Types: double

1 Alphabetical List

1-2212

TwoWayPropagation — Enable two-way propagation
false (default) | true

Enable two-way propagation, specified as a logical true or false. Set this property
to true to perform round-trip propagation between the signal origin and destination
specified in step. Set this property to false to perform only one-way propagation from
the origin to the destination.
Example: true

Data Types: logical

SampleRate — Signal sample rate
1e6 (default) | positive real-valued scalar

Signal sample rate, specified as a positive real-valued scalar. Units are in Hz. The
System object uses this quantity to calculate the propagation delay in multiples of
samples.
Example: 1.5e6

Data Types: double

MaximumDistanceSource — Source of maximum distance value
'Auto' (default) | 'Property'

Source of maximum distance value, specified as 'Auto' or 'Property'. This choice
determines how the maximum one-way propagation distance is calculated. The
maximum one-way propagation distance is used to allocate the memory needed to
compute the delay. When you set this property to 'Auto, the System object allocates
memory automatically. When you set this property to 'Property', you specify the
maximum one-way propagation distance using the value of the MaximumDistance
property.
Example: 'Property'

Data Types: char

MaximumDistance — Maximum one-way propagation distance
10000 (default) | positive real-valued scalar

Maximum one-way propagation distance, specified as a positive real-valued scalar.
Units are in meters. This property applies when you set MaximumDistanceSource to
'Property'. Any signal that propagates more than the maximum one-way distance is

 phased.WidebandLOSChannel System object

1-2213

ignored. The maximum distance must be greater than or equal to the largest propagation
distance.
Example: 5000

Data Types: double

Methods

clone Create System object with identical
property values

getNumInputs Number of expected inputs to step method
getNumOutputs Number of outputs from step method
isLocked Locked status for input attributes and

nontunable properties
release Enable property values and input

characteristics to change
reset Reset states of System object
step Propagate signal in Wideband LOS channel

Definitions

Attenuation or path loss in the Wideband LOS channel consists of four components. L =
LfspLgLcLr, where

• Lfsp is the free-space path attenuation
• Lg is the atmospheric path attenuation
• Lc is the fog and cloud path attenuation
• Lr is the rain path attenuation

Each path attenuation is in magnitude units, not in dB.

Free-space Time Delay and Loss

When the origin and destination are stationary relative to each other, the output signal
of a free-space channel can be written as Y(t) = x(t-τ)/Lfsp. The quantity τ is the signal

1 Alphabetical List

1-2214

delay and Lfsp is the free-space path loss. The delay τ is given by R/c, where R is the
propagation distance and c is the propagation speed. The free-space path loss is given by

L
R

fsp =
()

,
4 2

2

p

l

where λ is the signal wavelength.

This formula assumes that the target is in the far field of the transmitting element or
array. In the near field, the free-space path loss formula is not valid and can result in a
loss smaller than one, equivalent to a signal gain. For this reason, the loss is set to unity
for range values, R ≤ λ/4π.

When the origin and destination have relative motion, the processing also introduces a
Doppler frequency shift. The frequency shift is v/λ for one-way propagation and 2v/λ for
two-way propagation. The quantity v is the relative speed of the destination with respect
to the origin.

For more details on free space channel propagation, see [5].

Atmospheric Gas Attenuation Model

This model calculates the attenuation of signals that propagate through atmospheric
gases.

Electromagnetic signals are attenuated when they propagate through the atmosphere.
This effect is primarily due to the absorption resonance lines of oxygen and water
vapor, with smaller contributions coming from nitrogen gas. The model also includes
a continuous absorption spectrum below 10 GHz. Phased Array System Toolbox uses
the ITU model Recommendation ITU-R P.676-10: Attenuation by atmospheric gases.
The model computes specific attenuation (attenuation per kilometer) as a function of
temperature, pressure, water vapor density, and signal frequency. The model applies to
polarized and nonpolarized fields.

The formula for specific attenuation at each frequency is

g g g= + = ¢¢o wf f fN f() () . ().0 1820

 phased.WidebandLOSChannel System object

1-2215

The quantity N"(f) is the imaginary part of the complex atmospheric refractivity and
consists of a spectral line component and a continuous component:

¢¢ = + ¢¢ÂN f S F N fi i D
i

() ()

The spectral component consists of a sum of discrete spectrum terms composed of a
localized frequency bandwidth function, F(f)i, multiplied by a spectral line strength, Si.
For atmospheric oxygen, each spectral line strength is given by

S a
T

a
T

Pi = ¥ Ê
Ë
Á

ˆ
¯
˜ -Ê

Ë
Á

ˆ
¯
˜

È

Î
Í

˘

˚
˙

-
1

7
3

210
300

1
300

exp (.

For atmospheric water vapor, each spectral line strength is given by

S b
T

b
T

Wi = ¥ Ê
Ë
Á

ˆ
¯
˜ - Ê

Ë
Á

ˆ
¯
˜

È

Î
Í

˘

˚
˙

-
1

1
3 5

210
300

1
300

.

exp (.

P is the atmospheric pressure, W is the water vapor density, and T is the ambient
temperature.

For each oxygen line, Si depends on constants a1 and a2. Similarly, each water vapor
line has constants b1 and b2. You can find these constants tabulated in the ITU
documentation. The atmospheric gas model is valid for frequencies at 1–1000 GHz.

The localized frequency bandwidth functions Fi(f) are complicated functions of frequency
described in the reference cited previously. They depend upon empirical model
parameters that are also tabulated in the reference.

To compute the total attenuation for narrowband signals along a path, the function
multiplies the specific attenuation by the path length, R. Then, the total attenuation is
Lg= R(γo + γw).

You can apply the attenuation model to wideband signals. First, divide the wideband
signal into frequency subbands, and apply attenuation to each subband. Then, sum all
attenuated subband signals into the total attenuated signal.

1 Alphabetical List

1-2216

Fog and Cloud Attenuation Model

This model calculates the attenuation of signals that propagate through fog or clouds.

Fog and cloud attenuation are the same atmospheric phenomenon. Phased Array System
Toolbox uses the ITU model, Recommendation ITU-R P.840-6: Attenuation due to clouds
and fog. The model computes the specific attenuation (attenuation per kilometer), of
a signal as a function of liquid water density, signal frequency, and temperature. The
model applies to polarized and nonpolarized fields. The formula for specific attenuation
at each frequency is

g c lK f M= () ,

where M is the liquid water density in gm/m3. The quantity Kl(f) is the specific
attenuation coefficient and depends on frequency. The cloud and fog attenuation model is
valid for frequencies 10–1000 GHz. Units for the specific attenuation coefficient are (dB/
km)/(g/m3).

To compute the total attenuation for narrowband signals along a path, the function
multiplies the specific attenuation by the path length R. Total attenuation is Lc = Rγc.

You can apply the attenuation model to wideband signals. First, divide the wideband
signal into frequency subbands, and apply narrowband attenuation to each subband.
Then, sum all attenuated subband signals into the total attenuated signal.

Rainfall Attenuation Model

This model calculates the attenuation of signals that propagate through regions of
rainfall.

Electromagnetic signals are attenuated when propagating through a region of rainfall.
Rainfall attenuation is computed according to the ITU rainfall model Recommendation
ITU-R P.838-3: Specific attenuation model for rain for use in prediction methods. The
model computes the specific attenuation (attenuation per kilometer) of a signal as a
function of rainfall rate, signal frequency, polarization, and path elevation angle, using

g
a

r kr= ,

 phased.WidebandLOSChannel System object

1-2217

where r is the rain rate in mm/hr. The parameter k and exponent α depend on frequency,
polarization state, and the elevation angle of the signal path. The specific attenuation
model is valid for frequencies 1–1000 GHz.

To compute the total attenuation for narrowband signals along a path, the function
multiplies the specific attenuation by the path length R. Then, total attenuation is Lr =
Rγr.

You can apply the attenuation model to wideband signals. First, divide the wideband
signal into frequency subbands and apply attenuation to each subband. Then, sum all
attenuated subband signals into the total attenuated signal.

Subband Frequency Processing

Subband processing decomposes a wideband signal into multiple subbands and applies
narrowband processing to the signal in each subband. The signals for all subbands are
summed to form the output signal.

When using wideband frequency System objects, you specify the number of subbands,
Nb, in which to decompose the wideband signal. The NumSubbands property specifies the
number of subbands. Subband center frequencies and widths are automatically computed
from the total bandwidth and number of subbands. The total frequency band is centered
on the carrier frequency, fc, specified by the OperatingFrequency property. The overall
bandwidth is given by the sample rate, fs, specified by the SampleRate property. Each
frequency subband width is defined by Δf = fs/NB. The center frequencies of the subbands
are given by

f

f
f

m f N

f
N f

N
m f N

m

c
s

B

c
s

B

=
- + -()

-
-()

+ -()

2
1

1

2
1

D

D

, even

, odd

ÏÏ

Ì
ÔÔ

Ó
Ô
Ô

=, , ,m NB1…

Subbands are ordered by frequency. Frequencies above the carrier appear first, followed
by frequencies below the carrier. This order is consistent with the ordering of the discrete
Fourier transform.

The phased.WidebandLOSChannel System object uses narrowband time delay and
attenuation algorithms for each subband.

1 Alphabetical List

1-2218

Examples

Spectrum of Propagated Signal in Wideband LOS Channel

Propagate a wideband signal in a line-of-sight (LOS) channel from a radar at (0,0,0)
meters to a target at (35,0,0) meters in medium fog. Set the fog liquid water density to
0.05 gm/m3. Assume rain is falling at 5 mm/hr. The signal carrier frequency is 20 GHz.
The signal is a sum of four cw tones at 19.75, 19.875, 20.125, and 20.25 GHz. Set the
signal duration to 0.5 μs and the sample rate to 2.0 GHz. Assume the radar is stationary
and the target approaches the radar at 40 m/s. The atmospheric temperature is 12°C.

Set the signal parameters and create the transmitted signal.

c = physconst('LightSpeed');

fs = 2e9;

freq = [-0.25,-.125,0.125,0.25]*1e9;

fc = 20.0e9;

dt = 1/fs;

t = [0:dt:.5e-6];

sig = sum(exp(1i*2*pi*t.'*freq),2);

Specify the atmosphere parameters and create the phased.WidebandChannel System
object™.

lwd = 0.05;

rainrate = 5.0;

temp = 12.0;

sWBLOS = phased.WidebandLOSChannel('SampleRate',fs,'PropagationSpeed',c,...

 'SpecifyAtmosphere',true,'OperatingFrequency',fc,'RainRate',rainrate,...

 'LiquidWaterDensity',lwd,'Temperature',temp);

Specify the radar and target positions and velocities.

xradar = [0,0,0].';

vradar = [0,0,0].';

xtgt = [35,0,0].';

vtgt = [-40,0,0].';

Propagated the signal using the step method.

prop_sig = step(sWBLOS,sig,xradar,xtgt,vradar,vtgt);

Plot the propagated signal. For a target range of 35 m, the propagation delay is 0.11 μs
as seen in the plot.

 phased.WidebandLOSChannel System object

1-2219

plot(t*1e6,real(prop_sig))

grid

xlabel('Time ({\mu}s)')

ylabel('Amplitude')

Using the periodogram function with a Taylor window, plot the spectra of the original
and propagated signals.

nfft = 1024;

nsamp = size(sig,1);

periodogram([sig prop_sig],taylorwin(nsamp),nfft,fs,'centered')

ylim([-200 0])

legend('transmitted','propagated')

1 Alphabetical List

1-2220

References

[1] Radiocommunication Sector of the International Telecommunication Union.
Recommendation ITU-R P.676-10: Attenuation by atmospheric gases. 2013.

[2] Radiocommunication Sector of the International Telecommunication Union.
Recommendation ITU-R P.840-6: Attenuation due to clouds and fog. 2013.

[3] Radiocommunication Sector of the International Telecommunication Union.
Recommendation ITU-R P.838-3: Specific attenuation model for rain for use in
prediction methods. 2005.

 phased.WidebandLOSChannel System object

1-2221

[4] Seybold, J. Introduction to RF Propagation. New York: Wiley & Sons, 2005.

[5] Skolnik, M. Introduction to Radar Systems, 3rd Ed. New York: McGraw-Hill, 2001.

See Also
phased.FreeSpace | phased.RadarTarget | phased.BackscatterRadarTarget |
phased.TwoRayChannel | | | fogpl | fspl | gaspl | rainpl | rangeangle

Introduced in R2016a

1 Alphabetical List

1-2222

clone
System object: phased.WidebandLOSChannel
Package: phased

Create System object with identical property values

Syntax

sWBLOS2 = clone(sWBLOS)

Description

sWBLOS2 = clone(sWBLOS) creates a System object, sWBLOS2, having the same
property values and same states as sWBLOS. If sWBLOS is locked, so is sWBLOS2.

Input Arguments

sWBLOS — Wideband LOS channel
phased.WidebandLOSChannel System object

Wideband LOS channel, specified as a phased.WidebandLOSChannel System object.
Example: phased.WidebandLOSChannel

Output Arguments

sWBLOS — Wideband LOS channel
phased.WidebandLOSChannel System object

Wideband LOS channel, returned as a phased.WidebandLOSChannel System object.

Introduced in R2016a

 getNumInputs

1-2223

getNumInputs
System object: phased.WidebandLOSChannel
Package: phased

Number of expected inputs to step method

Syntax

N = getNumInputs(sWBLOS)

Description

N = getNumInputs(sWBLOS) returns a positive integer, N, representing the number of
inputs (not counting the object itself) that you must use when calling the step method.
This value changes when you alter properties that turn inputs on or off.

Input Arguments

sWBLOS — Wideband LOS channel
phased.WidebandLOSChannel System object

Wideband channel, specified as a phased.WidebandLOSChannel System object.
Example: phased.WidebandLOSChannel

Output Arguments

N — Number of expected inputs to step method
positive integer

Number of expected inputs to the step method, returned as a positive integer. The
number does not include the object itself.

Introduced in R2016a

1 Alphabetical List

1-2224

getNumOutputs
System object: phased.WidebandLOSChannel
Package: phased

Number of outputs from step method

Syntax

N = getNumOutputs(sWBLOS)

Description

N = getNumOutputs(sWBLOS) returns the number of outputs, N, from the step
method. This value changes when you alter properties that turn outputs on or off.

Input Arguments

H — Wideband LOS Channel
phased.WidebandLOSChannel System object System object

Wideband LOS channel, specified as a phased.WidebandLOSChannel System object.
Example: phased.WidebandLOSChannel

Output Arguments

N — Number of expected outputs
positive integer

Number of outputs expected from calling the step method, returned as a positive integer.

Introduced in R2016a

 isLocked

1-2225

isLocked
System object: phased.WidebandLOSChannel
Package: phased

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(sLOS)

Description

TF = isLocked(sLOS) returns the locked status, TF, for the
phased.WidebandLOSChannel System object

isLocked returns a logical value that indicates whether input attributes and
nontunable properties for the object are locked. The object performs an internal
initialization the first time that you execute step. This initialization locks nontunable
properties and input specifications, such as the dimensions, complexity, and data type of
the input data. After locking, isLocked returns a true value.

Input Arguments

sLOS — Wideband LOS Channel
phased.WidebandLOSChannel System object

Wideband LOS channel, specified as a phased.WidebandLOSChannel System object.
Example: phased.WidebandLOSChannel

Output Arguments

TF — Locked status
true | false

1 Alphabetical List

1-2226

Locked status of the input phased.WidebandLOSChannel System object, returned as
the true when the input attributes and nontunable properties of the object are locked.
Otherwise, the returned value is false.

Introduced in R2016a

 release

1-2227

release
System object: phased.WidebandLOSChannel
Package: phased

Enable property values and input characteristics to change

Syntax

release(sWBLOS)

Description

release(sWBLOS) releases system resources (such as memory, file handles, or
hardware connections) and enables you to change properties and input characteristics.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

Input Arguments

sWBLOS — Wideband LOS channel
phased.WidebandLOSChannel System object

Wideband LOS channel, specified as a phased.WidebandLOSChannel System object.
Example: phased.WidebandLOSChannel

Introduced in R2016a

1 Alphabetical List

1-2228

reset
System object: phased.WidebandLOSChannel
Package: phased

Reset states of System object

Syntax

reset(sWBLOS)

Description

reset(sWBLOS) resets the internal state of the phased.WidebandLOSChannel System
object, sWBLOS. If SeedSource is a property of this System object and has the value
'Property', then this method resets the random number generator state.

Input Arguments

sWBLOS — Wideband LOS channel
phased.WidebandLOSChannel System object

Wideband LOS channel, specified as a phased.WidebandLOSChannel System object.
Example: phased.WidebandLOSChannel

Introduced in R2016a

 step

1-2229

step

System object: phased.WidebandLOSChannel
Package: phased

Propagate signal in Wideband LOS channel

Syntax

prop_sig = step(sLOS,sig,origin_pos,dest_pos,origin_vel,dest_vel)

Description

prop_sig = step(sLOS,sig,origin_pos,dest_pos,origin_vel,dest_vel)

returns the resulting signal, prop_sig, when a wideband signal, sig, propagates
through a line-of-sight (LOS) channel from a source located at the origin_pos position
to a destination at the dest_pos position. Only one of the origin_pos or dest_pos
arguments can specify multiple positions. The other must contain a single position. The
velocity of the signal origin is specified in origin_vel and the velocity of the signal
destination is specified in dest_vel. The dimensions of origin_vel and dest_vel
must match the dimensions of origin_pos and dest_pos, respectively.

Electromagnetic fields propagating through an LOS channel can be polarized or
nonpolarized. For nonpolarized fields, the propagating signal field, sig, is a vector
or matrix. For polarized fields, sig is an array of structures. The structure elements
represent an electric field vector in Cartesian form.

Note: The object performs an initialization the first time the step method is executed.
This initialization locks nontunable properties and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

1 Alphabetical List

1-2230

Input Arguments

sWBLOS — Wideband LOS channel
phased.WidebandLOSChannel System object

Wideband LOS channel, specified as a phased.WidebandLOSChannel System object.
Example: phased.WidebandLOSChannel

sig — Wideband signal
M-by-N complex-valued matrix | 1-by-N struct array containing complex-valued fields

Wideband signal, specified as a matrix or struct array, depending on whether is signal
or polarized or nonpolarized. The quantity M is the number of samples in the signal,
and N is the number of wideband LOS channels. Each channel corresponds to a source-
destination pair.

• Wideband nonpolarized scalar signal. Specify sig as an M-by-N complex-valued
matrix. Each column contains one signal propagated along the line-of-sight path.

• Wideband polarized signal. Specify sig as a 1-by-N struct array containing
complex-valued fields. Each struct represents a polarized signal propagated along
the line-of-sight path. Each struct element contains three M-by-1 complex-valued
column vectors, sig.X, sig.Y, and sig.Z. These vectors represent the x, y, and z
Cartesian components of the polarized signal.

Example: [1,1;j,1;0.5,0]

Data Types: double
Complex Number Support: Yes

origin_pos — Signal origins
3-by-1 real-valued column vector | 3-by-N real-valued matrix

Origin of signals, specified as a 3-by-1 real-valued column vector or 3-by-N real-valued
matrix. The quantity N is the number of LOS channels. If origin_pos is a column
vector, it takes the form [x;y;z]. If origin_pos is a matrix, each column specifies a
different signal origin and has the form [x;y;z]. Units are in meters.

You cannot specify both origin_pos and dest_pos as matrices. At least one must be a
3-by-1 column vector.
Example: [1000;100;500]

 step

1-2231

Data Types: double

dest_pos — Signal destinations
3-by-1 real-valued column vector | 3-by-N real-valued matrix

Destination position of the signal or signals, specified as a 3-by-1 real-valued column
vector or 3-by-N real-valued matrix. The quantity N is the number of LOS channels
propagating from or to N signal origins. If dest_pos is a 3-by-1 column vector, it takes
the form [x;y;z]. If dest_pos is a matrix, each column specifies a different signal
destination and takes the form [x;y;z] Position units are in meters.

You cannot specify both origin_pos and dest_pos as matrices. At least one must be a
3-by-1 column vector.
Example: [0;0;0]

Data Types: double

origin_vel — Velocities of signal origins
3-by-1 real-valued column vector | 3-by-N real-valued matrix

Velocity of signal origin, specified as a 3-by-1 real-valued column vector or 3-by-N
real-valued matrix. The dimensions of origin_vel must match the dimensions of
origin_pos. If origin_vel is a column vector, it takes the form [Vx;Vy;Vz]. If
origin_vel is a 3-by-N matrix, each column specifies a different origin velocity and has
the form [Vx;Vy;Vz]. Velocity units are in meters per second.

Example: [10;0;5]

Data Types: double

dest_vel — Velocities of signal destinations
3-by-1 real-valued column vector | 3-by-N real-valued matrix

Velocity of signal destinations, specified as a 3-by-1 real-valued column vector or 3-
by-N real-valued matrix. The dimensions of dest_vel must match the dimensions of
dest_pos. If dest_vel is a column vector, it takes the form [Vx;Vy;Vz]. If dest_vel
is a 3-by-N matrix, each column specifies a different destination velocity and has the
form [Vx;Vy;Vz] Velocity units are in meters per second.

Example: [0;0;0]

Data Types: double

1 Alphabetical List

1-2232

Output Arguments

prop_sig — Wideband propagated signal
M-by-N complex-valued matrix | 1-by-N struct array containing complex-valued fields

Wideband signal, returned as a matrix or struct array, depending on whether the
signal is polarized or nonpolarized. The quantity M is the number of samples in the
signal and N is the number of wideband LOS channels. Each channel corresponds to a
source-destination pair.

• Wideband nonpolarized scalar signal. prop_sig is an M-by-N complex-valued matrix.
• Wideband polarized scalar signal. prop_sig is a 1-by-N struct array containing

complex-valued fields. Each struct element contains three M-by-1 complex-valued
column vectors, sig.X, sig.Y, and sig.Z. These vectors represent the x, y, and z
Cartesian components of the polarized signal.

The prop_sig output contains signal samples arriving at the signal destination within
the current time frame. The current time frame is the time frame of the input signals to
step. Whenever it takes longer than the current time frame for the signal to propagate
from the origin to the destination, the output might not contain all contributions from the
input of the current time frame. The remaining output appears in the next call to step.

Examples

Propagate Wideband Signal in LOS Channel

Propagate a wideband signal in a line-of-sight (LOS) channel from a radar at (0,0,0)
meters to a target at (60,0,0) meters in medium fog. Set the fog liquid water density to
0.05 . Assume rain is falling at 5 mm/hr. The signal carrier frequency is 20 GHz.
The signal is a sum of four cw tones at 19.75, 19.875, 20.125, and 20.25 GHz. Set the
signal duration to 0.5 microsecond and the sample rate to 2.0 GHz. Assume the radar is
stationary and the target approaches the radar at 40 m/s. The atmospheric temperature
is 12°C and the dry air pressure is 101.300 kPa.

Set the signal parameters and create the transmitted signal.

c = physconst('LightSpeed');

fs = 2e9;

 step

1-2233

freq = [-0.25,-.125,0.0,0.125,0.25]*1e9;

fc = 20.0e9;

dt = 1/fs;

t = [0:dt:.5e-6];

sig = sum(exp(1i*2*pi*t.'*freq),2);

Specify the atmosphere parameters and create the phased.WidebandChannel System
object™.

lwd = 0.05;

rainrate = 5.0;

dap = 101300.0;

temp = 12.0;

sWBLOS = phased.WidebandLOSChannel('SampleRate',fs,'PropagationSpeed',c,...

 'SpecifyAtmosphere',true,'OperatingFrequency',fc,'RainRate',rainrate,...

 'LiquidWaterDensity',lwd,'Temperature',temp,'DryAirPressure',dap);

Specify the radar and target positions and velocities.

xradar = [0,0,0].';

vradar = [0,0,0].';

xtgt = [60,0,0].';

vtgt = [-40,0,0].';

Propagated the signal using the step method.

prop_sig = step(sWBLOS,sig,xradar,xtgt,vradar,vtgt);

Plot the propagated signal. For a target range of 60 m, the propagation delay is 0.20 μs
as shown in the plot.

plot(t*1e6,real(prop_sig))

grid

xlabel('Time (\mu sec)')

ylabel('Amplitude')

1 Alphabetical List

1-2234

References

[1] Radiocommunication Sector of the International Telecommunication Union.
Recommendation ITU-R P.676-10: Attenuation by atmospheric gases. 2013.

[2] Radiocommunication Sector of the International Telecommunication Union.
Recommendation ITU-R P.840-6: Attenuation due to clouds and fog. 2013.

[3] Radiocommunication Sector of the International Telecommunication Union.
Recommendation ITU-R P.838-3: Specific attenuation model for rain for use in
prediction methods. 2005.

 step

1-2235

[4] Seybold, J. Introduction to RF Propagation. New York: Wiley & Sons, 2005.

See Also
phased.FreeSpace.step | phased.WidebandFreeSpace.step | phased.LOSChannel.step

Introduced in R2016a

1 Alphabetical List

1-2236

phased.WidebandRadiator System object

Package: phased

Wideband signal radiator

Description

The phased.WidebandRadiator object implements a wideband signal radiator. For
any element, or sensor array, the wideband radiator object creates the signal field
that propagates to the far field. First, the object divides the signals at each element
into frequency subbands. Then, the object applies time delays using the phase-shift
approximation. Finally, the delayed subbands are summed to create the output signal.
The output of phased.WidebandRadiator represents the field in a selected direction
at a reference distance from the element or array center. The radiated signal can be
polarized or nonpolarized, depending on whether or not the element or array supports
polarization and whether or not you enable polarization.

To compute the radiated signal from the sensor or array:

1 Define and set up a wideband radiator as shown in the “Construction” on page
1-2236 section.

2 Call step to compute the radiated signal as specified by the properties of
phased.WidebandRadiator. The behavior of step is specific to each object in the
toolbox.

Construction

sWBR = phased.WidebandRadiator creates a wideband signal radiator System object,
sWBR. The object creates radiated signals that propagate into given directions from a
sensor array or a single element.

sWBR = phased.WidebandRadiator(Name,Value) creates a radiator System object,
sWBR, with each specified property Name set to the specified Value. You can specify
additional name-value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

 phased.WidebandRadiator System object

1-2237

Properties

Sensor — Sensor element or sensor array
phased.ULA (default) | Phased Array System Toolbox System object | Antenna Toolbox
antenna

Sensor element or sensor array, specified as a Phased Array System Toolbox System
object. A sensor array can consist of subarrays. The default value is a phased.ULA with
default array property values.
Example: phased.URA

PropagationSpeed — Signal propagation speed
speed of light (default) | positive real-valued scalar

Signal propagation speed, specified as a positive real-valued scalar. Units are in meters
per second.
Example: physconst('LightSpeed')

Data Types: double

SampleRate — Sample rate
1e6 (default) | real positive real-valued scalar

Sample rate, specified as a positive real-valued scalar. Units are in hertz.
Example: 2e6
Data Types: double

CarrierFrequency — Carrier frequency
1e9 (default) | positive real-valued scalar

Carrier frequency, specified as a positive real-valued scalar. Units are in hertz.
Example: 1e6
Data Types: double

NumSubbands — Number of processing subbands
64 (default) | positive integer

Number of processing subbands, specified as a positive integer.

1 Alphabetical List

1-2238

Example: 128

Data Types: double

EnablePolarization — Option to enable polarization
false (default) | true

Option to enable polarization, specified as true or false. Set this property to
true to simulate radiation of polarized waves. Set this property to false to ignore
polarization. This property applies only when the sensor specified in Sensor can
simulate polarization.
Data Types: logical

WeightsInputPort — Option to enable weights input
false (default) | true

Option to enable weights inputs, specified as true or false. Pass in weights using the
wts input argument when you invoke step.

Methods

clone Create System object with identical
property values

getNumInputs Number of expected inputs to step method
getNumOutputs Number of outputs from step method
isLocked Locked status for input attributes and

nontunable properties
release Allow property values and input

characteristics to change
reset Reset states of System object
step Radiate wideband signals

 phased.WidebandRadiator System object

1-2239

Definitions

Subband Frequency Processing

Subband processing decomposes a wideband signal into multiple subbands and applies
narrowband processing to the signal in each subband. The signals for all subbands are
summed to form the output signal.

When using wideband frequency System objects, you specify the number of subbands,
Nb, in which to decompose the wideband signal. The NumSubbands property specifies the
number of subbands. Subband center frequencies and widths are automatically computed
from the total bandwidth and number of subbands. The total frequency band is centered
on the carrier frequency, fc, specified by the OperatingFrequency property. The overall
bandwidth is given by the sample rate, fs, specified by the SampleRate property. Each
frequency subband width is defined by Δf = fs/NB. The center frequencies of the subbands
are given by

f

f
f

m f N

f
N f

N
m f N

m

c
s

B

c
s

B

=
- + -()

-
-()

+ -()

2
1

1

2
1

D

D

, even

, odd

ÏÏ

Ì
ÔÔ

Ó
Ô
Ô

=, , ,m NB1…

Subbands are ordered by frequency. Frequencies above the carrier appear first, followed
by frequencies below the carrier. This order is consistent with the ordering of the discrete
Fourier transform.

For each subband, the phased.WidebandRadiator System object uses the narrowband
phased approximation of the time delays across radiating elements in the far field.

Examples

Radiate Wideband Energy from Array

Create a 5-by-5 URA and space the elements one-half wavelength apart. The wavelength
corresponds to a design frequency of 300 MHz.

1 Alphabetical List

1-2240

Create 5-by-5 URA Array of Cosine Elements

c = physconst('LightSpeed');

fc = 300e6;

lam = c/fc;

sElem = phased.CosineAntennaElement('CosinePower',[2,2]);

sURA = phased.URA('Element',sElem,'Size',[5,5],'ElementSpacing',[0.5,0.5]*lam);

Create and Radiate Wideband Signal

Radiate a wideband signal consisting of three sinusoids at 10, 150 and 200 MHz. Set the
sampling rate to 400 MHz. Radiate the fields into two directions: (30,10) degrees azimuth
and elevation and (20,50) degrees azimuth and elevation.

f1 = 10e6;

f2 = 150e6;

f3 = 200e6;

fs = 450e6;

dt = 1/fs;

t = [0:dt:10e-6];

sig = 1.0*sin(2*pi*f1*t) + 2.0*sin(2*pi*f2*t + pi/10) + 0.1*sin(2*pi*f3*t + pi/2);

radiatingAngles = [30 10; 20 50]';

sWBR = phased.WidebandRadiator('Sensor',sURA,'CarrierFrequency',fc);

sRad = step(sWBR,sig.',radiatingAngles);

Plot Radiated Signal

Plot the input signal to the radiator and the radiated signals.

plot(t(1:100)*1e6,real(sig(1:100)))

hold on

plot(t(1:100)*1e6,real(sRad(1:100,1)))

plot(t(1:100)*1e6,real(sRad(1:100,2)))

hold off

xlabel('Time (\mu sec)')

ylabel('Amplitude')

legend('Input signal','Radiate to (30,10)','Radiate to (20,50)');

 phased.WidebandRadiator System object

1-2241

Plot the spectra of the signal that is radiated to (30,10) degrees.

periodogram(real(sRad(:,1)),rectwin(size(sRad,1)),1024,fs,'centered');

1 Alphabetical List

1-2242

See Also
phased.Radiator | phased.WidebandCollector | phased.Collector |
phased.WidebandFreeSpace | phased.FreeSpace

Introduced in R2015b

 clone

1-2243

clone
System object: phased.WidebandRadiator
Package: phased

Create System object with identical property values

Syntax

C = clone(H)

Description

C = clone(H) creates an object, C, having the same property values and same states as
H. If H is locked, so is C.

Input Arguments

H — Wideband radiator
System object

Wideband radiator, specified as a System object.
Example: phased.WidebandRadiator

Output Arguments

C — Wideband radiator
System object

Wideband radiator, returned as a System object.

Introduced in R2015b

1 Alphabetical List

1-2244

getNumInputs
System object: phased.WidebandRadiator
Package: phased

Number of expected inputs to step method

Syntax

N = getNumInputs(H)

Description

N = getNumInputs(H) returns a positive integer, N, representing the number of inputs
(not counting the object itself) that you must use when calling the step method. This
value changes when you alter properties that turn inputs on or off.

Input Arguments

H — Wideband radiator
phased.WidebandRadiator System object

Wideband radiator, specified as a phased.WidebandRadiator System object.
Example: phased.WidebandRadiator

Output Arguments

N — Number of expected inputs to step method
positive integer

Number of expected inputs to the step method, returned as a positive integer. The
number does not include the object itself.

Introduced in R2015b

 getNumOutputs

1-2245

getNumOutputs
System object: phased.WidebandRadiator
Package: phased

Number of outputs from step method

Syntax

N = getNumOutputs(H)

Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value changes when you alter properties that turn outputs on or off.

Input Arguments

H — Wideband radiator
phased.WidebandRadiator System object

Wideband radiator, specified as a phased.WidebandRadiator System object.
Example: phased.WidebandRadiator

Output Arguments

N — Number of expected outputs
positive integer

Number of outputs expected from calling the step method, returned as a positive integer.

Introduced in R2015b

1 Alphabetical List

1-2246

isLocked

System object: phased.WidebandRadiator
Package: phased

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(sWBR)

Description

TF = isLocked(sWBR) returns the locked status, TF, for the System object.

isLocked returns a logical value that indicates whether input attributes and
nontunable properties for the object are locked. The object performs an internal
initialization the first time that you execute step. This initialization locks nontunable
properties and input specifications, such as the dimensions, complexity, and data type of
the input data. After locking, isLocked returns a true value.

Input Arguments

sWBR — Wideband radiator
System object

Wideband radiator, specified as a System object.
Example: phased.WidebandRadiator

Output Arguments

TF — Locked status
boolean

 isLocked

1-2247

Locked status of System object, returned as a Boolean. This value istrue when the input
attributes and nontunable properties of the object are locked. Otherwise, the returned
value is false.

Introduced in R2015b

1 Alphabetical List

1-2248

release
System object: phased.WidebandRadiator
Package: phased

Allow property values and input characteristics to change

Syntax

release(sWBR)

Description

release(sWBR) releases system resources (such as memory, file handles, or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

Input Arguments

sWBR — Wideband radiator
System object

Wideband radiator, specified as a phased.WidebandRadiator System object.
Example: phased.WidebandRadiator

Introduced in R2015b

 reset

1-2249

reset
System object: phased.WidebandRadiator
Package: phased

Reset states of System object

Syntax

reset(sWBR)

Description

reset(sWBR) resets the internal state of the phased.WidebandRadiator object, sWBR.
If the SeedSource property applies, and has the value 'Property', then this method
resets the state of the random number generator.

Input Arguments

sWBR — Wideband radiator
System object

Wideband radiator, specified as a System object.
Example: phased.WidebandRadiator

Introduced in R2015b

1 Alphabetical List

1-2250

step
System object: phased.WidebandRadiator
Package: phased

Radiate wideband signals

Syntax

sigrad = step(sWBR,sig,ang)

sigrad = step(sWBR,sig,ang,laxes)

sigrad = step(sWBR,sig,ang,wts)

sigrad = step(sWBR,sig,ang,steerang)

Description

sigrad = step(sWBR,sig,ang) radiates the signal sig in the directions specified by
ang. For each direction, the method computes the radiated signal, sigrad, by summing
the contributions of each element or subarray.

sigrad = step(sWBR,sig,ang,laxes) radiates the signal using the specified the
local coordinate system of the radiator, laxes. This syntax applies when you set the
EnablePolarization property to true.

sigrad = step(sWBR,sig,ang,wts) radiates the signal using wts as the weight
vector when the WeightsInputPort property is true.

sigrad = step(sWBR,sig,ang,steerang) radiates the signal and uses steerang as
the subarray steering angle. steerang must be a length-2 column vector in the form of
[AzimuthAngle; ElevationAngle]. This syntax applies when you use a subarray as
the Sensor property and set the SubarraySteering property of the sensor to 'Phase'
or 'Time'.

You can combine optional input arguments when you set their enabling properties in
the System object during construction. Optional inputs must be listed in the same order
as their enabling properties. For example, sigrad = step(sWBR,sig,laxes,wts,
steerang) is valid when you set both EnablePolarization and WeightsInputPort
to true and set the SubarraySteering property of the sensor.

 step

1-2251

Note: The object performs an initialization the first time the step method is executed.
This initialization locks nontunable properties and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Input Arguments

sWBR — Wideband radiator
System object

Wideband radiator, specified as a phased.WidebandRadiator System object.
Example: phased.WidebandRadiator

sig — Input signals
M-by-1 complex-valued column vector | M-by-N complex-valued matrix

Input signals, specified as an M-by-1 complex-valued column vector or M-by-N complex-
valued matrix. The quantity M is the number of sample values (snapshots) of the signal.
If sig is a column vector, the same signal is radiated through all elements. If sig is a
matrix, N is the number of sensor elements in the array. For subarrays, N is the number
of subarrays. Each column of sig represents the field radiated by the corresponding
element or subarray.
Example: [[0;1;2;3;4;3;2;1;0],[1;2;3;4;3;2;1;0;0]]

Data Types: double
Complex Number Support: Yes

ang — Radiating directions
2-by-L real-valued matrix | 1-by-L real-valued row vector

Radiating directions of the signal, specified as 2-by-L real-valued matrix or 1-by-L real-
valued row vector. The quantity L is the number of directions to radiate. If ang is a
matrix, each column has the form [azimuth;elevation]. If ang is a row vector, each
entry represents the azimuthal direction. The elevation direction is zero degrees. Angle
units are in degrees. Angles are defined with respect to the local coordinate system of the
array.

When the sensory array is a uniform linear array, ang represents the broadside angle.

1 Alphabetical List

1-2252

Data Types: double

laxes — Local coordinate system axes
eye(3,3) (default) | 3-by-3 real-valued orthonormal matrix

Local coordinate system axes, specified as a 3-by-3 real-valued matrix orthonormal
matrix. The matrix columns specify the x, y, and z axes of the local coordinate system.
Each column takes the form [x;y;z] with respect to the global coordinate system. This
argument only applies when the EnablePolarization property is set to true.

Data Types: double

wts — Weight vector
ones(N,1) (default) | N-by-1 complex-valued column vector

Weight vector, specified as an N-by-1 complex-valued column vector. Each weight
vector element multiplies the signal at the corresponding element or subarray. N is
the number of radiating elements or subarrays. This argument only applies when the
WeightsInputPort property is true.

Data Types: double
Complex Number Support: Yes

steerang — Subarray steering angle
2-by-1 real-valued column vector

Subarray steering angle, specified as a 2-by-1 real-valued column vector in the form of
[AzimuthAngle; ElevationAngle]. This argument applies only when the Sensor
property refers to a subarray and the SubarraySteering property of the sensor is set
to 'Phased' or 'Time'. Angles are defined with respect to the local coordinate system
axes. Angle units are in degrees.
Data Types: double

Output Arguments

sigrad — Radiated signal
M-by-L complex-valued matrix | 1-by-L array of struct type

Radiated signal, returned as an M-by-L complex-valued matrix or 1-by-L array of
struct type depending on whether polarization is enabled. The radiated field is the

 step

1-2253

combined far-field output from all elements or subarrays. The quantity M is the number
of sample values (snapshots) of the signal. The quantity L is the number of entries in
ang.

• If you set EnablePolarization to false, sigrad is an M-by-L complex-valued
matrix.

• If you set EnablePolarization is true, sigrad is a 1-by-L array of struct
type. Each struct in the array has three data fields: sigrad.X, sigrad.Y,
sigrad.Z which correspond to the x, y, and z components of the electromagnetic field.
Electromagnetic field components are defined with respect to the global coordinate
system. Each data field is an M-by-1 column vector.

Examples

Radiate Wideband Energy from Array

Create a 5-by-5 URA and space the elements one-half wavelength apart. The wavelength
corresponds to a design frequency of 300 MHz.

Create 5-by-5 URA Array of Cosine Elements

c = physconst('LightSpeed');

fc = 300e6;

lam = c/fc;

sElem = phased.CosineAntennaElement('CosinePower',[2,2]);

sURA = phased.URA('Element',sElem,'Size',[5,5],'ElementSpacing',[0.5,0.5]*lam);

Create and Radiate Wideband Signal

Radiate a wideband signal consisting of three sinusoids at 10, 150 and 200 MHz. Set the
sampling rate to 400 MHz. Radiate the fields into two directions: (30,10) degrees azimuth
and elevation and (20,50) degrees azimuth and elevation.

f1 = 10e6;

f2 = 150e6;

f3 = 200e6;

fs = 450e6;

dt = 1/fs;

t = [0:dt:10e-6];

sig = 1.0*sin(2*pi*f1*t) + 2.0*sin(2*pi*f2*t + pi/10) + 0.1*sin(2*pi*f3*t + pi/2);

radiatingAngles = [30 10; 20 50]';

sWBR = phased.WidebandRadiator('Sensor',sURA,'CarrierFrequency',fc);

1 Alphabetical List

1-2254

sRad = step(sWBR,sig.',radiatingAngles);

Plot Radiated Signal

Plot the input signal to the radiator and the radiated signals.

plot(t(1:100)*1e6,real(sig(1:100)))

hold on

plot(t(1:100)*1e6,real(sRad(1:100,1)))

plot(t(1:100)*1e6,real(sRad(1:100,2)))

hold off

xlabel('Time (\mu sec)')

ylabel('Amplitude')

legend('Input signal','Radiate to (30,10)','Radiate to (20,50)');

 step

1-2255

Plot the spectra of the signal that is radiated to (30,10) degrees.

periodogram(real(sRad(:,1)),rectwin(size(sRad,1)),1024,fs,'centered');

Radiate Wideband Polarized Fields from Array

Examine the polarized field produced by the wideband radiator from a five-element
uniform line array (ULA) composed of short-dipole antenna elements.

Set up the ULA of five short-dipole antennas with polarization enabled. The element
spacing takes the default value of 0.5 meters. Then, construct the wideband radiator
System object™.

sSD = phased.ShortDipoleAntennaElement;

1 Alphabetical List

1-2256

sULA = phased.ULA('Element',sSD,'NumElements',5);

sRad = phased.WidebandRadiator('Sensor',sULA,...

 'CarrierFrequency',500e6,'EnablePolarization',true);

Radiate a signal consisting of the sum of three sine waves. Radiate the signal into two
different directions. Radiated angles are azimuth and elevation angles defined with
respect to a local coordinate system. The local coordinate system is defined by 10 degree
rotation around the x-axis from the global coordinates.

f1 = 10e6;

f2 = 150e6;

f3 = 200e6;

fs = 450e6;

dt = 1/fs;

t = [0:dt:5e-6];

sig = 1.0*sin(2*pi*f1*t) + 2.0*sin(2*pi*f2*t + pi/10) + 0.1*sin(2*pi*f3*t + pi/2);

radiatingAngle = [30 30; 0 20];

laxes = rotx(10);

y = step(sRad,sig.',radiatingAngle,laxes);

Plot the first 200 samples of the y and z components of the polarized field propagating in
the [30,0] direction.

plot(10^6*t(1:200),real(y(1).Y(1:200)))

hold on

plot(10^6*t(1:200),real(y(1).Z(1:200)))

hold off

xlabel('Time (\mu sec)')

ylabel('Amplitude')

legend('Y Polarization','Z Polarization')

 step

1-2257

See Also
phased.BeamScanEstimator.step | phased.Collector.step | phased.Radiator.step |
phased.RootMUSICEstimator.step | phased.WidebandCollector.step

Introduced in R2015b

2

Functions-Alphabetical List

2 Functions-Alphabetical List

2-2

aictest

Dimension of signal subspace

Syntax

nsig = aictest(X)

nsig = aictest(X,'fb')

Description

nsig = aictest(X) estimates the number of signals, nsig, present in a snapshot
of data, X, that impinges upon the sensors in an array. The estimator uses the Akaike
Information Criterion test (AIC). The input argument, X, is a complex-valued matrix
containing a time sequence of data samples for each sensor. Each row corresponds to a
single time sample for all sensors.

nsig = aictest(X,'fb') estimates the number of signals. Before estimating, it
performs forward-backward averaging on the sample covariance matrix constructed from
the data snapshot, X. This syntax can use any of the input arguments in the previous
syntax.

Examples

Estimate the Signal Subspace Dimensions for Two Arriving Signals

Construct a data snapshot for two plane waves arriving at a half-wavelength-spaced
uniform line array with 10 elements. The plane waves arrive from 0° and –25° azimuth,
both with elevation angles of 0°. Assume the signals arrive in the presence of additive
noise that is both temporally and spatially Gaussian white noise. For each signal, the
SNR is 5 dB. Take 300 samples to build a 300-by-10 data snapshot. Then, solve for the
number of signals using aictest.

N = 10;

d = 0.5;

 aictest

2-3

elementPos = (0:N-1)*d;

angles = [0 -25];

x = sensorsig(elementPos,300,angles,db2pow(-5));

Nsig = aictest(x)

Nsig =

 2

The result shows that the number of signals is two, as expected.

Estimate the Signal Subspace Dimension with Forward-Backward Smoothing

Construct a data snapshot for two plane waves arriving at a half-wavelength-spaced
uniform line array with 10 elements. Correlated plane waves arrive from 0° and 10°
azimuth, both with elevation angles of 0°. Assume the signals arrive in the presence
of additive noise that is both temporally and spatially Gaussian white noise. For each
signal, the SNR is 10 dB. Take 300 samples to build a 300-by-10 data snapshot. Then,
solve for the number of signals using aictest.

N = 10;

d = 0.5;

elementPos = (0:N-1)*d;

angles = [0 10];

ncov = db2pow(-10);

scov = [1 .5]'*[1 .5];

x = sensorsig(elementPos,300,angles,ncov,scov);

Nsig = aictest(x)

Nsig =

 1

This result shows that aictest function cannot determine the number of signals
correctly when the signals are correlated.

Now, try the option of forward-backward smoothing.

Nsig = aictest(x,'fb')

Nsig =

 2

2 Functions-Alphabetical List

2-4

The addition of forward-backward smoothing yields the correct number of signals.

Input Arguments

X — Data snapshot
complex-valued K-by-N matrix

Data snapshot, specified as a complex-valued, K-by-N matrix. A snapshot is a sequence
of time-samples taken simultaneous at each sensor. In this matrix, K represents the
number of time samples of the data, while N represents the number of sensor elements.
Example: [–0.1211 + 1.2549i, 0.1415 + 1.6114i, 0.8932 + 0.9765i;]
Data Types: double
Complex Number Support: Yes

Output Arguments

nsig — Dimension of signal subspace
non-negative integer

Dimension of signal subspace, returned as a non-negative integer. The dimension of the
signal subspace is the number of signals in the data.

More About

Estimating the Number of Sources

AIC and MDL tests

Direction finding algorithms such as MUSIC and ESPRIT require knowledge of the
number of sources of signals impinging on the array or equivalently, the dimension,
d, of the signal subspace. The Akaike Information Criterion (AIC) and the Minimum
Description Length (MDL) formulas are two frequently-used estimators for obtaining
that dimension. Both estimators assume that, besides the signals, the data contains
spatially and temporally white Gaussian random noise. Finding the number of sources
is equivalent to finding the multiplicity of the smallest eigenvalues of the sampled

 aictest

2-5

spatial covariance matrix. The sample spatial covariance matrix constructed from a data
snapshot is used in place of the actual covariance matrix.

A requirement for both estimators is that the dimension of the signal subspace be less
than the number of sensors, N, and that the number of time samples in the snapshot, K,
be much greater than N.

A variant of each estimator exists when forward-backward averaging is employed to
construct the spatial covariance matrix. Forward-backward averaging is useful for the
case when some of the sources are highly correlated with each other. In that case, the
spatial covariance matrix may be ill conditioned. Forward-backward averaging can
only be used for certain types of symmetric arrays, called centro-symmetric arrays.
Then the forward-backward covariance matrix can be constructed from the sample
spatial covariance matrix, S, using SFB = S + JS*J where J is the exchange matrix. The
exchange matrix maps array elements into their symmetric counterparts. For a line
array, it would be the identity matrix flipped from left to right.

All the estimators are based on a cost function

L d K N d
N d

d

i

i d

N

i

i d

N N d

() () ln

�

�

= -
-

Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂

Ï

Ì

Ô
Ô
Ô

Ó

= +

= +

-

Â

’

1

1

1

1

l

l

ÔÔ
Ô
Ô

¸

˝

Ô
Ô
Ô

˛

Ô
Ô
Ô

plus an added penalty term. The value λi represent the smallest (N–d) eigenvalues of the
spatial covariance matrix. For each specific estimator, the solution for d is given by

• AIC

ˆ argmin () ()d L d d N dAIC
d

d= + -{ }2

• AIC for forward-backward averaged covariance matrices

ˆ argmin () ():d L d d N dAIC FB
d

d= + - +
Ï
Ì
Ó

¸
˝
˛

1

2
2 1

• MDL

2 Functions-Alphabetical List

2-6

ˆ argmin () (()) lnd L d d N d KMDL

d

d= + - +
Ï
Ì
Ó

¸
˝
˛

1

2
2 1

• MDL for forward-backward averaged covariance matrices

ˆ argmin () () lnd L d d N d KMDL FB

d

d= + - +
Ï
Ì
Ó

¸
˝
˛

1

4
2 1

References

[1] Van Trees, H.L. Optimum Array Processing. New York: Wiley-Interscience, 2002.

See Also
espritdoa | mdltest | rootmusicdoa | spsmooth

Introduced in R2013a

 albersheim

2-7

albersheim
Required SNR using Albersheim’s equation

Syntax

SNR = albersheim(prob_Detection,prob_FalseAlarm)

SNR = albersheim(prob_Detection,prob_FalseAlarm,N)

Description

SNR = albersheim(prob_Detection,prob_FalseAlarm) returns the signal-
to-noise ratio in decibels. This value indicates the ratio required to achieve the given
probabilities of detection prob_Detection and false alarm prob_FalseAlarm for a
single sample.

SNR = albersheim(prob_Detection,prob_FalseAlarm,N) determines the
required SNR for the noncoherent integration of N samples.

Examples

Compute Required SNR for Probability of Detection

Compute the required SNR of a single pulse to achieve a detection probability of 0.9 as a
function of the false alarm probability.

Set the probability of detection to 0.9 and the probabilities of false alarm from .0001
to .01.

Pd=0.9;

Pfa=0.0001:0.0001:.01;

Loop the Albersheim equation over all Pfa's.

snr = zeros(1,length(Pfa));

for j=1:length(Pfa)

 snr(j) = albersheim(Pd,Pfa(j));

end

2 Functions-Alphabetical List

2-8

Plot SNR versus Pfa.

semilogx(Pfa,snr,'k','linewidth',1)

grid

axis tight

xlabel('Probability of False Alarm')

ylabel('Required SNR (dB)')

title('Required SNR for P_D = 0.9 (N = 1)')

Compute Required SNR for Probability of Detection of 10 Pulses

Compute the required SNR of 10 non-coherently integrated pulse to achieve a detection
probability of 0.9 as a function of the false alarm probability.

 albersheim

2-9

Set the probability of detection to 0.9 and the probabilities of false alarm from .0001
to .01.

Pd=0.9;

Pfa=0.0001:0.0001:.01;

Npulses = 10;

Loop over the Albersheim equation over all Pfa's.

snr = zeros(1,length(Pfa));

for j=1:length(Pfa)

 snr(j) = albersheim(Pd,Pfa(j),Npulses);

end

Plot SNR versus Pfa.

semilogx(Pfa,snr,'k','linewidth',1)

grid

axis tight

xlabel('Probability of False Alarm')

ylabel('Required SNR (dB)')

title('Required SNR for P_D = 0.9 (N = 10)')

2 Functions-Alphabetical List

2-10

More About

Albersheim's Equation

Albersheim's equation uses a closed-form approximation to calculate the SNR. This
SNR value is required to achieve the specified detection and false-alarm probabilities
for a nonfluctuating target in independent and identically distributed Gaussian noise.
The approximation is valid for a linear detector and is extensible to the noncoherent
integration of N samples.

Let

 albersheim

2-11

A
P

FA

= ln .0 62

and

B
P

P

D

D

=
-

ln
1

where P
FA and P

D are the false-alarm and detection probabilities.

Albersheim's equation for the required SNR in decibels is:

SNR = - + + + + +5 6 2 4 54 0 44 0 12 1 710 10log [. . / .]log (. .)N N A AB B

where N is the number of noncoherently integrated samples.

References

[1] Richards, M. A. Fundamentals of Radar Signal Processing. New York: McGraw-Hill,
2005, p. 329.

[2] Skolnik, M. Introduction to Radar Systems, 3rd Ed. New York: McGraw-Hill, 2001, p.
49.

See Also
shnidman

Introduced in R2011a

2 Functions-Alphabetical List

2-12

ambgfun

Ambiguity function

Syntax

afmag = ambgfun(x,Fs,PRF)

[afmag,delay,doppler] = ambgfun(x,Fs,PRF)

[afmag,delay,doppler] = ambgfun(x,Fs,PRF,'Cut','2D')

[afmag,delay] = ambgfun(x,Fs,PRF,'Cut','Doppler')

[afmag,doppler] = ambgfun(x,Fs,PRF,'Cut','Delay')

[afmag,delay] = ambgfun(x,Fs,PRF,'Cut','Doppler','CutValue',V)

[afmag,doppler] = ambgfun(x,Fs,PRF,'Cut','Delay','CutValue',V)

ambgfun(x,Fs,PRF)

ambgfun(x,Fs,PRF,'Cut','2D')

ambgfun(x,Fs,PRF,'Cut','Delay')

ambgfun(x,Fs,PRF,'Cut','Doppler')

ambgfun(x,Fs,PRF,'Cut','Delay','CutValue',V)

ambgfun(x,Fs,PRF,'Cut','Doppler','CutValue',V)

Description

afmag = ambgfun(x,Fs,PRF) returns the magnitude of the normalized ambiguity
function for the vector x. The sampling of x occurs at Fs hertz with pulse repetition
frequency, PRF. The sampling frequency Fs divided by the pulse repetition frequency PRF
is the number of samples per pulse.

[afmag,delay,doppler] = ambgfun(x,Fs,PRF) or [afmag,delay,doppler]
= ambgfun(x,Fs,PRF,'Cut','2D') returns the time delay vector, delay, and the
Doppler frequency vector, doppler.

[afmag,delay] = ambgfun(x,Fs,PRF,'Cut','Doppler') returns the zero Doppler
cut through the 2-D normalized ambiguity function magnitude.

[afmag,doppler] = ambgfun(x,Fs,PRF,'Cut','Delay') returns the zero delay
cut through the 2-D normalized ambiguity function magnitude.

 ambgfun

2-13

[afmag,delay] = ambgfun(x,Fs,PRF,'Cut','Doppler','CutValue',V) returns
a one-dimensional cut through the 2-D normalized ambiguity function magnitude at a
Doppler value of V Hertz. V should lie in the range [-Fs/2,Fs/2].

[afmag,doppler] = ambgfun(x,Fs,PRF,'Cut','Delay','CutValue',V) returns
a one-dimensional cut through the 2-D normalized ambiguity function magnitude
at a delay value of V seconds. V should lie in the range [-(length(x)-1)/Fs,
(length(x)-1)/Fs].

ambgfun(x,Fs,PRF) or ambgfun(x,Fs,PRF,'Cut','2D') with no output argument
produces a contour plot of the ambiguity function.

ambgfun(x,Fs,PRF,'Cut','Delay') or ambgfun(x,Fs,PRF,'Cut','Doppler')
with no output argument produces a line plot of the ambiguity function cut.

ambgfun(x,Fs,PRF,'Cut','Delay','CutValue',V) or ambgfun(x,Fs,
PRF,'Cut','Doppler','CutValue',V) with no output argument produces a line plot
of the ambiguity function cut at non-zero cut values.

Input Arguments

x

Pulse waveform. x is a row or column vector.

Fs

Sampling frequency in hertz.

PRF

Pulse repetition frequency in hertz.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

2 Functions-Alphabetical List

2-14

Example: 'Cut','Doppler','CutValue',10 specifies that a vector of ambiguity
function values be produced at a Doppler shift of 10 Hz.

'Cut' — Direction of one-dimensional cut through ambiguity function
'Delay'|'Doppler'|'2D'

Used to generate a one–dimensional cut or cross-section through the ambiguity diagram.
The direction of the cut is determined by setting the value of 'Cut' to 'Delay' or
'Doppler'. The value '2D' generates a surface plot of the two-dimensional ambiguity
function.

The choice of 'Delay' generates a cut at zero time delay. In this case, the second output
argument of ambgfun contains the ambiguity function values at Doppler shifted values.
A cut at non-zero time delay can be generated using the name-value pair'CutValue'
described below.

The choice of 'Doppler' generates a cut at zero Doppler shift. In this case, the
second output argument of ambgfun contains the ambiguity function values at time-
delayed values. A cut at non-zero Doppler can be generated using the name-value pair
'CutValue' described below.

'CutValue' — Optional time delay or Doppler shift at which ambiguity function cut is taken
real scalar

When setting the name-value pair 'Cut' to 'Delay' or 'Doppler', you can use the
name-value pair 'CutValue' to specify a cross-section that does not coincide with either
zero time delay or zero Doppler shift. However, 'CutValue' should not be used when
'Cut' is set to '2D'.

When 'Cut' is set to 'Delay' ,'CutValue' is interpreted as the time delay, in seconds,
at which the cut is to be taken. The range of possible time delays is determined by the
length of the signal and is restricted to [-(length(x)-1)/Fs,(length(x)-1)/Fs].

When 'Cut' is set to 'Doppler', 'CutValue' is interpreted as the Doppler shift, in
Hertz, at which the cut is to be taken. The Doppler shift is restricted to the range [-
Fs/2,Fs/2].

Example: 'CutValue',10.0

Data Types: double

 ambgfun

2-15

Output Arguments

afmag

Normalized ambiguity function magnitudes. afmag is an M-by-N matrix where M is the
number of Doppler frequencies and N is the number of time delays.

delay

Time delay vector. delay is an N-by-1 vector of time delays. The time delay vector
consists of N = 2*length(x)-1 linearly spaced samples in the interval (-length(x)/
Fs, length(x)/Fs). The spacing between elements is the reciprocal of the sampling
frequency.

doppler

Doppler frequency vector. doppler is an M-by-1 vector of Doppler frequencies. The
Doppler frequency vector consists of linearly spaced samples in the frequency interval
[-Fs/2,Fs/2). The spacing between elements in the Doppler frequency vector is
Fs/2^nextpow2(2*length(x)-1).

Examples

Plot Ambiguity Function of Rectangular Pulse

Plot the ambiguity function magnitude of a rectangular pulse.

hrect = phased.RectangularWaveform;

x = step(hrect);

PRF = 2e4;

[afmag,delay,doppler] = ambgfun(x,hrect.SampleRate,PRF);

contour(delay,doppler,afmag);

xlabel('Delay (seconds)'); ylabel('Doppler Shift (hertz)');

2 Functions-Alphabetical List

2-16

Plot Autocorrelation Sequences of Rectangular and Linear FM Pulses

This example shows how to plot zero-Doppler cuts of the autocorrelation sequences
of rectangular and linear FM pulses of equal duration. Note the pulse compression
exhibited in the autocorrelation sequence of the linear FM pulse.

hrect = phased.RectangularWaveform('PRF',2e4);

hfm = phased.LinearFMWaveform('PRF',2e4);

xrect = step(hrect);

xfm = step(hfm);

[ambrect,delayrect] = ambgfun(xrect,hrect.SampleRate,...,

 hrect.PRF,'Cut','Doppler');

[ambfm,delayfm] = ambgfun(xfm,hfm.SampleRate,...,

 hfm.PRF,'Cut','Doppler');

 ambgfun

2-17

figure;

subplot(211);

stem(delayrect,ambrect);

title('Autocorrelation of Rectangular Pulse');

subplot(212);

stem(delayfm,ambfm)

xlabel('Delay (seconds)');

title('Autocorrelation of Linear FM Pulse');

Plot Nonzero-Doppler Cuts of Autocorrelation Sequences

Plot nonzero-Doppler cuts of the autocorrelation sequences of rectangular and linear
FM pulses of equal duration. Both cuts are taken at a 5 kHz Doppler shift. Besides the

2 Functions-Alphabetical List

2-18

reduction of the peak value, there is a strong shift in the position of the linear FM peak,
evidence of range-doppler coupling.

hrect = phased.RectangularWaveform('PRF',2e4);

hfm = phased.LinearFMWaveform('PRF',2e4);

xrect = step(hrect);

xfm = step(hfm);

fd = 5000;

[ambrect,delayrect] = ambgfun(xrect,hrect.SampleRate,...,

 hrect.PRF,'Cut','Doppler','CutValue',fd);

[ambfm,delayfm] = ambgfun(xfm,hfm.SampleRate,...,

 hfm.PRF,'Cut','Doppler','CutValue',fd);

figure;

subplot(211);

stem(delayrect*10^6,ambrect);

title('Autocorrelation of Rectangular Pulse at 5 kHz Doppler Shift');

subplot(212);

stem(delayfm*10^6,ambfm)

xlabel('Delay (\mu sec)');

title('Autocorrelation of Linear FM Pulse at 5 kHz Doppler Shift');

 ambgfun

2-19

More About

Normalized Ambiguity Function

The magnitude of the normalized ambiguity function is defined as:

| (,)| | () () |*A t f
E

x u e x u t dud
x

j f ud= -
-•

•

Ú
1 2p

where Ex is the norm of the signal, x(t), t is the time delay, and fd is a Doppler shift. The
asterisk (*) denotes the complex conjugate.

2 Functions-Alphabetical List

2-20

The ambiguity function is a function of two variables that describes the effects of time
delays and Doppler shifts on the output of a matched filter.

The magnitude of the ambiguity function at zero time delay and Doppler shift, | (,)|,A 0 0

indicates the matched filter output when the received waveform exhibits the time
delay and Doppler shift for which the matched filter is designed. Nonzero values of the
time delay and Doppler shift variables indicate that the received waveform exhibits
mismatches in time delay and Doppler shift from the matched filter.

The magnitude of the ambiguity function achieves maximum value at (0,0). At this point,
there is perfect correspondence between the received waveform and the matched filter. In
the normalized ambiguity function, the maximum value equals one.

References

[1] Levanon, N. and E. Mozeson. Radar Signals. Hoboken, NJ: John Wiley & Sons, 2004.

[2] Mahafza, B. R., and A. Z. Elsherbeni. MATLAB Simulations for Radar Systems
Design. Boca Raton, FL: CRC Press, 2004.

[3] Richards, M. A. Fundamentals of Radar Signal Processing. New York: McGraw-Hill,
2005.

See Also
phased.LinearFMWaveform | phased.MatchedFilter | phased.RectangularWaveform |
phased.SteppedFMWaveform

Introduced in R2011a

 aperture2gain

2-21

aperture2gain

Convert effective aperture to gain

Syntax

G = aperture2gain(A,lambda)

Description

G = aperture2gain(A,lambda) returns the antenna gain in decibels corresponding
to an effective aperture of A square meters for an incident electromagnetic wave with
wavelength lambda meters. A can be a scalar or vector. If A is a vector, G is a vector of
the same size as A. The elements of G represent the gains for the corresponding elements
of A. lambda must be a scalar.

Input Arguments

A

Antenna effective aperture in square meters. The effective aperture describes how much
energy is captured from an incident electromagnetic plane wave. The argument describes
the functional area of the antenna and is not equivalent to the actual physical area. For
a fixed wavelength, the antenna gain is proportional to the effective aperture. A can be
a scalar or vector. If A is a vector, each element of A is the effective aperture of a single
antenna.

lambda

Wavelength of the incident electromagnetic wave. The wavelength of an electromagnetic
wave is the ratio of the wave propagation speed to the frequency. For a fixed effective
aperture, the antenna gain is inversely proportional to the square of the wavelength.
lambda must be a scalar.

2 Functions-Alphabetical List

2-22

Output Arguments

G

Antenna gain in decibels. G is a scalar or a vector. If G is a vector, each element of G is the
gain corresponding to effective aperture of the same element in A.

Examples

An antenna has an effective aperture of 3 square meters. Find the antenna gain when
used to capture an electromagnetic wave with a wavelength of 10 cm.

g = aperture2gain(3,0.1);

More About

Gain and Effective Aperture

The relationship between the gain, G, and effective aperture of an antenna, Ae is:

G Ae=
4

2

p

l

where λ is the wavelength of the incident electromagnetic wave. The gain expressed in
decibels is:

10 10log ()G

References

[1] Skolnik, M. Introduction to Radar Systems, 3rd Ed. New York: McGraw-Hill, 2001.

See Also
gain2aperture

 aperture2gain

2-23

Introduced in R2011a

2 Functions-Alphabetical List

2-24

az2broadside
Convert azimuth angle to broadside angle

Syntax
BSang = az2broadside(az,el)

Description
BSang = az2broadside(az,el) returns the broadside angle BSang corresponding to
the azimuth angle, az, and the elevation angle, el. All angles are expressed in degrees
and in the local coordinate system. az and el can be either scalars or vectors. If both of
them are vectors, their dimensions must match.

Examples
Broadside Angle for Scalar Inputs

Return the broadside angle corresponding to 45 degrees azimuth and 45 degrees
elevation.

BSang = az2broadside(45,45);

Broadside Angles for Vector Inputs

Return broadside angles for 10 azimuth/elevation pairs. The variables az, el, and BSang
are all 10-by-1 column vectors.

az = (75:5:120)';

el = (45:5:90)';

BSang = az2broadside(az,el);

More About
Broadside Angle

The broadside angle β corresponding to an azimuth angle az and an elevation angle el is:

 az2broadside

2-25

b = -
sin (sin()cos())

1
az el

where –180 ≤ az ≤ 180 and –90 ≤ el ≤ 90.

See Also
broadside2az | phitheta2azel | uv2azel

Introduced in R2011a

2 Functions-Alphabetical List

2-26

azel2phitheta
Convert angles from azimuth/elevation form to phi/theta form

Syntax
PhiTheta = azel2phitheta(AzEl)

Description
PhiTheta = azel2phitheta(AzEl) converts the azimuth/elevation angle pairs to
their corresponding phi/theta angle pairs.

Examples

Conversion of Azimuth/Elevation Pair

Find the corresponding φ/θ representation for 30 degrees azimuth and 0 degrees
elevation.

PhiTheta = azel2phitheta([30; 0]);

Input Arguments

AzEl — Azimuth/elevation angle pairs
two-row matrix

Azimuth and elevation angles, specified as a two-row matrix. Each column of the matrix
represents an angle in degrees, in the form [azimuth; elevation].
Data Types: double

Output Arguments

PhiTheta — Phi/theta angle pairs
two-row matrix

 azel2phitheta

2-27

Phi and theta angles, returned as a two-row matrix. Each column of the matrix
represents an angle in degrees, in the form [phi; theta]. The matrix dimensions of
PhiTheta are the same as those of AzEl.

More About

Azimuth Angle, Elevation Angle

The azimuth angle is the angle from the positive x-axis toward the positive y-axis, to the
vector’s orthogonal projection onto the xy plane. The azimuth angle is between –180 and
180 degrees. The elevation angle is the angle from the vector’s orthogonal projection onto
the xy plane toward the positive z-axis, to the vector. The elevation angle is between –90
and 90 degrees. These definitions assume the boresight direction is the positive x-axis.

Note: The elevation angle is sometimes defined in the literature as the angle a vector
makes with the positive z-axis. The MATLAB and Phased Array System Toolbox
products do not use this definition.

This figure illustrates the azimuth angle and elevation angle for a vector that appears
as a green solid line. The coordinate system is relative to the center of a uniform linear
array, whose elements appear as blue circles.

2 Functions-Alphabetical List

2-28

Phi Angle, Theta Angle

The φ angle is the angle from the positive y-axis toward the positive z-axis, to the vector’s
orthogonal projection onto the yz plane. The φ angle is between 0 and 360 degrees. The θ
angle is the angle from the x-axis toward the yz plane, to the vector itself. The θ angle is
between 0 and 180 degrees.

The figure illustrates φ and θ for a vector that appears as a green solid line. The
coordinate system is relative to the center of a uniform linear array, whose elements
appear as blue circles.

The coordinate transformations between φ/θ and az/el are described by the following
equations

sin() sin sin

tan() cos tan

cos cos()cos()

tan ta

el

az

el az

=

=

=

=

f q

f q

q

f nn() / sin()el az

• “Spherical Coordinates”

See Also
phitheta2azel

 azel2phitheta

2-29

Introduced in R2012a

2 Functions-Alphabetical List

2-30

azel2phithetapat
Convert radiation pattern from azimuth/elevation to phi/theta form

Syntax

pat_phitheta = azel2phithetapat(pat_azel,az,el)

pat_phitheta = azel2phithetapat(pat_azel,az,el,phi,theta)

[pat_phitheta,phi,theta] = azel2phithetapat(___)

Description

pat_phitheta = azel2phithetapat(pat_azel,az,el) expresses the antenna
radiation pattern pat_azel in φ/θ angle coordinates instead of azimuth/elevation angle
coordinates. pat_azel samples the pattern at azimuth angles in az and elevation angles
in el. The pat_phitheta matrix covers φ values from 0 to 180 degrees and θ values
from 0 to 360 degrees. pat_phitheta is uniformly sampled with a step size of 1 for
φ and θ. The function interpolates to estimate the response of the antenna at a given
direction.

pat_phitheta = azel2phithetapat(pat_azel,az,el,phi,theta) uses
vectors phi and theta to specify the grid at which to sample pat_phitheta. To avoid
interpolation errors, phi should cover the range [0, 180], and theta should cover the
range [0, 360].

[pat_phitheta,phi,theta] = azel2phithetapat(___) returns vectors
containing the φ and θ angles at which pat_phitheta samples the pattern, using any of
the input arguments in the previous syntaxes.

Examples

Conversion of Radiation Pattern

Convert a radiation pattern to φ/θ form, with the φ and θ angles spaced 1 degree apart.

Define the pattern in terms of azimuth and elevation.

 azel2phithetapat

2-31

az = -180:180;

el = -90:90;

pat_azel = mag2db(repmat(cosd(el)',1,numel(az)));

Convert the pattern to φ/θ space.

pat_phitheta = azel2phithetapat(pat_azel,az,el);

Plot Converted Radiation Pattern

Plot the result of converting a radiation pattern to space with the and angles
spaced 1 degree apart.

The radiation pattern is the cosine of the elevation.

az = -180:180;

el = -90:90;

pat_azel = repmat(cosd(el)',1,numel(az));

Convert the pattern to space. Use the returned and angles for plotting.

[pat_phitheta,phi,theta] = azel2phithetapat(pat_azel,az,el);

Plot the result.

H = surf(phi,theta,mag2db(pat_phitheta));

H.LineStyle = 'none';

xlabel('phi (degrees)');

ylabel('theta (degrees)');

zlabel('Pattern');

2 Functions-Alphabetical List

2-32

Convert Radiation Pattern For Specific Phi/Theta Values

Convert a radiation pattern to space with and angles spaced 5 degrees apart.

The radiation pattern is the cosine of the elevation.

az = -180:180;

el = -90:90;

pat_azel = repmat(cosd(el)',1,numel(az));

Define the set of and angles at which to sample the pattern. Then, convert the
pattern.

phi = 0:5:360;

 azel2phithetapat

2-33

theta = 0:5:180;

pat_phitheta = azel2phithetapat(pat_azel,az,el,phi,theta);

Plot the result.

H = surf(phi,theta,mag2db(pat_phitheta));

H.LineStyle = 'none';

xlabel('phi (degrees)');

ylabel('theta (degrees)');

zlabel('Pattern');

2 Functions-Alphabetical List

2-34

Input Arguments

pat_azel — Antenna radiation pattern in azimuth/elevation form
Q-by-P matrix

Antenna radiation pattern in azimuth/elevation form, specified as a Q-by-P matrix.
pat_azel samples the 3-D magnitude pattern in decibels, in terms of azimuth and
elevation angles. P is the length of the az vector, and Q is the length of the el vector.

Data Types: double

 azel2phithetapat

2-35

az — Azimuth angles
vector of length P

Azimuth angles at which pat_azel samples the pattern, specified as a vector of length
P. Each azimuth angle is in degrees, between –180 and 180.
Data Types: double

el — Elevation angles
vector of length Q

Elevation angles at which pat_azel samples the pattern, specified as a vector of length
Q. Each elevation angle is in degrees, between –90 and 90.
Data Types: double

phi — Phi angles
[0:360] (default) | vector of length L

Phi angles at which pat_phitheta samples the pattern, specified as a vector of length
L. Each φ angle is in degrees, between 0 and 360.
Data Types: double

theta — Theta angles
[0:180] (default) | vector of length M

Theta angles at which pat_phitheta samples the pattern, specified as a vector of
length M. Each θ angle is in degrees, between 0 and 180.
Data Types: double

Output Arguments

pat_phitheta — Antenna radiation pattern in phi/theta form
M-by-L matrix

Antenna radiation pattern in phi/theta form, returned as an M-by-L matrix.
pat_phitheta samples the 3-D magnitude pattern in decibels, in terms of φ and θ
angles. L is the length of the phi vector, and M is the length of the theta vector.

phi — Phi angles
vector of length L

2 Functions-Alphabetical List

2-36

Phi angles at which pat_phitheta samples the pattern, returned as a vector of length
L. Angles are expressed in degrees.

theta — Theta angles
vector of length M

Theta angles at which pat_phitheta samples the pattern, returned as a vector of
length M. Angles are expressed in degrees.

More About

Azimuth Angle, Elevation Angle

The azimuth angle is the angle from the positive x-axis toward the positive y-axis, to the
vector’s orthogonal projection onto the xy plane. The azimuth angle is between –180 and
180 degrees. The elevation angle is the angle from the vector’s orthogonal projection onto
the xy plane toward the positive z-axis, to the vector. The elevation angle is between –90
and 90 degrees. These definitions assume the boresight direction is the positive x-axis.

Note: The elevation angle is sometimes defined in the literature as the angle a vector
makes with the positive z-axis. The MATLAB and Phased Array System Toolbox
products do not use this definition.

This figure illustrates the azimuth angle and elevation angle for a vector that appears
as a green solid line. The coordinate system is relative to the center of a uniform linear
array, whose elements appear as blue circles.

 azel2phithetapat

2-37

Phi Angle, Theta Angle

The φ angle is the angle from the positive y-axis toward the positive z-axis, to the vector’s
orthogonal projection onto the yz plane. The φ angle is between 0 and 360 degrees. The θ
angle is the angle from the x-axis toward the yz plane, to the vector itself. The θ angle is
between 0 and 180 degrees.

The figure illustrates φ and θ for a vector that appears as a green solid line. The
coordinate system is relative to the center of a uniform linear array, whose elements
appear as blue circles.

2 Functions-Alphabetical List

2-38

The coordinate transformations between φ/θ and az/el are described by the following
equations

sin() sin sin

tan() cos tan

cos cos()cos()

tan ta

el

az

el az

=

=

=

=

f q

f q

q

f nn() / sin()el az

• “Spherical Coordinates”

See Also
azel2phitheta | phased.CustomAntennaElement | phitheta2azel |
phitheta2azelpat

Introduced in R2012a

 azel2uv

2-39

azel2uv
Convert azimuth/elevation angles to u/v coordinates

Syntax

UV = azel2uv(AzEl)

Description

UV = azel2uv(AzEl) converts the azimuth/elevation angle pairs to their corresponding
coordinates in u/v space.

Examples

Conversion of Azimuth/Elevation Pair

Find the corresponding u/v representation for 30° azimuth and 0° elevation.

UV = azel2uv([30; 0]);

Input Arguments

AzEl — Azimuth/elevation angle pairs
two-row matrix

Azimuth and elevation angles, specified as a two-row matrix. Each column of the matrix
represents an angle in degrees, in the form [azimuth; elevation].
Data Types: double

Output Arguments

UV — Angle in u/v space
two-row matrix

2 Functions-Alphabetical List

2-40

Angle in u/v space, returned as a two-row matrix. Each column of the matrix represents
an angle in the form [u; v]. The matrix dimensions of UV are the same as those of AzEl.

More About

Azimuth Angle, Elevation Angle

The azimuth angle is the angle from the positive x-axis toward the positive y-axis, to the
vector’s orthogonal projection onto the xy plane. The azimuth angle is between –180 and
180 degrees. The elevation angle is the angle from the vector’s orthogonal projection onto
the xy plane toward the positive z-axis, to the vector. The elevation angle is between –90
and 90 degrees. These definitions assume the boresight direction is the positive x-axis.

Note: The elevation angle is sometimes defined in the literature as the angle a vector
makes with the positive z-axis. The MATLAB and Phased Array System Toolbox
products do not use this definition.

This figure illustrates the azimuth angle and elevation angle for a vector that appears
as a green solid line. The coordinate system is relative to the center of a uniform linear
array, whose elements appear as blue circles.

 azel2uv

2-41

U/V Space

The u/v coordinates for the positive hemisphere x ≥ 0 can be derived from the phi and
theta angles.

The relation between these two coordinates systems is

u

v

=

=

sin cos

sin sin

q f

q f

In these expressions, φ and θ are the phi and theta angles, respectively.

In terms of azimuth and elevation, the u and v coordinates are

u el az

v el

=

=

cos sin

sin

The values of u and v satisfy the inequalities

- £ £

- £ £

+ £

1 1

1 1

1
2 2

u

v

u v

Conversely, the phi and theta angles can be written in terms of u and v using

tan /

sin

f

q

=

= +

u v

u v
2 2

The azimuth and elevation angles can also be written in terms of u and v

sin

tan

el v

az
u

u v

=

=

- -1
2 2

Phi Angle, Theta Angle

The φ angle is the angle from the positive y-axis toward the positive z-axis, to the vector’s
orthogonal projection onto the yz plane. The φ angle is between 0 and 360 degrees. The θ

2 Functions-Alphabetical List

2-42

angle is the angle from the x-axis toward the yz plane, to the vector itself. The θ angle is
between 0 and 180 degrees.

The figure illustrates φ and θ for a vector that appears as a green solid line. The
coordinate system is relative to the center of a uniform linear array, whose elements
appear as blue circles.

The coordinate transformations between φ/θ and az/el are described by the following
equations

sin() sin sin

tan() cos tan

cos cos()cos()

tan ta

el

az

el az

=

=

=

=

f q

f q

q

f nn() / sin()el az

• “Spherical Coordinates”

See Also
uv2azel

Introduced in R2012a

 azel2uvpat

2-43

azel2uvpat
Convert radiation pattern from azimuth/elevation form to u/v form

Syntax

pat_uv = azel2uvpat(pat_azel,az,el)

pat_uv = azel2uvpat(pat_azel,az,el,u,v)

[pat_uv,u,v] = azel2uvpat(___)

Description

pat_uv = azel2uvpat(pat_azel,az,el) expresses the antenna radiation pattern
pat_azel in u/v space coordinates instead of azimuth/elevation angle coordinates.
pat_azel samples the pattern at azimuth angles in az and elevation angles in el. The
pat_uv matrix uses a default grid that covers u values from –1 to 1 and v values from
–1 to 1. In this grid, pat_uv is uniformly sampled with a step size of 0.01 for u and v.
The function interpolates to estimate the response of the antenna at a given direction.
Values in pat_uv are NaN for u and v values outside the unit circle because u and v are
undefined outside the unit circle.

pat_uv = azel2uvpat(pat_azel,az,el,u,v) uses vectors u and v to specify the
grid at which to sample pat_uv. To avoid interpolation errors, u should cover the range
[–1, 1] and v should cover the range [–1, 1].

[pat_uv,u,v] = azel2uvpat(___) returns vectors containing the u and v
coordinates at which pat_uv samples the pattern, using any of the input arguments in
the previous syntaxes.

Examples

Conversion of Radiation Pattern

Convert a radiation pattern to u/v form, with the u and v coordinates spaced by 0.01.

Define the pattern in terms of azimuth and elevation.

2 Functions-Alphabetical List

2-44

az = -90:90;

el = -90:90;

pat_azel = mag2db(repmat(cosd(el)',1,numel(az)));

Convert the pattern to u/v space.

pat_uv = azel2uvpat(pat_azel,az,el);

Plot Converted Radiation Pattern

Plot the result of converting a radiation pattern to space with the and
coordinates spaced by 0.01.

The radiation pattern is the cosine of the elevation angle.

az = -90:90;

el = -90:90;

pat_azel = repmat(cosd(el)',1,numel(az));

Convert the pattern to space. Use the and coordinates for plotting.

[pat_uv,u,v] = azel2uvpat(pat_azel,az,el);

Plot the result.

H = surf(u,v,mag2db(pat_uv));

H.LineStyle = 'none';

xlabel('u');

ylabel('v');

zlabel('Pattern');

 azel2uvpat

2-45

Convert Radiation Pattern For Specific U/V Values

Convert a radiation pattern to form, with the and coordinates spaced by 0.05.

The radiation pattern is cosine of the elevation angle.

az = -90:90;

el = -90:90;

pat_azel = repmat(cosd(el)',1,numel(az));

Define the set of and coordinates at which to sample the pattern. Then, convert the
pattern.

u = -1:0.05:1;

2 Functions-Alphabetical List

2-46

v = -1:0.05:1;

pat_uv = azel2uvpat(pat_azel,az,el,u,v);

Plot the result.

H = surf(u,v,mag2db(pat_uv));

H.LineStyle = 'none';

xlabel('u');

ylabel('v');

zlabel('Pattern');

 azel2uvpat

2-47

Input Arguments

pat_azel — Antenna radiation pattern in azimuth/elevation form
Q-by-P matrix

Antenna radiation pattern in azimuth/elevation form, specified as a Q-by-P matrix.
pat_azel samples the 3-D magnitude pattern in decibels, in terms of azimuth and
elevation angles. P is the length of the az vector, and Q is the length of the el vector.

Data Types: double

2 Functions-Alphabetical List

2-48

az — Azimuth angles
vector of length P

Azimuth angles at which pat_azel samples the pattern, specified as a vector of length
P. Each azimuth angle is in degrees, between –90 and 90. Such azimuth angles are in the
hemisphere for which u and v are defined.
Data Types: double

el — Elevation angles
vector of length Q

Elevation angles at which pat_azel samples the pattern, specified as a vector of length
Q. Each elevation angle is in degrees, between –90 and 90.
Data Types: double

u — u coordinates
[-1:0.01:1] (default) | vector of length L

u coordinates at which pat_uv samples the pattern, specified as a vector of length L.
Each u coordinate is between –1 and 1.
Data Types: double

v — v coordinates
[-1:0.01:1] (default) | vector of length M

v coordinates at which pat_uv samples the pattern, specified as a vector of length M.
Each v coordinate is between –1 and 1.
Data Types: double

Output Arguments

pat_uv — Antenna radiation pattern in u/v form
M-by-L matrix

Antenna radiation pattern in u/v form, returned as an M-by-L matrix. pat_uv samples
the 3-D magnitude pattern in decibels, in terms of u and v coordinates. L is the length of
the u vector, and M is the length of the v vector. Values in pat_uv are NaN for u and v
values outside the unit circle because u and v are undefined outside the unit circle.

 azel2uvpat

2-49

u — u coordinates
vector of length L

u coordinates at which pat_uv samples the pattern, returned as a vector of length L.

v — v coordinates
vector of length M

v coordinates at which pat_uv samples the pattern, returned as a vector of length M.

More About

Azimuth Angle, Elevation Angle

The azimuth angle is the angle from the positive x-axis toward the positive y-axis, to the
vector’s orthogonal projection onto the xy plane. The azimuth angle is between –180 and
180 degrees. The elevation angle is the angle from the vector’s orthogonal projection onto
the xy plane toward the positive z-axis, to the vector. The elevation angle is between –90
and 90 degrees. These definitions assume the boresight direction is the positive x-axis.

Note: The elevation angle is sometimes defined in the literature as the angle a vector
makes with the positive z-axis. The MATLAB and Phased Array System Toolbox
products do not use this definition.

This figure illustrates the azimuth angle and elevation angle for a vector that appears
as a green solid line. The coordinate system is relative to the center of a uniform linear
array, whose elements appear as blue circles.

2 Functions-Alphabetical List

2-50

U/V Space

The u and v coordinates are the direction cosines of a vector with respect to the y-axis
and z-axis, respectively.

The u/v coordinates for the hemisphere x ≥ 0 are derived from the phi and theta angles
by:

u

v

=

=

sin cos

sin sin

q f

q f

In these expressions, φ and θ are the phi and theta angles, respectively.

In terms of azimuth and elevation, the u and v coordinates are

u el az

v el

=

=

cos sin

sin

The values of u and v satisfy the inequalities

- £ £

- £ £

+ £

1 1

1 1

1
2 2

u

v

u v

 azel2uvpat

2-51

Conversely, the phi and theta angles can be written in terms of u and v using

tan /

sin

f

q

=

= +

u v

u v
2 2

The azimuth and elevation angles can also be written in terms of u and v

sin

tan

el v

az
u

u v

=

=

- -1
2 2

Phi Angle, Theta Angle

The φ angle is the angle from the positive y-axis toward the positive z-axis, to the vector’s
orthogonal projection onto the yz plane. The φ angle is between 0 and 360 degrees. The θ
angle is the angle from the x-axis toward the yz plane, to the vector itself. The θ angle is
between 0 and 180 degrees.

The figure illustrates φ and θ for a vector that appears as a green solid line. The
coordinate system is relative to the center of a uniform linear array, whose elements
appear as blue circles.

The coordinate transformations between φ/θ and az/el are described by the following
equations

2 Functions-Alphabetical List

2-52

sin() sin sin

tan() cos tan

cos cos()cos()

tan ta

el

az

el az

=

=

=

=

f q

f q

q

f nn() / sin()el az

• “Spherical Coordinates”

See Also
azel2uv | phased.CustomAntennaElement | uv2azel | uv2azelpat

Introduced in R2012a

 azelaxes

2-53

azelaxes
Spherical basis vectors in 3-by-3 matrix form

Syntax
A = azelaxes(az,el)

Description
A = azelaxes(az,el) returns a 3-by-3 matrix containing the components of the
basis (� , � , �)e e e

R az el at each point on the unit sphere specified by azimuth, az, and
elevation, el. The columns of A contain the components of basis vectors in the order of
radial, azimuthal and elevation directions.

Examples

Spherical Basis Vectors at (45°,45°)

At the point located at 45° azimuth, 45° elevation, compute the 3-by-3 matrix containing
the components of the spherical basis:

A = azelaxes(45,45)

A =

 0.5000 -0.7071 -0.5000

 0.5000 0.7071 -0.5000

 0.7071 0 0.7071

The first column of A is the radial basis vector [0.5000; 0.5000; 0.7071]. The
second and third columns are the azimuth and elevation basis vectors, respectively.

Input Arguments

az — Azimuth angle
scalar in range [–180,180]

2 Functions-Alphabetical List

2-54

Azimuth angle specified as a scalar in the closed range [–180,180]. Angle units are in
degrees. To define the azimuth angle of a point on a sphere, construct a vector from the
origin to the point. The azimuth angle is the angle in the xy-plane from the positive x-
axis to the vector's orthogonal projection into the xy-plane. As examples, zero azimuth
angle and zero elevation angle specify a point on the x-axis while an azimuth angle of 90°
and an elevation angle of zero specify a point on the y-axis.
Example: 45

Data Types: double

el — Elevation angle
scalar in range [–90,90]

Elevation angle specified as a scalar in the closed range [–90,90]. Angle units are in
degrees. To define the elevation of a point on the sphere, construct a vector from the
origin to the point. The elevation angle is the angle from its orthogonal projection into the
xy-plane to the vector itself. As examples, zero elevation angle defines the equator of the
sphere and ±90° elevation define the north and south poles, respectively.
Example: 30

Data Types: double

Output Arguments

A — Spherical basis vectors
3-by-3 matrix

Spherical basis vectors returned as a 3-by-3 matrix. The columns contain the unit vectors
in the radial, azimuthal, and elevation directions, respectively. Symbolically we can write
the matrix as

(� , � , �)e e e
R az el

where each component represents a column vector.

 azelaxes

2-55

More About

Spherical basis

Spherical basis vectors are a local set of basis vectors which point along the radial and
angular directions at any point in space.

The spherical basis vectors (� , � , �)e e e
R az el at the point (az,el) can be expressed in terms of

the Cartesian unit vectors by

ˆ cos()cos() cos()sin() sin()

ˆ sin(

e i j k

e

R

az

= + +

= -

el az el az el

a

$ $ µ

zz az

el az el az

) cos()

ˆ sin()cos() sin()sin() cos

i j

e i jel

$ $

$ $

+

= - - + (()

.

el kµ

This set of basis vectors can be derived from the local Cartesian basis by two consecutive
rotations: first by rotating the Cartesian vectors around the y-axis by the negative
elevation angle, -el, followed by a rotation around the z-axis by the azimuth angle, az.
Symbolically, we can write

ˆ () ()

ˆ () ()

e

e

R

az

= -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

= -

È

Î

Í
Í
Í

˘

˚

R az R el

R az R el

z y

z y

1

0

0

0

1

0

˙̇
˙
˙

= -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

ˆ () ()eel R az R elz y

0

0

1

The following figure shows the relationship between the spherical basis and the local
Cartesian unit vectors.

2 Functions-Alphabetical List

2-56

j

k

êaz

ê
Rê

el

i

Algorithms

MATLAB computes the matrix A from the equations

A = [cosd(el)*cosd(az), -sind(az), -sind(el)*cosd(az); ...

 cosd(el)*sind(az), cosd(az), -sind(el)*sind(az); ...

 sind(el), 0, cosd(el)];

See Also
cart2sphvec | sph2cartvec

Introduced in R2013a

 beat2range

2-57

beat2range
Convert beat frequency to range

Syntax

r = beat2range(fb,slope)

r = beat2range(fb,slope,c)

Description

r = beat2range(fb,slope) converts the beat frequency of a dechirped linear FMCW
signal to its corresponding range. slope is the slope of the FMCW sweep.

r = beat2range(fb,slope,c) specifies the signal propagation speed.

Examples

Range of Target in FMCW Radar System

Assume that the FMCW waveform sweeps a band of 3 MHz in 2 ms. The dechirped target
return has a beat frequency of 1 kHz.

slope = 30e6/(2e-3);

fb = 1e3;

r = beat2range(fb,slope);

• Automotive Adaptive Cruise Control Using FMCW Technology

Input Arguments

fb — Beat frequency of dechirped signal
M-by-1 vector | M-by-2 matrix

Beat frequency of dechirped signal, specified as an M-by-1 vector or M-by-2 matrix in
hertz. If the FMCW signal performs an upsweep or downsweep, fb is a vector of beat
frequencies.

../examples/automotive-adaptive-cruise-control-using-fmcw-technology.html

2 Functions-Alphabetical List

2-58

If the FMCW signal has a triangular sweep, fb is an M-by-2 matrix in
which each row represents a pair of beat frequencies. Each row has the form
[UpSweepBeatFrequency,DownSweepBeatFrequency].

Data Types: double

slope — Sweep slope
nonzero scalar

Slope of FMCW sweep, specified as a nonzero scalar in hertz per second. If the FMCW
signal has a triangular sweep, slope is the sweep slope of the up-sweep half. In this
case, slope must be positive and the down-sweep half is assumed to have a slope of -
slope.

Data Types: double

c — Signal propagation speed
speed of light (default) | positive scalar

Signal propagation speed, specified as a positive scalar in meters per second.
Data Types: double

Output Arguments

r — Range
M-by-1 column vector

Range, returned as an M-by-1 column vector in meters. Each row of r is the range
corresponding to the beat frequency in a row of fb.

More About

Beat Frequency

For an upsweep or downsweep FMCW signal, the beat frequency is Ft – Fr. In this
expression, Ft is the transmitted signal’s carrier frequency, and Fr is the received signal’s
carrier frequency.

For an FMCW signal with triangular sweep, the upsweep and downsweep have separate
beat frequencies.

 beat2range

2-59

Algorithms

If fb is a vector, the function computes c*fb/(2*slope).

If fb is an M-by-2 matrix with a row
[UpSweepBeatFrequency,DownSweepBeatFrequency], the corresponding row in r is
c*((UpSweepBeatFrequency - DownSweepBeatFrequency)/2)/(2*slope).

References

[1] Pace, Phillip. Detecting and Classifying Low Probability of Intercept Radar. Artech
House, Boston, 2009.

[2] Skolnik, M.I. Introduction to Radar Systems. New York: McGraw-Hill, 1980.

See Also
phased.FMCWWaveform | dechirp | range2beat | rdcoupling

Introduced in R2012b

2 Functions-Alphabetical List

2-60

billingsleyicm
Billingsley’s intrinsic clutter motion (ICM) model

Syntax

P = billingsleyicm(fd,fc,wspeed)

P = billingsleyicm(fd,fc,wspeed,c)

Description

P = billingsleyicm(fd,fc,wspeed) calculates the clutter Doppler spectrum shape,
P, due to intrinsic clutter motion (ICM) at Doppler frequencies specified in fd. ICM arises
when wind blows on vegetation or other clutter sources. This function uses Billingsley’s
model in the calculation. fc is the operating frequency of the system. wspeed is the wind
speed.

P = billingsleyicm(fd,fc,wspeed,c) specifies the propagation speed c in meters
per second.

Input Arguments

fd

Doppler frequencies in hertz. This value can be a scalar or a vector.

fc

Operating frequency of the system in hertz

wspeed

Wind speed in meters per second

c

Propagation speed in meters per second

 billingsleyicm

2-61

Default: Speed of light

Output Arguments

P

Shape of the clutter Doppler spectrum due to intrinsic clutter motion. The vector size of P
is the same as that of fd.

Examples

Calculate and plot the Doppler spectrum shape predicted by Billingsley’s ICM model.
Assume the PRF is 2 kHz, the operating frequency is 1 GHz, and the wind speed is 5 m/s.

v = -3:0.1:3; fc = 1e9; wspeed = 5; c = 3e8;

fd = 2*v/(c/fc);

p = billingsleyicm(fd,fc,wspeed);

plot(fd,pow2db(p));

xlabel('Doppler frequency (Hz)'), ylabel('P (dB)');

2 Functions-Alphabetical List

2-62

References

[1] Billingsley, J. Low Angle Radar Clutter. Norwich, NY: William Andrew Publishing,
2002.

[2] Long, Maurice W. Radar Reflectivity of Land and Sea, 3rd Ed. Boston: Artech House,
2001.

Introduced in R2011b

 blakechart

2-63

blakechart

Range-angle-height (Blake) chart

Syntax

blakechart(vcp,vcpangles)

blakechart(vcp,vcpangles,rmax,hmax)

blakechart(___ ,'Name','Value')

Description

blakechart(vcp,vcpangles) creates a range-angle-height plot (also called a Blake
chart) for a narrowband radar antenna. This chart shows the maximum radar range as a
function of target elevation. In addition, the Blake chart displays lines of constant range
and lines of constant height. The input consist of the vertical coverage pattern, vcp, and
vertical coverage pattern angles, vcpangles, produced by radarvcd.

blakechart(vcp,vcpangles,rmax,hmax), in addition, specifies the maximum range
and height of the Blake chart. You can specify range and height units separately in the
Name-Value pairs, RangeUnit and HeightUnit. This syntax can use any of the input
arguments in the previous syntax.

blakechart(___ ,'Name','Value') allows you to specify additional input
parameters in the form of Name-Value pairs. You can specify additional name-value pair
arguments in any order as (Name1,Value1,...,NameN,ValueN). This syntax can use any of
the input arguments in the previous syntaxes.

Examples

Display Vertical Coverage Diagram

Display the vertical coverage diagram of an antenna transmitting at 100 MHz and placed
20 meters above the ground. Set the free-space range to 100 km. Use default plotting
parameters.

2 Functions-Alphabetical List

2-64

freq = 100e6;

ant_height = 20;

rng_fs = 100;

[vcp, vcpangles] = radarvcd(freq,rng_fs,ant_height);

blakechart(vcp, vcpangles);

Display Vertical Coverage Diagram Specifying Maximum Range and Height

Display the vertical coverage diagram of an antenna transmitting at 100 MHz and placed
20 meters above the ground. Set the free-space range to 100 km. Set the maximum
plotting range to 300 km and the maximum plotting height to 250 km.

freq = 100e6;

ant_height = 20;

 blakechart

2-65

rng_fs = 100;

[vcp, vcpangles] = radarvcd(freq,rng_fs,ant_height);

rmax = 300;

hmax = 250;

blakechart(vcp,vcpangles,rmax,hmax);

Display Vertical Coverage Diagram of Sinc Pattern Antenna

Plot the range-height-angle curve of a radar having a sinc-function antenna pattern.

Specify antenna pattern

Specify the antenna pattern as a sinc function.

2 Functions-Alphabetical List

2-66

pat_angles = linspace(-90,90,361)';

pat_u = 1.39157/sind(90/2)*sind(pat_angles);

pat = sinc(pat_u/pi);

Specify radar and environment parameters

Set the transmitting frequency to 100 MHz, the free-space range to 100 km, the antenna
tilt angle to 0 degrees, and place the antenna 20 meters above the ground. Assume a
surface roughness of one meter.

freq = 100e6;

ant_height = 10;

rng_fs = 100;

tilt_ang = 0;

surf_roughness = 1;

Create radar range-height-angle data

[vcp, vcpangles] = radarvcd(freq,rng_fs,ant_height,...

 'RangeUnit','km','HeightUnit','m',...

 'AntennaPattern',pat,...

 'PatternAngles',pat_angles,'TiltAngle',tilt_ang,...

 'SurfaceRoughness',surf_roughness);

Plot radar range-height-angle data

Set the maximum plotting range to 300 km and the maximum plotting height to 250,000
m. Choose the range units as kilometers, 'km', and the height units as meters, 'm'. Set
the range and height axes scale powers to 1/2.

rmax = 300;

hmax = 250e3;

blakechart(vcp, vcpangles, rmax, hmax, 'RangeUnit','km',...

 'ScalePower',1/2,'HeightUnit','m');

 blakechart

2-67

Input Arguments

vcp — Vertical coverage pattern
real-valued vector

Vertical coverage pattern specified as a K-by-1 column vector. The vertical coverage
pattern is the actual maximum range of the radar. Each entry of the vertical coverage
pattern corresponds to one of the angles specified in vcpangles. Values are expressed in
kilometers unless you change the unit of measure using the 'RangeUnit' Name-Value
pair.
Example: [282.3831; 291.0502; 299.4252]

2 Functions-Alphabetical List

2-68

Data Types: double

vcpangles — Vertical coverage pattern angles
real-valued vector

Vertical coverage pattern angles specified as a K-by-1 column vector. The set of angles
range from –90° to 90°.
Example: [2.1480; 2.2340; 2.3199]
Data Types: double

rmax — Maximum range of plot
real-valued scalar

Maximum range of plot specified as a real-valued scalar. Range units are specified by the
RangeUnit Name-Value pair.

Example: 200
Data Types: double

hmax — Maximum height of plot
real-valued scalar

Maximum height of plot specified as a real-valued scalar. Height units are specified by
the HeightUnit Name-Value pair.

Example: 100000
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: ‘RangeUnit’,’m’

'RangeUnit' — Radar range units
'km' (default) | 'nmi' | 'mi' | 'ft' | 'm'

 blakechart

2-69

Range units denoting nautical miles, miles, kilometers, feet or meters. This Name-Value
pair specifies the units for the vertical coverage pattern input argument, vcp, and the
maximum range input argument, rmax.

Example: 'mi'

Data Types: char

'HeightUnit' — Height units
'km' (default) | 'nmi’ | 'mi' | 'ft' | 'm'

Height units specified as one of 'nmi' | 'mi' | 'km' | 'ft' |'m' denoting nautical
miles, miles, kilometers, feet or meters. This Name-Value pair specifies the units for the
maximum height, hmax.

Example: 'm'

Data Types: char

'ScalePower' — Scale power
0.25 (default) | real-valued scalar

Scale power, specified as a scalar between 0 and 1. This parameter specifies the range
and height axis scale power.
Example: 0.5
Data Types: double

'SurfaceRefractivity' — Surface refractivity
313 (default) | real-valued scalar

Surface refractivity, specified as a non-negative real-valued scalar. The surface
refractivity is a parameter of the “CRPL Exponential Reference Atmosphere Model” on
page 2-70 used in this function.
Example: 314
Data Types: double

'RefractionExponent' — Refraction exponent
0.143859 (default) | real-valued scalar

Refraction exponent specified as a non-negative, real-valued scalar. The refraction
exponent is a parameter of the “CRPL Exponential Reference Atmosphere Model” on
page 2-70 used in this function.

2 Functions-Alphabetical List

2-70

Example: 0.15
Data Types: double

More About

CRPL Exponential Reference Atmosphere Model

The blakechart function uses the CRPL Exponential Reference Atmosphere to model
refraction effects. The index of refraction is a function of height

n h N es
R hexp() .= + ¥()- -

1 0 10
6

where Ns is the atmospheric refractivity value (in units of 10–6) at the surface of the
earth, Rexp is a decay constant, and h is the height above the surface in kilometers. The
default value of Ns is 313 and can be modified using the 'SurfaceRefractivity'
Name-Value pair. The default value of Rexp is 0.143859 and can be modified using the
'RefractionExponent' Name-Value pair.

References

[1] Blake, L.V. Machine Plotting of Radar Vertical-Plane Coverage Diagrams. Naval
Research Laboratory Report 7098, 1970.

See Also
radarvcd

Introduced in R2013a

 broadside2az

2-71

broadside2az
Convert broadside angle to azimuth angle

Syntax
az = broadside2az(BSang,el)

Description
az = broadside2az(BSang,el) returns the azimuth angle, az, corresponding to the
broadside angle BSang and the elevation angle, el. All angles are in degrees and in the
local coordinate system. BSang and el can be either scalars or vectors. If both of them
are vectors, their dimensions must match.

Examples
Azimuth Angle for Scalar Inputs

Return the azimuth angle corresponding to a broadside angle of 45 degrees and an
elevation angle of 20 degrees.

az = broadside2az(45,20);

Azimuth Angles for Vector Inputs

Return azimuth angles for 10 pairs of broadside angle and elevation angle. The variables
BSang, el, and az are all 10-by-1 column vectors.

BSang = (45:5:90)';

el = (45:-5:0)';

az = broadside2az(BSang,el);

More About
Azimuth Angle

The azimuth angle az corresponding to a broadside angle β and elevation angle el is:

2 Functions-Alphabetical List

2-72

az el= -
sin (sin()sec())

1 b

where –90 ≤ el ≤ 90, –90 ≤ β ≤ 90, and –180 ≤ az ≤ 180 .

Together the broadside and elevation angles must satisfy the following inequality:

| | | |b + £el 90

See Also
az2broadside | azel2phitheta | azel2uv

Introduced in R2011a

 cart2sphvec

2-73

cart2sphvec

Convert vector from Cartesian components to spherical representation

Syntax

vs = cart2sphvec(vr,az,el)

Description

vs = cart2sphvec(vr,az,el) converts the components of a vector or set of vectors,
vr, from their representation in a local Cartesian coordinate system to a spherical
basis representation contained in vs. A spherical basis representation is the set of
components of a vector projected into a basis given by (� , � , �)e e e

az el R . The orientation of
a spherical basis depends upon its location on the sphere as determined by azimuth, az,
and elevation, el.

Examples

Spherical Representation of Unit Z-Vector

Start with a vector in Cartesian coordinates pointing along the z-direction and located at
45° azimuth, 45° elevation. Compute its components with respect to the spherical basis at
that point.

vr = [0;0;1];

vs = cart2sphvec(vr,45,45)

vs =

 0

 0.7071

2 Functions-Alphabetical List

2-74

 0.7071

Input Arguments

vr — Vector in Cartesian basis representation
3-by-1 column vector | 3-by-N matrix

Vector in Cartesian basis representation specified as a 3-by-1 column vector or 3-by-N
matrix. Each column of vr contains the three components of a vector in the right-handed
Cartesian basis x,y,x.

Example: [4.0; -3.5; 6.3]

Data Types: double
Complex Number Support: Yes

az — Azimuth angle
scalar in range [–180,180]

Azimuth angle specified as a scalar in the closed range [–180,180]. Angle units are in
degrees. To define the azimuth angle of a point on a sphere, construct a vector from the
origin to the point. The azimuth angle is the angle in the xy-plane from the positive x-
axis to the vector's orthogonal projection into the xy-plane. As examples, zero azimuth
angle and zero elevation angle specify a point on the x-axis while an azimuth angle of 90°
and an elevation angle of zero specify a point on the y-axis.
Example: 45

Data Types: double

el — Elevation angle
scalar in range [–90,90]

Elevation angle specified as a scalar in the closed range [–90,90]. Angle units are in
degrees. To define the elevation of a point on the sphere, construct a vector from the
origin to the point. The elevation angle is the angle from its orthogonal projection into the
xy-plane to the vector itself. As examples, zero elevation angle defines the equator of the
sphere and ±90° elevation define the north and south poles, respectively.
Example: 30

 cart2sphvec

2-75

Data Types: double

Output Arguments

vs — Vector in spherical basis
3-by-1 column vector | 3-by-N matrix

Spherical representation of a vector returned as a 3-by-1 column vector or 3-by-N matrix
having the same dimensions as vs. Each column of vs contains the three components of
the vector in the right-handed (� , � , �)e e e

az el R basis.

More About

Spherical basis representation of vectors

Spherical basis vectors are a local set of basis vectors which point along the radial and
angular directions at any point in space.

The spherical basis is a set of three mutually orthogonal unit vectors (� , � , �)e e e
az el R

defined at a point on the sphere. The first unit vector points along lines of azimuth at
constant radius and elevation. The second points along the lines of elevation at constant
azimuth and radius. Both are tangent to the surface of the sphere. The third unit vector
points radially outward.

The orientation of the basis changes from point to point on the sphere but is independent
of R so as you move out along the radius, the basis orientation stays the same. The
following figure illustrates the orientation of the spherical basis vectors as a function of
azimuth and elevation:

2 Functions-Alphabetical List

2-76

az

el

x

y

z

O

R

êaz

êRêel

P

For any point on the sphere specified by az and el, the basis vectors are given by:

 cart2sphvec

2-77

ˆ sin() cos()

ˆ sin()cos() sin()sin

e i j

e i

az

el

= - +

= - -

az az

el az el

$ $

$ (() cos()

ˆ cos()cos() cos()sin() sin

az el

el az el az

j k

e i jR

$ µ

$ $

+

= + + (()el kµ .

Any vector can be written in terms of components in this basis as
v e e eaz el R= + +v v v

az el R
ˆ ˆ ˆ . The transformations between spherical basis components and

Cartesian components take the form

v

v

v

az el az el azx

y

z

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=

- -sin() sin()cos() cos()cos()

cos(aaz el az el az

el el

) sin()sin() cos()sin()

cos() sin()

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙0

vv

v

v

az

el

R

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

.

and

v

v

v

az az

el az el

az

el

R

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=

-

- -

sin() cos()

sin()cos() sin()

0

ssin() cos()

cos()cos() cos()sin() sin()

az el

el az el az el

È

Î

Í
Í
Í

˘

˚

˙
˙̇
˙

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

v

v

v

x

y

z

.

See Also
azelaxes | sph2cartvec

Introduced in R2013a

2 Functions-Alphabetical List

2-78

cbfweights
Conventional beamformer weights

Syntax
wt = cbfweights(pos,ang)

wt = cbfweights(pos,ang,nqbits)

Description
wt = cbfweights(pos,ang) returns narrowband conventional beamformer weights.
When applied to the elements of a sensor array, these weights steer the response of the
array to a specified arrival direction or set of directions. The pos argument specifies the
sensor positions in the array. The ang argument specifies the azimuth and elevation
angles of the desired response directions. The output weights, wt, are returned as an
N-by-M matrix. In this matrix, N represents the number of sensors in the array while
M represents the number of arrival directions. Each column of wt contains the weights
for the corresponding direction specified in the ang. The argument wt is equivalent to
the output of the function steervec divided by N. All elements in the sensor array are
assumed to be isotropic.

wt = cbfweights(pos,ang,nqbits) returns quantized narrowband conventional
beamformer weights when the number of phase-shifter bits is set to nqbits.

Examples

Conventional Weights for Two Beamformer Directions

Specify a line array of five elements spaced 10 cm apart. Compute the weights for two
directions: 30° azimuth, 0° elevation, and 45° azimuth, 0° elevation. Assume the array is
tuned to plane waves having a frequency of 1 GHz.

elementPos = (0:.1:.4);

c = physconst('LightSpeed');

fc = 1e9;

lambda = c/fc;

ang = [30 45];

 cbfweights

2-79

wt = cbfweights(elementPos/lambda,ang)

wt =

 0.2000 + 0.0000i 0.2000 + 0.0000i

 0.0999 + 0.1733i 0.0177 + 0.1992i

 -0.1003 + 0.1731i -0.1969 + 0.0353i

 -0.2000 - 0.0004i -0.0527 - 0.1929i

 -0.0995 - 0.1735i 0.1875 - 0.0696i

Quantized Weights for Two Beamformer Directions

Specify a line array of five elements spaced 10 cm apart. Compute the weights for two
directions: 30° azimuth, 0° elevation, and 45° azimuth, 0° elevation. Assume the array is
tuned to plane waves having a frequency of 1 GHz. Assume the weights are quantized to
six bits.

elementPos = (0:.1:.4);

c = physconst('LightSpeed');

fc = 1e9;

lambda = c/fc;

ang = [30 45];

nqbits = 6;

wt = cbfweights(elementPos/lambda,ang,nqbits)

wt =

 0.2000 + 0.0000i 0.2000 + 0.0000i

 0.0943 + 0.1764i 0.0196 + 0.1990i

 -0.0943 + 0.1764i -0.1962 + 0.0390i

 -0.2000 + 0.0000i -0.0581 - 0.1914i

 -0.0943 - 0.1764i 0.1848 - 0.0765i

Input Arguments
pos — Positions of array sensor elements
1-by-N real-valued vector | 2-by-N real-valued matrix | 3-by-N real-valued matrix

Positions of the elements of a sensor array specified as a 1-by-N vector, a 2-by-N matrix,
or a 3-by-N matrix. In this vector or matrix, N represents the number of elements of the

2 Functions-Alphabetical List

2-80

array. Each column of pos represents the coordinates of an element. You define sensor
position units in term of signal wavelength. If pos is a 1-by-N vector, then it represents
the y-coordinate of the sensor elements of a line array. The x and z-coordinates are
assumed to be zero. When pos is a 2-by-N matrix, it represents the (y,z)-coordinates of
the sensor elements of a planar array. This array is assumed to lie in the yz-plane. The
x-coordinates are assumed to be zero. When pos is a 3-by-N matrix, then the array has
arbitrary shape.
Example: [0, 0, 0; .1, .2, .3; 0,0,0]
Data Types: double

ang — Beamforming directions
1-by-M real-valued vector | 2-by-M real-valued matrix

Beamforming directions specified as a 1-by-M vector or a 2-by-M matrix. In this vector
or matrix, M represents the number of incoming signals. If ang is a 2-by-M matrix, each
column specifies the direction in azimuth and elevation of the beamforming direction as
[az;el]. Angular units are specified in degrees. The azimuth angle must lie between –
180° and 180° and the elevation angle must lie between –90° and 90°. The azimuth angle
is the angle between the x-axis and the projection of the beamforming direction vector
onto the xy plane. The angle is positive when measured from the x-axis toward the y-axis.
The elevation angle is the angle between the beamforming direction vector and xy-plane.
It is positive when measured towards the positive z axis. If ang is a 1-by-M vector, then it
represents a set of azimuth angles with the elevation angles assumed to be zero.
Example: [45;0]
Data Types: double

nqbits — Number of phase shifter quantization bits
0 (default) | non-negative integer

Number of bits used to quantize the phase shift in beamformer or steering vector
weights, specified as a non-negative integer. A value of zero indicates that no
quantization is performed.

Output Arguments

wt — Beamformer weights
N-by-M complex-valued matrix

 cbfweights

2-81

Beamformer weights returned as an N-by-M complex-valued matrix. In this matrix, N
represents the number of sensor elements of the array while M represents the number
of beamforming directions. Each column of wt corresponds to a beamforming direction
specified in ang.

References

[1] Van Trees, H.L. Optimum Array Processing. New York, NY: Wiley-Interscience, 2002.

[2] Johnson, Don H. and D. Dudgeon. Array Signal Processing. Englewood Cliffs, NJ:
Prentice Hall, 1993.

[3] Van Veen, B.D. and K. M. Buckley. “Beamforming: A versatile approach to spatial
filtering”. IEEE ASSP Magazine, Vol. 5 No. 2 pp. 4–24.

See Also
lcmvweights | mvdrweights | phased.PhaseShiftBeamformer | sensorcov |
steervec

Introduced in R2013a

2 Functions-Alphabetical List

2-82

circpol2pol
Convert circular component representation of field to linear component representation

Syntax

fv = circpol2pol(cfv)

Description

fv = circpol2pol(cfv) converts the circular polarization components of the field
or fields contained in cfv to their linear polarization components contained in fv.
Any polarized field can be expressed as a linear combination of horizontal and vertical
components.

Examples

Linear Polarization Components from Circular Polarization Components

Convert a horizontally polarized field, originally expressed in circular polarization
components, into linear polarization components.

cfv = [1;1];

fv = circpol2pol(cfv)

fv =

 1.4142

 0

The vertical component of the output is zero for horizontally polarized fields.

Linear Polarization Ratio from Circular Polarization Ratio

Create a right circularly polarized field. Compute the circular polarization ratio
and convert to the linear polarization ratio equivalent. Note that the input circular
polarization ratio is Inf.

 circpol2pol

2-83

cfv = [0;1];

q = cfv(2)/cfv(1);

p = circpol2pol(q)

p =

 0 - 1.0000i

Input Arguments

cfv — Field vector in circular polarization representation
1-by-N complex-valued row vector or 2-by-N complex-valued matrix

Field vector in its circular polarization representation specified as a 1-by-N complex row
vector or a 2-by-N complex matrix. If cfv is a matrix, each column represents a field
in the form of [El;Er], where El and Er are the left and right circular polarization
components of the field. If cfv is a row vector, each column in cfv represents the
polarization ratio, Er/El. For a row vector, the value Inf can designate the case when
the ratio is computed for El = 0.

Example: [1;-1]
Data Types: double
Complex Number Support: Yes

Output Arguments

fv — Field vector in linear polarization representation or Jones vector
1-by-N complex-valued row vector or 2-by-N complex-valued matrix

Field vector in linear polarization representation or Jones vector returned as a 1-by-N
complex-valued row vector or 2-by-N complex-valued matrix. fv has the same dimensions
as cfv. If cfv is a matrix, each column of fv contains the horizontal and vertical linear
polarization components of the field in the form, [Eh;Ev]. If cfv is a row vector, each
entry in fv contains the linear polarization ratio, defined as Ev/Eh.

References

[1] Mott, H., Antennas for Radar and Communications, John Wiley & Sons, 1992.

2 Functions-Alphabetical List

2-84

[2] Jackson, J.D. , Classical Electrodynamics, 3rd Edition, John Wiley & Sons, 1998, pp.
299–302

[3] Born, M. and E. Wolf, Principles of Optics, 7th Edition, Cambridge: Cambridge
University Press, 1999, pp 25–32.

See Also
pol2circpol | polellip | polratio | stokes

Introduced in R2013a

 dechirp

2-85

dechirp
Perform dechirp operation on FMCW signal

Syntax

y = dechirp(x,xref)

Description

y = dechirp(x,xref) mixes the incoming signal, x, with the reference signal, xref.
The signals can be complex baseband signals. In an FMCW radar system, x is the
received signal and xref is the transmitted signal.

Examples

Dechirp FMCW Signal

Dechirp a delayed FMCW signal, and plot the spectrum before and after dechirping.

Create an FMCW signal.

Fs = 2e5; Tm = 0.001;

hwav = phased.FMCWWaveform('SampleRate',Fs,'SweepTime',Tm);

xref = step(hwav);

Dechirp a delayed copy of the signal.

x = [zeros(10,1); xref(1:end-10)];

y = dechirp(x,xref);

Plot the spectrum before dechirping.

[Pxx,F] = periodogram(x,[],1024,Fs,'centered');

plot(F/1000,10*log10(Pxx)); grid;

xlabel('Frequency (kHz)');

ylabel('Power/Frequency (dB/Hz)');

title('Periodogram Power Spectral Density Estimate Before Dechirping');

2 Functions-Alphabetical List

2-86

Plot the spectrum after dechirping.

[Pyy,F] = periodogram(y,[],1024,Fs,'centered');

plot(F/1000,10*log10(Pyy));

xlabel('Frequency (kHz)');

ylabel('Power/Frequency (dB/Hz)');

ylim([-100 -30]); grid

title('Periodogram Power Spectral Density Estimate After Dechirping');

 dechirp

2-87

• Automotive Adaptive Cruise Control Using FMCW Technology

Input Arguments

x — Incoming signal
M-by-N matrix

Incoming signal, specified as an M-by-N matrix. Each column of x is an independent
signal and is individually mixed with xref.

Data Types: double
Complex Number Support: Yes

../examples/automotive-adaptive-cruise-control-using-fmcw-technology.html

2 Functions-Alphabetical List

2-88

xref — Reference signal
M-by-1 vector

Reference signal, specified as an M-by-1 vector.
Data Types: double
Complex Number Support: Yes

Output Arguments

y — Dechirped signal
M-by-N matrix

Dechirped signal, returned as an M-by-N matrix. Each column is the mixer output for the
corresponding column of x.

More About

Algorithms

For column vectors x and xref, the mix operation is defined as xref .* conj(x).

If x has multiple columns, the mix operation applies the preceding expression to each
column of x independently.

The mix operation negates the Doppler shift embedded in x, because of the order of xref
and x.

The mixing order affects the sign of the imaginary part of y. There is no consistent
convention in the literature about the mixing order. This function and the beat2range
function use the same convention. If your program processes the output of dechirp in
other ways, take the mixing order into account.

References

[1] Pace, Phillip. Detecting and Classifying Low Probability of Intercept Radar. Boston:
Artech House, 2009.

[2] Skolnik, M.I. Introduction to Radar Systems. New York: McGraw-Hill, 1980.

 dechirp

2-89

See Also
phased.RangeDopplerResponse | beat2range

Introduced in R2012b

2 Functions-Alphabetical List

2-90

delayseq

Delay or advance sequence

Syntax

shifted_data = delayseq(data,DELAY)

shifted_data = delayseq(data,DELAY,Fs)

Description

shifted_data = delayseq(data,DELAY) delays or advances the input data by
DELAY samples. Negative values of DELAY advance data, while positive values delay
data. Noninteger values of DELAY represent fractional delays or advances. In this case,
the function interpolates. How the delayseq function operates on the columns of data
depends on the dimensions of data and DELAY:

• If DELAY is a scalar, the function applies that shift to each column of data.
• If DELAY is a vector whose length equals the number of columns of data, the function

shifts each column by the corresponding vector entry.
• If DELAY is a vector and data has one column, the function shifts data by each entry

in DELAY independently. The number of columns in shifted_data is the vector
length of DELAY. The kth column of shifted_data is the result of shifting data by
DELAY(k).

shifted_data = delayseq(data,DELAY,Fs) specifies DELAY in seconds. Fs is the
sampling frequency of data. If DELAY is not divisible by the reciprocal of the sampling
frequency, delayseq interpolates to implement a fractional delay or advance of data.

Input Arguments

data

Vector or matrix of real or complex data.

 delayseq

2-91

DELAY

Amount by which to delay or advance the input. If you specify the optional Fs argument,
DELAY is in seconds; otherwise, DELAY is in samples.

Fs

Sampling frequency of the data in hertz. If you specify this argument, the function
assumes DELAY is in seconds.

Default: 1

Output Arguments

shifted_data

Result of delaying or advancing the data. shifted_data has the same number of rows
as data, with appropriate truncations or zero padding.

Examples

Implement integer delay of input sequence in seconds.

Fs = 1e4;

t = 0:1/Fs:0.005;

data = cos(2*pi*1000*t)'; % data is a column vector

% Delay input by 0.5 milliseconds (5 samples)

shifted_data = delayseq(data,0.0005,Fs);

subplot(211);

plot(t.*1000,data); title('Input');

subplot(212);

plot(t.*1000,shifted_data); title('0.5-millisecond delay');

xlabel('milliseconds');

2 Functions-Alphabetical List

2-92

Implement fractional delay of input sequence in seconds.

Fs = 1e4;

t = 0:1/Fs:0.005;

data = cos(2*pi*1000*t)'; % data is a column vector

% Delay input by 0.75 milliseconds (7.5 samples)

shifted_data = delayseq(data,0.00075,Fs);

figure;

subplot(211);

plot(t.*1000,data); title('Input');

subplot(212);

plot(t.*1000,shifted_data);

title('0.75-millisecond (fractional) delay');

axis([0 5 -1.1 1.1]); xlabel('milliseconds');

 delayseq

2-93

Note that the values of the shifted sequence differ from the input because of the
interpolation resulting from the fractional delay.

See Also
phased.TimeDelayBeamformer

Introduced in R2011a

2 Functions-Alphabetical List

2-94

depressionang
Depression angle of surface target

Syntax

depAng = depressionang(H,R)

depAng = depressionang(H,R,MODEL)

depAng = depressionang(H,R,MODEL,Re)

Description

depAng = depressionang(H,R) returns the depression angle from the horizontal at
an altitude of H meters to surface targets. The sensor is H meters above the surface. R
is the range from the sensor to the surface targets. The computation assumes a curved
earth model with an effective earth radius of approximately 4/3 times the actual earth
radius.

depAng = depressionang(H,R,MODEL) specifies the earth model used to compute the
depression angle. MODEL is either 'Flat' or 'Curved'.

depAng = depressionang(H,R,MODEL,Re) specifies the effective earth radius.
Effective earth radius applies to a curved earth model. When MODEL is 'Flat', the
function ignores Re.

Input Arguments

H

Height of the sensor above the surface, in meters. This argument can be a scalar or a
vector. If both H and R are nonscalar, they must have the same dimensions.

R

Distance in meters from the sensor to the surface target. This argument can be a scalar
or a vector. If both H and R are nonscalar, they must have the same dimensions. R must
be between H and the horizon range determined by H.

 depressionang

2-95

MODEL

Earth model, as one of | 'Curved' | 'Flat' |.

Default: 'Curved'

Re

Effective earth radius in meters. This argument requires a positive scalar value.

Default: effearthradius, which is approximately 4/3 times the actual earth radius

Output Arguments

depAng

Depression angle, in degrees, from the horizontal at the sensor altitude toward surface
targets R meters from the sensor. The dimensions of depAng are the larger of size(H)
and size(R).

Examples

Calculate the depression angle for a ground clutter patch that is 1000 m away from the
sensor. The sensor is located on a platform that is 300 m above the ground.

depang = depressionang(300,1000);

More About

Depression Angle

The depression angle is the angle between a horizontal line containing the sensor and the
line from the sensor to a surface target.

2 Functions-Alphabetical List

2-96

H

Sensor

Target

R

Depression

angle

Earth

For the curved earth model with an effective earth radius of Re, the depression angle is:

sin
()

- + +
+

Ê

Ë
Á
Á

ˆ

¯
˜
˜

1
2 2

2

2

H HR R

R H R

e

e

For the flat earth model, the depression angle is:

sin
- Ê

ËÁ
ˆ
¯̃

1 H

R

References

[1] Long, Maurice W. Radar Reflectivity of Land and Sea, 3rd Ed. Boston: Artech House,
2001.

[2] Ward, J. “Space-Time Adaptive Processing for Airborne Radar Data Systems,”
Technical Report 1015, MIT Lincoln Laboratory, December, 1994.

See Also
grazingang | horizonrange

Introduced in R2011b

 dop2speed

2-97

dop2speed
Convert Doppler shift to speed

Syntax

radvel = dop2speed(Doppler_shift,wavelength)

Description

radvel = dop2speed(Doppler_shift,wavelength) returns the radial
velocity in meters per second. This value corresponds to the one-way Doppler shift,
Doppler_shift, for the wavelength wavelength in meters.

Definitions

The following equation defines the speed of a source relative to a receiver based on the
one-way Doppler shift:

V fs r, = D l

where Vs,r denotes the radial velocity of the source relative to the receiver, Δf, is the
Doppler shift in hertz, and λ is the carrier frequency wavelength in meters.

Examples

Calculate the speed of an automobile for continuous-wave radar based on the Doppler
shift.

f0=24.15e9; % 24.15 GHz carrier

lambda=physconst('LightSpeed')/f0; % wavelength

% Assume Doppler shift of 2880 Hz

radvel = dop2speed(2880,lambda);

% Roughly 35.75 meters per second (80 miles/hour)

2 Functions-Alphabetical List

2-98

References

[1] Rappaport, T. Wireless Communications: Principles & Practices. Upper Saddle River,
NJ: Prentice Hall, 1996.

[2] Skolnik, M. Introduction to Radar Systems, 3rd Ed. New York: McGraw-Hill, 2001.

See Also
dopsteeringvec | speed2dop

Introduced in R2011a

 dopsteeringvec

2-99

dopsteeringvec

Doppler steering vector

Syntax

DSTV = dopsteeringvec(dopplerfreq,numpulses)

DSTV = dopsteeringvec(dopplerfreq,numpulses,PRF)

Description

DSTV = dopsteeringvec(dopplerfreq,numpulses) returns the N-by-1 temporal
(time-domain) Doppler steering vector for a target at a normalized Doppler frequency of
dopplerfreq in hertz. The pulse repetition frequency is assumed to be 1 Hz.

DSTV = dopsteeringvec(dopplerfreq,numpulses,PRF) specifies the pulse
repetition frequency, PRF.

Input Arguments

dopplerfreq

The Doppler frequency in hertz. The normalized Doppler frequency is the Doppler
frequency divided by the pulse repetition frequency.

numpulses

The number of pulses. The time-domain Doppler steering vector consists of numpulses
samples taken at intervals of 1/PRF (slow-time samples).

PRF

Pulse repetition frequency in hertz. The time-domain Doppler steering vector consists of
numpulses samples taken at intervals of 1/PRF (slow-time samples). The normalized
Doppler frequency is the Doppler frequency divided by the pulse repetition frequency.

2 Functions-Alphabetical List

2-100

Output Arguments

DSTV

Temporal (time-domain) Doppler steering vector. DSTV is an N-by-1 column vector where
N is the number of pulses, numpulses.

Examples

Calculate the steering vector corresponding to a Doppler frequency of 200 Hz, assuming
there are 10 pulses and the PRF is 1 kHz.

dstv = dopsteeringvec(200,10,1000);

More About

Temporal Doppler Steering Vector

The temporal (time-domain) steering vector corresponding to a point scatterer is:

e
j f T nd p2p

where n=0,1,2, ..., N-1 are slow-time samples (one sample from each pulse), fd is the
Doppler frequency, and Tp is the pulse repetition interval. The product of the Doppler
frequency and the pulse repetition interval is the normalized Doppler frequency.

References

[1] Melvin, W. L. “A STAP Overview,” IEEE Aerospace and Electronic Systems Magazine,
Vol. 19, Number 1, 2004, pp. 19–35.

[2] Richards, M. A. Fundamentals of Radar Signal Processing. New York: McGraw-Hill,
2005.

See Also
dop2speed | speed2dop

 dopsteeringvec

2-101

Introduced in R2011a

2 Functions-Alphabetical List

2-102

effearthradius
Effective earth radius

Syntax
Re = effearthradius

Re = effearthradius(RGradient)

Description
Re = effearthradius returns the effective radius of spherical earth in meters. The
calculation uses a refractivity gradient of -39e-9. As a result, Re is approximately 4/3 of
the actual earth radius.

Re = effearthradius(RGradient) specifies the refractivity gradient.

Input Arguments

RGradient

Refractivity gradient in units of 1/meter. This value must be a nonpositive scalar.

Default: -39e-9

Output Arguments

Re

Effective earth radius in meters.

More About

Effective Earth Radius

The effective earth radius is a scaling of the actual earth radius. The scale factor is:

 effearthradius

2-103

1

1 + ◊r RGradient

where r is the actual earth radius in meters and RGradient is the refractivity gradient.
The refractivity gradient, which depends on the altitude, is the rate of change of
refraction index with altitude. The refraction index for a given altitude is the ratio
between the free-space propagation speed and the propagation speed in the air band at
that altitude.

The most commonly used scale factor is 4/3. This value corresponds to a refractivity
gradient of - ¥

- -
39 10

9 1
 m .

References

[1] Skolnik, M. Introduction to Radar Systems, 3rd Ed. New York: McGraw-Hill, 2001.

See Also
depressionang | horizonrange

Introduced in R2011b

2 Functions-Alphabetical List

2-104

espritdoa
Direction of arrival using TLS ESPRIT

Syntax

ang = espritdoa(R,nsig)

ang = espritdoa(___ ,Name,Value)

Description

ang = espritdoa(R,nsig) estimates the directions of arrival, ang, of a set of plane
waves received on a uniform line array (ULA). The estimation employs the TLS ESPRIT,
the total least-squares ESPRIT, algorithm. The input arguments are the estimated
spatial covariance matrix between sensor elements, R, and the number of arriving
signals, nsig. In this syntax, sensor elements are spaced one-half wavelength apart.

ang = espritdoa(___ ,Name,Value) estimates the directions of arrival with
additional options specified by one or more Name,Value pair arguments. This syntax can
use any of the input arguments in the previous syntax.

Examples

Three Signals Arriving at Half-Wavelength-Spaced ULA

Assume a half-wavelength spaced uniform line array with 10 elements. Three plane
waves arrive from the 0°, –25°, and 30° azimuth directions. Elevation angles are 0°. The
noise is spatially and temporally white. The SNR for each signal is 5 dB. Find the arrival
angles.

N = 10;

d = 0.5;

elementPos = (0:N-1)*d;

angles = [0 -25 30];

Nsig = 3;

R = sensorcov(elementPos,angles,db2pow(-5));

doa = espritdoa(R,Nsig)

 espritdoa

2-105

doa =

 30.0000 0.0000 -25.0000

The espritdoa functions produces the correct angles.

Three Signals Arriving at 0.4-Wavelength-Spaced ULA

Assume a uniform line array with 10 element. The element spacing is smaller than one-
half wavelength. Three plane waves arrive from the 0°, –25°, and 30° azimuth directions.
Elevation angles are 0°. The noise is spatially and temporally white. The SNR for each
signal is 5 dB.

Set the ElementSpacing property value to the interelement spacing. Find the arrival
angles.

N = 10;

d = 0.4;

elementPos = (0:N-1)*d;

angles = [0 -25 30];

Nsig = 3;

R = sensorcov(elementPos,angles,db2pow(-5));

doa = espritdoa(R,Nsig,'ElementSpacing',d)

doa =

 30.0000 0.0000 -25.0000

The espritdoa functions again produces the correct angles.

Input Arguments

R — Spatial covariance matrix
complex-valued positive-definite N-by-N matrix.

Spatial covariance matrix, specified as a complex-valued, positive-definite, N-by-N
matrix. In this matrix, N represents the number of elements in the ULA array. If R is
not Hermitian, a Hermitian matrix is formed by averaging the matrix and its conjugate
transpose, (R+R')/2.

Example: [4.3162, –0.2777 – 0.2337i; –0.2777 + 0.2337i , 4.3162]
Data Types: double

2 Functions-Alphabetical List

2-106

Complex Number Support: Yes

nsig — Number of arriving signals
positive integer

Number of arriving signals, specified as a positive integer.
Example: 3
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: ‘ElementSpacing’, 0.45

'ElementSpacing' — ULA element spacing
0.5 (default) | real-valued positive scalar

ULA element spacing, specified as a real-valued, positive scalar. Position units are
measured in terms of signal wavelength.
Example: 0.4
Data Types: double

'RowWeighting' — Row weights
1 (default) | real-valued positive scalar

Row weights specified as a real-valued positive scalar. These weights are applied to the
selection matrices which determine the ESPRIT subarrays. A larger value is generally
better but the value must be less than or equal to (Ns–1)/2, where Ns is the number of
subarray elements. The number of subarray elements is Ns = N–1. The value of N is the
number of ULA elements, as specified by the dimensions of the spatial covariance matrix,
R. A detailed discussion of selection matrices and row weighting can be found in Van
Trees [1], p. 1178.
Example: 5
Data Types: double

 espritdoa

2-107

Output Arguments

ang — Directions of arrival angles
real-valued 1-by-M row vector

Directions of arrival angle returned as a real-valued, 1-by-M vector. The dimension M
is the number of arriving signals specified in the argument, nsig. This angle is the
broadside angle. Angle units are degrees and angle values lie between –90° and 90°.

References

[1] Van Trees, H.L. Optimum Array Processing. New York: Wiley-Interscience, 2002.

See Also
aictest | mdltest | phased.ESPRITEstimator | rootmusicdoa | spsmooth

Introduced in R2013a

2 Functions-Alphabetical List

2-108

fogpl
RF signal attenuation due to fog and clouds

Syntax
L = fogpl(R,freq,T,den)

Description
L = fogpl(R,freq,T,den) returns attenuation, L, when signals propagate in fog or
clouds. R represents the signal path length. freq represents the signal carrier frequency,
T is the ambient temperature, and den specifies the liquid water density in the fog or
cloud.

The fogpl function applies the International Telecommunication Union (ITU) cloud and
fog attenuation model to calculate path loss of signals propagating through clouds and
fog [1]. Fog and clouds are the same atmospheric phenomenon, differing only by height
above ground. Both environments are parameterized by their liquid water density. Other
model parameters include signal frequency and temperature. This function applies when
the signal path is contained entirely in a uniform fog or cloud environment. The liquid
water density does not vary along the signal path. The attenuation model applies only for
frequencies at 10–1000 GHz.

Examples
Attenuation in Cumulus Clouds

Compute the attenuation of signals propagating through a cloud that is 1 km long at
1000 meters altitude. Compute the attenuation for frequencies from 15 to 1000 GHz.
A typical value for the cloud liquid water density is 0.5 . Assume the atmospheric
temperature at 1000 meters is 20°C.

R = 1000.0;

freq = [15:5:1000]*1e9;

T = 20.0;

lwd = 0.5;

L = fogpl(R,freq,T,lwd);

 fogpl

2-109

Plot the specific attenuation as a function of frequency. Specific attenuation is the
attenuation or loss per kilometer.

loglog(freq/1e9,L)

grid

xlabel('Frequency (GHz)')

ylabel('Specific Attenuation (dB/km)')

Input Arguments
R — Signal path length
positive real-valued scalar | M-by-1 nonnegative real-valued vector | 1-by-M
nonnegative real-valued vector

2 Functions-Alphabetical List

2-110

Signal path length, specified as a scalar or as an M-by-1 or 1-by-M vector of nonnegative
real-values. Total attenuation is the specific attenuation multiplied by the path length.
Units are meters.
Example: [1300.0,1400.0]

freq — Signal frequency
positive real-valued scalar | N-by-1 nonnegative real-valued column vector | 1-by-N
nonnegative real-valued row vector

Signal frequency, specified as a positive real-valued scalar or as an N-by-1 nonnegative
real-valued vector or 1-by-N nonnegative real-valued vector. Frequencies must lie in the
range 10–1000 GHz.
Example: [14.0e9,15.0e9]

T — Ambient temperature
real-valued scalar

Ambient temperature in fog or cloud, specified as a real-valued scalar. Units are in
degrees Celsius.
Example: -10.0

den — Liquid water density
nonnegative real-valued scalar

Liquid water density, specified as a nonnegative real-valued scalar. Units are g/m3.
Typical values for liquid water density in fog range from approximately 0.05 g/m3 for
medium fog to approximately 0.5 g/m3 for thick fog. For medium fog, visibility is about 50
meters. For heavy fog, visibility is about 300 meters. Cumulus cloud liquid water density
is typically 0.5 g/m3.
Example: 0.01

Output Arguments

L — Signal attenuation
real-valued M-by-N matrix

 fogpl

2-111

Signal attenuation, returned as a real-valued M-by-N matrix. Each matrix row
represents a different path where M is the number of paths. Each column represents a
different frequency where N is the number of frequencies. Units are in dB.

More About

Fog and Cloud Attenuation Model

This model calculates the attenuation of signals that propagate through fog or clouds.

Fog and cloud attenuation are the same atmospheric phenomenon. Phased Array System
Toolbox uses the ITU model, Recommendation ITU-R P.840-6: Attenuation due to clouds
and fog. The model computes the specific attenuation (attenuation per kilometer), of
a signal as a function of liquid water density, signal frequency, and temperature. The
model applies to polarized and nonpolarized fields. The formula for specific attenuation
at each frequency is

g c lK f M= () ,

where M is the liquid water density in gm/m3. The quantity Kl(f) is the specific
attenuation coefficient and depends on frequency. The cloud and fog attenuation model is
valid for frequencies 10–1000 GHz. Units for the specific attenuation coefficient are (dB/
km)/(g/m3).

To compute the total attenuation for narrowband signals along a path, the function
multiplies the specific attenuation by the path length R. Total attenuation is Lc = Rγc.

You can apply the attenuation model to wideband signals. First, divide the wideband
signal into frequency subbands, and apply narrowband attenuation to each subband.
Then, sum all attenuated subband signals into the total attenuated signal.

References

[1] Radiocommunication Sector of International Telecommunication Union.
Recommendation ITU-R P.840-6: Attenuation due to clouds and fog. 2013.

See Also
fspl | gaspl | LOSChannel | rainpl | WidebandLOSChannel

2 Functions-Alphabetical List

2-112

Introduced in R2016a

 fspl

2-113

fspl
Free space path loss

Syntax

L = fspl(R,lambda)

Description

L = fspl(R,lambda) returns the free space path loss in decibels for a waveform with
wavelength lambda propagated over a distance of R meters. The minimum value of L is
zero, indicating no path loss.

Input Arguments

R

real-valued 1-by-M or M-by-1 vector

Propagation distance of signal. Units are in meters.

lambda

real-valued 1-by-N or N-by-1 vector

The wavelength is the speed of propagation divided by the signal frequency. Wavelength
units are meters.

Output Arguments

L

Path loss in decibels. M-by-N nonnegative matrix. A value of zero signifies no path loss.
When lambda is a scalar, L has the same dimensions as R.

2 Functions-Alphabetical List

2-114

Examples

Calculate free space path loss in decibels incurred by a 10-gigahertz wave over a distance
of 10 kilometers.

lambda = physconst('LightSpeed')/10e9;

R = 10e3;

L = fspl(R,lambda);

More About

Free Space Path Loss

The free-space path loss, L, in decibels is:

L
R

= 20
4

10log ()
p

l

This formula assumes that the target is in the far-field of the transmitting element or
array. In the near-field, the free-space path loss formula is not valid and can result in a
loss smaller than 0 dB, equivalent to a signal gain. For this reason, the loss is set to 0 dB
for range values R ≤ λ/4π.

References

[1] Proakis, J. Digital Communications. New York: McGraw-Hill, 2001.

See Also
phased.FreeSpace

Introduced in R2011a

 gain2aperture

2-115

gain2aperture
Convert gain to effective aperture

Syntax

A = gain2aperture(G,lambda)

Description

A = gain2aperture(G,lambda) returns the effective aperture in square meters
corresponding to a gain of G decibels for an incident electromagnetic wave with
wavelength lambda meters. G can be a scalar or vector. If G is a vector, A is a vector
of the same size as G. The elements of A represent the effective apertures for the
corresponding elements of G. lambda must be a scalar.

Input Arguments

G

Antenna gain in decibels. G is a scalar or a vector. If G is a vector, each element of G is the
gain in decibels of a single antenna.

lambda

Wavelength of the incident electromagnetic wave. The wavelength of an electromagnetic
wave is the ratio of the wave propagation speed to the frequency. For a fixed effective
aperture, the antenna gain is inversely proportional to the square of the wavelength.
lambda must be a scalar.

Output Arguments

A

Antenna effective aperture in square meters. The effective aperture describes how much
energy is captured from an incident electromagnetic plane wave. The argument describes

2 Functions-Alphabetical List

2-116

the functional area of the antenna and is not equivalent to the actual physical area. For
a fixed wavelength, the antenna gain is proportional to the effective aperture. A can
be a scalar or vector. If A is a vector, each element of A is the effective aperture of the
corresponding gain in G.

Examples

An antenna has a gain of 3 dB. Calculate the antenna’s effective aperture when used to
capture an electromagnetic wave with a wavelength of 10 cm.

a = gain2aperture(3,0.1);

More About

Gain and Effective Aperture

The relationship between the gain, G, in decibels of an antenna and the antenna’s
effective aperture is:

Ae
G

= 10
4

10
2

/ l

p

where λ is the wavelength of the incident electromagnetic wave.

References

[1] Skolnik, M. Introduction to Radar Systems, 3rd Ed. New York: McGraw-Hill, 2001.

See Also
aperture2gain

Introduced in R2011a

 gaspl

2-117

gaspl

RF signal attenuation due to atmospheric gases

Syntax

L = gaspl(range,freq,T,P,den)

Description

L = gaspl(range,freq,T,P,den) returns the attenuation, L, when signals propagate
through the atmosphere. range represents the signal path length, and freq represents
the signal carrier frequency. T represents the ambient temperature, P represents the
atmospheric pressure, and den represents the atmospheric water vapor density.

The gaspl function applies the International Telecommunication Union (ITU)
atmospheric gas attenuation model [1] to calculate path loss for signals primarily due
to oxygen and water vapor. The model computes attenuation as a function of ambient
temperature, pressure, water vapor density, and signal frequency. The function requires
that the signal path is contained entirely in a uniform environment. Atmospheric
parameters do not vary along the signal path. The attenuation model applies only for
frequencies at 1–1000 GHz.

Examples

Atmospheric Gas Attenuation Spectrum

Compute the attenuation spectrum from 1–1000 GHz for an atmospheric pressure of
101.300 kPa and a temperature of 15°C. Plot the spectrum for a water vapor density of
7.5 and then plot the spectrum for dry air (zero water vapor density).

Set the attenuation frequencies.

freq = [1:1000]*1e9;

2 Functions-Alphabetical List

2-118

Assume a 1 km path distance.

R = 1000.0;

Compute the attenuation for air containing water vapor.

T = 15;

P = 101300.0;

W = 7.5;

L = gaspl(R,freq,T,P,W);

Compute the attenuation for dry air.

L0 = gaspl(R,freq,T,P,0.0);

Plot the attenuations.

semilogy(freq/1e9,L)

hold on

semilogy(freq/1e9,L0)

grid

xlabel('Frequency (GHz)')

ylabel('Specific Attenuation (dB)')

hold off

 gaspl

2-119

Plot Attenuation Due to Atmospheric Gases and Free Space

First, plot the specific attenuation of atmospheric gases for frequencies from 1 GHz to
1000 GHz. Assume a sea-level dry air pressure of 101.325e5 kPa and a water vapor
density of 7.5 . The air temperature is 20 Celsius. Specific attenuation is defined as
dB loss per kilometer. Then, plot the actual attenuation at 10 GHz for a span of ranges.

Plot Specific Atmospheric Gas Attenuation

Set the atmosphere temperature, pressure, water vapor density.

T = 20.0;

Patm = 101.325e3;

2 Functions-Alphabetical List

2-120

rho_wv = 7.5;

Set the propagation distance, speed of light, and frequencies.

km = 1000.0;

c = physconst('LightSpeed');

freqs = [1:1000]*1e9;

Compute and plot the atmospheric gas loss.

loss = gaspl(km,freqs,T,Patm,rho_wv);

semilogy(freqs/1e9,loss)

grid on

xlabel('Frequency (GHz)')

ylabel('Specific Attenuation (dB/km)')

 gaspl

2-121

Plot Actual Atmospheric and Free Space Attenuation

Compute both free space loss and atmospheric gas loss at 10 GHz for ranges from 1–100
km. The frequency corresponds to an X-band radar. Then, plot the free space loss and the
total (atmospheric + free space) loss.

ranges = [1:100]*1000;

freq_xband = 10e9;

loss_gas = gaspl(ranges,freq_xband,T,Patm,rho_wv);

lambda = c/freq_xband;

loss_fsp = fspl(ranges,lambda);

semilogx(ranges/1000,loss_gas + loss_fsp.',ranges/1000,loss_fsp)

legend('Atmospheric + Free Space Loss','Free Space Loss','Location','SouthEast')

xlabel('Range (km)')

ylabel('Loss (dB)')

2 Functions-Alphabetical List

2-122

Input Arguments

range — Signal path length
nonnegative real-valued scalar | M-by-1 nonnegative real-valued column vector | 1-by-M
nonnegative real-valued row vector

Signal path length used to compute attenuation, specified as a nonnegative real-valued
scalar or vector. You can specify multiple path lengths simultaneously. Units are in
meters.
Example: [13000.0,14000.0]

 gaspl

2-123

freq — Signal frequency
positive real-valued scalar | N-by-1 nonnegative real-valued column vector | 1-by-N
nonnegative real-valued row vector

Signal frequency, specified as a positive real-valued scalar, or as an N-by-1 nonnegative
real-valued vector or 1-by-N nonnegative real-valued vector. You can specify multiple
frequencies simultaneously. Frequencies must lie in the range 1–1000 GHz. Units are in
hertz.
Example: [1.4e9,2.0e9]

T — Ambient temperature
real-valued scalar

Ambient temperature, specified as a real-valued scalar. Units are in degrees Celsius.
Example: -10.0

P — Ambient pressure
positive real-valued scalar

Ambient pressure, specified as a positive real-valued scalar. Units are in Pascals. One
standard atmosphere at sea level is 101.325 kPa.
Example: 101300.0

den — Water vapor density
nonnegative real-valued scalar

Water vapor density or absolute humidity, specified as a nonnegative real-valued scalar.
Units are g/m3. The maximum water vapor density of air at 30° C is approximately 30.0
g/m3. The maximum water vapor density of air at 0°C is approximately 5.0 g/m3.
Example: 4.0

Output Arguments

L — Signal attenuation
real-valued M-by-N matrix

Signal attenuation, returned as a real-valued M-by-N matrix. Each matrix row
represents a different path where M is the number of paths. Each column represents a
different frequency where N is the number of frequencies. Units are in dB.

2 Functions-Alphabetical List

2-124

More About

Atmospheric Gas Attenuation Model

This model calculates the attenuation of signals that propagate through atmospheric
gases.

Electromagnetic signals are attenuated when they propagate through the atmosphere.
This effect is primarily due to the absorption resonance lines of oxygen and water
vapor, with smaller contributions coming from nitrogen gas. The model also includes
a continuous absorption spectrum below 10 GHz. Phased Array System Toolbox uses
the ITU model Recommendation ITU-R P.676-10: Attenuation by atmospheric gases.
The model computes specific attenuation (attenuation per kilometer) as a function of
temperature, pressure, water vapor density, and signal frequency. The model applies to
polarized and nonpolarized fields.

The formula for specific attenuation at each frequency is

g g g= + = ¢¢o wf f fN f() () . ().0 1820

The quantity N"(f) is the imaginary part of the complex atmospheric refractivity and
consists of a spectral line component and a continuous component:

¢¢ = + ¢¢ÂN f S F N fi i D
i

() ()

The spectral component consists of a sum of discrete spectrum terms composed of a
localized frequency bandwidth function, F(f)i, multiplied by a spectral line strength, Si.
For atmospheric oxygen, each spectral line strength is given by

S a
T

a
T

Pi = ¥ Ê
Ë
Á

ˆ
¯
˜ -Ê

Ë
Á

ˆ
¯
˜

È

Î
Í

˘

˚
˙

-
1

7
3

210
300

1
300

exp (.

For atmospheric water vapor, each spectral line strength is given by

S b
T

b
T

Wi = ¥ Ê
Ë
Á

ˆ
¯
˜ - Ê

Ë
Á

ˆ
¯
˜

È

Î
Í

˘

˚
˙

-
1

1
3 5

210
300

1
300

.

exp (.

 gaspl

2-125

P is the atmospheric pressure, W is the water vapor density, and T is the ambient
temperature.

For each oxygen line, Si depends on constants a1 and a2. Similarly, each water vapor
line has constants b1 and b2. You can find these constants tabulated in the ITU
documentation. The atmospheric gas model is valid for frequencies at 1–1000 GHz.

The localized frequency bandwidth functions Fi(f) are complicated functions of frequency
described in the reference cited previously. They depend upon empirical model
parameters that are also tabulated in the reference.

To compute the total attenuation for narrowband signals along a path, the function
multiplies the specific attenuation by the path length, R. Then, the total attenuation is
Lg= R(γo + γw).

You can apply the attenuation model to wideband signals. First, divide the wideband
signal into frequency subbands, and apply attenuation to each subband. Then, sum all
attenuated subband signals into the total attenuated signal.

References

[1] Radiocommunication Sector of International Telecommunication Union.
Recommendation ITU-R P.676-10: Attenuation by atmospheric gases 2013.

See Also
fogpl | fspl | LOSChannel | rainpl | WidebandLOSChannel

Introduced in R2016a

2 Functions-Alphabetical List

2-126

gccphat

Generalized cross-correlation

Syntax

tau = gccphat(sig,refsig)

tau = gccphat(sig,refsig,fs)

[tau,R,lag] = gccphat(___)

[___] = gccphat(sig)

[___] = gccphat(sig,fs)

Description

tau = gccphat(sig,refsig) computes the time delay, tau, between the signal,
sig, and a reference signal, refsig. Both sig and refsig can have multiple channels.
The function assumes that the signal and reference signal come from a single source.
To estimate the delay, gccphat finds the location of the peak of the cross-correlation
between sig and refsig. The cross-correlation is computed using the generalized cross-
correlation phase transform (GCC-PHAT) algorithm. Time delays are multiples of the
sample interval corresponding to the default sampling frequency of one hertz.

tau = gccphat(sig,refsig,fs), specifies the sampling frequency of the signal. Time
delays are multiples of the sample interval corresponding to the sampling frequency. All
input signals should have the same sample rate.

[tau,R,lag] = gccphat(___) returns, in addition, the cross-correlation values and
correlation time lags, using any of the arguments from previous syntaxes. The lags are
multiples of the sampling interval. The number of cross-correlation channels equals the
number of channels in sig.

[___] = gccphat(sig) or [___] = gccphat(sig,fs) returns the estimated
delays and cross correlations between all pairs of channels in sig. If sig has M columns,
the resulting tau and R have M2 columns. In these syntaxes, no reference signal input is
used. The first M columns of tau and R contain the delays and cross correlations that use

 gccphat

2-127

the first channel as the reference. The second M columns contain the delays and cross-
correlations that use the second channel as the reference, and so on.

Examples

Cross-Correlation Between Two Signals and Reference Signal

Load a gong sound signal. Use the gong signal as a refrence signal. Then, duplicate the
signal twice, introducing time delays of 5 and 25 seconds. Leave the sampling rate to
its default of one hertz. Use gccphat to estimate the time delays between the delayed
signals and the reference signal.

load gong;

refsig = y;

delay1 = 5;

delay2 = 25;

sig1 = delayseq(refsig,delay1);

sig2 = delayseq(refsig,delay2);

tau_est = gccphat([sig1,sig2],refsig)

tau_est =

 5 25

Cross-Correlation Between Signal and Reference Signal

Load a gong sound signal. Use the gong signal as a reference signal. Then, duplicate the
signal, introducing a time delays of 5 milliseconds. Use the sampling rate of 8192 Hz. Use
gccphat to estimate the time delay between the delayed signal and the reference signal.

load gong;

delay = 0.005;

refsig = y;

sig = delayseq(refsig,delay,Fs);

tau_est = gccphat(sig,refsig,Fs)

tau_est =

 0.0050

2 Functions-Alphabetical List

2-128

Plot Cross-Correlation of Three Signals with Reference Signal

Load a musical sound signal with a sample rate is 8192 hertz. Then, duplicate the signal
three times and introduce time delays between the signals. Estimate the time delays
between the delayed signals and the reference signals. Plot the correlation values.

load handel;

dt = 1/Fs;

refsig = y;

Create three delayed versions of the signal.

delay1 = -5.2*dt;

delay2 = 10.3*dt;

delay3 = 7*dt;

sig1 = delayseq(refsig,delay1,Fs);

sig2 = delayseq(refsig,delay2,Fs);

sig3 = delayseq(refsig,delay3,Fs);

Cross-correlate the delayed signals with the reference signal.

[tau_est,R,lags] = gccphat([sig1,sig2,sig3],refsig,Fs);

The gccphat functions estimates the delay to the nearest sample interval.

disp(tau_est*Fs)

 -5 10 7

Plot the correlation functions.

plot(1000*lags,real(R(:,1)))

xlabel('Lag Times (ms)')

ylabel('Cross-correlation')

axis([-5,5,-.4,1.1])

hold on

plot(1000*lags,real(R(:,2)))

plot(1000*lags,real(R(:,3)))

hold off

 gccphat

2-129

Plot Cross-Correlation of Several Signals

Load a musical sound signal with a sample rate is 8192 hertz. Then, duplicate the signal
two times and introduce time delays between the two signals and the reference signal.
Estimate the time delays and plot the cross-correlation function between all pairs of
signals.

load handel;

dt = 1/Fs;

refsig = y;

Create three delayed versions of the signal.

delay1 = -5.7*dt;

2 Functions-Alphabetical List

2-130

delay2 = 10.2*dt;

sig1 = delayseq(refsig,delay1,Fs);

sig2 = delayseq(refsig,delay2,Fs);

Cross-correlate all signals with the other signal.

[tau_est,R,lags] = gccphat([refsig,sig1,sig2],Fs);

Show the time delays in units of sample interval. The algorithm estimates time delays
quantized to the nearest sample interval. Cross-correlation of three signals produce 9
possible time delays, one for each possible signal pair.

disp(tau_est*Fs)

 0 -6 10 6 0 16 -10 -16 0

A signal correlated with itself gives zero lag.

Plot the correlation functions.

for n=1:9

 plot(1000*lags,real(R(:,n)))

 if n==1

 hold on

 xlabel('Lag Times (ms)')

 ylabel('Correlation')

 axis([-5,5,-.4,1.1])

 end

end

hold off

 gccphat

2-131

Input Arguments

sig — Sensor signals
N-by-1 complex-valued column vector | N-by-M complex-valued matrix

Sensor signals, specified as an N-by-1 column vector or an N-by-M matrix. N is the
number of time samples and M is the number of channels. If sig is a matrix, each
column is a different channel.
Example: [0,1,2,3,2,1,0]

Data Types: double

2 Functions-Alphabetical List

2-132

Complex Number Support: Yes

refsig — Reference sensor signals
N-by-1 complex-valued column vector | N-by-M complex-valued matrix

Reference signals, specified as an N-by-1 complex-valued column vector or an N-by-M
complex-valued matrix. If refsig is a column vector, then all channels in sig use
refsig as the reference signal when computing the cross-correlation.

If refsig is a matrix, then the size of refsig must match the size of sig. The gccphat
function computes the cross-correlation between corresponding channels in sig and
refsig. The signals can come from different sources.

Example: [1,2,3,2,1,0,0]

Data Types: double
Complex Number Support: Yes

fs — Signal sample rate
1 (default) | positive real-valued scalar

Signal sample rate, specified as a positive real-valued scalar. All signals should have the
same sample rate. Sample rate units are in hertz.
Example: 8000
Data Types: double
Complex Number Support: Yes

Output Arguments
tau — Time delay
1-by-K real-valued row vector

Time delay, returned as a 1-by-K real-valued row vector. The value of K depends upon
the input argument syntax.

• When a reference signal, refsig, is used, the value of K equals the column dimension
of sig, M. Each entry in tau specifies the estimated delay for the corresponding
signal pairs in sig and refsig.

• When no reference signal is used, the value of K equals the square of the column
dimension of sig, M2. Each entry in tau specifies the estimated delay for the
corresponding signal pairs in sig.

 gccphat

2-133

Units are seconds.

R — Cross-correlation between signals
(2N+1)-by-K complex-valued matrix

Cross-correlation between signals at different sensors, returned as a (2N+1)-by-K
complex-valued matrix.

• When a reference signal, refsig, is used, the value of K equals the column dimension
of sig, M. Each column is the cross-correlation between the corresponding signal
pairs in sig and refsig.

• When no reference signal is used, the value of K equals the square of the column
dimension of sig, M2. Each column is the cross-correlation between the corresponding
signal pairs in sig.

lag — Cross-correlation lag times
(2N+1) real-valued column vector

Correlation lag times, returned as a (2N+1) real-valued column vector. Each row of lag
contains the lag time for the corresponding row of R. Lag values are constrained to be
multiples of the sampling interval. Lag units are in seconds.

More About

Generalized Cross-Correlation

You can use generalized cross-correlation to estimate the time difference of arrival of a
signal at two different sensors.

A model of a signal emitted by a source and received at two sensors is given by:

r t s t n t

r t s t D n t

1 1

2 2

() = () + ()

() = -() + ()

where D is the time difference of arrival (TDOA), or time lag, of the signal at one sensor
with respect to the arrival time at a second sensor. You can estimate the time delay by
finding the time lag that maximizes the cross-correlation between the two signals.

2 Functions-Alphabetical List

2-134

From the TDOA, you can estimate the broadside arrival angle of the plane wave with
respect to the line connecting the two sensors. For two sensors separated by distance L,
the broadside arrival angle, “Broadside Angle”, is related to the time lag by

sinb
t

=
c

L

where c is the propagation speed in the medium.

A common method of estimating time delay is to compute the cross-correlation between
signals received at two sensors. To identify the time delay, locate the peak in the cross-
correlation. When the signal-to-noise ratio (SNR) is large, the correlation peak, τ,
corresponds to the actual time delay D.

R E r t r t

D R

() { () ()}

� ()argmax

t t

t

t

= +

=

1 2

When the correlation function is more sharply peaked, performance improves. You can
sharpen a cross correlation peak using a weighting function that whitens the input
signals. This technique is called generalized cross-correlation(GCC). One particular
weighting function normalizes the signal spectral density by the spectrum magnitude,
leading to the generalized cross-correlation phase transform method (GCC-PHAT).

S f R e d

R
S f

S f
e df

D

i f

i f

() ()

()
()

| ()|

ar

=

=

=

-•

• -

-•

• +

Ú

Ú

t t

t

p t

p t

2

2%

% ggmax ()
t

t %R

If you use just two sensor pairs, you can only estimate the broadside angle of arrival.
However, if you use multiple pairs of non-collinear sensors, for example, in a URA, you
can estimate the arrival azimuth and elevation angles of the plane wave using least-
square estimation. For N sensors, you can write the delay time τkj of a signal arriving at
the kth sensor with respect to the jth sensor by

c x x u

u i j k

kj k jt

a q a q q

= - -() ◊

= + +

r r r

r

cos sin � sin sin � cos �

 gccphat

2-135

where u is the unit propagation vector of the plane wave. The angles α and θ are the
azimuth and elevation angles of the propagation vector. All angles and vectors are
defined with respect to the local axes. You can solve the first equation using least-
squares to yield the three components of the unit propagation vector. Then, you can solve
the second equation for the azimuth and elevation angles.

References

[1] Knapp, C. H. and G.C. Carter, “The Generalized Correlation Method for Estimation of
Time Delay.” IEEE Transactions on Acoustics, Speech and Signal Processing. Vol.
ASSP-24, No. 4, Aug 1976.

[2] G. C. Carter, “Coherence and Time Delay Estimation.” Proceedings of the IEEE. Vol.
75, No. 2, Feb 1987.

See Also
phased.GCCEstimator

Introduced in R2015b

2 Functions-Alphabetical List

2-136

global2localcoord
Convert global to local coordinates

Syntax

lclCoord = global2localcoord(gCoord, OPTION)

gCoord = global2localcoord(___ ,localOrigin)

gCoord = global2localcoord(___ ,localAxes)

Description

lclCoord = global2localcoord(gCoord, OPTION) returns the local coordinate
lclCoord corresponding to the global coordinate gCoord. OPTION determines the type of
global-to-local coordinate transformation.

gCoord = global2localcoord(___ ,localOrigin) specifies the origin of the local
coordinate system.

gCoord = global2localcoord(___ ,localAxes) specifies the axes of the local
coordinate system.

Input Arguments

gCoord

Global coordinates in rectangular or spherical coordinate form. gCoord is a 3-by-1 vector
or 3-by-N matrix. Each column represents a global coordinate.

If the coordinates are in rectangular form, the column represents (X,Y,Z) in meters.

If the coordinates are in spherical form, the column represents (az,el,r). az is the azimuth
angle in degrees, el is the elevation angle in degrees, and r is the radius in meters.

The origin of the global coordinate system is at [0; 0; 0]. That system’s axes are the
standard unit basis vectors in three-dimensional space, [1; 0; 0], [0; 1; 0], and [0; 0; 1].

 global2localcoord

2-137

OPTION

Type of coordinate transformation. Valid strings are in the next table.

OPTION Transformation

'rr' Global rectangular to local rectangular
'rs' Global rectangular to local spherical
'sr' Global spherical to local rectangular
'ss' Global spherical to local spherical

localOrigin

Origin of local coordinate system. localOrigin is a 3-by-1 column vector containing the
rectangular coordinate of the local coordinate system origin with respect to the global
coordinate system.

Default: [0; 0; 0]

localAxes

Axes of local coordinate system. localAxes is a 3-by-3 matrix with the columns
specifying the local X, Y, and Z axes in rectangular form with respect to the global
coordinate system.

Default: [1 0 0;0 1 0;0 0 1]

Output Arguments
lclCoord

Local coordinates in rectangular or spherical coordinate form.

Examples
Convert between global and local coordinates in rectangular form.

lclCoord = global2localcoord([0; 1; 0], ...

'rr',[1; 1; 1]);

% Local origin is at [1; 1; 1]

% lclCoord = [0; 1; 0]-[1; 1; 1];

2 Functions-Alphabetical List

2-138

Convert global spherical coordinate to local rectangular coordinate.

lclCoord = global2localcoord([45; 45; 50],'sr',[50; 50; 50]);

% 45 degree azimuth, 45 degree elevation, 50 meter radius

More About

Azimuth Angle, Elevation Angle

The azimuth angle is the angle from the positive x-axis toward the positive y-axis, to the
vector’s orthogonal projection onto the xy plane. The azimuth angle is between –180 and
180 degrees. The elevation angle is the angle from the vector’s orthogonal projection onto
the xy plane toward the positive z-axis, to the vector. The elevation angle is between –90
and 90 degrees. These definitions assume the boresight direction is the positive x-axis.

Note: The elevation angle is sometimes defined in the literature as the angle a vector
makes with the positive z-axis. The MATLAB and Phased Array System Toolbox
products do not use this definition.

This figure illustrates the azimuth angle and elevation angle for a vector that appears
as a green solid line. The coordinate system is relative to the center of a uniform linear
array, whose elements appear as blue circles.

 global2localcoord

2-139

• “Global and Local Coordinate Systems”

References

[1] Foley, J. D., A. van Dam, S. K. Feiner, and J. F. Hughes. Computer Graphics:
Principles and Practice in C, 2nd Ed. Reading, MA: Addison-Wesley, 1995.

See Also
azel2phitheta | azel2uv | local2globalcoord | phitheta2azel | uv2azel

Introduced in R2011a

2 Functions-Alphabetical List

2-140

grazingang
Grazing angle of surface target

Syntax
grazAng = grazingang(H,R)

grazAng = grazingang(H,R,MODEL)

grazAng = grazingang(H,R,MODEL,Re)

Description
grazAng = grazingang(H,R) returns the grazing angle for a sensor H meters above
the surface, to surface targets R meters away. The computation assumes a curved earth
model with an effective earth radius of approximately 4/3 times the actual earth radius.

grazAng = grazingang(H,R,MODEL) specifies the earth model used to compute the
grazing angle. MODEL is either 'Flat' or 'Curved'.

grazAng = grazingang(H,R,MODEL,Re) specifies the effective earth radius. Effective
earth radius applies to a curved earth model. When MODEL is 'Flat', the function
ignores Re.

Input Arguments
H

Height of the sensor above the surface, in meters. This argument can be a scalar or a
vector. If both H and R are nonscalar, they must have the same dimensions.

R

Distance in meters from the sensor to the surface target. This argument can be a scalar
or a vector. If both H and R are nonscalar, they must have the same dimensions. R must
be between H and the horizon range determined by H.

MODEL

Earth model, as one of | 'Curved' | 'Flat' |.

 grazingang

2-141

Default: 'Curved'

Re

Effective earth radius in meters. This argument requires a positive scalar value.

Default: effearthradius, which is approximately 4/3 times the actual earth radius

Output Arguments

grazAng

Grazing angle, in degrees. The size of grazAng is the larger of size(H) and size(R).

Examples

Determine the grazing angle of a ground target located 1000 m away from the sensor.
The sensor is mounted on a platform that is 300 m above the ground.

grazAng = grazingang(300,1000);

More About

Grazing Angle

The grazing angle is the angle between a line from the sensor to a surface target, and a
tangent to the earth at the site of that target.

H

Sensor

Target

R

Grazing

angleEarth

2 Functions-Alphabetical List

2-142

For the curved earth model with an effective earth radius of Re, the grazing angle is:

sin
- + -Ê

Ë
Á
Á

ˆ

¯
˜
˜

1

2 2
2

2

H HR R

RR

e

e

For the flat earth model, the grazing angle is:

sin
- Ê

ËÁ
ˆ
¯̃

1 H

R

References

[1] Long, Maurice W. Radar Reflectivity of Land and Sea, 3rd Ed. Boston: Artech House,
2001.

[2] Ward, J. “Space-Time Adaptive Processing for Airborne Radar Data Systems,”
Technical Report 1015, MIT Lincoln Laboratory, December, 1994.

See Also
depressionang | horizonrange

Introduced in R2011b

 horizonrange

2-143

horizonrange
Horizon range

Syntax

Rh = horizonrange(H)

Rh = horizonrange(H,Re)

Description

Rh = horizonrange(H) returns the horizon range of a radar system H meters above
the surface. The computation uses an effective earth radius of approximately 4/3 times
the actual earth radius.

Rh = horizonrange(H,Re) specifies the effective earth radius.

Input Arguments

H

Height of radar system above surface, in meters. This argument can be a scalar or a
vector.

Re

Effective earth radius in meters. This argument must be a positive scalar.

Default: effearthradius, which is approximately 4/3 times the actual earth radius

Output Arguments

Rh

Horizon range in meters of radar system at altitude H.

2 Functions-Alphabetical List

2-144

Examples

Determine the horizon range of an antenna that is 30 m high.

Rh = horizonrange(30);

More About

Horizon Range

The horizon range of a radar system is the distance from the radar system to the earth
along a tangent. Beyond the horizon range, the radar system detects no return from the
surface through a direct path.

H

Radar

R
h

Earth

R
e

The value of the horizon range is:

2
2

R H H
e

+

where Re is the effective earth radius and H is the altitude of the radar system.

References

[1] Long, Maurice W. Radar Reflectivity of Land and Sea, 3rd Ed. Boston: Artech House,
2001.

 horizonrange

2-145

[2] Skolnik, M. Introduction to Radar Systems, 3rd Ed. New York: McGraw-Hill, 2001.

See Also
depressionang | effearthradius | grazingang

Introduced in R2011b

2 Functions-Alphabetical List

2-146

lcmvweights
Narrowband linearly constrained minimum variance (LCMV) beamformer weights

Syntax
wt = lcmvweights(constr,resp,cov)

Description
wt = lcmvweights(constr,resp,cov) returns narrowband linearly-constrained
minimum variance (LCMV) beamformer weights, wt, for a phased array. When applied to
the elements of the array, these weights steer the response of the array toward a specific
arrival direction or set of directions. LCMV beamforming requires that the beamformer
response to signals from a direction of interest are passed with specified gain and phase
delay. However, power from interfering signals and noise from all other directions is
minimized. Additional constraints may be imposed to specifically nullify output power
coming from known directions. The constraints are contained in the matrix, constr.
Each column of constr represents a separate constraint vector. The desired response
to each constraint is contained in the response vector, resp. The argument cov is the
sensor spatial covariance matrix. All elements in the sensor array are assumed to be
isotropic.

Examples
LCMV Beamformer with Nulls at -40 and 20 degrees

Construct a 10-element half-wavelength-spaced line array. Then, compute the LCMV
weights for a desired arrival direction of 0 degrees azimuth. Impose three direction
constraints : a null at -40 degrees, a unit desired response in the arrival direction 0
degrees, and another null at 20 degrees. The sensor spatial covariance matrix includes
two signals arriving from -60 and 60 degrees and -10 dB isotropic white noise.

N = 10;

d = 0.5;

elementPos = (0:N-1)*d;

sv = steervec(elementPos,[-40 0 20]);

resp = [0 1 0]';

 lcmvweights

2-147

Sn = sensorcov(elementPos,[-60 60],db2pow(-10));

Compute the beamformer weights.

w = lcmvweights(sv,resp,Sn);

Plot the array pattern for the computed weights.

vv = steervec(elementPos,[-90:90]);

plot([-90:90],mag2db(abs(w'*vv)))

grid on

axis([-90,90,-50,10]);

xlabel('Azimuth Angle (degrees)');

ylabel('Normalized Power (dB)');

title('LCMV Array Pattern');

2 Functions-Alphabetical List

2-148

The above figure shows that maximum gain is attained at 0 degrees as expected. In
addition, the constraints impose nulls at -40 and 20 degrees and these can be seen in the
plot. The nulls at -60 and 60 degrees arise from the fundamental property of the LCMV
beamformer of suppressing the power contained in the two plane waves that contributed
to the sensor spatial covariance matrix.

Input Arguments

constr — Constraint matrix
N-by-K complex-valued matrix

Constraint matrix specified as a complex-valued, N-by-K, complex-valued matrix. In
this matrix N represents the number of elements in the sensor array while K represents
the number of constraints. Each column of the matrix specifies a constraint on the
beamformer weights. The number of K must be less than or equal to N.
Example: [0, 0, 0; .1, .2, .3; 0,0,0]
Data Types: double
Complex Number Support: Yes

resp — Desired response
K-by-1 complex-valued column vector.

Desired response specified as complex-valued, K-by-1 column vector where K is the
number of constraints. The value of each element in the vector is the desired response to
the constraint specified in the corresponding column of constr.

Example: [45;0]
Data Types: double
Complex Number Support: Yes

cov — Sensor spatial covariance matrix
N-by-N complex-valued matrix

Sensor spatial covariance matrix specified as a complex-valued, N-by-N matrix. In this
matrix, N represents the number of sensor elements. The covariance matrix consists
of the variances of the element data and the covariance between sensor elements. It
contains contributions from all incoming signals and noise.
Example: [45;0]

 lcmvweights

2-149

Data Types: double
Complex Number Support: Yes

Output Arguments

wt — Beamformer weights
N-by-1 complex-valued vector

Beamformer weights returned as an N-by-1, complex-valued vector. In this vector, N
represents the number of elements in the array.

More About

Linear-Constrained Minimum Variance Beamformers

The LCMV beamformer computes weights that minimize the total output power
of an array but that are subject to some constraints (see Van Trees [1], p. 527). In
order to steer the response of the array to a particular arrival direction, weights are
chosen to produce unit gain when applied to the steering vector for that direction. This
requirement can be thought of as a constraint on the weights. Additional constraints may
be applied to nullify the array response to signals from other arrival directions such as
those containing noise sources. Let (az1,el1),(az2,el2),...,(azK,elK) be the set of directions for
which a constraint is to be imposed. Each direction has a corresponding steering vector,
ck , and the response of the array to that steering vector is given by c wk

H . The transpose
conjugate of a vector is denoted by the superscript symbol H. A constraint is imposed
when a desired response is required when the beamformer weights act on a steering
vector, ck ,

c wk
H

kr=

This response could be specified as unity to allow the array to pass through the signal
from a certain direction. It could be zero to nullify the response from that direction. All
the constraints can be collected into a single matrix, C, and all the response into a single
column vector, R . This allows the constraints to be represented together in matrix form

C
H

w R=

2 Functions-Alphabetical List

2-150

The LCMV beamformer chooses weights to minimize the total output power

P S
H

= w w

subject to the above constraints. S denotes the sensor spatial covariance matrix. The
solution to the power minimization is

w R= ()- -
-

S C CS C
H H1 1

1

and its derivation can be found in [2].

References

[1] Van Trees, H.L. Optimum Array Processing. New York, NY: Wiley-Interscience, 2002.

[2] Johnson, Don H. and D. Dudgeon. Array Signal Processing. Englewood Cliffs, NJ:
Prentice Hall, 1993.

[3] Van Veen, B.D. and K. M. Buckley. “Beamforming: A versatile approach to spatial
filtering”. IEEE ASSP Magazine, Vol. 5 No. 2 pp. 4–24.

See Also
cbfweights | mvdrweights | phased.LCMVBeamformer | sensorcov | steervec

Introduced in R2013a

 local2globalcoord

2-151

local2globalcoord
Convert local to global coordinates

Syntax

gCoord = local2globalcoord(lclCoord,OPTION)

gCoord = local2globalcoord(___ ,localOrigin)

gCoord = local2globalcoord(___ ,localAxes)

Description

gCoord = local2globalcoord(lclCoord,OPTION) returns the global coordinate
gCoord corresponding to the local coordinate lclCoord. OPTION determines the type of
local-to-global coordinate transformation.

gCoord = local2globalcoord(___ ,localOrigin) specifies the origin of the local
coordinate system.

gCoord = local2globalcoord(___ ,localAxes) specifies the axes of the local
coordinate system.

Input Arguments

lclCoord

Local coordinates in rectangular or spherical coordinate form. lclCoord is a 3-by-1
vector or 3-by-N matrix. Each column represents a local coordinate.

If the coordinates are in rectangular form, the column represents (X,Y,Z) in meters.

If the coordinates are in spherical form, the column represents (az,el,r). az is the azimuth
angle in degrees, el is the elevation angle in degrees, and r is the radius in meters.

OPTION

Type of coordinate transformation. Valid strings are in the next table.

2 Functions-Alphabetical List

2-152

OPTION Transformation

'rr' Local rectangular to global rectangular
'rs' Local rectangular to global spherical
'sr' Local spherical to global rectangular
'ss' Local spherical to global spherical

localOrigin

Origin of local coordinate system. localOrigin is a 3-by-1 column vector containing the
rectangular coordinate of the local coordinate system origin with respect to the global
coordinate system.

Default: [0; 0; 0]

localAxes

Axes of local coordinate system. localAxes is a 3-by-3 matrix with the columns
specifying the local X, Y, and Z axes in rectangular form with respect to the global
coordinate system.

Default: [1 0 0;0 1 0;0 0 1]

Output Arguments

gCoord

Global coordinates in rectangular or spherical coordinate form. The origin of the global
coordinate system is at [0; 0; 0]. That system’s axes are the standard unit basis vectors in
three-dimensional space, [1; 0; 0], [0; 1; 0], and [0; 0; 1].

Examples

Convert between local and global coordinate in rectangular form.

gCoord = local2globalcoord([0; 1; 0], ...

'rr',[1; 1; 1]);

% Local origin is at [1; 1; 1]

% gCoord = [1 1 1]+[0 1 0];

 local2globalcoord

2-153

Convert local spherical coordinate to global rectangular coordinate.

gCoord = local2globalcoord([30; 45; 4],'sr');

% 30 degree azimuth, 45 degree elevation, 4 meter radius

More About

Azimuth Angle, Elevation Angle

The azimuth angle is the angle from the positive x-axis toward the positive y-axis, to the
vector’s orthogonal projection onto the xy plane. The azimuth angle is between –180 and
180 degrees. The elevation angle is the angle from the vector’s orthogonal projection onto
the xy plane toward the positive z-axis, to the vector. The elevation angle is between –90
and 90 degrees. These definitions assume the boresight direction is the positive x-axis.

Note: The elevation angle is sometimes defined in the literature as the angle a vector
makes with the positive z-axis. The MATLAB and Phased Array System Toolbox
products do not use this definition.

This figure illustrates the azimuth angle and elevation angle for a vector that appears
as a green solid line. The coordinate system is relative to the center of a uniform linear
array, whose elements appear as blue circles.

2 Functions-Alphabetical List

2-154

• “Global and Local Coordinate Systems”

References

[1] Foley, J. D., A. van Dam, S. K. Feiner, and J. F. Hughes. Computer Graphics:
Principles and Practice in C, 2nd Ed. Reading, MA: Addison-Wesley, 1995.

See Also
azel2phitheta | azel2uv | global2localcoord | phitheta2azel | uv2azel

Introduced in R2011a

 mdltest

2-155

mdltest

Dimension of signal subspace

Syntax

nsig = mdltest(X)

nsig = mdltest(X,'fb')

Description

nsig = mdltest(X) estimates the number of signals, nsig, present in a snapshot of
data, X, that impinges upon the sensors in an array. The estimator uses the Minimum
Discription Length (MDL) test. The input argument, X, is a complex-valued matrix
containing a time sequence of data samples for each sensor. Each row corresponds to a
single time sample for all sensors.

nsig = mdltest(X,'fb') estimates the number of signals. Before estimating, it
performs forward-backward averaging on the sample covariance matrix constructed from
the data snapshot, X. This syntax can use any of the input arguments in the previous
syntax.

Examples

Estimate the Signal Subspace Dimensions for Two Arriving Signals

Construct a data snapshot for two plane waves arriving at a half-wavelength-spaced
uniform line array with 10 elements. The plane waves arrive from 0° and –25° azimuth,
both with elevation angles of 0°. Assume the signals arrive in the presence of additive
noise that is both temporally and spatially Gaussian white noise. For each signal, the
SNR is 5 dB. Take 300 samples to build a 300-by-10 data snapshot. Then, solve for the
number of signals using mdltest.

N = 10;

d = 0.5;

2 Functions-Alphabetical List

2-156

elementPos = (0:N-1)*d;

angles = [0 -25];

x = sensorsig(elementPos,300,angles,db2pow(-5));

Nsig = mdltest(x)

Nsig =

 2

The result shows that the number of signals is two, as expected.

Estimate the Signal Subspace Dimensions Using Forward-Backward Averaging

Construct a data snapshot for two plane waves arriving at a half-wavelength-spaced
uniform line array with 10 elements. Correlated plane waves arrive from 0° and 10°
azimuth, both with elevation angles of 0°. Assume the signals arrive in the presence
of additive noise that is both temporally and spatially Gaussian white noise. For each
signal, the SNR is 10 dB. Take 300 samples to build a 300-by-10 data snapshot. Then,
solve for the number of signals using mdltest.

N = 10;

d = 0.5;

elementPos = (0:N-1)*d;

angles = [0 10];

ncov = db2pow(-10);

scov = [1 .5]'*[1 .5];

x = sensorsig(elementPos,300,angles,ncov,scov);

Nsig = mdltest(x)

Nsig =

 1

This result shows that aictest function cannot determine the number of signals
correctly when the signals are correlated.

Now, try the option of forward-backward smoothing.

Nsig = mdltest(x,'fb')

Nsig =

 2

 mdltest

2-157

The addition of forward-backward smoothing yields the correct number of signals.

Input Arguments

X — Data snapshot
complex-valued K-by-N matrix

Data snapshot, specified as a complex-valued, K-by-N matrix. A snapshot is a sequence
of time-samples taken simultaneous at each sensor. In this matrix, K represents the
number of time samples of the data, while N represents the number of sensor elements.
Example: [–0.1211 + 1.2549i, 0.1415 + 1.6114i, 0.8932 + 0.9765i;]
Data Types: double
Complex Number Support: Yes

Output Arguments

nsig — Dimension of signal subspace
non-negative integer

Dimension of signal subspace, returned as a non-negative integer. The dimension of the
signal subspace is the number of signals in the data.

More About

Estimating the Number of Sources

AIC and MDL tests

Direction finding algorithms such as MUSIC and ESPRIT require knowledge of the
number of sources of signals impinging on the array or equivalently, the dimension,
d, of the signal subspace. The Akaike Information Criterion (AIC) and the Minimum
Description Length (MDL) formulas are two frequently-used estimators for obtaining
that dimension. Both estimators assume that, besides the signals, the data contains
spatially and temporally white Gaussian random noise. Finding the number of sources
is equivalent to finding the multiplicity of the smallest eigenvalues of the sampled

2 Functions-Alphabetical List

2-158

spatial covariance matrix. The sample spatial covariance matrix constructed from a data
snapshot is used in place of the actual covariance matrix.

A requirement for both estimators is that the dimension of the signal subspace be less
than the number of sensors, N, and that the number of time samples in the snapshot, K,
be much greater than N.

A variant of each estimator exists when forward-backward averaging is employed to
construct the spatial covariance matrix. Forward-backward averaging is useful for the
case when some of the sources are highly correlated with each other. In that case, the
spatial covariance matrix may be ill conditioned. Forward-backward averaging can
only be used for certain types of symmetric arrays, called centro-symmetric arrays.
Then the forward-backward covariance matrix can be constructed from the sample
spatial covariance matrix, S, using SFB = S + JS*J where J is the exchange matrix. The
exchange matrix maps array elements into their symmetric counterparts. For a line
array, it would be the identity matrix flipped from left to right.

All the estimators are based on a cost function

L d K N d
N d

d

i

i d

N

i

i d

N N d

() () ln

�

�

= -
-

Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂

Ï

Ì

Ô
Ô
Ô

Ó

= +

= +

-

Â

’

1

1

1

1

l

l

ÔÔ
Ô
Ô

¸

˝

Ô
Ô
Ô

˛

Ô
Ô
Ô

plus an added penalty term. The value λi represent the smallest (N–d) eigenvalues of the
spatial covariance matrix. For each specific estimator, the solution for d is given by

• AIC

ˆ argmin () ()d L d d N dAIC
d

d= + -{ }2

• AIC for forward-backward averaged covariance matrices

ˆ argmin () ():d L d d N dAIC FB
d

d= + - +
Ï
Ì
Ó

¸
˝
˛

1

2
2 1

• MDL

 mdltest

2-159

ˆ argmin () (()) lnd L d d N d KMDL

d

d= + - +
Ï
Ì
Ó

¸
˝
˛

1

2
2 1

• MDL for forward-backward averaged covariance matrices

ˆ argmin () () lnd L d d N d KMDL FB

d

d= + - +
Ï
Ì
Ó

¸
˝
˛

1

4
2 1

References

[1] Van Trees, H.L. Optimum Array Processing. New York: Wiley-Interscience, 2002.

See Also
aictest | espritdoa | rootmusicdoa | spsmooth

Introduced in R2013a

2 Functions-Alphabetical List

2-160

mvdrweights
Minimum variance distortionless response (MVDR) beamformer weights

Syntax

wt = mvdrweights(pos,ang,cov)

wt = mvdrweights(pos,ang,nqbits)

Description

wt = mvdrweights(pos,ang,cov) returns narrowband minimum variance
distortionless response (MVDR) beamformer weights for a phased array. When applied
to the elements of an array, the weights steer the response of a sensor array in a specific
arrival direction or set of directions. The pos argument specifies the sensor positions
of the array. The ang argument specifies the azimuth and elevation angles of the
desired response directions. cov is the sensor spatial covariance matrix between sensor
elements. The output argument, wt, is a matrix contains the beamformer weights
for each sensor and each direction. Each column of wt contains the weights for the
corresponding direction specified in ang. All elements in the sensor array are assumed to
be isotropic.

wt = mvdrweights(pos,ang,nqbits) returns quantized narrowband MVDR
beamformer weights when the number of phase shifter bits is set to nqbits.

Examples

MVDR Beamformer with Arrival Directions of 30 and 45 Degrees

Construct a 10-element, half-wavelength-spaced line array. Choose two arrival directions
of interest - one at 30° azimuth and the other at 45° azimuth. Assume both directions
are at 0° elevation. Compute the MVDR beamformer weights for each direction. Specify
a sensor spatial covariance matrix that contains signals arriving from -60° and 60° and
noise at -10 dB.

Set up the array and sensor spatial covariance matrix.

 mvdrweights

2-161

N = 10;

d = 0.5;

elementPos = (0:N-1)*d;

Sn = sensorcov(elementPos,[-60 60],db2pow(-10));

Solve for the MVDR beamformer weights.

w = mvdrweights(elementPos,[30 45],Sn);

Plot the two MVDR array patterns.

plotangl = -90:90;

vv = steervec(elementPos,plotangl);

plot(plotangl,mag2db(abs(w'*vv)))

grid on

xlabel('Azimuth Angle (degrees)');

ylabel('Normalized Power (dB)');

legend('30 deg','45 deg');

title('MVDR Array Pattern')

2 Functions-Alphabetical List

2-162

The figure shows plots for each beamformer direction. One plot has the expected
maximum gain at 30 degrees and the other at 45 degrees. The nulls at -60 and 60 degrees
arise from the fundamental property of the MVDR beamformer of suppressing power in
all directions except for the arrival direction.

Quantized Weights in MVDR Beamformer

Construct a 10-element, half-wavelength-spaced line array. Choose the arrival direction
of interest to be 18.5° azimuth and 10° elevation. Compute the MVDR beamformer
weights and then compute the weights for 3-bit quantization. Specify a sensor spatial
covariance matrix that contains signals arriving from -60° and 60° and noise at -10 dB.

Set up the array and the sensor spatial covariance matrix.

 mvdrweights

2-163

N = 10;

d = 0.5;

elementPos = (0:N-1)*d;

SN = sensorcov(elementPos,[-60 60],db2pow(-10));

Solve for the MVDR beamformer weights with and without quantization.

w = mvdrweights(elementPos,[18.5;10],SN);

wq = mvdrweights(elementPos,[18.5;10],SN,3);

Plot both MVDR array patterns.

plotangl = -90:90;

vv = steervec(elementPos,plotangl);

plot(plotangl,mag2db(abs(w'*vv)))

hold on

plot(plotangl,mag2db(abs(wq'*vv)))

grid on

xlabel('Azimuth Angle (degrees)')

ylabel('Normalized Power (dB)')

legend('Non-Quantized Weights','Quantized Weights','Location','SouthWest');

title('Quantized vs Non-quantized Array Patterns')

hold off

2 Functions-Alphabetical List

2-164

Input Arguments

pos — Positions of array sensor elements
1-by-N real-valued vector | 2-by-N real-valued matrix | 3-by-N real-valued matrix

Positions of the elements of a sensor array specified as a 1-by-N vector, a 2-by-N matrix,
or a 3-by-N matrix. In this vector or matrix, N represents the number of elements of the
array. Each column of pos represents the coordinates of an element. You define sensor
position units in term of signal wavelength. If pos is a 1-by-N vector, then it represents
the y-coordinate of the sensor elements of a line array. The x and z-coordinates are
assumed to be zero. When pos is a 2-by-N matrix, it represents the (y,z)-coordinates of

 mvdrweights

2-165

the sensor elements of a planar array. This array is assumed to lie in the yz-plane. The
x-coordinates are assumed to be zero. When pos is a 3-by-N matrix, then the array has
arbitrary shape.
Example: [0, 0, 0; .1, .2, .3; 0,0,0]
Data Types: double

ang — Beamforming directions
1-by-M real-valued vector | 2-by-M real-valued matrix

Beamforming directions specified as a 1-by-M vector or a 2-by-M matrix. In this vector
or matrix, M represents the number of incoming signals. If ang is a 2-by-M matrix, each
column specifies the direction in azimuth and elevation of the beamforming direction as
[az;el]. Angular units are specified in degrees. The azimuth angle must lie between –
180° and 180° and the elevation angle must lie between –90° and 90°. The azimuth angle
is the angle between the x-axis and the projection of the beamforming direction vector
onto the xy plane. The angle is positive when measured from the x-axis toward the y-axis.
The elevation angle is the angle between the beamforming direction vector and xy-plane.
It is positive when measured towards the positive z axis. If ang is a 1-by-M vector, then it
represents a set of azimuth angles with the elevation angles assumed to be zero.
Example: [45;0]
Data Types: double

cov — Sensor spatial covariance matrix
N-by-N complex-valued matrix

Sensor spatial covariance matrix specified as an N-by-N, complex-valued matrix. In this
matrix, N represents the number of sensor elements.
Example: [45;0]
Data Types: double
Complex Number Support: Yes

nqbits — Number of phase shifter quantization bits
0 (default) | non-negative integer

Number of bits used to quantize the phase shift in beamformer or steering vector
weights, specified as a non-negative integer. A value of zero indicates that no
quantization is performed.

2 Functions-Alphabetical List

2-166

Output Arguments

wt — Beamformer weights
N-by-M complex-valued matrix

Beamformer weights returned as a complex-valued, N-by-M matrix. In this matrix, N
represents the number of sensor elements of the array while M represents the number
of beamforming directions. Each column of wt corresponds to a beamforming direction
specified in ang.

More About

Minimum Variance Distortionless Response

MVDR beamformer weights minimize the total array output power while setting the gain
in the desired response direction to unity (see Van Trees [1], p. 442). MVDR weights are
given by

w
v

v v

0

0 0

=

-

-

S

S
H

1

1

|

where v0 is the steering vector corresponding to the desired response direction. S is the
spatial covariance matrix. The covariance matrix consists of the variances of the element
data and the covariances of the data between the sensor elements. The covariance
contains contributions from all incoming signals and noise.

References

[1] Van Trees, H.L. Optimum Array Processing. New York, NY: Wiley-Interscience, 2002.

[2] Johnson, Don H. and D. Dudgeon. Array Signal Processing. Englewood Cliffs, NJ:
Prentice Hall, 1993.

[3] Van Veen, B.D. and K. M. Buckley. “Beamforming: A versatile approach to spatial
filtering”. IEEE ASSP Magazine, Vol. 5 No. 2 pp. 4–24.

See Also
cbfweights | lcmvweights | phased.MVDRBeamformer | sensorcov | steervec

 mvdrweights

2-167

Introduced in R2013a

2 Functions-Alphabetical List

2-168

noisepow

Receiver noise power

Syntax

NPOWER = noisepow(NBW,NF,REFTEMP)

Description

NPOWER = noisepow(NBW,NF,REFTEMP) returns the noise power, NPOWER, in watts for
a receiver. This receiver has a noise bandwidth NBW in hertz, noise figure NF in decibels,
and reference temperature REFTEMP in degrees kelvin.

Input Arguments

NBW

The noise bandwidth of the receiver in hertz. For a superheterodyne receiver, the noise
bandwidth is approximately equal to the bandwidth of the intermediate frequency stages
[1].

NF

Noise figure. The noise figure is a dimensionless quantity that indicates how much a
receiver deviates from an ideal receiver in terms of internal noise. An ideal receiver only
produces the expected thermal noise power for a given noise bandwidth and temperature.
A noise figure of 1 indicates that the noise power of a receiver equals the noise power of
an ideal receiver. Because an actual receiver cannot exhibit a noise power value less than
an ideal receiver, the noise figure is always greater than or equal to one.

REFTEMP

Reference temperature in degrees kelvin. The temperature of the receiver. Typical values
range from 290–300 degrees kelvin.

 noisepow

2-169

Output Arguments

NPOWER

Noise power in watts. The internal noise power contribution of the receiver to the signal-
to-noise ratio.

Examples

Calculate the noise power of a receiver whose noise bandwidth is 10 kHz, noise figure is 1
dB, and reference temperature is 300 K.

npower = noisepow(10e3,1,300);

References

[1] Skolnik, M. Introduction to Radar Systems. New York: McGraw-Hill, 1980.

See Also
phased.ReceiverPreamp

Introduced in R2011a

2 Functions-Alphabetical List

2-170

npwgnthresh
Detection SNR threshold for signal in white Gaussian noise

Syntax

snrthresh = npwgnthresh(pfa)

snrthresh = npwgnthresh(pfa,numpulses)

snrthresh = npwgnthresh(pfa,numpulses,dettype)

snrthresh = npwgnthresh(pfa,numpulses,dettype,outscale)

Description

snrthresh = npwgnthresh(pfa) calculates the SNR threshold in decibels for
detecting a deterministic signal in white Gaussian noise. The detection uses the Neyman-
Pearson (NP) decision rule to achieve a specified probability of false alarm, pfa. This
function uses a square-law detector.

Note: The output of npwgnthresh determines the detection threshold required to
achieve a particular Pfa. The threshold increases when pulse integration is used in
the receiver. This threshold is not the single sample SNR that is used as an input to
rocsnr or as the output of rocpfa, albersheim, and shnidman. For any fixed Pfa,
you can decrease the single sample SNR required to achieve a particular Pd when pulse
integration is used in the receiver. See “Signal Detection in White Gaussian Noise” and
“Signal Detection Using Multiple Samples” for examples of how to use npwgnthresh in a
detection system.

snrthresh = npwgnthresh(pfa,numpulses) specifies numpulses as the number of
pulses used in the pulse integration.

snrthresh = npwgnthresh(pfa,numpulses,dettype) specifies dettype as the
type of detection. A square law detector is used in noncoherent detection.

snrthresh = npwgnthresh(pfa,numpulses,dettype,outscale) specifies the
output scale.

 npwgnthresh

2-171

Input Arguments

pfa

Probability of false alarm.

numpulses

Number of pulses used in the integration.

Default: 1

dettype

Detection type.

Specifies the type of pulse integration used in the NP decision rule. Valid choices for
dettype are 'coherent', 'noncoherent', and 'real'. 'coherent' uses magnitude
and phase information of complex-valued samples. 'noncoherent' uses squared
magnitudes. 'real' uses real-valued samples.

Default: 'noncoherent'

outscale

Output scale.

Specifies the scale of the output value as one of 'db' or 'linear'. When outscale is
set to 'linear', the returned threshold represents amplitude.

Default: 'db'

Output Arguments

snrthresh

Detection threshold expressed in signal-to-noise ratio in decibels or linear if outscale is
set to ‘linear’. The relationship between the linear threshold and the threshold in dB
is

T T
dB lin

= 20 10log

2 Functions-Alphabetical List

2-172

Examples

Compute detection threshold from Pfa

Calculate the detection threshold that achieves a probability of false alarm (pfa) of
0.01. Assume a single pulse with a real detection type. Then, verify that this threshold
produces a pfa of approximately 0.01. Do this by constructing 10000 real white gaussian
noise (wgn) samples and computing the fraction of samples exceeding the threshold.

Compute the threshold from pfa. The detection threshold is expressed as a signal-to-noise
ratio in db.

pfa = 0.01;

numpulses = 1;

snrthreshold = npwgnthresh(pfa,numpulses,'real')

snrthreshold =

 7.3335

Compute fraction of simulated noise samples exceeding the threshold. The noise has unit
power with 10000 samples.

noisepower = 1;

Ntrial = 10000;

noise = sqrt(noisepower)*randn(1,Ntrial);

Express the threshold in amplitude units.

threshold = sqrt(noisepower*db2pow(snrthreshold));

calculated_Pfa = sum(noise>threshold)/Ntrial

calculated_Pfa =

 0.0107

Detection threshold versus number of pulses

Plot the SNR detection threshold against the number of pulses, for real and complex
noise. In each case, the SNR detection threshold is set for a probability of false alarm
(pfa) of 0.001.

 npwgnthresh

2-173

Compute detection threshold for 1 to 10 pulses of real and complex noise.

Npulses = 10;

snrcoh = zeros(1,Npulses);

snrreal = zeros(1,Npulses);

Pfa = 1e-3;

for num = 1:Npulses

 snrreal(num) = npwgnthresh(Pfa,num,'real');

 snrcoh(num) = npwgnthresh(Pfa,num,'coherent');

end

Plot the detection thresholds against number of pulses.

plot(snrreal,'ko-')

hold on

plot(snrcoh,'b.-')

legend('Real data with integration',...

 'Complex data with coherent integration',...

 'location','southeast');

xlabel('Number of Pulses')

ylabel('SNR Required for Detection')

title('SNR Threshold for P_F_A = 0.001')

hold off

2 Functions-Alphabetical List

2-174

Linear detection threshold versus number of pulses

Plot the linear detection threshold against the number of pulses, for real and complex
data. In each case, the threshold is set for a probability of false alarm of 0.001.

Compute detection threshold for 1 to 10 pulses of real and complex noise.

Npulses = 10;

snrcoh = zeros(1,Npulses); % preallocate space

snrreal = zeros(1,Npulses);

Pfa = 1e-3;

for num = 1:Npulses

 snrreal(num) = npwgnthresh(Pfa,num,'real','linear');

 snrcoh(num) = npwgnthresh(Pfa,num,'coherent','linear');

 npwgnthresh

2-175

end

Plot the detection thresholds against number of pulses.

plot(snrreal,'ko-')

hold on

plot(snrcoh,'b.-')

legend('Real data with integration',...

 'Complex data with coherent integration',...

 'location','southeast');

xlabel('Number of Pulses')

ylabel('Detection Threshold')

str = sprintf('Linear Detection Threshold for P_F_A = %4.3f',Pfa);

title(str)

hold off

2 Functions-Alphabetical List

2-176

• “Signal Detection in White Gaussian Noise”
• “Signal Detection Using Multiple Samples”

More About

Detection in Real-Valued White Gaussian Noise

This function is designed for the detection of a nonzero mean in a sequence of Gaussian
random variables. The function assumes that the random variables are independent
and identically distributed, with zero mean. The linear detection threshold λ for an NP
detector is

 npwgnthresh

2-177

l

s
=

-
2 2

1N Pfaerfc ()

This threshold can also be expressed as a signal-to-noise ratio in decibels

10 10 2 210

2

2 10
1 2

log log ()
l

s

Ê

Ë
ÁÁ

ˆ

¯
˜̃ = ()Ê

Ë
Á

ˆ

¯
˜

-N Pfaerfc

In these equations

• σ2 is the variance of the white Gaussian noise sequence
• N is the number of samples
• erfc—1 is the inverse of the complementary error function
• Pfa is the probability of false alarm

Note: For probabilities of false alarm greater than or equal to 1/2, the formula for
detection threshold as SNR is invalid because erfc-1 is less than or equal to zero for values
of its argument greater than or equal to one. In that case, use the linear output of the
function invoked by setting outscale to'linear'.

Detection in Complex-Valued White Gaussian Noise (Coherent Samples)

The NP detector for complex-valued signals is similar to that discussed in “Detection in
Real-Valued White Gaussian Noise” on page 2-176. In addition, the function makes
these assumptions:

• The variance of the complex-valued Gaussian random variable is divided equally
among the real and imaginary parts.

• The real and imaginary parts are uncorrelated.

Under these assumptions, the linear detection threshold for an NP detector is

l

s
=

-N Pfaerfc
1

2()

and expressed as a signal-to-noise ratio in decibels is:

2 Functions-Alphabetical List

2-178

10 10 210

2

2 10
1 2

log log ()
l

s

Ê

Ë
ÁÁ

ˆ

¯
˜̃ = ()Ê

Ë
Á

ˆ

¯
˜

-N Pfaerfc

Note: For probabilities of false alarm greater than or equal to 1/2, the formula for
detection threshold as SNR is invalid since erfc-1 is less than or equal to zero for values
of its argument greater than or equal to one. In that case, use the linear output of the
function invoked by setting outscale to'linear'.

Detection of Noncoherent Samples in White Gaussian Noise

For noncoherent samples in white Gaussian noise, detection of a nonzero mean leads to a
square-law detector. For a detailed derivation, see [2], pp. 324–329.

The linear detection threshold for the noncoherent NP detector is:

l

s
= -

-P N Pfa
1 1(,)

The threshold expressed as a signal-to-noise ratio in decibels is:

10 10 110

2

2 10
1log log (,)

l

s

Ê

Ë
ÁÁ

ˆ

¯
˜̃ = --P N Pfa

where P x y-1(,) is the inverse of the lower incomplete gamma function, Pfa is the
probability of false alarm, and N is the number of pulses.

References

[1] Kay, S. M. Fundamentals of Statistical Signal Processing: Detection Theory. Upper
Saddle River, NJ: Prentice Hall, 1998.

[2] Richards, M. A. Fundamentals of Radar Signal Processing. New York: McGraw-Hill,
2005.

 npwgnthresh

2-179

See Also
albersheim | rocpfa | rocsnr | shnidman

Introduced in R2011a

2 Functions-Alphabetical List

2-180

phitheta2azel
Convert angles from phi/theta form to azimuth/elevation form

Syntax
AzEl = phitheta2azel(PhiTheta)

Description
AzEl = phitheta2azel(PhiTheta) converts the phi/theta angle pairs to their
corresponding azimuth/elevation angle pairs.

Examples

Conversion of Phi/Theta Pair

Find the corresponding azimuth/elevation representation for φ = 30 degrees and
θ = 0 degrees.

AzEl = phitheta2azel([30; 0]);

Input Arguments

PhiTheta — Phi/theta angle pairs
two-row matrix

Phi and theta angles, specified as a two-row matrix. Each column of the matrix
represents an angle in degrees, in the form [phi; theta].
Data Types: double

Output Arguments

AzEl — Azimuth/elevation angle pairs
two-row matrix

 phitheta2azel

2-181

Azimuth and elevation angles, returned as a two-row matrix. Each column of the matrix
represents an angle in degrees, in the form [azimuth; elevation]. The matrix dimensions
of AzEl are the same as those of PhiTheta.

More About

Phi Angle, Theta Angle

The φ angle is the angle from the positive y-axis toward the positive z-axis, to the vector’s
orthogonal projection onto the yz plane. The φ angle is between 0 and 360 degrees. The θ
angle is the angle from the x-axis toward the yz plane, to the vector itself. The θ angle is
between 0 and 180 degrees.

The figure illustrates φ and θ for a vector that appears as a green solid line. The
coordinate system is relative to the center of a uniform linear array, whose elements
appear as blue circles.

The coordinate transformations between φ/θ and az/el are described by the following
equations

2 Functions-Alphabetical List

2-182

sin() sin sin

tan() cos tan

cos cos()cos()

tan ta

el

az

el az

=

=

=

=

f q

f q

q

f nn() / sin()el az

Azimuth Angle, Elevation Angle

The azimuth angle is the angle from the positive x-axis toward the positive y-axis, to the
vector’s orthogonal projection onto the xy plane. The azimuth angle is between –180 and
180 degrees. The elevation angle is the angle from the vector’s orthogonal projection onto
the xy plane toward the positive z-axis, to the vector. The elevation angle is between –90
and 90 degrees. These definitions assume the boresight direction is the positive x-axis.

Note: The elevation angle is sometimes defined in the literature as the angle a vector
makes with the positive z-axis. The MATLAB and Phased Array System Toolbox
products do not use this definition.

This figure illustrates the azimuth angle and elevation angle for a vector that appears
as a green solid line. The coordinate system is relative to the center of a uniform linear
array, whose elements appear as blue circles.

 phitheta2azel

2-183

• “Spherical Coordinates”

See Also
azel2phitheta

Introduced in R2012a

2 Functions-Alphabetical List

2-184

phitheta2azelpat
Convert radiation pattern from phi/theta form to azimuth/elevation form

Syntax

pat_azel = phitheta2azelpat(pat_phitheta,phi,theta)

pat_azel = phitheta2azelpat(pat_phitheta,phi,theta,az,el)

[pat_azel,az,el] = phitheta2azelpat(___)

Description

pat_azel = phitheta2azelpat(pat_phitheta,phi,theta) expresses the antenna
radiation pattern pat_phitheta in azimuth/elevation angle coordinates instead of φ/θ
angle coordinates. pat_phitheta samples the pattern at φ angles in phi and θ angles
in theta. The pat_azel matrix uses a default grid that covers azimuth values from –
90 to 90 degrees and elevation values from –90 to 90 degrees. In this grid, pat_azel
is uniformly sampled with a step size of 1 for azimuth and elevation. The function
interpolates to estimate the response of the antenna at a given direction.

pat_azel = phitheta2azelpat(pat_phitheta,phi,theta,az,el) uses vectors
az and el to specify the grid at which to sample pat_azel. To avoid interpolation
errors, az should cover the range [–180, 180] and el should cover the range [–90, 90].

[pat_azel,az,el] = phitheta2azelpat(___) returns vectors containing the
azimuth and elevation angles at which pat_azel samples the pattern, using any of the
input arguments in the previous syntaxes.

Examples

Conversion of Radiation Pattern

Convert a radiation pattern to azimuth/elevation form, with the azimuth and elevation
angles spaced 1 degree apart.

Define the pattern in terms of φ and θ.

 phitheta2azelpat

2-185

phi = 0:360;

theta = 0:180;

pat_phitheta = mag2db(repmat(cosd(theta)',1,numel(phi)));

Convert the pattern to azimuth/elevation space.

pat_azel = phitheta2azelpat(pat_phitheta,phi,theta);

Plot Converted Radiation Pattern

Convert a radiation pattern from theta/phi coordinates to azimuth/elevation coordinates,
with azimuth and elevation angles spaced apart.

Define the pattern in terms of phi, , and theta, , coordinates.

phi = 0:360;

theta = 0:180;

pat_phitheta = mag2db(repmat(cosd(theta)',1,numel(phi)));

Convert the pattern to azimuth/elevation coordinates. Get the azimuth and elevation
angles for use in plotting.

[pat_azel,az,el] = phitheta2azelpat(pat_phitheta,phi,theta);

Plot the radiation pattern.

H = surf(az,el,pat_azel);

H.LineStyle = 'none';

xlabel('Azimuth (degrees)');

ylabel('Elevation (degrees)');

zlabel('Pattern');

2 Functions-Alphabetical List

2-186

Convert Radiation Pattern For Specific Azimuth/Elevation Values

Convert a radiation pattern from phi/theta coordinates to azimuth/elevation coordinates,
with the azimuth and elevation angles spaced apart.

Define the pattern in terms of phi and theta.

phi = 0:360;

theta = 0:180;

pat_phitheta = mag2db(repmat(cosd(theta)',1,numel(phi)));

Define the set of azimuth and elevation angles at which to sample the pattern. Then,
convert the pattern.

 phitheta2azelpat

2-187

az = -180:5:180;

el = -90:5:90;

pat_azel = phitheta2azelpat(pat_phitheta,phi,theta,az,el);

Plot the radiation pattern.

H = surf(az,el,pat_azel);

H.LineStyle = 'none';

xlabel('Azimuth (degrees)');

ylabel('Elevation (degrees)');

zlabel('Pattern');

• Antenna Array Analysis with Custom Radiation Pattern

../examples/antenna-array-analysis-with-custom-radiation-pattern.html

2 Functions-Alphabetical List

2-188

Input Arguments

pat_phitheta — Antenna radiation pattern in phi/theta form
Q-by-P matrix

Antenna radiation pattern in phi/theta form, specified as a Q-by-P matrix.
pat_phitheta samples the 3-D magnitude pattern in decibels, in terms of φ and θ
angles. P is the length of the phi vector, and Q is the length of the theta vector.

Data Types: double

phi — Phi angles
vector of length P

Phi angles at which pat_phitheta samples the pattern, specified as a vector of length
P. Each φ angle is in degrees, between 0 and 360.
Data Types: double

theta — Theta angles
vector of length Q

Theta angles at which pat_phitheta samples the pattern, specified as a vector of
length Q. Each θ angle is in degrees, between 0 and 180.
Data Types: double

az — Azimuth angles
[-180:180] (default) | vector of length L

Azimuth angles at which pat_azel samples the pattern, specified as a vector of length
L. Each azimuth angle is in degrees, between –180 and 180.
Data Types: double

el — Elevation angles
[-90:90] (default) | vector of length M

Elevation angles at which pat_azel samples the pattern, specified as a vector of length
M. Each elevation angle is in degrees, between –90 and 90.
Data Types: double

 phitheta2azelpat

2-189

Output Arguments

pat_azel — Antenna radiation pattern in azimuth/elevation form
M-by-L matrix

Antenna radiation pattern in azimuth/elevation form, returned as an M-by-L matrix.
pat_azel samples the 3-D magnitude pattern in decibels, in terms of azimuth and
elevation angles. L is the length of the az vector, and M is the length of the el vector.

az — Azimuth angles
vector of length L

Azimuth angles at which pat_azel samples the pattern, returned as a vector of length
L. Angles are expressed in degrees.

el — Elevation angles
vector of length M

Elevation angles at which pat_azel samples the pattern, returned as a vector of length
M. Angles are expressed in degrees.

More About

Phi Angle, Theta Angle

The φ angle is the angle from the positive y-axis toward the positive z-axis, to the vector’s
orthogonal projection onto the yz plane. The φ angle is between 0 and 360 degrees. The θ
angle is the angle from the x-axis toward the yz plane, to the vector itself. The θ angle is
between 0 and 180 degrees.

The figure illustrates φ and θ for a vector that appears as a green solid line. The
coordinate system is relative to the center of a uniform linear array, whose elements
appear as blue circles.

2 Functions-Alphabetical List

2-190

The coordinate transformations between φ/θ and az/el are described by the following
equations

sin() sin sin

tan() cos tan

cos cos()cos()

tan ta

el

az

el az

=

=

=

=

f q

f q

q

f nn() / sin()el az

Azimuth Angle, Elevation Angle

The azimuth angle is the angle from the positive x-axis toward the positive y-axis, to the
vector’s orthogonal projection onto the xy plane. The azimuth angle is between –180 and
180 degrees. The elevation angle is the angle from the vector’s orthogonal projection onto
the xy plane toward the positive z-axis, to the vector. The elevation angle is between –90
and 90 degrees. These definitions assume the boresight direction is the positive x-axis.

Note: The elevation angle is sometimes defined in the literature as the angle a vector
makes with the positive z-axis. The MATLAB and Phased Array System Toolbox
products do not use this definition.

 phitheta2azelpat

2-191

This figure illustrates the azimuth angle and elevation angle for a vector that appears
as a green solid line. The coordinate system is relative to the center of a uniform linear
array, whose elements appear as blue circles.

• “Spherical Coordinates”

See Also
azel2phitheta | azel2phithetapat | phased.CustomAntennaElement |
phitheta2azel

Introduced in R2012a

2 Functions-Alphabetical List

2-192

phitheta2uv
Convert phi/theta angles to u/v coordinates

Syntax

UV = phitheta2uv(PhiTheta)

Description

UV = phitheta2uv(PhiTheta) converts the phi/theta angle pairs to their
corresponding u/v space coordinates.

Examples

Conversion of Phi/Theta Pair

Find the corresponding u/v representation for φ = 30 degrees and θ = 0 degrees.

UV = phitheta2uv([30; 0]);

Input Arguments

PhiTheta — Phi/theta angle pairs
two-row matrix

Phi and theta angles, specified as a two-row matrix. Each column of the matrix
represents an angle in degrees, in the form [phi; theta].
Data Types: double

Output Arguments

UV — Angle in u/v space
two-row matrix

 phitheta2uv

2-193

Angle in u/v space, returned as a two-row matrix. Each column of the matrix represents
an angle in the form [u; v]. The matrix dimensions of UV are the same as those of
PhiTheta.

More About

Phi Angle, Theta Angle

The φ angle is the angle from the positive y-axis toward the positive z-axis, to the vector’s
orthogonal projection onto the yz plane. The φ angle is between 0 and 360 degrees. The θ
angle is the angle from the x-axis toward the yz plane, to the vector itself. The θ angle is
between 0 and 180 degrees.

The figure illustrates φ and θ for a vector that appears as a green solid line. The
coordinate system is relative to the center of a uniform linear array, whose elements
appear as blue circles.

The coordinate transformations between φ/θ and az/el are described by the following
equations

2 Functions-Alphabetical List

2-194

sin() sin sin

tan() cos tan

cos cos()cos()

tan ta

el

az

el az

=

=

=

=

f q

f q

q

f nn() / sin()el az

U/V Space

The u/v coordinates for the hemisphere x ≥ 0 are derived from the phi and theta angles.

The relations are

u

v

=

=

sin cos

sin sin

q f

q f

In these expressions, φ and θ are the phi and theta angles, respectively.

In terms of azimuth and elevation, the u and v coordinates are

u el az

v el

=

=

cos sin

sin

The values of u and v satisfy the inequalities

- £ £

- £ £

+ £

1 1

1 1

1
2 2

u

v

u v

Conversely, the phi and theta angles can be written in terms of u and v using

tan /

sin

f

q

=

= +

u v

u v
2 2

The azimuth and elevation angles can also be written in terms of u and v

 phitheta2uv

2-195

sin

tan

el v

az
u

u v

=

=

- -1
2 2

• “Spherical Coordinates”

See Also
uv2phitheta

Introduced in R2012a

2 Functions-Alphabetical List

2-196

phitheta2uvpat
Convert radiation pattern from phi/theta form to u/v form

Syntax

pat_uv = phitheta2uvpat(pat_phitheta,phi,theta)

pat_uv = phitheta2uvpat(pat_phitheta,phi,theta,u,v)

[pat_uv,u,v] = phitheta2uvpat(___)

Description

pat_uv = phitheta2uvpat(pat_phitheta,phi,theta) expresses the antenna
radiation pattern pat_phitheta in u/v space coordinates instead of φ/θ angle
coordinates. pat_phitheta samples the pattern at φ angles in phi and θ angles in
theta. The pat_uv matrix uses a default grid that covers u values from –1 to 1 and v
values from –1 to 1. In this grid, pat_uv is uniformly sampled with a step size of 0.01
for u and v. The function interpolates to estimate the response of the antenna at a given
direction. Values in pat_uv are NaN for u and v values outside the unit circle because u
and v are undefined outside the unit circle.

pat_uv = phitheta2uvpat(pat_phitheta,phi,theta,u,v) uses vectors u and v
to specify the grid at which to sample pat_uv. To avoid interpolation errors, u should
cover the range [–1, 1] and v should cover the range [–1, 1].

[pat_uv,u,v] = phitheta2uvpat(___) returns vectors containing the u and v
coordinates at which pat_uv samples the pattern, using any of the input arguments in
the previous syntaxes.

Examples

Conversion of Radiation Pattern

Convert a radiation pattern to u/v form, with the u and v coordinates spaced by 0.01.

Define the pattern in terms of φ and θ.

 phitheta2uvpat

2-197

phi = 0:360;

theta = 0:90;

pat_phitheta = mag2db(repmat(cosd(theta)',1,numel(phi)));

Convert the pattern to u/v space.

pat_uv = phitheta2uvpat(pat_phitheta,phi,theta);

Convert and Plot Radiation Pattern

Convert a radiation pattern to coordinates, with the and coordinates spaced by
0.01.

Define the pattern in terms of and .

phi = 0:360;

theta = 0:90;

pat_phitheta = mag2db(repmat(cosd(theta)',1,numel(phi)));

Convert the pattern to coordinates. Store the and coordinates for use in
plotting.

[pat_uv,u,v] = phitheta2uvpat(pat_phitheta,phi,theta);

Plot the result.

H = surf(u,v,pat_uv);

H.LineStyle = 'none';

xlabel('u');

ylabel('v');

zlabel('Pattern');

2 Functions-Alphabetical List

2-198

Convert Radiation Pattern For Specific U/V Values

Convert a radiation pattern to coordinates, with the and coordinates spaced by
0.05.

Define the pattern in terms of and .

phi = 0:360;

theta = 0:90;

pat_phitheta = mag2db(repmat(cosd(theta)',1,numel(phi)));

Define the set of and coordinates at which to sample the pattern. Then, convert the
pattern.

 phitheta2uvpat

2-199

u = -1:0.05:1;

v = -1:0.05:1;

pat_uv = phitheta2uvpat(pat_phitheta,phi,theta,u,v);

Plot the result.

H = surf(u,v,pat_uv);

H.LineStyle = 'none';

xlabel('u');

ylabel('v');

zlabel('Pattern');

2 Functions-Alphabetical List

2-200

Input Arguments

pat_phitheta — Antenna radiation pattern in phi/theta form
Q-by-P matrix

Antenna radiation pattern in phi/theta form, specified as a Q-by-P matrix.
pat_phitheta samples the 3-D magnitude pattern in decibels, in terms of φ and θ
angles. P is the length of the phi vector, and Q is the length of the theta vector.

Data Types: double

 phitheta2uvpat

2-201

phi — Phi angles
vector of length P

Phi angles at which pat_phitheta samples the pattern, specified as a vector of length
P. Each φ angle is in degrees, between 0 and 180.
Data Types: double

theta — Theta angles
vector of length Q

Theta angles at which pat_phitheta samples the pattern, specified as a vector
of length Q. Each θ angle is in degrees, between 0 and 90. Such angles are in the
hemisphere for which u and v are defined.
Data Types: double

u — u coordinates
[-1:0.01:1] (default) | vector of length L

u coordinates at which pat_uv samples the pattern, specified as a vector of length L.
Each u coordinate is between –1 and 1.
Data Types: double

v — v coordinates
[-1:0.01:1] (default) | vector of length M

v coordinates at which pat_uv samples the pattern, specified as a vector of length M.
Each v coordinate is between –1 and 1.
Data Types: double

Output Arguments

pat_uv — Antenna radiation pattern in u/v form
M-by-L matrix

Antenna radiation pattern in u/v form, returned as an M-by-L matrix. pat_uv samples
the 3-D magnitude pattern in decibels, in terms of u and v coordinates. L is the length of
the u vector, and M is the length of the v vector. Values in pat_uv are NaN for u and v
values outside the unit circle because u and v are undefined outside the unit circle.

2 Functions-Alphabetical List

2-202

u — u coordinates
vector of length L

u coordinates at which pat_uv samples the pattern, returned as a vector of length L.

v — v coordinates
vector of length M

v coordinates at which pat_uv samples the pattern, returned as a vector of length M.

More About

Phi Angle, Theta Angle

The φ angle is the angle from the positive y-axis toward the positive z-axis, to the vector’s
orthogonal projection onto the yz plane. The φ angle is between 0 and 360 degrees. The θ
angle is the angle from the x-axis toward the yz plane, to the vector itself. The θ angle is
between 0 and 180 degrees.

The figure illustrates φ and θ for a vector that appears as a green solid line. The
coordinate system is relative to the center of a uniform linear array, whose elements
appear as blue circles.

The coordinate transformations between φ/θ and az/el are described by the following
equations

 phitheta2uvpat

2-203

sin() sin sin

tan() cos tan

cos cos()cos()

tan ta

el

az

el az

=

=

=

=

f q

f q

q

f nn() / sin()el az

U/V Space

The u and v coordinates are the direction cosines of a vector with respect to the y-axis
and z-axis, respectively.

The u/v coordinates for the hemisphere x ≥ 0 are derived from the phi and theta angles,
as follows:

u

v

=

=

sin cos

sin sin

q f

q f

In these expressions, φ and θ are the phi and theta angles, respectively.

In terms of azimuth and elevation, the u and v coordinates are

u el az

v el

=

=

cos sin

sin

The values of u and v satisfy the inequalities

- £ £

- £ £

+ £

1 1

1 1

1
2 2

u

v

u v

Conversely, the phi and theta angles can be written in terms of u and v using

tan /

sin

f

q

=

= +

u v

u v
2 2

The azimuth and elevation angles can also be written in terms of u and v

2 Functions-Alphabetical List

2-204

sin

tan

el v

az
u

u v

=

=

- -1
2 2

• “Spherical Coordinates”

See Also
phased.CustomAntennaElement | phitheta2uv | uv2phitheta | uv2phithetapat

Introduced in R2012a

 physconst

2-205

physconst

Physical constants

Syntax

Const = physconst(Name)

Description

Const = physconst(Name) returns the constant corresponding to the string Name in
SI units. Valid values of Name are 'LightSpeed', 'Boltzmann', and 'EarthRadius'.

Input Arguments

Name

String that indicates which physical constant the function returns. The valid strings are
not case sensitive.

Definitions

The following table lists the supported constants and their values in SI units.

Constant Description Value

'LightSpeed' Speed of light in vacuum 299,792,458 m/s. Most
commonly denoted by c.

'Boltzmann' Boltzmann constant
relating energy to
temperature

1 38 10
23

. ¥
- J/K. Most

commonly denoted by k.

'EarthRadius' Mean radius of the Earth 6,371,000 m

2 Functions-Alphabetical List

2-206

Examples

Wavelength Corresponding to Known Frequency

Determine the wavelength of an electromagnetic wave whose frequency is 1 GHz.

freq = 1e9;

lambda = physconst('LightSpeed')/freq;

Thermal Noise Power

Approximate the thermal noise power per unit bandwidth in the I and Q channels of a
receiver.

Define the receiver temperature and Boltzmann constant.

T = 290;

k = physconst('Boltzmann');

Compute the noise power per unit bandwidth, split evenly between the in-phase and
quadrature channels.

Noise_power = 10*log10(k*T/2);

Introduced in R2011a

 pilotcalib

2-207

pilotcalib

Array calibration using pilot sources

Syntax

estpos = pilotcalib(nompos,x,pilotang)

[estpos,esttaper] = pilotcalib(nompos,x,pilotang)

[estpos,esttaper] = pilotcalib(nompos,x,pilotang,nomtaper)

[estpos,esttaper] = pilotcalib(nompos,x,pilotang,nomtaper,uncerts)

Description

estpos = pilotcalib(nompos,x,pilotang) returns the estimated element
positions, estpos, of a sensor array. The argument nompos represents the relative
nominal positions of the sensor array before calibration. The nominal position is relative
to the first element of the array. The argument x represents the signals received by
the array coming from the pilot sources. The argument pilotang contains the known
directions of each of the pilot sources. Three or more pilot sources are required in this
case.

[estpos,esttaper] = pilotcalib(nompos,x,pilotang) also returns the
estimated array taper, esttaper. Each element of esttaper contains the estimated
taper value of the corresponding array element. In this case, the prior nominal taper is
one for each element. Four or more pilot sources are required in this case.

[estpos,esttaper] = pilotcalib(nompos,x,pilotang,nomtaper) specifies
nomtaper as the nominal taper of the array. Four or more pilot sources are required in
this case.

[estpos,esttaper] = pilotcalib(nompos,x,pilotang,nomtaper,uncerts)

specifies uncerts as the configuration settings to use for calibrating array uncertainties.
Configuration settings determine which parameters to estimate.

2 Functions-Alphabetical List

2-208

Examples

Estimate ULA Element Positions Using Pilot Calibration

Construct a 7-element ULA array of isotropic antenna elements spaced one-half
wavelength apart. Assume the array is geometrically perturbed in three dimensions.
Perform pilot calibration on the array using 4 pilot sources at azimuth and elevation
angles of (-60,0), (10,-40), (40,0), and (120,45) degrees. For the calibration process, pilot
signals have an SNR of 30 dB. Each pilot signal containes 10,000 samples. Assume the
signals have a frequency of 600 MHz.

Set up the ULA with nominal parameters

fc = 600e6;

c = physconst('LightSpeed');

lam = c/fc;

d = 0.5*lam;

sIso = phased.IsotropicAntennaElement('FrequencyRange',[100,900]*1e6);

Nelem = 7;

NominalTaper = ones(1,Nelem);

sULA = phased.ULA('Element',sIso,'NumElements',Nelem,'ElementSpacing',d,...

 'Taper',NominalTaper);

Create the pilot signals

Randomly perturb the element positions with a gaussian distribution having 0.1
wavelength standard deviation. Do not perturb the position of the first element or the
tapers.

posstd = 0.1;

rng default

NominalElementPositions = getElementPosition(sULA)/lam;

ReferenceElement = NominalElementPositions(:,1);

PositionPert = [zeros(3,1),posstd*randn(3,Nelem-1)];

ActualElementPositions = NominalElementPositions + PositionPert;

ActualTaper = NominalTaper;

Generate the signals using the actual positions and tapers.

Nsamp = 10000;

ncov = 0.001;

PilotAng = [-60,10,40,120; 0,-40,0,45];

Npilot = size(PilotAng,2);

for n = 1:Npilot

 pilotcalib

2-209

 X(:,:,n) = sensorsig(ActualElementPositions,...

 Nsamp,PilotAng(:,n),ncov,'Taper',ActualTaper.');

end

Perform the pilot calibration

estpos = pilotcalib(NominalElementPositions - ReferenceElement*ones(1,Nelem),...

 X,PilotAng);

Add back the position of the reference sensor

estpos = estpos + NominalElementPositions(:,1)*ones(1,Nelem);

Examine the root mean squared (RMS) error of the calibrated parameters

Compute the RMS value of the initial position error.

numpos = 3*Nelem;

initposRMSE = sqrt(sum(PositionPert(:).^2)/numpos);

Compute the RMS value of the calibrated position error.

solvposErr = ActualElementPositions - estpos;

solvposRMSE = sqrt(sum(solvposErr(:).^2)/(numpos));

Compare the calibrated RMS position error to the initial position RMS error. The
calibration reduces the RMS position error.

disp(solvposRMSE/initposRMSE)

 2.3493e-04

Estimate ULA Element Position and Taper Errors Using Pilot Calibration

Construct a 7-element ULA array of isotropic antenna elements spaced one-half
wavelength apart. Assume the array is geometrically perturbed in three dimensions.
Perform pilot calibration on the array using 4 pilot sources at azimuth and elevation
angles of (-60,0), (10,80), (40,-40), and (-80,0) degrees. For the calibration process, pilot
signals have an SNR of 30 dB. Each pilot signal containes 10,000 samples. Assume the
signals have a frequency of 600 MHz.

Set up the ULA with nominal parameters

fc = 600e6;

2 Functions-Alphabetical List

2-210

c = physconst('LightSpeed');

lam = c/fc;

d = 0.5*lam;

sIso = phased.IsotropicAntennaElement('FrequencyRange',[100,900]*1e6);

Nelem = 7;

NominalTaper = ones(1,Nelem);

sULA = phased.ULA('Element',sIso,'NumElements',Nelem,'ElementSpacing',d,...

 'Taper',NominalTaper);

Create the pilot signals

Randomly perturb the element positions using a Gaussian distribution that has a
standard deviation of 0.1 wavelength. Do not perturb the position of the first element.

posstd = 0.1;

rng default

NominalElementPositions = getElementPosition(sULA)/lam;

ReferenceElement = NominalElementPositions(:,1);

PositionPert = [zeros(3,1),posstd*randn(3,Nelem-1)];

ActualElementPositions = NominalElementPositions + PositionPert;

Perturb the taper in magnitude and phase. Do not perturb the first taper.

tapermagstd = 0.15;

taperphasestd = 0.15;

tapermagpert = tapermagstd*[0; randn(Nelem-1,1)];

ActualTaper = NominalTaper' + tapermagpert;

taperphasepert = taperphasestd*[0;randn(Nelem-1,1)];

ActualTaper = ActualTaper.*exp(1i*taperphasepert);

Generate the signals using the perturbed positions, tapers and four pilot sources.

Nsamp = 10000;

ncov = 0.001;

PilotAng = [-60,10,40,-80; 10,80,-40,0];

Npilot = size(PilotAng,2);

for n = 1:Npilot

 X(:,:,n) = sensorsig(ActualElementPositions,Nsamp,...,

 PilotAng(:,n),ncov,'Taper',ActualTaper);

end

Perform the pilot calibration

[estpos,esttaper] = pilotcalib(...

 NominalElementPositions - ReferenceElement*ones(1,Nelem),...

 pilotcalib

2-211

 X,PilotAng);

Add back the position of the reference sensor

estpos = estpos + NominalElementPositions(:,1)*ones(1,Nelem);

Examine the root mean square (RMS) error of the calibrated parameters

Compute the RMS values of the initial taper perturbations.

tapermagpertRMSE = sqrt(tapermagpert'*tapermagpert/Nelem);

taperphasepertRMSE = sqrt(taperphasepert'*taperphasepert/Nelem);

Compute the RMS value of the calibrated taper magnitude error.

diff = abs(ActualTaper) - abs(esttaper);

diff2 = diff'*diff;

tapermagsolvRMSE = sqrt(diff2/Nelem);

Compare the calibrated RMS magnitude error to the initial RMS magnitude error. The
calibration reduces the RMS magnitude error.

disp(tapermagsolvRMSE/tapermagpertRMSE)

 6.7715e-04

Compute the RMS value of the calibrated taper phase error

diff = unwrap(angle(ActualTaper) - angle(esttaper));

diff2 = diff'*diff;

tapersolvphaseRMSE = sqrt(diff2/Nelem);

Compare the calibrated RMS phase error to the initial RMS phase error. The calibration
reduces the RMS phase error.

disp(tapersolvphaseRMSE/taperphasepertRMSE)

% Compute the RMS value of the initial position error.

numpos = 3*Nelem;

initposRMSE = sqrt(sum(PositionPert(:).^2)/numpos);

 0.0021

Compute the RMS value of the calibrated position error.

2 Functions-Alphabetical List

2-212

solvposErr = ActualElementPositions - estpos;

solvposRMSE = sqrt(sum(solvposErr(:).^2)/(numpos));

Compare the calibrated RMS position error to the initial position RMS error. The
calibration reduces the RMS position error.

disp(solvposRMSE/initposRMSE)

 3.6308e-04

Estimate URA Element Position Errors Using Pilot Calibration

Construct a 9-element URA of isotropic antenna elements spaced one-half wavelength
apart. Assume the array has been geometrically perturbed in all directions except for
the first element. Perform pilot calibration on the array using 5 pilot sources at azimuth
and elevation angles of (-60,0), (10,-40), (40,0), (120,45), and (170,50) degrees. For the
calibration process, pilot signals have an SNR of 30 dB. Each pilot signal containes
10,000 samples. Assume the signals have a frequency of 600 MHz.

Create the array

For convenience, use a phased.URA System object™ to set the nominal position and
taper values.

fc = 300e6;

c = physconst('LightSpeed');

lam = c/fc;

d = 0.5*lam;

sIso = phased.IsotropicAntennaElement('FrequencyRange',[100,900]*1e6);

sURA = phased.URA('Element',sIso,'Size',[3,3],...

 'ElementSpacing',d,'Taper',ones(3,3));

Nelem = getNumElements(sURA);

taper = getTaper(sURA);

Create the pilot signals

Randomly perturb the element positions using a Gaussian distribution that has a
standard deviation of 0.1 wavelength. Do not perturb the position of the first element.

posstd = 0.1;

rng default

NominalElementPositions = getElementPosition(sURA)/lam;

ReferenceElement = NominalElementPositions(:,1);

 pilotcalib

2-213

PositionPert = [zeros(3,1),posstd*randn(3,Nelem-1)];

ActualElementPositions = NominalElementPositions + PositionPert;

Perturb the taper in magnitude and phase. Do not perturb the first taper.

NominalTaper = getTaper(sURA);

tapermagstd = 0.1;

taperphasestd = 0.1;

tapermagpert = tapermagstd*[0; randn(Nelem-1,1)];

ActualTaper = NominalTaper + tapermagpert;

taperphasepert = taperphasestd*[0;randn(Nelem-1,1)];

ActualTaper = ActualTaper.*exp(1i*taperphasepert);

Generate the pilot signals using the perturbed positions and tapers.

Nsamp = 10000;

ncov = 0.001;

PilotAng = [-60,10,40,120,170; 0,-40,0,45,50];

Npilot = size(PilotAng,2);

for n = 1:Npilot

 X(:,:,n) = sensorsig(ActualElementPositions,Nsamp,...

 PilotAng(:,n),ncov,'Taper',ActualTaper);

end

Perform the pilot calibration

[estpos,esttaper] = pilotcalib(NominalElementPositions - ReferenceElement*ones(1,Nelem),...

 X,PilotAng,NominalTaper);

Add back the position of the reference sensor.

estpos = estpos + NominalElementPositions(:,1)*ones(1,Nelem);

Examine the root mean square (RMS) error of the calibrated parameters

Compute the RMS values of the initial taper perturbations to compare with the RMS
values of the calibrated parameters.

tapermagpertRMSE = sqrt(tapermagpert'*tapermagpert/Nelem);

taperphasepertRMSE = sqrt(taperphasepert'*taperphasepert/Nelem);

Compute the RMS value of the calibrated taper magnitude error.

diff = abs(ActualTaper) - abs(esttaper);

diff2 = diff'*diff;

tapermagsolvRMSE = sqrt(diff2/Nelem);

2 Functions-Alphabetical List

2-214

Compare the calibrated RMS magnitude error to the initial RMS error. The calibration
reduces the RMS magnitude error.

disp(tapermagsolvRMSE/tapermagpertRMSE)

 0.0014

Compute the RMS value of the calibrated taper phase error.

diff = unwrap(angle(ActualTaper) - angle(esttaper));

diff2 = diff'*diff;

tapersolvphaseRMSE = sqrt(diff2/Nelem);

Compare the calibrated RMS phase error to the initial RMS error. The calibration
reduces the RMS phase error.

disp(tapersolvphaseRMSE/taperphasepertRMSE)

 0.0015

Compute the RMS value of the initial position error.

numpos = 3*Nelem;

initposRMSE = sqrt(sum(PositionPert(:).^2)/numpos);

Compute the RMS value of the calibrated position error.

solvposErr = ActualElementPositions - estpos;

solvposRMSE = sqrt(sum(solvposErr(:).^2)/(numpos));

Compare the calibrated RMS position error to initial position RMS error. The calibration
reduces the RMS position error.

disp(solvposRMSE/initposRMSE)

 7.1582e-04

Estimate Selected ULA Parameters Using Pilot Calibration

Construct a 6-element ULA of isotropic antenna elements that are spaced one-half
wavelength apart. Assume the array has been geometrically perturbed in the x-y plane
and contains an unknown taper error. Perform pilot calibration on the array using four
pilot sources at azimuth and elevation angles of (-60,0), (10,-40), (40,0), and (120,45)

 pilotcalib

2-215

degrees. For the calibration process, pilot signals have an SNR of 30 dB. Each pilot signal
containes 10,000 samples. Assume the signals have a frequency of 600 MHz.

Set up the ULA with nominal parameters

fc = 600e6;

c = physconst('LightSpeed');

lam = c/fc;

d = 0.5*lam;

sIso = phased.IsotropicAntennaElement('FrequencyRange',[100,900]*1e6);

Nelem = 6;

NominalTaper = ones(1,Nelem);

sULA = phased.ULA('Element',sIso,'NumElements',Nelem,'ElementSpacing',d,...

 'Taper',NominalTaper);

Create the pilot signals

Randomly perturb the element positions using a Gaussian distribution that has a
standard deviation of 0.13 wavelength. Do not perturb the position of the first element.

posstd = 0.13;

rng default

NominalElementPositions = getElementPosition(sULA)/lam;

ReferenceElement = NominalElementPositions(:,1);

PositionPert = [zeros(3,1),posstd*randn(3,Nelem-1)];

ActualElementPositions = NominalElementPositions + PositionPert;

Perturb the taper in magnitude and phase. Do not perturb the first taper.

tapermagstd = 0.15;

taperphasestd = 0.15;

tapermagpert = tapermagstd*[0; randn(Nelem-1,1)];

ActualTaper = NominalTaper' + tapermagpert;

taperphasepert = taperphasestd*[0;randn(Nelem-1,1)];

ActualTaper = ActualTaper.*exp(1i*taperphasepert);

Generate the signals using the perturbed positions and tapers.

Nsamp = 10000;

ncov = 0.001;

PilotAng = [-60,10,40,120; 0,-40,0,45];

Npilot = size(PilotAng,2);

for n = 1:Npilot

 X(:,:,n) = sensorsig(ActualElementPositions,Nsamp,...

 PilotAng(:,n),ncov,'Taper',ActualTaper);

end

2 Functions-Alphabetical List

2-216

Perform the pilot calibration

Turn off estimation of taper weights.

[estpos,esttaper] = pilotcalib(NominalElementPositions - ReferenceElement*ones(1,Nelem),...

 X,PilotAng,NominalTaper.',[1,1,1,0]');

Add back the position of the reference sensor

estpos = estpos + NominalElementPositions(:,1)*ones(1,Nelem);

Examine the root mean square (RMS) error of the calibrated parameters

Compute the RMS values of the initial taper perturbations to compare with the RMS
values of the calibrated parameters.

tapermagpertRMSE = sqrt(tapermagpert'*tapermagpert/Nelem);

taperphasepertRMSE = sqrt(taperphasepert'*taperphasepert/Nelem);

Compute the RMS value of the calibrated taper magnitude error.

diff = abs(ActualTaper) - abs(esttaper);

diff2 = diff'*diff;

tapermagsolvRMSE = sqrt(diff2/Nelem);

Compare the calibrated RMS magnitude error to the initial RMS error. The calibration
reduces the RMS magnitude error.

disp(tapermagsolvRMSE/tapermagpertRMSE)

 1.0000

Compute the RMS value of the calibrated taper phase error

diff = unwrap(angle(ActualTaper) - angle(esttaper));

diff2 = diff'*diff;

tapersolvphaseRMSE = sqrt(diff2/Nelem);

Compare the calibrated RMS phase error to the initial RMS error. The calibration
reduces the RMS phase error.

disp(tapersolvphaseRMSE/taperphasepertRMSE)

 1

 pilotcalib

2-217

Compute the RMS value of the initial position error.

numpos = 3*Nelem;

initposRMSE = sqrt(sum(PositionPert(:).^2)/numpos);

Compute the RMS value of the calibrated position error.

solvposErr = ActualElementPositions - estpos;

solvposRMSE = sqrt(sum(solvposErr(:).^2)/(numpos));

Compare the calibrated RMS position error to initial position RMS error. The calibration
reduces the RMS position error.

disp(solvposRMSE/initposRMSE)

 0.1502

Input Arguments

nompos — Nominal relative element positions
real-valued 3-by-N matrix

Nominal relative element positions, specified as a real-valued 3-by-N matrix. The
dimension N is the number of elements in the sensor array. Elements positions are
relative to the first element of the array and are specified in units of signal wavelength.
Each column of nompos represents the [x;y;z] coordinates of the corresponding
element. The nominal position of all sensors must be within one-half of a wavelength of
their actual positions for successful calibration.
Example:
Data Types: double

x — Pilot signals
complex-valued L-by-N-by-M matrix

Pilot signals, specified as a complex-valued L-by-N-by-M matrix. The argument x
represents the signals received by the array when pilot sources are transmitting. The
dimension L is the number of snapshots of each pilot source signal. The dimension N is
the number of array elements. The dimension M is the number of pilot sources.
Example:

2 Functions-Alphabetical List

2-218

Data Types: double
Complex Number Support: Yes

pilotang — Pilot angles
real-valued 2-by-M matrix

Pilot angles, specified as a real-valued 2-by-M matrix. The dimension M is the number
of pilot sources. Each column contains the direction of the pilot source in the form
[azimuth; elevation]. Angle units are in degrees. The azimuth angle must lie
between -180° and 180° and the elevation angle must lie between -90° and 90°. The
azimuth angle is measured from the x-axis to the projection of the source direction into
the xy plane, positive toward the y-axis. The elevation angle is defined as the angle
from the xy plane to the source direction, positive toward the z-axis. Calibration source
directions must span sufficiently diverse azimuth and elevation angles.
Example:
Data Types: double

nomtaper — Nominal taper
1 (default) | complex-valued N-by-1 column vector

Nominal taper of array elements, specified as a complex-valued N-by-1 column vector.
The dimension N is the number of array elements. Each component represents the
nominal taper of the corresponding element.
Example:
Data Types: double
Complex Number Support: Yes

uncerts — Uncertainty estimation configuration
[1,1,1,1] (default) | 1-by-4 vector of ones and zeros

Uncertainty estimation configuration, specified as a 1-by-4 vector consisting of 0’s and
1’s. The vector uncerts determines which uncertainties to estimated. The vector takes
the form of [xflag; yflag; zflag; taperflag]. Set xflag, yflag, or zflag
to 1 to estimate uncertainties in the x, y, or z axes. Set taperflag to 1 to estimate
uncertainties in the taper. The number of pilot sources must greater than or equal to the
number of 1’s in the vector.

For example, set uncerts to [0;1;1;1] to estimate uncertainties in the y and z element
position components and the taper simultaneously.

 pilotcalib

2-219

Example:
Data Types: double

Output Arguments

estpos — Estimated positions
real-valued 3-by-N matrix

Estimated element positions, returned as a real-valued 3-by-N matrix. Units are in
signal wavelength. The dimension N is the number of array elements. Each column of
estpos represents the [x;y;z] coordinates of the corresponding element.

esttaper — Estimated taper
complex-valued N-by-1 column vector

Estimated taper values, returned as a complex-valued N-by-1 column vector. The
dimension N is the number of array elements. Each element of esttaper represents the
taper of the corresponding sensor element.

More About

Algorithms

This algorithm requires that the pilot sources be independent narrowband plane-wave
signals incoming from the far field region of the array. In addition, signals must not
exhibit multipath propagation effects or coherence. All elements in the sensor array are
assumed to be isotropic.

The algorithm calibrates relative positions of the array sensors with respect to the first
sensor. To use the algorithm, first subtract the position of the first element from each
element, then pass the relative array into the function as the nominal position argument
to produced the calibrated relative positions. Finally, add back the first element position
to all the relative positions to create the fully calibrated array.

References

[1] N. Fistas and A. Manikas, "A New General Global Array Calibration Method", IEEE
Proceedings of ICASSP, Vol. IV, pp. 73-76, April 1994.

2 Functions-Alphabetical List

2-220

Introduced in R2015a

 pol2circpol

2-221

pol2circpol
Convert linear component representation of field to circular component representation

Syntax

cfv = pol2circpol(fv)

Description

cfv = pol2circpol(fv) converts the linear polarization components of the field or
fields contained in fv to their equivalent circular polarization components in cfv. The
expression of a field in terms of a two-row vector of linear polarization components is
called the Jones vector formalism.

Examples

Circular Polarization Components from Linear Polarization Components

Express a 45° linear polarized field in terms of right-circular and left-circular
components.

fv = [2;2]

cfv = pol2circpol(fv)

cfv =

 1.4142 - 1.4142i

 1.4142 + 1.4142i

Circular Polarization Components from Linear Polarization Components for Two Fields

Specify two input fields [1+1i;-1+1i] and [1;1] in the same matrix. The first field
is a linear representation of a left-circularly polarized field and the second is a linearly
polarized field.

 fv=[1+1i 1;-1+1i 1]

 cfv = pol2circpol(fv)

2 Functions-Alphabetical List

2-222

cfv =

 1.4142 + 1.4142i 0.7071 - 0.7071i

 0.0000 + 0.0000i 0.7071 + 0.7071i

Input Arguments

fv — Field vector in linear component representation
1-by-N complex-valued row vector or a 2-by-N complex-valued matrix

Field vector in its linear component representation specified as a 1-by-N complex row
vector or a 2-by-N complex matrix. If fv is a matrix, each column in fv represents a
field in the form of [Eh;Ev], where Eh and Ev are the field’s horizontal and vertical
polarization components. If fv is a vector, each entry in fv is assumed to contain the
polarization ratio, Ev/Eh. For a row vector, the value Inf designates the case when the
ratio is computed for a field with Eh = 0.

Example: [1;-i]

Example: 2 + pi/3*i

Data Types: double
Complex Number Support: Yes

Output Arguments

cfv — Field vector in circular component representation
1-by-N complex-valued row vector or 2-by-N complex-valued matrix

Field vector in circular component representation returned as a 1-by-N complex-valued
row vector or 2-by-Ncomplex-valued matrix. cfv has the same dimensions as fv. If
fv is a matrix, each column of cfv contains the circular polarization components,
[El;Er], of the field where El and Er are the left-circular and right-circular polarization
components. If fv is a row vector, then cfv is also a row vector and each entry in cfv
contains the circular polarization ratio, defined as Er/El.

References

[1] Mott, H., Antennas for Radar and Communications, John Wiley & Sons, 1992.

 pol2circpol

2-223

[2] Jackson, J.D. , Classical Electrodynamics, 3rd Edition, John Wiley & Sons, 1998, pp.
299–302

[3] Born, M. and E. Wolf, Principles of Optics, 7th Edition, Cambridge: Cambridge
University Press, 1999, pp 25–32.

See Also
circpol2pol | polellip | polratio | stokes

Introduced in R2013a

2 Functions-Alphabetical List

2-224

polellip
Parameters of ellipse traced out by tip of a polarized field vector

Syntax
tau = polellip(fv)

[tau,epsilon] = polellip(fv)

[tau,epsilon,ar] = polellip(fv)

[tau,epsilon,ar,rs] = polellip(fv)

polellip(fv)

Description
tau = polellip(fv) returns the tilt angle, in degrees, of the polarization ellipse of
a field or set of fields specified in fv. fv contains the linear polarization components
of a field in either one of two forms: (1) each column represents a field in the form of
[Eh;Ev], where Eh and Ev are the field’s horizontal and vertical linear polarization
components or (2) each column contains the polarization ratio, Ev/Eh. The expression of
a field in terms of a two-row vector of linear polarization components is called the Jones
vector formalism.

[tau,epsilon] = polellip(fv) returns, in addition, a row vector, epsilon,
containing the ellipticity angle (in degrees) of the polarization ellipses. The ellipticity
angle is the angle determined by the ratio of the length of the semi-minor axis to semi-
major axis and lies in the range [-45°,45°]. This syntax can use any of the input
arguments in the previous syntax.

[tau,epsilon,ar] = polellip(fv) returns, in addition, a row vector, ar, containing
the axial ratios of the polarization ellipses. The axial ratio is defined as the ratio of the
lengths of the semi-major axis of the ellipse to the semi-minor axis. This syntax can use
any of the input arguments in the previous syntaxes.

[tau,epsilon,ar,rs] = polellip(fv) returns, in addition, a cell array of strings
rs, containing the rotation senses of the polarization ellipses. Each entry in the array is
one of 'Linear', 'Left Circular', 'Right Circular', 'Left Elliptical' or
'Right Elliptical'. This syntax can use any of the input arguments in the previous
syntaxes.

 polellip

2-225

polellip(fv) plots the polarization ellipse of the field specified in fv. This syntax
requires that fv have only one column. Unlike the returned arguments, the size of the
drawn ellipse depends upon the magnitude of fv.

Examples

Tilt Angle for Linearly Polarized Field

Create an input field that is linearly polarized by setting both the horizontal and vertical
components to have the same phase.

fv = [2;1];

tau = polellip(fv)

tau =

 26.5651

For linear polarization, tau, can be computed from tau=atan(fv(2)/fv(1))*180/pi .

Tilt Angle and Ellipticity for Elliptically Polarized Field

Start with an elliptically polarized input field (the horizontal and vertical components
differ in magnitude and in phase). Choose the phase difference to be 90°.

fv = [3*exp(-i*pi/2);1];

[tau,epsilon] = polellip(fv)

tau =

 2.3389e-15

epsilon =

 18.435

The tilt vanishes because of the 90° phase difference between the horizontal and vertical
components of the field.

Tilt Angle, Ellipticity and Axial Ratio for Elliptically Polarized Field

Start with an elliptically polarized input field (the horizontal and vertical components
differ in magnitude and in phase). Choose the phase difference to be 60°.

2 Functions-Alphabetical List

2-226

fv = [2*exp(-i*pi/3);1];

[tau,epsilon,ar] = polellip(fv)

tau =

 16.8450

epsilon =

 21.9269

ar =

 -2.4842

The nonzero tilt occurs because of the 60° phase difference. The negative value of ar
signifies left elliptical polarization.

Tilt Angle, Ellipticity, Axial Ratio and Rotation Sense for Elliptically Polarized Field

Start with an elliptically polarized input field (the horizontal and vertical components
differ in magnitude and in phase). Choose the phase difference to be 60°.

fv = [2*exp(-i*pi/3);1];

[tau,epsilon,ar,rs] = polellip(fv)

tau =

 16.8450

epsilon =

 21.9269

ar =

 -2.4842

rs =

 'Left Elliptical'

 polellip

2-227

The nonzero tilt occurs because of the 60° phase difference and the rotation sense is
'Left Elliptical' indicating that the tip of the field vector is moving clockwise when
looking towards the source of the field.

Polarization Ellipse

Draw the figure of an elliptically polarized field. Begin with an elliptically polarized
input field (the horizontal and vertical components differ in magnitude and in phase) and
choose the phase difference to be 60 degrees.

fv = [2*exp(-i*pi/3);1];

polellip(fv)

2 Functions-Alphabetical List

2-228

The rotation sense is 'Left Elliptical' as shown by the direction of the arrow on the
ellipse. The filled circle at the origin indicates that the observer is looking towards the
source of the field.

Input Argument

fv — Field vector in linear component representation
1-by-N complex-valued row vector or 2-by-N complex-valued matrix

Field vector in linear component representation specified as a 1-by-N complex-valued
row vector or 2-by-N complex-valued matrix. Each column contains an instance of a
field specification. If fv is a matrix, each column in fv represents a field in the form
of [Eh;Ev], where Eh and Ev are the field’s linear horizontal and vertical polarization
components. If fv is a row vector, then the row contains the ratio of the vertical to
horizontal components of the field Ev/Eh. For a row vector, the value Inf is allowed to
designate the case when the ratio is computed for Eh = 0. Eh and Ev cannot both be set
to zero.
Example: [1;-i]

Example: 2 + pi/3*i

Data Types: double
Complex Number Support: Yes

Output Arguments

tau — Tilt angle of polarization ellipse
1-by-N real-valued row vector

Tilt angle of polarization ellipse returned as a 1-by-N real-valued row vector. Each entry
in tau contains the tilt angle of the polarization ellipse associated with each column of
the field fv. The tilt angle is the angle between the semi-major axis of the ellipse and the
horizontal axis (i.e. xaxis) and lies in the range [-90,90]°.

epsilon — Ellipticity angle of the polarization ellipse
1-by-N real-valued row vector

Ellipticity angle of the polarization ellipse returned as 1-by-N real-valued row vector.
Each entry in epsilon contains the ellipticity angle of the polarization ellipse associated

 polellip

2-229

with each column of the field fv. The ellipticity angle describes the shape of the ellipse
and lies in the range [-45°,45°].

ar — Axial ratio of the polarization ellipse
1-by-N real-valued row vector

Axial ratio of the polarization ellipse returned as a 1-by-N real-valued row vector. Each
entry in ar contains the axial ratio of the polarization ellipse associated with each
column of the field fv. The axial ratio is the signed ratio of the major-axis length to the
minor-axis length of the polarization ellipse. Its absolute value is always greater than or
equal to one. The sign of ar carries the rotational sense of the vector – a negative sign
denotes left-handed rotation and a positive sign denotes right-handed rotation.

rs — Rotation sense of the polarization ellipse
1-by-N cell array of strings

Rotation sense of the polarization ellipse returned as a 1-by-N cell array of strings. Each
entry in rs contains the rotation sense of the polarization ellipse associated with each
column of the field fv. The rotation sense can be one of 'Linear', 'Left Circular',
'Right Circular', 'Left Elliptical' or 'Right Elliptical'.

References

[1] Mott, H., Antennas for Radar and Communications, John Wiley & Sons, 1992.

[2] Jackson, J.D. , Classical Electrodynamics, 3rd Edition, John Wiley & Sons, 1998, pp.
299–302

[3] Born, M. and E. Wolf, Principles of Optics, 7th Edition, Cambridge: Cambridge
University Press, 1999, pp 25–32.

See Also
circpol2pol | pol2circpol | polratio | stokes

Introduced in R2013a

2 Functions-Alphabetical List

2-230

polloss
Polarization loss

Syntax

rho = polloss(fv_tr,fv_rcv)

rho = polloss(fv_tr,fv_rcv,pos_rcv)

rho = polloss(fv_tr,fv_rcv,pos_rcv,axes_rcv)

rho = polloss(fv_tr,fv_rcv,pos_rcv,axes_rcv,pos_tr)

rho = polloss(fv_tr,fv_rcv,pos_rcv,axes_rcv,pos_tr,axes_tr)

Description

rho = polloss(fv_tr,fv_rcv) returns the loss, in decibels, because of mismatch
between the polarization of a transmitted field, fv_tr, and the polarization of the
receiving antenna, fv_rcv. The field vector lies in a plane orthogonal to the direction of
propagation from the transmitter to the receiver. The transmitted field is represented as
a 2-by-1 column vector [Eh;Ev]. In this vector, Eh and Ev are the field’s horizontal and
vertical linear polarization components with respect to the transmitter’s local coordinate
system. The receiving antenna’s polarization is specified by a 2-by-1 column vector,
fv_rcv. You can also specify this polarization in the form of [Eh;Ev] with respect to the
receiving antenna’s local coordinate system. In this syntax, both local coordinate axes
align with the global coordinate system.

rho = polloss(fv_tr,fv_rcv,pos_rcv) specifies, in addition, the position of the
receiver. The receiver is defined as a 3-by-1 column vector, [x;y;z], with respect to the
global coordinate system (position units are in meters). This syntax can use any of the
input arguments in the previous syntax.

rho = polloss(fv_tr,fv_rcv,pos_rcv,axes_rcv) specifies, in addition, the
orthonormal axes, axes_rcv. These axes define the receiver's local coordinate system
as a 3-by-3 matrix. The first column gives the x-axis of the local system with respect
to the global coordinate system. The second and third columns give the y and z axes,
respectively. This syntax can use any of the input arguments in the previous syntaxes.

rho = polloss(fv_tr,fv_rcv,pos_rcv,axes_rcv,pos_tr) specifies, in addition,
the position of the transmitter as a 3-by-1 column vector, [x;y;z], with respect to the

 polloss

2-231

global coordinate system (position units are in meters). This syntax can use any of the
input arguments in the previous syntaxes.

rho = polloss(fv_tr,fv_rcv,pos_rcv,axes_rcv,pos_tr,axes_tr) specifies,
in addition, the orthonormal axes, axes_tr. These axes define the transmitter's local
coordinate system as a 3-by-3 matrix. The first column gives the x-axis of the local
system with respect to the global coordinate system. The second and third columns give
the y and z axes, respectively. This syntax can use any of the input arguments in the
previous syntaxes.

Examples
Mismatch Between a 45° Polarized Field and a Horizontally Polarized Receiver

Begin with a 45° polarized transmitted field and a receiver that is horizontally polarized.
By default, the transmitter and receiver local axes coincide with the global coordinate
system. Compute the polarization loss in dB.

fv_tr = [1;1];

fv_rcv = [1;0];

rho = polloss(fv_tr,fv_rcv);

rho =

 3.0103

The loss is 3 dB as expected because only half the power of the field matches to the
receive antenna polarization.

No Polarization Loss Because of Receiver Motion

Begin with identical transmitter and receiver polarizations. Place the receiver at a
position 100 meters along the y-axis. The transmitter is at the origin (its default position)
and both local coordinate axes coincide with the global coordinate system (by default).
First, compute the polarization loss. Then, move the receiver 100 meters along the x-axis,
and compute the polarization loss again.

fv_tr = [1;0];

fv_rcv = [1;0];

pos_rcv = [0;100;0];

rho(1) = polloss(fv_tr,fv_rcv,pos_rcv);

pos_rcv = [100;100;0];

rho(2) = polloss(fv_tr,fv_rcv,pos_rcv);

2 Functions-Alphabetical List

2-232

rho =

 0 0

No polarization loss occurs at either position. The spherical basis vectors of each antenna
are parallel to their counterparts and the polarization vectors are the same.

Loss Because of Receiver Axes Rotation

Start with identical transmitter and receiver polarizations. Put the receiver at a position
100 meters along the y-axis. The transmitter is at the origin (default) and both local
coordinate axes coincide with the global coordinate system (default). Compute the loss,
and then rotate the receiver 30° around the y-axis. This rotation changes the azimuth
and elevation of the transmitter with respect to the receiver and, therefore, the direction
of polarization.

fv_tr = [1;0];

fv_rcv = [1;0];

pos_rcv = [0;100;0];

ax_rcv = azelaxes(0,0);

rho(1) = polloss(fv_tr,fv_rcv,pos_rcv,ax_rcv);

ax_rcv = roty(30)*ax_rcv;

rho(2) = polloss(fv_tr,fv_rcv,pos_rcv,ax_rcv);

rho =

 0 1.2494

The receiver polarization vector remains unchanged. However, rotating the local
coordinate system changes the direction of the field of the receiving antenna polarization
with respect to global coordinates. This change results in a 1.2 dB loss.

No Polarization Loss Because of Transmitter Motion

Start with identical transmitter and receiver polarizations. Put the receiver at a position
100 meters along the y-axis. The transmitter is at the origin (default) and both local
coordinate axes coincide with the global coordinate system (default). First, compute the
polarization loss. Then, move the transmitter 100 meters along the x-axis and 100 meters
along the y-axis, and compute the polarization loss again.

fv_tr = [1;0];

fv_rcv = [1;0];

pos_rcv = [0;100;0];

ax_rcv = azelaxes(0,0);

pos_tr = [0;0;0];

 polloss

2-233

rho(1) = polloss(fv_tr,fv_rcv,pos_rcv,ax_rcv,pos_tr);

pos_tr = [100;100;0];

rho(2) = polloss(fv_tr,fv_rcv,pos_rcv,ax_rcv,pos_tr);

rho =

 0 0

There is no polarization loss at either position because the spherical basis vectors of each
antenna are parallel to their counterparts and the polarization vectors are the same.

Plot Polarization Loss as Receiving Antenna Rotates

Specifying identical transmitter and receiver polarizations, plot the loss as the local
receiving antenna axes rotate around the -axis.

fv_tr = [1;0];

fv_rcv = [1;0];

The position of the transmitting antenna is at the origin and its local axes align with the
global coordinate system. The position of the receiving antenna is 100 meters along the
global -axis. However, its local -axis points towards the transmitting antenna.

pos_tr = [0;0;0];

axes_tr = azelaxes(0,0);

pos_rcv = [100;0;0];

axes_rcv0 = rotz(180)*azelaxes(0,0);

Rotate the receiving antenna around its local -axis in one-degree increments. Compute
the loss for each angle.

angles = [0:1:359];

n = size(angles,2);

rho = zeros(1,n); % Initialize space

for k = 1:n

 axes_rcv = rotx(angles(k))*axes_rcv0;

 rho(k) = polloss(fv_tr,fv_rcv,pos_tr,axes_tr,...

 pos_rcv,axes_rcv);

end

Plot the polarization loss.

hp = plot(angles,rho);

hax = hp.Parent;

hax.XLim = [0,360];

xticks = (0:(n-1))*45;

2 Functions-Alphabetical List

2-234

hax.XTick = xticks;

grid;

title('Polarization loss versus receiving antenna rotation')

xlabel('Rotation angle (degrees)');

ylabel('Loss (dB)');

The angle-loss plot shows nulls (Inf dB) at 90 degrees and 270 degrees where the
polarizations are orthogonal.

Input Arguments
fv_tr — Transmitted field vector in linear component representation
2-by-1 complex-valued column vector

 polloss

2-235

The transmitted field vector in linear component representation specified as a 2-
by-1, complex-valued column vector [Eh;Ev]. In this vector, Eh and Ev are the field’s
horizontal and vertical linear components.
Example: [1;1]
Data Types: double
Complex Number Support: Yes

fv_rcv — Receiver polarization vector in linear component representation
2-by-1 complex-valued column vector

Receiver polarization vector in linear component representation specified as a 2-by-1,
complex-valued column vector [Eh;Ev]. In this vector, Eh and Ev are the polarization
vector’s horizontal and vertical linear components.
Example: [0;1]
Data Types: double
Complex Number Support: Yes

pos_rcv — Receiving antenna position
[0;0;0] (default) | 3-by-1 real-valued column vector

Receiving antenna position specified as a 3-by-1, real-valued column vector. The
components of pos_rcv are specified in the global coordinate system as [x;y;z].

Example: [1000;0;0]
Data Types: double

axes_rcv — Receiving antenna local coordinate axes
3-by-3 identity matrix (default) | 3-by-3 real-valued matrix

Receiving antenna local coordinate axes specified as a 3-by-3, real-valued matrix. Each
column is a unit vector specifying the local coordinate system's orthonormal x, y, and z
axes, respectively, with respect to the global coordinate system. Each column is written
in [x;y;z] form. If axes_rcv is specified as the identity matrix, the local coordinate
system is aligned with the global coordinate system.
Example: [1, 0, 0; 0, 1, 0; 0, 0 ,1]
Data Types: double

pos_tr — Transmitter position
[0;0;0] (default) | 3-by-1 real-valued column vector

2 Functions-Alphabetical List

2-236

Transmitter position specified as a 3-by-1, real-valued column vector. The components of
pos_tr are specified in the global coordinate system as [x;y;z].

Example: [0;0;0]
Data Types: double

axes_tr — Transmitting antenna local coordinate axes
3-by-3 identity matrix (default) | 3-by-3 real-valued matrix

Transmitting antenna local coordinate axes specified as a 3-by-3, real-valued matrix.
Each column is a unit vector specifying the local coordinate system's orthonormal x, y,
and z axes, respectively, with respect to the global coordinate system. Each column is
written in [x;y;z] form. If axes_tr is the identity matrix, the local coordinate system
is aligned with the global coordinate system.
Example: [1, 0, 0; 0, 1, 0; 0, 0 ,1]
Data Types: double

Output Arguments

rho — Polarization loss
scalar

Polarization loss returned as scalar in decibel units. The polarization loss is the
projection of the normalized transmitted field vector into the normalized receiving
antenna polarization vector. Its value lies between zero and unity. When converted into
dB, (and a sign changed to show loss as positive) its value lies between 0 and -Inf.

More About

Polarization Loss Due to Field and Receiver Mismatch

Loss occurs when a receiver is not matched to the polarization of an incident
electromagnetic field.

In the case of the polarization of a field emitted by a transmitting antenna, first, look
at the far zone of the transmitting antenna, as shown in the following figure. At this

 polloss

2-237

location―which is the location of the receiving antenna―the electromagnetic field is
orthogonal to the direction from transmitter to receiver.

You can represent the transmitted electromagnetic field, fv_tr, by the components of
a vector with respect to a spherical basis of the transmitter’s local coordinate system.
The orientation of this basis depends on its direction from the origin. The direction is
specified by the azimuth and elevation of the receiving antenna with respect to the
transmitter’s local coordinate system. Then, the transmitter’s polarization, in terms of
the spherical basis vectors of the transmitter’s local coordinate system, is

E e e P= + =E E E
H az V el im

ˆ ˆ

In the same manner, the receiver’s polarization vector, fv_rcv, is defined with respect
to a spherical basis in the receiver’s local coordinate system. Now, the azimuth and
elevation specify the transmitter’s position with respect to the receiver’s local coordinate
system. You can write the receiving antennas polarization in terms of the spherical basis
vectors of the receiver’s local coordinate system:

P e e= ¢ + ¢P P
H az V el

ˆ ˆ

This figure shows the construction of the different transmitter and receiver local
coordinate systems. It also shows the spherical basis vectors with which to write the field
components.

2 Functions-Alphabetical List

2-238

x

y

z

z'

y'

x'R

êaz

ê
el

el

az

ê
el'

êaz'

el'

az'

The polarization loss is the projection (or dot product) of the normalized transmitted
field vector onto the normalized receiver polarization vector. Notice that the loss occurs
because of the mismatch in direction of the two vectors not in their magnitudes. Because
the vectors are defined in different coordinate systems, they must be converted to the
global coordinate system in order to form the projection. The polarization loss is defined
by:

 polloss

2-239

r =
◊| |

| || |

E P

E P

i

i

2

2 2

References

[1] Mott, H. Antennas for Radar and Communications.John Wiley & Sons, 1992.

See Also
polellip | stokes

Introduced in R2013a

2 Functions-Alphabetical List

2-240

polratio

Ratio of vertical to horizontal linear polarization components of a field

Syntax

p = polratio(fv)

Description

p = polratio(fv) returns the ratio of the vertical to horizontal component of the field
or set of fields contained in fv.

Each column of fv contains the linear polarization components of a field in the form
[Eh;Ev], where Eh and Ev are the field’s linear horizontal and vertical polarization
components. The expression of a field in terms of a two-row vector of linear polarization
components is called the Jones vector formalism. The argument fv can refer to either the
electric or magnetic part of an electromagnetic wave.

Each entry in p contains the ratio Ev/Eh of the components of fv.

Examples

Polarization Ratio for 45° Linearly Polarized Field

Determine the polarization ratio for a linearly polarized field (when the horizontal and
vertical components of a field have the same phase).

fv = [2 ; 2];

p = polratio(fv)

p =

 1

 polratio

2-241

The resulting polarization ratio is real. The components also have equal amplitudes so
the polarization ratio is unity.

Polarization Ratios for Two Fields

Pass two fields via a single matrix. The first field is [2;i], while the second is [i;1].

fv = [2 , i; i, 1];

p = polratio(fv)

p =

 0 + 0.5000i 0 - 1.0000i

Polarization Ratio for Vertically Polarized Field

Determine the polarization ratio for a vertically polarized field (when the horizontal
component of the field vanishes).

fv = [0 ; 2];

p = polratio(fv)

p =

 Inf

The polarization ratio is infinite as expected from Ev/Eh.

Input Arguments

fv — Field vector in linear component representation
2-by-N complex-valued matrix

Field vector in linear component representation specified as a 2-by-N complex-valued
matrix. Each column of fv contains an instance of a field specified by [Eh;Ev], where Eh
and Ev are the field's linear horizontal and vertical polarization components. Two rows of
the same column cannot both be zero.
Example: [2 , i; i, 1]
Data Types: double
Complex Number Support: Yes

2 Functions-Alphabetical List

2-242

Output Arguments

p — Polarization ratio
1-by-N complex-valued row vector

Polarization ratio returned as a 1-by-N complex-valued row vector. p contains the ratio of
the components of the second row of fv to the first row, Ev/Eh.

References

[1] Mott, H., Antennas for Radar and Communications, John Wiley & Sons, 1992.

[2] Jackson, J.D. , Classical Electrodynamics, 3rd Edition, John Wiley & Sons, 1998, pp.
299–302

[3] Born, M. and E. Wolf, Principles of Optics, 7th Edition, Cambridge: Cambridge
University Press, 1999, pp 25–32.

See Also
circpol2pol | pol2circpol | polellip | stokes

Introduced in R2013a

 polsignature

2-243

polsignature

Copolarization and cross-polarization signatures

Syntax

resp = polsignature(rcsmat)

resp = polsignature(rcsmat,type)

resp = polsignature(rcsmat,type,epsilon)

resp = polsignature(rcsmat,type,epsilon,tau)

polsignature(___)

Description

resp = polsignature(rcsmat) returns the normalized radar cross-section
copolarization (co-pol) signature, resp (in square meters), determined from the
scattering cross section matrix, rcsmat of an object. The signature is a function of the
transmitting antenna polarization, specified by the ellipticity angle and the tilt angle
of the polarization ellipse. In this syntax case, the ellipticity angle takes the values
[-45:45] and the tilt angle takes the values [-90:90]. The output resp is a 181-by-91
matrix whose elements correspond to the signature at each ellipticity angle-tilt angle
pair.

resp = polsignature(rcsmat,type), in addition, specifies the polarization
signature type as one of 'c'|'x', where 'c' creates the copolarization signature
and 'x' creates the cross-polarization (cross-pol) signature. The default value of this
parameter is 'c'. The output resp is a 181-by-91 matrix whose elements correspond
to the signature at each ellipticity angle-tilt angle pair. This syntax can use the input
arguments in the previous syntax.

resp = polsignature(rcsmat,type,epsilon), in addition, specifies the transmit
antenna polarization's ellipticity angle (in degrees) as a length-M vector. The angle
epsilon must lie between –45° and 45°. The argument resp is a 181-by-M matrix whose
elements correspond to the signature at each ellipticity angle-tilt angle pair. This syntax
can use any of the input arguments in the previous syntaxes.

2 Functions-Alphabetical List

2-244

resp = polsignature(rcsmat,type,epsilon,tau), in addition, specifies the tilt
angle of the polarization ellipse of the transmitted wave (in degrees) as a length-N vector.
The angle tau must be between –90° and 90°. The signature, resp, is represented as a
function of the transmitting antenna polarization. The transmitting antenna polarization
is characterized by the ellipticity angle, epsilon, and the tilt angle, tau. The argument
resp is a N-by-M matrix whose elements correspond to the signature at each ellipticity
angle-tilt angle pair. This syntax can use any of the input arguments in the previous
syntaxes.

polsignature(___) plots a three dimensional surface using any of the syntax forms
specified above.

Examples

Copolarization Signature of a Dihedral

Calculate and plot the copolarization response to the scattering cross-section matrix,
rscmat, of a dihedral object. Specify the ellipticity angle values as [-45:45] and the tilt
angle values as [-90:90]. Display the response matrix as an image.

Calculate the copolarization response.

rscmat = [-1,0;0,1];

resp = polsignature(rscmat);

Plot the copolarization response.

el = [-45:45];

tilt = [-90:90];

imagesc(el,tilt,resp);

ylabel('Tilt (degrees)');

xlabel('Ellipticity Angle (degrees)')

axis image

ax = gca;

ax.XTick = [-45:15:45];

ax.YTick = [-90:15:90];

title('Co-polarization signature of dihedral');

colorbar;

 polsignature

2-245

Cross-Polarization Signature of a Dihedral

Calculate and plot the cross-polarization response to the scattering cross-section matrix,
rscmat, of a dihedral object. Specify the ellipticity angle values as [-45:45] and the tilt
angle values as [-90:90]. Display the response matrix as an image.

Calculate the cross-polarization response. To do this, set the type argument to 'x'.

rscmat = [-1,0;0,1];

resp = polsignature(rscmat,'x');

Plot the cross-polarization response.

el = [-45:45];

tilt = [-90:90];

2 Functions-Alphabetical List

2-246

imagesc(el,tilt,resp);

ylabel('Tilt (degrees)');

xlabel('Ellipticity Angle (degrees)');

axis image

ax = gca;

ax.XTick = [-45:15:45];

ax.YTick = [-90:15:90];

title('Cross-polarization signature of dihedral');

colorbar;

 polsignature

2-247

Signatures for Linear Polarization with Varied Tilt Angles

Set the ellipticity angle to zero, and vary the tilt angle from -90 to +90 degrees to
generate all possible linear polarization directions. Then, plot both the copolarization and
cross-polarization signatures.

rscmat = [-1,0;0,1];

el = [0];

respc = polsignature(rscmat,'c',el);

respx = polsignature(rscmat,'x',el);

tilt = [-90:90];

plot(tilt,respc,'b',tilt,respx,'r');

ax = gca;

ax.XLim = [-90,90];

2 Functions-Alphabetical List

2-248

ax.XTick = [-90:15:90];

legend('Co-polarization','Cross-polarization');

title('Signatures for linear polarization');

xlabel('Tilt angle (degrees)');

ylabel('Signature');

Copolarization Signature of Dihedral for Left and Right Circular Polarizations

This example shows how to obtain numerical values for the polarization signatures of a
dihedral target for left and right circular polarized incident waves.

Specify the radar cross-section matrix of a dihedral

rscmat = [-1,0;0,1];

 polsignature

2-249

Specify a left circularly polarized wave and obtain its tilt angle and ellipticity.

fv = 1/sqrt(2)*[1;1i];

[tilt_lcp,el_lcp] = polellip(fv);

disp([tilt_lcp,el_lcp])

 45 45

Specify a right circularly polarized wave by complex conjugation of a left circulary
polarized wave. Obtain its tilt angle and ellipticity.

[tilt_rcp,el_rcp] = polellip(conj(fv));

disp([tilt_rcp,el_rcp])

 45 -45

Both tilt angles are 45 degrees. Compute the copolarization and cross-polarization
signatures for the two waves.

el = [el_lcp, el_rcp];

tilt = tilt_rcp;

respc = polsignature(rscmat,'c',el,tilt);

respx = polsignature(rscmat,'x',el,tilt);

disp(respc)

disp(respx)

 1 1

 1 1

Surface Plot of Copolarization Signature of General Target

Use a general RCSM matrix to create a 3-D surface plot.

rscmat = [1i*2,0.5; 0.5, -1i];

el = [-45:45];

tilt = [-90:90];

With no output arguments, polsignature automatically creates a surface plot.

polsignature(rscmat,'c',el,tilt);

2 Functions-Alphabetical List

2-250

Input Arguments

rcsmat — Radar cross-section scattering matrix
2-by-2 complex-valued matrix

Radar cross-section scattering matrix (RCSM) of an object specified as a 2-by-2, complex-
valued matrix. The radar cross-section scattering matrix describes the polarization of
a scattered wave as a function of the polarization of an incident wave upon a target.
The response to an incident wave can be construct from the individual responses to
the incident field’s horizontal and vertical polarization components. These components
are taken with respect to the transmit antenna or array local coordinate system. The

 polsignature

2-251

scattered wave can be decomposed into horizontal and vertical polarization components
with respect to the receive antenna or array local coordinate system. The matrix RCSM
contains four components [rcs_hh rcs_hv;rcs_vh rcs_vv] where each component is
the radar cross section defined by the polarization of the transmit and receive antennas.

• rcs_hh – Horizontal response due to horizontal transmit polarization component
• rcs_hv – Horizontal response due to vertical transmit polarization component
• rcs_vh – Vertical response due to horizontal transmit polarization component
• rcs_vv – Vertical response due to vertical transmit polarization component

In the monostatic radar case, when the wave is backscattered, the RCSM matrix is
symmetric.
Example: [-1,1i;1i,1]

Data Types: double
Complex Number Support: Yes

type — Polarization signature type
'c' (default) | single character 'c'|'x'

Polarization signature type of the scattered wave specified by a single character: 'c'
denoting the copolarized signature or 'x' denoting the cross-polarized signature.

Example: 'x'

Data Types: char

epsilon — Ellipticity angle of the polarization ellipse of the transmitted wave
[-45:45] (default) | scalar or 1-by-M real-valued row vector

Ellipticity angle of the polarization ellipse of the transmitted wave specified as a
length-M vector. Units are degrees. The ellipticity angle describes the shape of the
ellipse. By definition, the tangent of the ellipticity angle is the signed ratio of the
semiminor axis to semimajor axis of the polarization ellipse. Since the absolute value of
this ratio cannot exceed unity, the ellipticity angle lies between ±45°.
Example: [-45:0.5:45]

Data Types: double

tau — Tilt angle of the polarization ellipse of the transmitted wave
[-90:90] (default) | scalar or 1-by-N real-valued row vector.

2 Functions-Alphabetical List

2-252

Tilt angle of the polarization ellipse of the transmitted wave specified as a length-N
vector. Units are degrees. The tilt angle is defined as the angle between the semimajor
axis of the ellipse and the x-axis. Because the ellipse is symmetrical, an ellipse with a tilt
angle of 100° is the same ellipse as one with a tilt angle of –80°. Therefore, the tilt angle
need only be specified between ±90°.
Example: [-30:2:30]

Data Types: double

Output Arguments

resp — Normalized magnitude response
scalar or N-by-M real-valued matrix.

Normalized magnitude response returned as a scalar or N-by-M, real-valued matrix
having values between 0 and 1. resp returns a value for each ellipticity-tilt angle pair.

More About

Scattering Cross-Section Matrix

Scattering cross-section matrix determines response of an object to incident polarized
electromagnetic field.

When a polarized plane wave is incident on an object, the amplitude and polarization
of the scattered wave may change with respect to the incident wave polarization.
The polarization may depend upon the direction from which the scattered wave is
observed. The exact way that the polarization changes depends upon the properties of the
scattering object. The quantity describing the response of an object to the incident field is
called the scattering cross-section matrix, S. The scattering matrix can be measured as
follows: when a unit amplitude horizontally polarized wave is scattered, both a horizontal
and vertical scattered component are produced. Call these two components SHH and
SVH. These are complex numbers containing the amplitude and phase changes from the
incident wave. Similarly, when a unit amplitude vertically polarized wave is scattered,
the horizontal and vertical scattered component produced are SHV and SVV. Because any
incident field can be decomposed into horizontal and vertical components, stack these
quantities into a matrix and write the scattered field in terms of the incident field

 polsignature

2-253

E

E

S S

S S

E

E

H

sc

V

sc

HH VH

HV VV

H

inc

V

inc

()

()

()

()

È

Î

Í
Í

˘

˚

˙
˙

=
È

Î
Í

˘

˚
˙

È

Î

Í
Í

˘

˚̊

˙
˙

=
È

Î

Í
Í

˘

˚

˙
˙

S
E

E

H

inc

V

inc

()

()

The scattering cross section matrix depends upon the angles that the incident and
scattered fields make with the object. When the incident field is backscattered to the
transmitting antenna, the scattering matrix is symmetric.

Polarization Signature

Polarization signature for visualizing scattering cross-section matrix.

To understand how the scattered wave depends upon the polarization of the incident
wave, an examination of all possible scattered field polarizations for each incident
polarization is required. Because this amount of data is difficult to visualize, you can look
at two particular scattered polarizations:

• Choose one polarization that has the same polarization as the incident field
(copolarization)

• Choose a second one that is orthogonal to the polarization of the incident field (cross-
polarization)

Both the incident and orthogonal polarization states can be specified in terms of the tilt
angle-ellipticity angle pair t e,() . From the incident field tilt and ellipticity angles, the
unit incident polarization vector can be expressed as

E

E j

H
inc

V
inc

()

()

cos sin

sin cos

cos

sin

È

Î

Í
Í

˘

˚

˙
˙

=
-È

Î
Í

˘

˚
˙

È

Î
Í

t t

t t

e

e

˘̆

˚
˙

while the orthogonal polarization vector is

E

E j

H
inc

V
inc

()

()

sin cos

cos sin

cos

si

^

^

È

Î

Í
Í

˘

˚

˙
˙

=
- -

-

È

Î
Í

˘

˚
˙

-

t t

t t

e

nn e

È

Î
Í

˘

˚
˙

To form the copolarization signature, use the RCSM matrix, S, to compute:

2 Functions-Alphabetical List

2-254

P E E S
E

E

co

H

inc

V

inc H

inc

V

inc

() () ()
*

()

()
= È

Î
˘
˚

È

Î

Í
Í

˘

˚

˙
˙

where []* denotes complex conjugation. For the cross-polarization signature, compute

P E E S
E

E

cross

H

inc

V

inc H

inc

V

inc

() () ()
*

()

()
= È

Î
˘
˚

È

Î

Í
Í

˘

˚

˙
˙

^ ^

The output of this function is the absolute value of each signature normalized by its
maximum value.

References

[1] Mott, H. Antennas for Radar and Communications.John Wiley & Sons, 1992.

[2] Fawwaz, U. and C. Elachi. Radar Polarimetry for Geoscience Applications. Artech
House, 1990.

[3] Lee, J. and E. Pottier. Polarimetric Radar Imaging: From Basics to Applications. CRC
Press, 2009.

See Also
polellip | polloss | stokes

Introduced in R2013a

 pulsint

2-255

pulsint
Pulse integration

Syntax

Y = pulsint(X)

Y = pulsint(X,METHOD)

Description

Y = pulsint(X) performs video (noncoherent) integration of the pulses in X and
returns the integrated output in Y. Each column of X is one pulse.

Y = pulsint(X,METHOD) performs pulse integration using the specified method.
METHOD is 'coherent' or 'noncoherent'.

Input Arguments

X

Pulse input data. Each column of X is one pulse.

METHOD

Pulse integration method. METHOD is the method used to integrate the pulses in the
columns of X. Valid values of METHOD are 'coherent' and 'noncoherent'. The strings
are not case sensitive.

Default: 'noncoherent'

Output Arguments

Y

Integrated pulse. Y is an N-by-1 column vector where N is the number of rows in the
input X.

2 Functions-Alphabetical List

2-256

Examples

Noncoherently integrate 10 pulses.

 x = repmat(sin(2*pi*(0:99)'/100),1,10)+0.1*randn(100,10);

 y = pulsint(x);

 subplot(211), plot(abs(x(:,1)));

 ylabel('Magnitude');

 title('First Pulse');

 subplot(212), plot(abs(y));

 ylabel('Magnitude');

 title('Integrated Pulse');

 pulsint

2-257

More About

Coherent Integration

Let Xij denote the (i,j)-th entry of an M-by-N matrix of pulses X.

The coherent integration of the pulses in X is:

2 Functions-Alphabetical List

2-258

Y Xi ij

j

N

=

=

Â
1

Noncoherent (video) Integration

Let Xij denote the (i,j)-th entry of an M-by-N matrix of pulses X.

The noncoherent (video) integration of the pulses in X is:

Y Xi

j

ij

N

=

=

Â| |

1

2

References

[1] Richards, M. A. Fundamentals of Radar Signal Processing. New York: McGraw-Hill,
2005.

See Also
phased.MatchedFilter

Introduced in R2011a

 radarEquationCalculator

2-259

radarEquationCalculator

Radar equation calculator

Description

The Radar Equation Calculator app is a tool for solving the basic radar equation
for monostatic or bistatic radar systems. The radar equation relates target range,
transmitted power and received signal SNR. Using this app, you can solve for any one
of these three quantities. If you know the transmit power of your radar and the desired
received SNR, you can solve for the maximum target range. If you know the target range
and desired received SNR, you can compute how much power you need to transmit.
Finally, if you know the range and transmit power, you can calculate the received SNR
value.

After you choose the type of solution, set other parameters to build a complete model. The
principal parameters to specify are target cross-section, wavelength, antenna gains, noise
temperature, and overall system losses.

Examples

Maximum Detection Range of a Monostatic Radar

Compute the maximum detection range of a 10 GHz, 1 kW, monostatic radar with a
40 dB antenna gain and a detection threshold of 10 dB. From the Calculation Type
drop-down list, choose Target Range as the solution and choose Configuration as
monostatic. Enter 40 dB for the antenna Gain, and set the Wavelength to 3 cm.
Set the SNR detection threshold parameter to 10 dB. Assuming the target is a large
airplane, set the Target Radar Cross Section value to 100 m2. Next, specify the Peak
Transmit Power as 1 kW and the Pulse Width as 2 µs. Finally, assume a total of 5 dB
System Losses.

2 Functions-Alphabetical List

2-260

The maximum target detection range is 92 km.

Maximum Detection Range of a Monostatic Radar Using Multiple Pulses

Continue with the results from the previous example. Use multiple pulses to reduce
the transmitted power while maintaining the same maximum target range. Clicking

 radarEquationCalculator

2-261

on the arrows to the right of the SNR label opens the Detection Specifications for
SNR menu. There, set the Probability of Detection to 0.95, the Probability of False
Alarm to 10–6, and the Number of Pulses to 4. Then, reduce the Peak Transmit
Power to 0.75 kW. Assume a nonfluctuating target model, i.e., the Swerling Case
Number is 0.

2 Functions-Alphabetical List

2-262

 radarEquationCalculator

2-263

The maximum detection range is approximately the same as in the previous example, but
the transmitted power is reduced by 25%.

Maximum Detection Range of Bistatic Radar System

Solve for the geometric mean range of a target for a bistatic radar system. Specify the
Calculation Type as Target Range and Configuration as bistatic. Next, provide
a Transmitter Gain and a Receiver Gain parameter, instead of the single gain needed
in the monostatic case.

2 Functions-Alphabetical List

2-264

Alternatively, to achieve a particular probability of detection and probability of
false alarm, open the Detection Specifications for SNR menu. Enter values for
Probability of Detection and Probability of False Alarm, Number of Pulses, and
Swerling Case Number.

 radarEquationCalculator

2-265

2 Functions-Alphabetical List

2-266

Required Transmit Power for a Bistatic Radar

Compute the required peak transmit power of a 10 GHz, bistatic X-band radar
for a 80 km total bistatic range, and 10 dB received SNR. The system has a 40 dB
transmitter gain and a 20 dB receiver gain. The required receiver SNR is 10 dB. From
the Calculation Type drop-down list, choose Peak Transmit Power as the solution
type and choose Configuration as bistatic. From the system specifications, set
Transmitter Gain to 40 dB and Receiver Gain to 20 dB. Set the SNR detection
threshold to 10 dB and the Wavelength to 0.3 m. Assume the target is a fighter
aircraft having a Target Radar Cross Section value of 2 m2. Choose Range from
Transmitter as 50 km, and Range from Receiver as 30 km. Finally, set the Pulse
Width to 2 µs and the System Losses to 0 dB.

 radarEquationCalculator

2-267

The required Peak Transmit Power is about 0.5 kW.

2 Functions-Alphabetical List

2-268

Receiver SNR for a Monostatic Radar

Compute the received SNR for a monostatic radar with 1 kW peak transmit power with
a target at a range of 2 km. Assume a 2 GHz radar frequency and 20 dB antenna gain.
From the Calculation Type drop-down list, choose SNR as the solution type and set the
Configuration as monostatic. Set the Gain to 20, the Peak Transmit Power to 1
kW, and the Target Range to 2000 m. Set the Wavelength to 15 cm.

Find the received SNR of a small boat having a Target Radar Cross Section value of
0.5 m2. The Pulse Width is 1 µs and System Losses are 0 dB.

 radarEquationCalculator

2-269

See Also
“Radar Equation Theory”

Introduced in R2013a

2 Functions-Alphabetical List

2-270

radareqpow
Peak power estimate from radar equation

Syntax

Pt = radareqpow(lambda,tgtrng,SNR,Tau)

Pt = radareqpow(...,Name,Value)

Description

Pt = radareqpow(lambda,tgtrng,SNR,Tau) estimates the peak transmit power
required for a radar operating at a wavelength of lambda meters to achieve the specified
signal-to-noise ratio SNR in decibels for a target at a range of tgtrng meters. The target
has a nonfluctuating radar cross section (RCS) of 1 square meter.

Pt = radareqpow(...,Name,Value) estimates the required peak transmit power
with additional options specified by one or more Name,Value pair arguments.

Input Arguments

lambda

Wavelength of radar operating frequency (in meters). The wavelength is the ratio of
the wave propagation speed to frequency. For electromagnetic waves, the speed of
propagation is the speed of light. Denoting the speed of light by c and the frequency (in
hertz) of the wave by f, the equation for wavelength is:

l =
c

f

tgtrng

Target range in meters. When the transmitter and receiver are colocated (monostatic
radar), tgtrng is a real-valued positive scalar. When the transmitter and receiver are
not colocated (bistatic radar), tgtrng is a 1-by-2 row vector with real-valued positive

 radareqpow

2-271

elements. The first element is the target range from the transmitter, and the second
element is the target range from the receiver.

SNR

The minimum output signal-to-noise ratio at the receiver in decibels.

Tau

Single pulse duration in seconds.

Name-Value Pair Arguments

'Gain'

Transmitter and receiver gain in decibels (dB). When the transmitter and receiver
are colocated (monostatic radar), Gain is a real-valued scalar. The transmit and
receive gains are equal. When the transmitter and receiver are not colocated (bistatic
radar), Gain is a 1-by-2 row vector with real-valued elements. The first element is the
transmitter gain and the second element is the receiver gain.

Default: 20

'Loss'

System loss in decibels (dB). Loss represents a general loss factor that comprises losses
incurred in the system components and in the propagation to and from the target.

Default: 0

'RCS'

Radar cross section in square meters. The target RCS is nonfluctuating.

Default: 1

'Ts'

System noise temperature in kelvin. The system noise temperature is the product of the
system temperature and the noise figure.

Default: 290 kelvin

2 Functions-Alphabetical List

2-272

Output Arguments

Pt

Transmitter peak power in watts.

Examples

Estimate the required peak transmit power required to achieve a minimum SNR of 6
decibels for a target at a range of 50 kilometers. The target has a nonfluctuating RCS
of 1 square meter. The radar operating frequency is 1 gigahertz. The pulse duration is 1
microsecond.

lambda = physconst('LightSpeed')/1e9;

tgtrng = 50e3;

tau = 1e-6;

SNR = 6;

Pt = radareqpow(lambda,tgtrng,SNR,tau);

Estimate the required peak transmit power required to achieve a minimum SNR of 10
decibels for a target with an RCS of 0.5 square meters at a range of 50 kilometers. The
radar operating frequency is 10 gigahertz. The pulse duration is 1 microsecond. Assume a
transmit and receive gain of 30 decibels and an overall loss factor of 3 decibels.

lambda = physconst('LightSpeed')/10e9;

Pt = radareqpow(lambda,50e3,10,1e-6,'RCS',0.5,...

 'Gain',30,'Ts',300,'Loss',3);

Estimate the required peak transmit power for a bistatic radar to achieve a minimum
SNR of 6 decibels for a target with an RCS of 1 square meter. The target is 50 kilometers
from the transmitter and 75 kilometers from the receiver. The radar operating frequency
is 10 gigahertz and the pulse duration is 10 microseconds. The transmitter and receiver
gains are 40 and 20 dB respectively.

lambda = physconst('LightSpeed')/10e9;

SNR = 6;

tau = 10e-6;

TxRng = 50e3; RvRng = 75e3;

TxRvRng =[TxRng RvRng];

TxGain = 40; RvGain = 20;

Gain = [TxGain RvGain];

 radareqpow

2-273

Pt = radareqpow(lambda,TxRvRng,SNR,tau,'Gain',Gain);

More About

Point Target Radar Range Equation

The point target radar range equation estimates the power at the input to the receiver
for a target of a given radar cross section at a specified range. The model is deterministic
and assumes isotropic radiators. The equation for the power at the input to the receiver
is

P
P G G

R R L
r

t t r

t r

=
l s

p

2

3 2 2
4()

where the terms in the equation are:

• Pt — Peak transmit power in watts
• Gt — Transmitter gain in decibels
• Gr — Receiver gain in decibels. If the radar is monostatic, the transmitter and

receiver gains are identical.
• λ — Radar operating frequency wavelength in meters
• σ — Target's nonfluctuating radar cross section in square meters
• L — General loss factor in decibels that accounts for both system and propagation loss
• Rt — Range from the transmitter to the target
• Rr — Range from the receiver to the target. If the radar is monostatic, the transmitter

and receiver ranges are identical.

Terms expressed in decibels such as the loss and gain factors enter the equation in the
form 10x/10 where x denotes the variable. For example, the default loss factor of 0 dB
results in a loss term of 100/10=1.

Receiver Output Noise Power

The equation for the power at the input to the receiver represents the signal term in the
signal-to-noise ratio. To model the noise term, assume the thermal noise in the receiver
has a white noise power spectral density (PSD) given by:

2 Functions-Alphabetical List

2-274

P f kT() =

where k is the Boltzmann constant and T is the effective noise temperature. The receiver
acts as a filter to shape the white noise PSD. Assume that the magnitude squared
receiver frequency response approximates a rectangular filter with bandwidth equal
to the reciprocal of the pulse duration, 1/τ. The total noise power at the output of the
receiver is:

N
kTFn

=

t

where Fn is the receiver noise factor.

The product of the effective noise temperature and the receiver noise factor is referred to
as the system temperature and is denoted by Ts, so that Ts=TFn .

Receiver Output SNR

Using the equation for the received signal power in “Point Target Radar Range Equation”
on page 2-273 and the output noise power in “Receiver Output Noise Power” on page
2-273, the receiver output SNR is:

P

N

P G G

kT R R L

r t t r

s t r

=
t l s

p

2

3 2 2
4()

Solving for the peak transmit power

P
P kT R R L

N G G
t

r s t r

t r

=
()4

3 2 2

2

p

t l s

References

[1] Richards, M. A. Fundamentals of Radar Signal Processing. New York: McGraw-Hill,
2005.

[2] Skolnik, M. Introduction to Radar Systems. New York: McGraw-Hill, 1980.

 radareqpow

2-275

[3] Willis, N. J. Bistatic Radar. Raleigh, NC: SciTech Publishing, 2005.

See Also
noisepow | phased.ReceiverPreamp | phased.Transmitter | radareqrng |
radareqsnr | systemp

Introduced in R2011a

2 Functions-Alphabetical List

2-276

radareqrng
Maximum theoretical range estimate

Syntax

maxrng = radareqrng(lambda,SNR,Pt,Tau)

maxrng = radareqrng(...,Name,Value)

Description

maxrng = radareqrng(lambda,SNR,Pt,Tau) estimates the theoretical maximum
detectable range maxrng for a radar operating with a wavelength of lambda meters with
a pulse duration of Tau seconds. The signal-to-noise ratio is SNR decibels, and the peak
transmit power is Pt watts.

maxrng = radareqrng(...,Name,Value) estimates the theoretical maximum
detectable range with additional options specified by one or more Name,Value pair
arguments.

Input Arguments

lambda

Wavelength of radar operating frequency (in meters). The wavelength is the ratio of
the wave propagation speed to frequency. For electromagnetic waves, the speed of
propagation is the speed of light. Denoting the speed of light by c and the frequency (in
hertz) of the wave by f, the equation for wavelength is:

l =
c

f

Pt

Transmitter peak power in watts.

 radareqrng

2-277

SNR

The minimum output signal-to-noise ratio at the receiver in decibels.

Tau

Single pulse duration in seconds.

Name-Value Pair Arguments

'Gain'

Transmitter and receiver gain in decibels (dB). When the transmitter and receiver
are colocated (monostatic radar), Gain is a real-valued scalar. The transmit and
receive gains are equal. When the transmitter and receiver are not colocated (bistatic
radar), Gain is a 1-by-2 row vector with real-valued elements. The first element is the
transmitter gain, and the second element is the receiver gain.

Default: 20

'Loss'

System loss in decibels (dB). Loss represents a general loss factor that comprises losses
incurred in the system components and in the propagation to and from the target.

Default: 0

'RCS'

Radar cross section in square meters. The target RCS is nonfluctuating.

Default: 1

'Ts'

System noise temperature in kelvins. The system noise temperature is the product of the
system temperature and the noise figure.

Default: 290 kelvin

'unitstr'

The units of the estimated maximum theoretical range. unitstr is one of the following
strings:

2 Functions-Alphabetical List

2-278

• 'km' kilometers
• 'm' meters
• 'nmi' nautical miles (U.S.)

Default: 'm'

Output Arguments

maxrng

The estimated theoretical maximum detectable range. The units of maxrng depends on
the value of unitstr. By default maxrng is in meters. For bistatic radars, maxrng is the
geometric mean of the range from the transmitter to the target and the receiver to the
target.

Examples

Estimate the theoretical maximum detectable range for a monostatic radar operating at
10 GHz using a pulse duration of 10 µs. Assume the output SNR of the receiver is 6 dB.

lambda = physconst('LightSpeed')/10e9;

SNR = 6;

tau = 10e-6;

Pt = 1e6;

maxrng = radareqrng(lambda,SNR,Pt,tau);

Estimate the theoretical maximum detectable range for a monostatic radar operating at
10 GHz using a pulse duration of 10 µs. The target RCS is 0.1 square meters. Assume the
output SNR of the receiver is 6 dB. The transmitter-receiver gain is 40 dB. Assume a loss
factor of 3 dB.

lambda = physconst('LightSpeed')/10e9;

SNR = 6;

tau = 10e-6;

Pt = 1e6;

RCS = 0.1;

Gain = 40;

Loss = 3;

maxrng2 = radareqrng(lambda,SNR,Pt,tau,'Gain',Gain,...

 radareqrng

2-279

 'RCS',RCS,'Loss',Loss);

More About

Point Target Radar Range Equation

The point target radar range equation estimates the power at the input to the receiver
for a target of a given radar cross section at a specified range. The model is deterministic
and assumes isotropic radiators. The equation for the power at the input to the receiver
is

P
P G G

R R L
r

t t r

t r

=
l s

p

2

3 2 2
4()

where the terms in the equation are:

• Pt — Peak transmit power in watts
• Gt — Transmitter gain in decibels
• Gr — Receiver gain in decibels. If the radar is monostatic, the transmitter and

receiver gains are identical.
• λ — Radar operating frequency wavelength in meters
• σ — Target's nonfluctuating radar cross section in square meters
• L — General loss factor in decibels that accounts for both system and propagation loss
• Rt — Range from the transmitter to the target
• Rr — Range from the receiver to the target. If the radar is monostatic, the transmitter

and receiver ranges are identical.

Terms expressed in decibels, such as the loss and gain factors, enter the equation in the
form 10x/10 where x denotes the variable. For example, the default loss factor of 0 dB
results in a loss term of 100/10=1.

Receiver Output Noise Power

The equation for the power at the input to the receiver represents the signal term in the
signal-to-noise ratio. To model the noise term, assume the thermal noise in the receiver
has a white noise power spectral density (PSD) given by:

2 Functions-Alphabetical List

2-280

P f kT() =

where k is the Boltzmann constant and T is the effective noise temperature. The receiver
acts as a filter to shape the white noise PSD. Assume that the magnitude squared
receiver frequency response approximates a rectangular filter with bandwidth equal
to the reciprocal of the pulse duration, 1/τ. The total noise power at the output of the
receiver is:

N
kTFn

=

t

where Fn is the receiver noise factor.

The product of the effective noise temperature and the receiver noise factor is referred to
as the system temperature. This value is denoted by Ts, so that Ts=TFn .

Receiver Output SNR

The receiver output SNR is:

P

N

P G G

kT R R L

r t t r

s t r

=
t l s

p

2

3 2 2
4()

You can derive this expression using the following equations:

• Received signal power in “Point Target Radar Range Equation” on page 2-279
• Output noise power in “Receiver Output Noise Power” on page 2-279

Theoretical Maximum Detectable Range

For monostatic radars, the range from the target to the transmitter and receiver is
identical. Denoting this range by R, you can express this relationship as R R R

t r

4 2 2
= .

Solving for R

R
NP G G

P kT L

t t r

r s

= (
()

)
/t l s

p

2

3

1 4

4

 radareqrng

2-281

For bistatic radars, the theoretical maximum detectable range is the geometric mean of
the ranges from the target to the transmitter and receiver:

R R
NP G G

P kT L
t r

t t r

r s

= (
()

)
/t l s

p

2

3

1 4

4

References

[1] Richards, M. A. Fundamentals of Radar Signal Processing. New York: McGraw-Hill,
2005.

[2] Skolnik, M. Introduction to Radar Systems. New York: McGraw-Hill, 1980.

[3] Willis, N. J. Bistatic Radar. Raleigh, NC: SciTech Publishing, 2005.

See Also
noisepow | phased.ReceiverPreamp | phased.Transmitter | radareqpow |
radareqsnr | systemp

Introduced in R2011a

2 Functions-Alphabetical List

2-282

radareqsnr

SNR estimate from radar equation

Syntax

SNR = radareqsnr(lambda,tgtrng,Pt,tau)

SNR = radareqsnr(...,Name,Value)

Description

SNR = radareqsnr(lambda,tgtrng,Pt,tau) estimates the output signal-to-noise
ratio (SNR) at the receiver based on the wavelength lambda in meters, the range tgtrng
in meters, the peak transmit power Pt in watts, and the pulse width tau in seconds.

SNR = radareqsnr(...,Name,Value) estimates the output SNR at the receiver with
additional options specified by one or more Name,Value pair arguments.

Input Arguments

lambda

Wavelength of radar operating frequency in meters. The wavelength is the ratio of
the wave propagation speed to frequency. For electromagnetic waves, the speed of
propagation is the speed of light. Denoting the speed of light by c and the frequency in
hertz of the wave by f, the equation for wavelength is:

l =
c

f

tgtrng

Target range in meters. When the transmitter and receiver are colocated (monostatic
radar), tgtrng is a real-valued positive scalar. When the transmitter and receiver are

 radareqsnr

2-283

not colocated (bistatic radar), tgtrng is a 1-by-2 row vector with real-valued positive
elements. The first element is the target range from the transmitter, and the second
element is the target range from the receiver.

Pt

Transmitter peak power in watts.

tau

Single pulse duration in seconds.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Gain'

Transmitter and receiver gain in decibels (dB). When the transmitter and receiver
are colocated (monostatic radar), Gain is a real-valued scalar. The transmit and
receive gains are equal. When the transmitter and receiver are not colocated (bistatic
radar), Gain is a 1-by-2 row vector with real-valued elements. The first element is the
transmitter gain, and the second element is the receiver gain.

Default: 20

'Loss'

System loss in decibels (dB). Loss represents a general loss factor that comprises losses
incurred in the system components and in the propagation to and from the target.

Default: 0

'RCS'

Target radar cross section in square meters. The target RCS is nonfluctuating.

Default: 1

2 Functions-Alphabetical List

2-284

'Ts'

System noise temperature in kelvin. The system noise temperature is the product of the
effective noise temperature and the noise figure.

Default: 290 kelvin

Output Arguments

SNR

The estimated output signal-to-noise ratio at the receiver in decibels. SNR is 10log10(Pr/
N). The ratio Pr/N is defined in “Receiver Output SNR” on page 2-286.

Examples

Estimate the output SNR for a target with an RCS of 1 square meter at a range of 50
kilometers. The system is a monostatic radar operating at 1 gigahertz with a peak
transmit power of 1 megawatt and pulse width of 0.2 microseconds. The transmitter and
receiver gain is 20 decibels and the system temperature is 290 kelvin.

lambda = physconst('LightSpeed')/1e9;

tgtrng = 50e3;

Pt = 1e6;

tau = 0.2e-6;

snr = radareqsnr(lambda,tgtrng,Pt,tau);

Estimate the output SNR for a target with an RCS of 0.5 square meters at 100
kilometers. The system is a monostatic radar operating at 10 gigahertz with a peak
transmit power of 1 megawatt and pulse width of 1 microsecond. The transmitter and
receiver gain is 40 decibels. The system temperature is 300 kelvin and the loss factor is 3
decibels.

lambda = physconst('LightSpeed')/10e9;

snr = radareqsnr(lambda,100e3,1e6,1e-6,'RCS',0.5,...

 'Gain',40,'Ts',300,'Loss',3);

Estimate the output SNR for a target with an RCS of 1 square meter. The radar is
bistatic. The target is located 50 kilometers from the transmitter and 75 kilometers

 radareqsnr

2-285

from the receiver. The radar operating frequency is 10 gigahertz. The transmitter has
a peak transmit power of 1 megawatt with a gain of 40 decibels. The pulse width is 1
microsecond. The receiver gain is 20 decibels.

lambda = physconst('LightSpeed')/10e9;

tau = 1e-6;

Pt = 1e6;

txrvRng =[50e3 75e3];

Gain = [40 20];

snr = radareqsnr(lambda,txrvRng,Pt,tau,'Gain',Gain);

More About

Point Target Radar Range Equation

The point target radar range equation estimates the power at the input to the receiver
for a target of a given radar cross section at a specified range. The model is deterministic
and assumes isotropic radiators. The equation for the power at the input to the receiver
is

P
P G G

R R L
r

t t r

t r

=
l s

p

2

3 2 2
4()

where the terms in the equation are:

• Pt — Peak transmit power in watts
• Gt — Transmitter gain in decibels
• Gr — Receiver gain in decibels. If the radar is monostatic, the transmitter and

receiver gains are identical.
• λ — Radar operating frequency wavelength in meters
• σ — Nonfluctuating target radar cross section in square meters
• L — General loss factor in decibels that accounts for both system and propagation

losses
• Rt — Range from the transmitter to the target in meters
• Rr — Range from the receiver to the target in meters. If the radar is monostatic, the

transmitter and receiver ranges are identical.

2 Functions-Alphabetical List

2-286

Terms expressed in decibels such as the loss and gain factors enter the equation in the
form 10x/10 where x denotes the variable value in decibels. For example, the default loss
factor of 0 dB results in a loss term equal to one in the equation (100/10).

Receiver Output Noise Power

The equation for the power at the input to the receiver represents the signal term in the
signal-to-noise ratio. To model the noise term, assume the thermal noise in the receiver
has a white noise power spectral density (PSD) given by:

P f kT() =

where k is the Boltzmann constant and T is the effective noise temperature. The receiver
acts as a filter to shape the white noise PSD. Assume that the magnitude squared
receiver frequency response approximates a rectangular filter with bandwidth equal
to the reciprocal of the pulse duration, 1/τ. The total noise power at the output of the
receiver is:

N
kTFn

=

t

where Fn is the receiver noise factor.

The product of the effective noise temperature and the receiver noise factor is referred to
as the system temperature and is denoted by Ts, so that Ts=TFn .

Receiver Output SNR

The receiver output SNR is:

P

N

P G G

kT R R L

r t t r

s t r

=
t l s

p

2

3 2 2
4()

You can derive this expression using the following equations:

• Received signal power in “Point Target Radar Range Equation” on page 2-285
• Output noise power in “Receiver Output Noise Power” on page 2-286

 radareqsnr

2-287

References

[1] Richards, M. A. Fundamentals of Radar Signal Processing. New York: McGraw-Hill,
2005.

[2] Skolnik, M. Introduction to Radar Systems. New York: McGraw-Hill, 1980.

[3] Willis, N. J. Bistatic Radar. Raleigh, NC: SciTech Publishing, 2005.

See Also
noisepow | phased.ReceiverPreamp | phased.Transmitter | radareqpow |
radareqrng | systemp

Introduced in R2011a

2 Functions-Alphabetical List

2-288

radarvcd

Vertical coverage diagram

Syntax

[vcp,vcpangles] = radarvcd(freq,rfs,anht)

[vcp,vcpangles] = radarvcd(___ ,Name,Value)

radarvcd(___)

Description

[vcp,vcpangles] = radarvcd(freq,rfs,anht) calculates the vertical coverage
pattern of a narrowband radar antenna. The “Vertical Coverage Pattern” on page
2-296 is the radar’s range, vcp, as a function of elevation angle, vcpangles. The
vertical coverage pattern depends upon three parameters. These parameters are the
radar’s maximum free-space detection range, rfs, the radar frequency, freq, and the
antenna height, anht.

[vcp,vcpangles] = radarvcd(___ ,Name,Value) allows you to specify additional
input parameters as Name-Value pairs. You can specify additional name-value pair
arguments in any order as (Name1,Value1,...,NameN,ValueN). This syntax can use any of
the input arguments in the previous syntax.

radarvcd(___) displays the vertical coverage diagram for a radar system. The plot
is the locus of points ofmaximum radar range as a function of target elevation. This
plot is also known as the Blake chart. To create this chart, radarvcd invokes the
function blakechart using default parameters. To produce a Blake chart with different
parameters, first call radarvcd to obtain vcp and vcpangles. Then, call blakechart
with user-specified parameters. This syntax can use any of the input arguments in the
previous syntaxes.

 radarvcd

2-289

Examples

Plot Vertical Coverage Pattern Using Default Parameters

Set the frequency to 100 MHz, the antenna height to 10 m, and the free-space range
to 200 km. The antenna pattern, surface roughness, antenna tilt angle, and field
polarization assume their default values as specified in the AntennaPattern,
SurfaceRoughness, TiltAngle, and Polarization properties.

Obtain an array of vertical coverage pattern values and angles.

freq = 100e6;

ant_height = 10;

rng_fs = 200;

[vcp,vcpangles] = radarvcd(freq,rng_fs,ant_height);

To see the vertical coverage pattern, omit the output arguments.

freq = 100e6;

ant_height = 10;

rng_fs = 200;

radarvcd(freq,rng_fs,ant_height);

2 Functions-Alphabetical List

2-290

Vertical Coverage Pattern with Specified Antenna Pattern

Set the frequency to 100 MHz, the antenna height to 10 m, and the free-space range to
200 km. The antenna pattern is a sinc function with 45° half-power width. The surface
roughness is set to 1 m. The antenna tilt angle is set to 0°, and the field polarization is
horizontal.

pat_angles = linspace(-90,90,361)';

pat_u = 1.39157/sind(45/2)*sind(pat_angles);

pat = sinc(pat_u/pi);

freq = 100e6;

ant_height = 10;

rng_fs = 200;

tilt_ang = 0;

 radarvcd

2-291

[vcp,vcpangles] = radarvcd(freq,rng_fs,ant_height,...

 'RangeUnit','km','HeightUnit','m',...

 'AntennaPattern',pat,...

 'PatternAngles',pat_angles,...

 'TiltAngle',tilt_ang,'SurfaceRoughness',1);

Plot Vertical Coverage Diagram For User-Specified Antenna

Plot the range-height-angle curve (Blake Chart) for a radar with a user-specified antenna
pattern.

Define a sinc-function antenna pattern with a half-power beamwidth of 90 degrees.

pat_angles = linspace(-90,90,361)';

pat_u = 1.39157/sind(90/2)*sind(pat_angles);

pat = sinc(pat_u/pi);

Specify a radar that transmits at 100 MHz. The free-space range is 200 km, the antenna
height is 10 meters, the antenna tilt angle is zero degrees, and the surface roughness is
one meter.

freq = 100e6;

ant_height = 10;

rng_fs = 200;

tilt_ang = 0;

surf_roughness = 1;

Create the radar range-height-angle plot.

radarvcd(freq,rng_fs,ant_height,...

 'RangeUnit','km','HeightUnit','m',...

 'AntennaPattern',pat,...

 'PatternAngles',pat_angles,...

 'TiltAngle',tilt_ang,...

 'SurfaceRoughness',surf_roughness);

2 Functions-Alphabetical List

2-292

Input Arguments

freq — Radar frequency
real-valued scalar less than 10 GHz

Radar frequency specified as a real-valued scalar less than 10 GHz (10e9).
Example: 100e6
Data Types: double

rfs — Free-space range
real-valued scalar

 radarvcd

2-293

Free-space range specified as a real-valued scalar. Range units are set by the RangeUnit
Name-Value pair.
Example: 100e3
Data Types: double

anht — Radar antenna height
real-valued scalar

Radar antenna height specified as a real-valued scalar. Height units are set by the
HeightUnit Name-Value pair.

Example: 10
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: ‘HeightUnit’, k‘m’

'RangeUnit' — Radar range units
'km' (default) | 'nmi' | 'mi' | 'ft' | 'm'

Radar range units denoting kilometers, nautical miles, miles, feet or meters. This name-
value pair specifies the units for the free-space range argument, rfs, and the output
vertical coverage pattern, vcp.

Example: 'mi'

Data Types: char

'HeightUnit' — Antenna height units
'm' (default) | 'nmi’ | 'mi' | 'km' | 'ft'

Antenna height units denoting meters, nautical miles, miles, kilometers, or feet.
This name-value pair specifies the units for the antenna height, anht, and the
'SurfaceRoughness' name-value pair.

Example: 'm'

2 Functions-Alphabetical List

2-294

Data Types: char

'Polarization' — Transmitted wave polarization
‘H’ (default) | 'H' | 'V'

Transmitted wave polarization specified as 'H' for horizontal polarization and 'V' for
vertical polarization.
Example: 'V'

Data Types: char

'SurfaceDielectric' — Dielectric constant of reflecting surface
frequency dependent model (default) | complex-valued scalar

Dielectric constant of reflecting surface specified as complex-valued scalar. When
omitted, the dielectric constant is taken from a frequency-dependent seawater dielectric
model derived in Blake[1].
Example: 70
Data Types: double

'SurfaceRoughness' — Surface roughness
0 (default) | real-valued scalar

Surface roughness specified as a non-negative real scalar. Surface roughness is a
measure of the height variation of the reflecting surface. The roughness is modeled as
a sinusoid wave with crest-to-trough height given by this value. A value of 0 indicates a
smooth surface. The units for surface roughness height is specified by the value of the
'HeightUnit' Name-Value pair.

Example: 2
Data Types: double

'AntennaPattern' — Antenna elevation pattern
real-valued N-by-1 column vector

Antenna elevation pattern, specified as a real-valued N-by-1 column vector. Values for
'AntennaPattern' must be specified together with values for 'PatternAngles'.

ath = linspace(-pi/2, pi/2, 361);

HPBW = 10*pi/180;

k = 1.39157/sin(HPBW/2);

u = k*sin(ath);

 radarvcd

2-295

apat = sinc(u/pi);

Example: cosd([–90:90])

Data Types: double

'PatternAngles' — Antenna pattern elevation angles
real-valued N-by-1 column vector

Antenna pattern elevation angles specified as a real-valued N-by-1 column vector. The
size of the vector specified by 'PatternAngles' must be the same as that specified by
'AntennaPattern'. Angle units are expressed in degrees and must lie between –90°
and 90°. In general, to properly compute the coverage, the antenna pattern should fill the
whole range from –90° to 90°.
Example: [-90:90]

Data Types: double

'TiltAngle' — Antenna tilt angle
real-valued scalar

Antenna tilt angle specified as a real-valued scalar. The tilt angle is the elevation angle
of the antenna with respect to the surface. Angle units are expressed in degrees.
Example: 10
Data Types: double

'MaxElevation' — Maximum elevation angle
real-valued scalar

Maximum elevation angle, specified as a real-valued scalar. The maximum elevation
angle is the largest angle for which the vertical coverage pattern is calculated. Angle
units are expressed in degrees.
Example: 70
Data Types: double

Output Arguments

vcp — Vertical coverage pattern
real-valued vector

2 Functions-Alphabetical List

2-296

Vertical coverage pattern returned as a real-valued, K-by-1 column vector. The vertical
coverage pattern is the actual maximum range of the radar. Each entry of the vertical
coverage pattern corresponds to one of the angles returned in vcpangles.

vcpangles — Vertical coverage pattern angles
real-valued vector

Vertical coverage pattern angles returned as a K-by-1 column vector. The angles range
from –90° to 90°.

More About

Vertical Coverage Pattern

The maximum detection range of a radar antenna can differ, depending on placement.
Suppose you place a radar antenna near a reflecting surface, such as the earth's land
or sea surface and computed maximum detection range. If you then move the same
radar antenna to free space far from any boundaries, a different maximum detection
range would result. This is an effect of multi-path interference that occurs when waves,
reflected from the surface, constructively add to or nullify the direct path signal from
the radar to a target. Multipath interference gives rise to a series of lobes in the vertical
plane. The vertical coverage pattern is the plot of the actual maximum detection range of
the radar versus target elevation and depends upon the maximum free-space detection
range and target elevation angle. See Blake [1].

References

[1] Blake, L.V. Machine Plotting of Radar Vertical-Plane Coverage Diagrams. Naval
Research Laboratory Report 7098, 1970.

See Also
blakechart

Introduced in R2013a

 radarWaveformAnalyzer

2-297

radarWaveformAnalyzer
Radar waveform analyzer

Description

The Radar Waveform Analyzer app is a tool for exploring the properties of various
kinds of signals often used in radar and sonar systems. The app lets you determine the
basic performance characteristics of the following waveforms:

• Rectangular
• Linear FM
• Stepped FM
• Phase-coded
• FMCW

Each waveform has a set of parameters that are unique to its kind. After you select
a signal, the signal parameters menu changes so you can quickly modify the signal.
Parameters you can set include the duration, pulse-repetition frequency, number of
pulse, bandwidth and sample rate. Changing the propagation speed lets you display
properties of sound waves in air and water, or electromagnetic waves. After you enter
all the information for a signal of interest, the app displays basic characteristics such
as range resolution, Doppler resolution, maximum and minimum range and maximum
Doppler.

The Radar Waveform Analyzer app lets you produce a variety of plots and images.
These are plots of the waveform’s

• Real and imaginary components
• Magnitude and phase
• Spectrum
• Spectrogram
• Representations of the ambiguity function

• Contour
• Surface

2 Functions-Alphabetical List

2-298

• Delay cut
• Doppler cut

• Autocorrelation function

Examples

Rectangular Waveform

Assume a rectangular waveform. Set the Waveform Type to Rectangular. An ideal
rectangular waveform jumps instantaneously to a finite value and stays there for some
duration. Assume the radar is designed for a maximum range of 50 km. With this
assumption, the propagation time for a signal to go to that range and return is 333 μs.
This means you must allow 333 μs between pulses, equivalent to a maximum pulse
repetition frequency (PRF)) of 3000 Hz. Set the Pulse Width to 50 μs. With these
values, the app displays a 7.5 km range resolution. The resolution of a rectangular pulse
is roughly 1/2 the pulse-width multiplied by the speed of light, which is entered here in
the Propagation Speed field as 300e6 m/s. The Doppler resolution is approximately the
width of the Fourier transform of the pulse. The same analysis can be used for sonar if
you assume a much smaller speed of propagation, 1500 m/s. The following figure shows
the real and imaginary parts of the waveform. This is the default view on the View drop-
down list.

 radarWaveformAnalyzer

2-299

Next, you can view the signal spectrum. To do so, select spectrum from the View drop-
down menu.

2 Functions-Alphabetical List

2-300

Finally, you can display the joint range-Doppler resolution by selecting Ambigity-
Function Surface from the View pull-down menu.

 radarWaveformAnalyzer

2-301

Linear FM Waveform

In the previous example, the range resolution of the rectangular pulse was poor, at 7.5
km. You can improve the range resolution by choosing a signal with a larger bandwidth.
A good choice is a linear FM pulse. Do this by setting the Waveform Type to Linear
FM. This pulse has a variable frequency which can either increase or decrease as a linear
function of time. Choose the Sweep Direction as Up, and the Sweep Bandwidth as

2 Functions-Alphabetical List

2-302

1 MHz. You can see that keeping the same pulse width as before improves the range
resolution to 150 m, as shown in the following figure.

Finally, examine the ambiguity function which shows a trade-off. While the range
resolution is better, the Doppler resolution is worse than that of a rectangular waveform.

 radarWaveformAnalyzer

2-303

See Also
“Rectangular Pulse Waveforms” | “Linear Frequency Modulated Pulse Waveforms” |
“Stepped FM Pulse Waveforms” | “Phase-Coded Waveforms” | “FMCW Waveforms”

Introduced in R2013a

2 Functions-Alphabetical List

2-304

radialspeed
Relative radial speed

Syntax

Rspeed = radialspeed(Pos,V)

Rspeed = radialspeed(Pos,V,RefPos)

Rspeed = radialspeed(Pos,V,RefPos,RefV)

Description

Rspeed = radialspeed(Pos,V) returns the radial speed of the given platforms
relative to a reference platform. The platforms have positions Pos and velocities V. The
reference platform is stationary and is located at the origin.

Rspeed = radialspeed(Pos,V,RefPos) specifies the position of the reference
platform.

Rspeed = radialspeed(Pos,V,RefPos,RefV) specifies the velocity of the reference
platform.

Input Arguments

Pos

Positions of platforms, specified as a 3-by-N matrix. Each column specifies a position in
the form [x; y; z], in meters.

V

Velocities of platforms, specified as a 3-by-N matrix. Each column specifies a velocity in
the form [x; y; z], in meters per second.

RefPos

Position of reference platform, specified as a 3-by-1 vector. The vector has the form [x; y;
z], in meters.

 radialspeed

2-305

Default: [0; 0; 0]

RefV

Velocity of reference platform, specified as a 3-by-1 vector. The vector has the form [x; y;
z], in meters per second.

Default: [0; 0; 0]

Output Arguments

Rspeed

Radial speed in meters per second, as an N-by-1 vector. Each number in the vector
represents the radial speed of the corresponding platform. Positive numbers indicate that
the platform is approaching the reference platform. Negative numbers indicate that the
platform is moving away from the reference platform.

Examples

Radial Speed of Target Relative to Stationary Platform

Calculate the radial speed of a target relative to a stationary platform. Assume the target
is located at [20; 20; 0] meters and is moving with velocity [10; 10; 0] meters per
second. The reference platform is located at [1; 1; 0].

rspeed = radialspeed([20; 20; 0],[10; 10; 0],[1; 1; 0]);

More About
• “Doppler Shift and Pulse-Doppler Processing”
• “Motion Modeling in Phased Array Systems”

See Also
phased.Platform | speed2dop

Introduced in R2011a

2 Functions-Alphabetical List

2-306

rainpl

RF signal attenuation due to rainfall

Syntax

L = rainpl(range,freq,rainrate)

L = rainpl(range,freq,rainrate,elev)

L = rainpl(range,freq,rainrate,elev,tau)

Description

L = rainpl(range,freq,rainrate) returns the signal attenuation, L, due to
rainfall. In this syntax, attenuation is a function of signal path length, range, signal
frequency, freq, and rain rate, rainrate. The path elevation angle and polarization tilt
angles are assumed to zero.

The rainpl function applies the International Telecommunication Union (ITU) rainfall
attenuation model to calculate path loss of signals propagating in a region of rainfall
[1]. The function applies when the signal path is contained entirely in a uniform rainfall
environment. Rain rate does not vary along the signal path. The attenuation model
applies only for frequencies at 1–1000 GHz.

L = rainpl(range,freq,rainrate,elev) specifies the elevation angle, elev, of the
propagation path.

L = rainpl(range,freq,rainrate,elev,tau) specifies the polarization tilt angle,
tau, of the signal.

Examples

Signal Attenuation Due to Rainfall

Compute the signal attenuation due to rainfall for a 20 GHz signal over a distance of 10
km in light and heavy rain.

 rainpl

2-307

Propagate the signal in a light rainfall of 1 mm/hr.

rr = 1.0;

L = rainpl(10000,20.0e9,rr)

L =

 0.7104

Propagate the signal in a heavy rainfall of 10 mm/hr.

rr = 10.0;

L = rainpl(10000,20.0e9,rr)

L =

 7.8413

Signal Attenuation Due to Rainfall as Function of Frequency

Plot the signal attenuation due to moderate rainfall for signals in the frequency range 1–
1000 GHz. The path distance is 10 km.

Set the rain rate value for moderate rainfall to 3 mm/hr.

rr = 3.0;

freq = [1:1000]*1e9;

L = rainpl(10000,freq,rr);

loglog(freq/1e9,L)

grid

xlabel('Frequency (GHz)')

ylabel('Attenuation (dB)')

2 Functions-Alphabetical List

2-308

Signal Attenuation Due to Rainfall as Function of Elevation Angle

Compute the signal attenuation due to heavy rain as a function of elevation angle.
Elevation angles vary from 0°–90°. Assume a path distance of 100 km and a signal
frequency of 100 GHz.

Set the rain rate to 10 mm/hr.

rr = 10.0;

Set the elevation angles, frequency, range.

elev = [0:1:90];

freq = 100.0e9;

 rainpl

2-309

rng = 100000.0*ones(size(elev));

Compute and plot the loss.

L = rainpl(rng,freq,rr,elev);

plot(elev,L)

grid

xlabel('Path Elevation (degrees)')

ylabel('Attenuation (dB)')

Signal Attenuation Due to Rainfall as Function of Polarization

Compute the signal attenuation due to heavy rainfall as a function of the polarization
tilt angle. Assume a path distance of 100 km, a signal frequency of 100 GHz signal,

2 Functions-Alphabetical List

2-310

and a path elevation angle of 0°. Set the rainfall rate to 10 mm/hour. Plot the signal
attenuation versus polarization tilt angle.

Set the polarization tilt angle to vary from –90 to 90°.

tau = [-90:90];

Set the elevation angle, frequency, path distance, and rain rate.

elev = 0;

freq = 100.0e9;

rng = 100e3*ones(size(tau));

rr = 10.0;

Compute and plot the attenuation.

L = rainpl(rng,freq,rr,elev,tau);

plot(tau,L)

grid

xlabel('Tilt Angle (degrees)')

ylabel('Attenuation (dB)')

 rainpl

2-311

Input Arguments

range — Signal path length
nonnegative real-valued scalar | nonnegative real-valued M-by-1 column vector |
nonnegative real-valued 1-by-M row vector

Signal path length, specified as a nonnegative real-valued scalar, or as a M-by-1 or 1-
by-M vector. Units are in meters.
Example: [13000.0,14000.0]

2 Functions-Alphabetical List

2-312

freq — Signal frequency
positive real-valued scalar | nonnegative real-valued N-by-1 column vector |
nonnegative real-valued 1-by-N row vector

Signal frequency, specified as a positive real-valued scalar, or as a nonnegative N-by-1 or
1-by-N vector. Frequencies must lie in the range 1–1000 GHz.
Example: [1400.0e6,2.0e9]

rainrate — Rain rate
nonnegative real-valued scalar

Rain rate, specified as a nonnegative real-valued scalar. Units are in mm/hr.
Example: 1.5

elev — Signal path elevation angle
0.0 (default) | real-valued scalar | real-valued M-by-1 column vector | real-valued 1-
by-M row vector

Signal path elevation angle, specified as a real-valued scalar, or as an M-by-1 or 1-by-
M vector. Units are in degrees between –90° and 90°. If elev is a scalar, all propagation
paths have the same elevation angle. If elev is a vector, its length must match the
dimension of range and each element in elev corresponds to a propagation range in
range.

Example: [0,45]

tau — Tilt angle of polarization ellipse
0.0 (default) | real-valued scalar | real-valued M-by-1 column vector | real-valued 1-
by-M row vector

Tilt angle of the signal polarization ellipse, specified as a real-valued scalar, or as an M-
by-1 or 1-by- M vector. Units are in degrees between –90° and 90°. If tau is a scalar, all
signals have the same tilt angle. If tau is a vector, its length must match the dimension
of range. In that case, each element in tau corresponds to a propagation path in range.

The tilt angle is defined as the angle between the semimajor axis of the polarization
ellipse and the x-axis. Because the ellipse is symmetrical, a tilt angle of 100° corresponds
to the same polarization state as a tilt angle of -80°. Thus, the tilt angle need only be
specified between ±90°.
Example: [45,30]

 rainpl

2-313

Output Arguments

L — Signal attenuation
real-valued M-by-N matrix

Signal attenuation, returned as a real-valued M-by-N matrix. Each matrix row
represents a different path where M is the number of paths. Each column represents a
different frequency where N is the number of frequencies. Units are in dB.

More About

Rainfall Attenuation Model

This model calculates the attenuation of signals that propagate through regions of
rainfall.

Electromagnetic signals are attenuated when propagating through a region of rainfall.
Rainfall attenuation is computed according to the ITU rainfall model Recommendation
ITU-R P.838-3: Specific attenuation model for rain for use in prediction methods. The
model computes the specific attenuation (attenuation per kilometer) of a signal as a
function of rainfall rate, signal frequency, polarization, and path elevation angle, using

g
a

r kr= ,

where r is the rain rate in mm/hr. The parameter k and exponent α depend on frequency,
polarization state, and the elevation angle of the signal path. The specific attenuation
model is valid for frequencies 1–1000 GHz.

To compute the total attenuation for narrowband signals along a path, the function
multiplies the specific attenuation by the path length R. Then, total attenuation is Lr =
Rγr.

You can apply the attenuation model to wideband signals. First, divide the wideband
signal into frequency subbands and apply attenuation to each subband. Then, sum all
attenuated subband signals into the total attenuated signal.

2 Functions-Alphabetical List

2-314

References

[1] Radiocommunication Sector of International Telecommunication Union.
Recommendation ITU-R P.838-3: Specific attenuation model for rain for use in
prediction methods. 2005.

See Also
fogpl | fspl | gaspl | LOSChannel | WidebandLOSChannel

Introduced in R2016a

 range2beat

2-315

range2beat
Convert range to beat frequency

Syntax

fb = range2beat(r,slope)

fb = range2beat(r,slope,c)

Description

fb = range2beat(r,slope) converts the range of a dechirped linear FMCW signal to
the corresponding beat frequency. slope is the slope of the FMCW sweep.

fb = range2beat(r,slope,c) specifies the signal propagation speed.

Examples

Maximum Beat Frequency in FMCW Radar System

Calculate the maximum beat frequency in the received signal of an upsweep FMCW
waveform. Assume that the waveform can detect a target as far as 18 km and sweeps a
300 MHz band in 1 ms. Also assume that the target is stationary.

slope = 300e6/1e-3;

r = 18e3;

fb = range2beat(r,slope);

• Automotive Adaptive Cruise Control Using FMCW Technology

Input Arguments

r — Range
array of nonnegative numbers

Range, specified as an array of nonnegative numbers in meters.

../examples/automotive-adaptive-cruise-control-using-fmcw-technology.html

2 Functions-Alphabetical List

2-316

Data Types: double

slope — Sweep slope
nonzero scalar

Slope of FMCW sweep, specified as a nonzero scalar in hertz per second.
Data Types: double

c — Signal propagation speed
speed of light (default) | positive scalar

Signal propagation speed, specified as a positive scalar in meters per second.
Data Types: double

Output Arguments

fb — Beat frequency of dechirped signal
array of nonnegative numbers

Beat frequency of dechirped signal, returned as an array of nonnegative numbers in
hertz. Each entry in fb is the beat frequency corresponding to the corresponding range in
r. The dimensions of fb match the dimensions of r.

Data Types: double

More About

Beat Frequency

For an up-sweep or down-sweep FMCW signal, the beat frequency is Ft – Fr. In this
expression, Ft is the transmitted signal’s carrier frequency, and Fr is the received signal’s
carrier frequency.

For an FMCW signal with triangular sweep, the upsweep and downsweep have separate
beat frequencies.

Algorithms

The function computes 2*r*slope/c.

 range2beat

2-317

References

[1] Pace, Phillip. Detecting and Classifying Low Probability of Intercept Radar. Artech
House, Boston, 2009.

[2] Skolnik, M.I. Introduction to Radar Systems. New York: McGraw-Hill, 1980.

See Also
phased.FMCWWaveform | beat2range | dechirp | rdcoupling |
stretchfreq2rng

Introduced in R2012b

2 Functions-Alphabetical List

2-318

range2bw
Convert range resolution to required bandwidth

Syntax

bw = range2bw(r)

bw = range2bw(r,c)

Description

bw = range2bw(r) returns the bandwidth needed to distinguish two targets separated
by a given range. Such capability is often referred to as range resolution. The propagation
is assumed to be two-way, as in a monostatic radar system.

bw = range2bw(r,c) specifies the signal propagation speed.

Examples

Pulse Width for Specified Range Resolution

Assume you have a monostatic radar system that uses a rectangular waveform. Calculate
the required pulse width of the waveform so that the system can achieve a range
resolution of 10 m.

r = 10;

tau = 1/range2bw(r);

• Automotive Adaptive Cruise Control Using FMCW Technology

Input Arguments

r — Target range resolution
array of positive numbers

Target range resolution in meters, specified as an array of positive numbers.

../examples/automotive-adaptive-cruise-control-using-fmcw-technology.html

 range2bw

2-319

Data Types: double

c — Signal propagation speed
speed of light (default) | positive scalar

Signal propagation speed, specified as a positive scalar in meters per second.
Data Types: double

Output Arguments

bw — Required bandwidth
array of nonnegative numbers

Required bandwidth in hertz, returned as an array of nonnegative numbers. The
dimensions of bware the same as those of r.

More About

Tips

• This function assumes two-way propagation. For one-way propagation, you can find
the required bandwidth by multiplying the output of this function by 2.

Algorithms

The function computes c/(2*r).

References

[1] Skolnik, M. Introduction to Radar Systems, 3rd Ed. New York: McGraw-Hill, 2001.

See Also
phased.FMCWWaveform | range2time | time2range

Introduced in R2012b

2 Functions-Alphabetical List

2-320

range2time
Convert propagation distance to propagation time

Syntax

t = range2time(r)

t = range2time(r,c)

Description

t = range2time(r) returns the time a signal takes to propagate a given distance. The
propagation is assumed to be two-way, as in a monostatic radar system.

t = range2time(r,c) specifies the signal propagation speed.

Examples

PRF for Specified Unambiguous Range

Calculate the required PRF for a monostatic radar system so that it can have a
maximum unambiguous range of 15 km.

r = 15e3;

prf = 1/range2time(r);

• Automotive Adaptive Cruise Control Using FMCW Technology

Input Arguments

r — Signal range
array of nonnegative numbers

Signal range in meters, specified as an array of nonnegative numbers.
Data Types: double

../examples/automotive-adaptive-cruise-control-using-fmcw-technology.html

 range2time

2-321

c — Signal propagation speed
speed of light (default) | positive scalar

Signal propagation speed, specified as a positive scalar in meters per second.
Data Types: double

Output Arguments

t — Propagation time
array of nonnegative numbers

Propagation time in seconds, returned as an array of nonnegative numbers. The
dimensions of tare the same as those of r.

More About

Algorithms

The function computes 2*r/c.

References

[1] Skolnik, M. Introduction to Radar Systems, 3rd Ed. New York: McGraw-Hill, 2001.

See Also
phased.FMCWWaveform | range2bw | time2range

Introduced in R2012b

2 Functions-Alphabetical List

2-322

rangeangle
Range and angle calculation

Syntax

[rng,ang] = rangeangle(pos)

[rng,ang] = rangeangle(pos,refpos)

[rng,ang] = rangeangle(pos,refpos,refaxes)

[rng,ang] = rangeangle(___ ,model)

Description

The function rangeangle determines the propagation path length and path direction
of a signal from any point to a reference point. The function supports two propagation
models — the free space model and the two-ray model. The free space model is a single
line-of-sight path from a point to a reference point. The two-ray multipath model
generates two paths. The first path follows the free-space path. The second path is a
reflected path off a boundary plane at z = 0. Path directions are defined with respect to
either the global coordinate system at the reference point or a local coordinate system
at the reference point. Distances and angles at the reference point do not depend upon
which direction the signal is travelling along the path. Path lengths are independent of
the coordinate system.

[rng,ang] = rangeangle(pos) returns the propagation path length, rng, and
direction, ang, of a signal path from one point or set of points, pos, to the reference
point. In this syntax, the reference point coincides with the global coordinate system
origin. Directions are specified by azimuth and elevation angles with respect to the global
coordinate system. Signals follow a line-of-sight path from the source to the origin. The
line-of-sight path corresponds to the geometric straight line between the points.

[rng,ang] = rangeangle(pos,refpos), in addition, specifies a reference point,
refpos. Directions are specified by azimuth and elevation with respect to a global
coordinate system at the reference point.

[rng,ang] = rangeangle(pos,refpos,refaxes) in addition, specifies the reference
axes, refaxes. Path angles are defined by azimuth and elevation with respect to a local
coordinate system with its origin at refpos and axes defined by refaxes.

 rangeangle

2-323

[rng,ang] = rangeangle(___ ,model), in addition, specifies a propagation model.
When model is set to 'freespace', the signal propagates along a line-of-sight path
from source point to reception point. When model is set to 'two-ray', the signal
propagates along two paths from source point to reception point. The first path is the
line-of-sight path. The second path is the reflecting path. In this case, the function
returns the distances and angles for two paths for each source point.

Input Arguments

pos

Point position, specified as a 3-by-N real-valued matrix of rectangular coordinates where
each column takes the form [x;y;z]. Each column in pos represents the coordinates of
one position. Position units are meters.

refpos

Reference position, specified as a real-valued 3-by-1 vector of rectangular coordinates
in the form [x;y;z]. The reference position is the origin of the local coordinate system.
Ranges and angles to the columns of pos are measured with respect to refpos. Position
units are meters.

Default: [0;0;0]

refaxes

Local coordinate system axes, specified as a real-valued 3-by-3 matrix whose columns
define the axes of the local coordinate system with origin at refpos. Each column in
refaxes specifies the direction of an axis for the local coordinate system in rectangular
coordinates [x;y;z].

Default: [1 0 0;0 1 0;0 0 1]

model

Propagation model, specified as a string taking the values 'freespace' or 'two-ray'.
Choosing 'freespace' invokes the free space propagation model. Choosing 'two-ray'
invokes the two-ray propagation model.

Default: 'freespace'

2 Functions-Alphabetical List

2-324

Output Arguments

rng

Propagation distance, returned as a 1-by-M vector of ranges from the source to
the positions defined by the corresponding columns in pos. When model is set to
'freespace', M = N. When model is set to 'two-ray', M = 2N. Alternate columns
of ang refer to the line-of-sight path and reflected path, respectively. Position units are
meters.

ang

Azimuth and elevation angles, returned as a 2-by-M matrix whose columns are angles
in the form [azimuth;elevation]. Each column corresponds to the positions specified
in pos. When model is set to 'freespace', M = N. When model is set to 'two-ray',
M = 2N. Alternate columns of ang refer to the line-of-sight path and reflected path,
respectively. Angle units are in degrees.

Examples

Range and Angle Computation

Compute the range and angle of a target located at (1000,2000,50) meters from the
origin.

TargetLoc = [1000;2000;50];

[tgtrng,tgtang] = rangeangle(TargetLoc)

tgtrng =

 2.2366e+03

tgtang =

 63.4349

 1.2810

 rangeangle

2-325

Range and Angle With Respect to Local Origin

Compute the range and angle of a target located at (1000,2000,50) meters with respect to
a local origin at (100,100,10) meters.

TargetLoc = [1000;2000;50];

Origin = [100;100;10];

[tgtrng,tgtang] = rangeangle(TargetLoc,Origin)

tgtrng =

 2.1028e+03

tgtang =

 64.6538

 1.0900

Range and Angle With Respect to Local Coordinates

Compute the range and angle of a target located at (1000,2000,50) meters but with
respect to a local origin at (100,100,10) meters. Choose a local coordinate axes rotated
around the z-axis by 45 degrees from the global coordinate axes.

TargetLoc = [1000;2000;50];

Origin = [100;100;10];

refaxes = [1/sqrt(2) 1/sqrt(2) 0; 1/sqrt(2) -1/sqrt(2) 0; 0 0 1];

[tgtrng,tgtang] = rangeangle(TargetLoc,Origin,refaxes)

tgtrng =

 2.1028e+03

tgtang =

 -19.6538

 1.0900

2 Functions-Alphabetical List

2-326

Two-Ray Range and Angle

Compute the two-ray propagation distances and arrival angles of rays from a source
located at (1000,1000,500) meters from the origin. The receiver is located at (100,100,200)
meters from the origin.

sourceLoc = [1000;1000;500];

receiverLoc = [100;100;200];

[sourcerngs,sourceangs] = rangeangle(sourceLoc,receiverLoc,'two-ray')

sourcerngs =

 1.0e+03 *

 1.3077 1.4526

sourceangs =

 45.0000 45.0000

 13.2627 -28.8096

 rangeangle

2-327

Find the range and angle of the same target with the same origin but with respect to
a local coordinate axes. The local coordinate axes are rotated around the z-axis by 45
degrees from the global coordinate axes.

refaxes = rotz(45);

[sourcerngs,sourceangs] = rangeangle(sourceLoc,receiverLoc,refaxes,'two-ray')

sourcerngs =

 1.0e+03 *

2 Functions-Alphabetical List

2-328

 1.3077 1.4526

sourceangs =

 0 0

 13.2627 -28.8096

• “Global and Local Coordinate Systems”

More About

Angles in Local and Global Coordinate Systems

The rangeangle function returns the path distance and path angles in either the global
or local coordinate systems. Every antenna or microphone element and array has a gain
pattern that is expressed in local angular coordinates of azimuth and elevation. As the
element or array moves or rotates, the gain pattern is carried with it. To determine
the strength of a signal’s transmission or reception, you must know the angle that the
signal path makes with respect to the local angular coordinates of the element or array.
By default, the rangeangle function determines the angle a signal path makes with
respect to global coordinates. If you add the refaxes argument, you can compute the
angles with respect to local coordinates. As an illustration, the figure below shows a 5-
by-5 uniform rectangular array (URA) rotated from the global coordinates (xyz) using
refaxes. The x' axis of the local coordinate system (x'y'z') is aligned with the main
axis of the array and moves as the array moves. The path length is independent of
orientation. The global coordinate system defines the azimuth and elevations angles (φ,θ)
and the local coordinate system defines the azimuth and elevations angles (φ',θ').

 rangeangle

2-329

Local and Global Coordinate Axes

Free Space Propagation Model

The free-space signal propagation model states that a signal propagating from one point
to another in a homogeneous, isotropic medium travels in a straight line, called the
line-of-sight or direct path. The straight line is defined by the geometric vector from the
radiation source to the destination. Similar assumptions are made for sonar but the term
isovelocity channel is usually used in place of free space.

Two-ray Propagation Model

A two-ray propagation channel is the next step up in complexity from a free-space
channel and is the simplest case of a multipath propagation environment. The free-
space channel models a straight-line line-of-sight path from point 1 to point 2. In a
two-ray channel, the medium is specified as a homogeneous, isotropic medium with
a reflecting planar boundary. The boundary is always set at z = 0. There are at most
two rays propagating from point 1 to point 2. The first ray path propagates along the

2 Functions-Alphabetical List

2-330

same line-of-sight path as in the free-space channel (see the phased.FreeSpace System
object). The line-of-sight path is often called the direct path. The second ray reflects off
the boundary before propagating to point 2. Reflection angles are specified by the law
of reflection which equates the angle of incidence to the angle of reflection. In short-
range simulations such as cellular communications systems, automotive radars, ground
terminal radar, and sonar, you can assume that the reflecting surface, the ground or
ocean surface, is flat.

The phased.TwoRayChannel System object models propagation time delay, phase shift,
Doppler shift, and loss effects for both paths. For the reflected path, loss effects include
reflection loss at the boundary.

The figure illustrates two propagation paths. From the source position, ss, and the
receiver position, sr, you can compute the arrival angles of both paths, θ′los and θ′rp.
The arrival angles are the elevation and azimuth angles of the arriving radiation with
respect to a local coordinate system. In this case, the local coordinate system coincides
with the global coordinate system. You can also compute the transmitting angles, θlos
and θrp. In the global coordinates, the angle of reflection at the boundary is the same
as the angle θrp or θ′rp. The reflection angle is important to know when you use angle-
dependent reflection-loss data. You can determine the reflection angle by using the
rangeangle function and setting the reference axes to the global coordinate system.
The total path length for the line-of-sight path is shown in the figure by Rlos which is
equal to the geometric distance between source and receiver. The total path length for
the reflected path is given by Rrp= R1 + R2. The quantity L is the ground range between
source and receiver.

 rangeangle

2-331

You can easily derive exact formulas for path lengths and angles in terms of the ground
range and objects heights in the global coordinate system.

2 Functions-Alphabetical List

2-332

r

r r

r

R x x

R R z z L

R
z

z z
z z L

R
z

z

s r

los r s

r

r z
r s

s

s

= -

= = -() +

=
+

+() +

=
+

2 2

1

2 2

2 zz
z z L

R R R z z L

z z

L

r
r s

rp r s

los
s r

rp

+() +

= + = +() +

=
-()

=

2 2

1 2

2 2

tan

tan

q

q --
+()

¢ = -

¢ =

z z

L

s r

los los

rp rp

q q

q q

See Also
azel2phitheta | azel2uv | global2localcoord | local2globalcoord

Introduced in R2011a

 rdcoupling

2-333

rdcoupling
Range Doppler coupling

Syntax

dr = rdcoupling(fd,slope)

dr = rdcoupling(fd,slope,c)

Description

dr = rdcoupling(fd,slope) returns the range offset due to the Doppler shift in a
linear frequency modulated signal. For example, the signal can be a linear FM pulse or
an FMCW signal. slope is the slope of the linear frequency modulation.

dr = rdcoupling(fd,slope,c) specifies the signal propagation speed.

Examples

Range of Target After Correcting for Doppler Shift

Calculate the true range of the target for an FMCW waveform that sweeps a band of 3
MHz in 2 ms. The dechirped target return has a beat frequency of 1 kHz. The processing
of the target return also indicates a Doppler shift of 100 Hz.

slope = 30e6/2e-3;

fb = 1e3;

fd = 100;

r = beat2range(fb,slope) - rdcoupling(fd,slope);

• Automotive Adaptive Cruise Control Using FMCW Technology

Input Arguments

fd — Doppler shift
array of real numbers

../examples/automotive-adaptive-cruise-control-using-fmcw-technology.html

2 Functions-Alphabetical List

2-334

Doppler shift, specified as an array of real numbers.
Data Types: double

slope — Slope of linear frequency modulation
nonzero scalar

Slope of linear frequency modulation, specified as a nonzero scalar in hertz per second.
Data Types: double

c — Signal propagation speed
speed of light (default) | positive scalar

Signal propagation speed, specified as a positive scalar in meters per second.
Data Types: double

Output Arguments

dr — Range offset due to Doppler shift
real scalar

Range offset due to Doppler shift, returned as an array of real numbers. The dimensions
of dr match the dimensions of fd.

More About

Range Offset

The range offset is the difference between the estimated range and the true range. The
difference arises from coupling between the range and Doppler shift.

Algorithms

The function computes -c*fd/(2*slope).

References

[1] Barton, David K. Radar System Analysis and Modeling. Boston: Artech House, 2005.

 rdcoupling

2-335

[2] Richards, M. A. Fundamentals of Radar Signal Processing. New York: McGraw-Hill,
2005.

See Also
phased.FMCWWaveform | phased.LinearFMWaveform | beat2range | dechirp |
range2beat | stretchfreq2rng

Introduced in R2012b

2 Functions-Alphabetical List

2-336

rocpfa
Receiver operating characteristic curves by false-alarm probability

Syntax

[Pd,SNR] = rocpfa(Pfa)

[Pd,SNR] = rocpfa(Pfa,Name,Value)

rocpfa(...)

Description

[Pd,SNR] = rocpfa(Pfa) returns the single-pulse detection probabilities, Pd,
and required SNR values, SNR, for the false-alarm probabilities in the row or column
vector Pfa. By default, for each false-alarm probability, the detection probabilities are
computed for 101 equally spaced SNR values between 0 and 20 dB. The ROC curve is
constructed assuming a single pulse in coherent receiver with a nonfluctuating target.

[Pd,SNR] = rocpfa(Pfa,Name,Value) returns detection probabilities and SNR
values with additional options specified by one or more Name,Value pair arguments.

rocpfa(...) plots the ROC curves.

Input Arguments

Pfa

False-alarm probabilities in a row or column vector.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

 rocpfa

2-337

'MaxSNR'

Maximum SNR to include in the ROC calculation.

Default: 20

'MinSNR'

Minimum SNR to include in the ROC calculation.

Default: 0

'NumPoints'

Number of SNR values to use when calculating the ROC curves. The actual values are
equally spaced between MinSNR and MaxSNR.

Default: 101

'NumPulses'

Number of pulses to integrate when calculating the ROC curves. A value of 1 indicates no
pulse integration.

Default: 1

'SignalType'

String that specifies the type of received signal or, equivalently, the probability
density functions (PDF) used to compute the ROC. Valid values are: 'Real',
'NonfluctuatingCoherent', 'NonfluctuatingNoncoherent', 'Swerling1',
'Swerling2', 'Swerling3', and 'Swerling4'. The strings are not case sensitive.

The 'NonfluctuatingCoherent' signal type assumes that the noise in the received
signal is a complex-valued, Gaussian random variable. This variable has independent
zero-mean real and imaginary parts each with variance σ2/2 under the null hypothesis. In
the case of a single pulse in a coherent receiver with complex white Gaussian noise, the
probability of detection, PD, for a given false-alarm probability, PFA is:

P PD FA= -
-1

2
2

1
erfc erfc(())c

2 Functions-Alphabetical List

2-338

where erfc and erfc-1 are the complementary error function and that function’s
inverse, and χ is the SNR not expressed in decibels.

For details about the other supported signal types, see [1].

Default: 'NonfluctuatingCoherent'

Output Arguments

Pd

Detection probabilities corresponding to the false-alarm probabilities. For each false-
alarm probability in Pfa, Pd contains one column of detection probabilities.

SNR

Signal-to-noise ratios in a column vector. By default, the SNR values are 101 equally
spaced values between 0 and 20. To change the range of SNR values, use the optional
MinSNR or MaxSNR input argument. To change the number of SNR values, use the
optional NumPoints input argument.

Examples

Plot ROC curves for false-alarm probabilities of 1e–8, 1e–6, and 1e–3, assuming coherent
integration of a single pulse.

Pfa = [1e-8 1e-6 1e-3]; % false-alarm probabilities

rocpfa(Pfa,'SignalType','NonfluctuatingCoherent')

 rocpfa

2-339

References

[1] Richards, M. A. Fundamentals of Radar Signal Processing. New York: McGraw-Hill,
2005, pp 298–336.

See Also
npwgnthresh | rocsnr | shnidman

Introduced in R2011a

2 Functions-Alphabetical List

2-340

rocsnr

Receiver operating characteristic curves by SNR

Syntax

[Pd,Pfa] = rocsnr(SNRdB)

[Pd,Pfa] = rocsnr(SNRdB,Name,Value)

rocsnr(...)

Description

[Pd,Pfa] = rocsnr(SNRdB) returns the single-pulse detection probabilities, Pd, and
false-alarm probabilities, Pfa, for the SNRs in the vector SNRdB. By default, for each
SNR, the detection probabilities are computed for 101 false-alarm probabilities between
1e–10 and 1. The false-alarm probabilities are logarithmically equally spaced. The ROC
curve is constructed assuming a coherent receiver with a nonfluctuating target.

[Pd,Pfa] = rocsnr(SNRdB,Name,Value) returns detection probabilities and false-
alarm probabilities with additional options specified by one or more Name,Value pair
arguments.

rocsnr(...) plots the ROC curves.

Input Arguments

SNRdB

Signal-to-noise ratios in decibels, in a row or column vector.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

 rocsnr

2-341

quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'MaxPfa'

Maximum false-alarm probability to include in the ROC calculation.

Default: 1

'MinPfa'

Minimum false-alarm probability to include in the ROC calculation.

Default: 1e-10

'NumPoints'

Number of false-alarm probabilities to use when calculating the ROC curves. The actual
probability values are logarithmically equally spaced between MinPfa and MaxPfa.

Default: 101

'NumPulses'

Number of pulses to integrate when calculating the ROC curves. A value of 1 indicates no
pulse integration.

Default: 1

'SignalType'

String that specifies the type of received signal or, equivalently, the probability
density functions (PDF) used to compute the ROC. Valid values are: 'Real',
'NonfluctuatingCoherent', 'NonfluctuatingNoncoherent', 'Swerling1',
'Swerling2', 'Swerling3', and 'Swerling4'.

The 'NonfluctuatingCoherent' signal type assumes that the noise in the received
signal is a complex-valued, Gaussian random variable. This variable has independent
zero-mean real and imaginary parts each with variance σ2/2 under the null hypothesis. In
the case of a single pulse in a coherent receiver with complex white Gaussian noise, the
probability of detection, PD, for a given false-alarm probability, PFA is:

2 Functions-Alphabetical List

2-342

P PD FA= -
-1

2
2

1
erfc erfc(())c

where erfc and erfc-1 are the complementary error function and that function’s
inverse, and χ is the SNR not expressed in decibels.

For details about the other supported signal types, see [1].

Default: 'NonfluctuatingCoherent'

Output Arguments

Pd

Detection probabilities corresponding to the false-alarm probabilities. For each SNR in
SNRdB, Pd contains one column of detection probabilities.

Pfa

False-alarm probabilities in a column vector. By default, the false-alarm probabilities are
101 logarithmically equally spaced values between 1e–10 and 1. To change the range of
probabilities, use the optional MinPfa or MaxPfa input argument. To change the number
of probabilities, use the optional NumPoints input argument.

Examples

Plot ROC curves for coherent integration of a single pulse.

SNRdB = [3 6 9 12]; % SNRs

[Pd,Pfa] = rocsnr(SNRdB,'SignalType','NonfluctuatingCoherent');

semilogx(Pfa,Pd);

grid on; xlabel('P_{fa}'); ylabel('P_d');

legend('SNR 3 dB','SNR 6 dB','SNR 9 dB','SNR 12 dB',...

 'location','northwest');

title('Receiver Operating Characteristic (ROC) Curves');

 rocsnr

2-343

References

[1] Richards, M. A. Fundamentals of Radar Signal Processing. New York: McGraw-Hill,
2005, pp 298–336.

See Also
npwgnthresh | rocpfa | shnidman

Introduced in R2011a

2 Functions-Alphabetical List

2-344

rootmusicdoa
Direction of arrival using Root MUSIC

Syntax

ang = rootmusicdoa(R,nsig)

ang = rootmusicdoa(___ ,'Name','Value')

Description

ang = rootmusicdoa(R,nsig) estimates the directions of arrival, ang, of a set
of plane waves received on a uniform line array (ULA). The estimation uses the root
MUSIC algorithm. The input arguments are the estimated spatial covariance matrix
between sensor elements, R, and the number of arriving signals, nsig. In this syntax,
sensor elements are spaced one-half wavelength apart.

ang = rootmusicdoa(___ ,'Name','Value') allows you to specify additional
input parameters in the form of Name-Value pairs. This syntax can use any of the input
arguments in the previous syntax.

Examples

Three Signals Arriving at Half-Wavelength-Spaced ULA

Assume a half-wavelength spaced uniform line array with 10 elements. Three plane
waves arrive from the 0°, –25°, and 30° azimuth directions. Elevation angles are 0°. The
noise is spatially and temporally white Gaussian noise.

Set the SNR for each signal to 5 dB. Find the arrival angles.

N = 10;

d = 0.5;

elementPos = (0:N-1)*d;

angles = [0 -25 30];

Nsig = 3;

R = sensorcov(elementPos,angles,db2pow(-5));

doa = rootmusicdoa(R,Nsig)

 rootmusicdoa

2-345

doa =

 -0.0000 30.0000 -25.0000

The rootmusicdoa function finds the correct angles.

Three Signals Arriving at 0.4-Wavelength-Spaced ULA

Assume a uniform line array 10 elements, as in the previous example. But now the
element spacing is smaller than one-half wavelength. Three plane waves arrive from the
0°, –25°, and 30° azimuth directions. Elevation angles are 0°. The noise is spatially and
temporally white Gaussian noise. The SNR for each signal is 5 dB.

Set the ElementSpacing property value to the interelement spacing, 0.4 wavelengths.
Find the arrival angles.

N = 10;

d = 0.4;

elementPos = (0:N-1)*d;

angles = [0 -25 30];

Nsig = 3;

R = sensorcov(elementPos,angles,db2pow(-5));

doa = rootmusicdoa(R,Nsig,'ElementSpacing',d)

doa =

 -25.0000 0.0000 30.0000

The rootmusicdoa function finds the correct angles.

Input Arguments

R — Spatial covariance matrix
complex-valued positive-definite N-by-N matrix

Spatial covariance matrix, specified as a complex-valued, positive-definite, N-by-N
matrix. In this matrix, N represents the number of elements in the ULA array. If R is
not Hermitian, a Hermitian matrix is formed by averaging the matrix and its conjugate
transpose, (R+R')/2.

Example: [4.3162, –0.2777 –0.2337i; –0.2777 + 0.2337i , 4.3162]
Data Types: double

2 Functions-Alphabetical List

2-346

Complex Number Support: Yes

nsig — Number of arriving signals
positive integer

Number of arriving signals, specified as a positive integer.
Example: 2
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: ‘ElementSpacing’, 0.4

'ElementSpacing' — ULA element spacing
0.5 (default) | real-valued positive scalar

ULA element spacing, specified as a real-valued, positive scalar. Position units are
measured in terms of signal wavelength.
Example: 0.4
Data Types: double

Output Arguments

ang — Directions of arrival angles
real-valued 1-by-M row vector

Directions of arrival angle, returned as a real-valued, 1-by-M vector. The dimension M is
the number of arriving signals specified in the argument nsig. Angle units are degrees
and angle values lie between –90° and 90°.

References

[1] Van Trees, H.L. Optimum Array Processing. New York: Wiley-Interscience, 2002.

 rootmusicdoa

2-347

See Also
aictest | espritdoa | phased.RootMUSICEstimator | rootmusicdoa | spsmooth

Introduced in R2013a

2 Functions-Alphabetical List

2-348

rotx
Rotation matrix for rotations around x-axis

Syntax

R = rotx(ang)

Description

R = rotx(ang) creates a 3-by-3 matrix used to rotated a 3-by-1 vector or 3-by-N matrix
of vectors around the x-axis by ang degrees. When acting on a matrix, each column of the
matrix represents a different vector. For the rotation matrix R and vector v, the rotated
vector is given by R*v.

Examples

Rotation matrix for 30° rotation

Construct the matrix for a rotation of a vector around the x-axis by 30°. Then let the
matrix operate on a vector:

R = rotx(30)

R =

 1 0 0

 0 0.86603 -0.5

 0 0.5 0.86603

x = [2;-2;4];

y = R*x

y =

 2

 -3.7321

 rotx

2-349

 2.4641

Under a rotation around the x-axis, the x-component of a vector is left unchanged.

Input Arguments

ang — Rotation angle
real-valued scalar

Rotation angle specified as a real-valued scalar. The rotation angle is positive if the
rotation is in the counter-clockwise direction when viewed by an observer looking along
the x-axis towards the origin. Angle units are in degrees.
Example: 30.0
Data Types: double

Output Arguments

R — Rotation matrix
real-valued orthogonal matrix

3-by-3 rotation matrix returned as

R
x
() cos sin

sin cos

a a a

a a

= -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

1 0 0

0

0

for a rotation angle α.

More About

Rotation Matrices

Rotation matrices are used to rotate a vector into a new direction.

2 Functions-Alphabetical List

2-350

In transforming vectors in three-dimensional space, rotation matrices are often
encountered. Rotation matrices are used in two senses: they can be used to rotate a
vector into a new position or they can be used to rotate a coordinate basis (or coordinate
system) into a new one. In this case, the vector is left alone but its components in the
new basis will be different from those in the original basis. In Euclidean space, there
are three basic rotations: one each around the x, y and z axes. Each rotation is specified
by an angle of rotation. The rotation angle is defined to be positive for a rotation that is
counterclockwise when viewed by an observer looking along the rotation axis towards the
origin. Any arbitrary rotation can be composed of a combination of these three (Euler’s
rotation theorem). For example, one can rotated a vector using a sequence of three
rotations: ¢ = =v v vA R R Rz y x() () ()g b a .

The rotation matrices that rotate a vector around the x, y, and z-axes are given by:

• Counterclockwise rotation around x-axis

R
x
() cos sin

sin cos

a a a

a a

= -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

1 0 0

0

0

• Counterclockwise rotation around y-axis

Ry ()

cos sin

sin cos

b

b b

b b

=

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

0

0 1 0

0

• Counterclockwise rotation around z-axis

R
z
()

cos sin

sin cosg

g g

g g=

-È

Î

Í
Í
Í

˘

˚

˙
˙
˙

0

0

0 0 1

The following three figures show what positive rotations look like for each rotation axis:

 rotx

2-351

2 Functions-Alphabetical List

2-352

 rotx

2-353

For any rotation, there is an inverse rotation satisfying A A
-

=
1

1 . For example, the
inverse of the x-axis rotation matrix is obtained by changing the sign of the angle:

R R R
x x x

- ¢= - =

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=1

1 0 0

0

0

() () cos sin

sin cos

()a a a a

a a

a

This example illustrates a basic property: the inverse rotation matrix equals the
transpose of the original. Rotation matrices satisfy A’A = 1, and consequently det(A) = 1.
Under rotations, vector lengths are preserved as well as the angles between vectors.

We can think of rotations in another way. Consider the original set of basis vectors,
i j k, , , and rotate them all using the rotation matrix A. This produces a new set of basis

vectors i j k¢ ¢ ¢
, , related to the original by:

2 Functions-Alphabetical List

2-354

¢ =

¢ =

¢ =

i i

j j

k k

A

A

A

The new basis vectors can be written as linear combinations of the old ones and involve
the transpose:

¢

¢

¢

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

= ¢

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

i

j

k

i

j

k

A

Now any vector can be written as a linear combination of either set of basis vectors:

v i j k i j k= + + = ¢ ¢+ ¢ ¢ + ¢ ¢v v v v v vx y z x y z

Using some algebraic manipulation, one can derive the transformation of components for
a fixed vector when the basis (or coordinate system) rotates

¢

¢

¢

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

= ¢

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

-

v

v

v

A

v

v

v

A

v

v

v

x

y

z

x

y

z

x

y

z

1

Thus the change in components of a vector when the coordinate system rotates involves
the transpose of the rotation matrix. The next figure illustrates how a vector stays fixed
as the coordinate system rotates around the x-axis. The figure after shows how this can
be interpreted as a rotation of the vector in the opposite direction.

 rotx

2-355

2 Functions-Alphabetical List

2-356

References

[1] Goldstein, H., C. Poole and J. Safko,Classical Mechanics, 3rd Edition, San Francisco:
Addison Wesley, 2002, pp. 142–144.

See Also
roty | rotz

Introduced in R2013a

 roty

2-357

roty
Rotation matrix for rotations around y-axis

Syntax

R = roty(ang)

Description

R = roty(ang) creates a 3-by-3 matrix used to rotated a 3-by-1 vector or 3-by-N matrix
of vectors around the y-axis by ang degrees. When acting on a matrix, each column of the
matrix represents a different vector. For the rotation matrix R and vector v, the rotated
vector is given by R*v.

Examples

Rotation matrix for 45° rotation

Construct the matrix for a rotation of a vector around the y-axis by 45°. Then let the
matrix operate on a vector:

R = roty(45)

R =

 0.7071 0 0.7071

 0 1.0000 0

 -0.7071 0 0.7071

v = [1;-2;4];

y = R*v

y =

 3.5355

 -2.0000

2 Functions-Alphabetical List

2-358

 2.1213

Under a rotation around the y-axis, the y-component of a vector is left unchanged.

Input Arguments

ang — Rotation angle
real-valued scalar

Rotation angle specified as a real-valued scalar. The rotation angle is positive if the
rotation is in the counter-clockwise direction when viewed by an observer looking along
the y-axis towards the origin. Angle units are in degrees.
Example: 30.0
Data Types: double

Output Arguments

R — Rotation matrix
real-valued orthogonal matrix

3-by-3 rotation matrix returned as

Ry ()

cos sin

sin cos

b

b b

b b

=

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

0

0 1 0

0

for a rotation angle β.

More About

Rotation Matrices

Rotation matrices are used to rotate a vector into a new direction.

 roty

2-359

In transforming vectors in three-dimensional space, rotation matrices are often
encountered. Rotation matrices are used in two senses: they can be used to rotate a
vector into a new position or they can be used to rotate a coordinate basis (or coordinate
system) into a new one. In this case, the vector is left alone but its components in the
new basis will be different from those in the original basis. In Euclidean space, there
are three basic rotations: one each around the x, y and z axes. Each rotation is specified
by an angle of rotation. The rotation angle is defined to be positive for a rotation that is
counterclockwise when viewed by an observer looking along the rotation axis towards the
origin. Any arbitrary rotation can be composed of a combination of these three (Euler’s
rotation theorem). For example, one can rotated a vector using a sequence of three
rotations: ¢ = =v v vA R R Rz y x() () ()g b a .

The rotation matrices that rotate a vector around the x, y, and z-axes are given by:

• Counterclockwise rotation around x-axis

R
x
() cos sin

sin cos

a a a

a a

= -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

1 0 0

0

0

• Counterclockwise rotation around y-axis

Ry ()

cos sin

sin cos

b

b b

b b

=

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

0

0 1 0

0

• Counterclockwise rotation around z-axis

R
z
()

cos sin

sin cosg

g g

g g=

-È

Î

Í
Í
Í

˘

˚

˙
˙
˙

0

0

0 0 1

The following three figures show what positive rotations look like for each rotation axis:

2 Functions-Alphabetical List

2-360

 roty

2-361

2 Functions-Alphabetical List

2-362

For any rotation, there is an inverse rotation satisfying A A
-

=
1

1 . For example, the
inverse of the x-axis rotation matrix is obtained by changing the sign of the angle:

R R R
x x x

- ¢= - =

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=1

1 0 0

0

0

() () cos sin

sin cos

()a a a a

a a

a

This example illustrates a basic property: the inverse rotation matrix equals the
transpose of the original. Rotation matrices satisfy A’A = 1, and consequently det(A) = 1.
Under rotations, vector lengths are preserved as well as the angles between vectors.

We can think of rotations in another way. Consider the original set of basis vectors,
i j k, , , and rotate them all using the rotation matrix A. This produces a new set of basis

vectors i j k¢ ¢ ¢
, , related to the original by:

 roty

2-363

¢ =

¢ =

¢ =

i i

j j

k k

A

A

A

The new basis vectors can be written as linear combinations of the old ones and involve
the transpose:

¢

¢

¢

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

= ¢

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

i

j

k

i

j

k

A

Now any vector can be written as a linear combination of either set of basis vectors:

v i j k i j k= + + = ¢ ¢+ ¢ ¢ + ¢ ¢v v v v v vx y z x y z

Using some algebraic manipulation, one can derive the transformation of components for
a fixed vector when the basis (or coordinate system) rotates

¢

¢

¢

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

= ¢

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

-

v

v

v

A

v

v

v

A

v

v

v

x

y

z

x

y

z

x

y

z

1

Thus the change in components of a vector when the coordinate system rotates involves
the transpose of the rotation matrix. The next figure illustrates how a vector stays fixed
as the coordinate system rotates around the x-axis. The figure after shows how this can
be interpreted as a rotation of the vector in the opposite direction.

2 Functions-Alphabetical List

2-364

 roty

2-365

References

[1] Goldstein, H., C. Poole and J. Safko, Classical Mechanics, 3rd Edition, San Francisco:
Addison Wesley, 2002, pp. 142–144.

See Also
rotx | rotz

Introduced in R2013a

2 Functions-Alphabetical List

2-366

rotz
Rotation matrix for rotations around z-axis

Syntax

R = rotz(ang)

Description

R = rotz(ang) creates a 3-by-3 matrix used to rotated a 3-by-1 vector or 3-by-N matrix
of vectors around the z-axis by ang degrees. When acting on a matrix, each column of the
matrix represents a different vector. For the rotation matrix R and vector v, the rotated
vector is given by R*v.

Examples

Rotation matrix for 45° rotation

Construct the matrix for a rotation of a vector around the z-axis by 45°. Then let the
matrix operate on a vector:

R = rotz(45)

R =

 0.7071 -0.7071 0

 0.7071 0.7071 0

 0 0 1.0000

v = [1;-2;4];

y = R*v

y =

 2.1213

 -0.7071

 rotz

2-367

 4.0000

Under a rotation around the z-axis, the z-component of a vector is left unchanged.

Input Arguments

ang — Rotation angle
real-valued scalar

Rotation angle specified as a real-valued scalar. The rotation angle is positive if the
rotation is in the counter-clockwise direction when viewed by an observer looking along
the z-axis towards the origin. Angle units are in degrees.
Example: 45.0
Data Types: double

Output Arguments

R — Rotation matrix
real-valued orthogonal matrix

3-by-3 rotation matrix returned as

R
z
()

cos sin

sin cosg

g g

g g=

-È

Î

Í
Í
Í

˘

˚

˙
˙
˙

0

0

0 0 1

for a rotation angle γ.

More About

Rotation Matrices

Rotation matrices are used to rotate a vector into a new direction.

2 Functions-Alphabetical List

2-368

In transforming vectors in three-dimensional space, rotation matrices are often
encountered. Rotation matrices are used in two senses: they can be used to rotate a
vector into a new position or they can be used to rotate a coordinate basis (or coordinate
system) into a new one. In this case, the vector is left alone but its components in the
new basis will be different from those in the original basis. In Euclidean space, there
are three basic rotations: one each around the x, y and z axes. Each rotation is specified
by an angle of rotation. The rotation angle is defined to be positive for a rotation that is
counterclockwise when viewed by an observer looking along the rotation axis towards the
origin. Any arbitrary rotation can be composed of a combination of these three (Euler’s
rotation theorem). For example, one can rotated a vector using a sequence of three
rotations: ¢ = =v v vA R R Rz y x() () ()g b a .

The rotation matrices that rotate a vector around the x, y, and z-axes are given by:

• Counterclockwise rotation around x-axis

R
x
() cos sin

sin cos

a a a

a a

= -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

1 0 0

0

0

• Counterclockwise rotation around y-axis

Ry ()

cos sin

sin cos

b

b b

b b

=

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

0

0 1 0

0

• Counterclockwise rotation around z-axis

R
z
()

cos sin

sin cosg

g g

g g=

-È

Î

Í
Í
Í

˘

˚

˙
˙
˙

0

0

0 0 1

The following three figures show what positive rotations look like for each rotation axis:

 rotz

2-369

2 Functions-Alphabetical List

2-370

 rotz

2-371

For any rotation, there is an inverse rotation satisfying A A
-

=
1

1 . For example, the
inverse of the x-axis rotation matrix is obtained by changing the sign of the angle:

R R R
x x x

- ¢= - =

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=1

1 0 0

0

0

() () cos sin

sin cos

()a a a a

a a

a

This example illustrates a basic property: the inverse rotation matrix equals the
transpose of the original. Rotation matrices satisfy A’A = 1, and consequently det(A) = 1.
Under rotations, vector lengths are preserved as well as the angles between vectors.

We can think of rotations in another way. Consider the original set of basis vectors,
i j k, , , and rotate them all using the rotation matrix A. This produces a new set of basis

vectors i j k¢ ¢ ¢
, , related to the original by:

2 Functions-Alphabetical List

2-372

¢ =

¢ =

¢ =

i i

j j

k k

A

A

A

The new basis vectors can be written as linear combinations of the old ones and involve
the transpose:

¢

¢

¢

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

= ¢

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

i

j

k

i

j

k

A

Now any vector can be written as a linear combination of either set of basis vectors:

v i j k i j k= + + = ¢ ¢+ ¢ ¢ + ¢ ¢v v v v v vx y z x y z

Using some algebraic manipulation, one can derive the transformation of components for
a fixed vector when the basis (or coordinate system) rotates

¢

¢

¢

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

= ¢

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

-

v

v

v

A

v

v

v

A

v

v

v

x

y

z

x

y

z

x

y

z

1

Thus the change in components of a vector when the coordinate system rotates involves
the transpose of the rotation matrix. The next figure illustrates how a vector stays fixed
as the coordinate system rotates around the x-axis. The figure after shows how this can
be interpreted as a rotation of the vector in the opposite direction.

 rotz

2-373

2 Functions-Alphabetical List

2-374

References

[1] Goldstein, H., C. Poole and J. Safko, Classical Mechanics, 3rd Edition, San Francisco:
Addison Wesley, 2002, pp. 142–144.

See Also
rotx | roty

Introduced in R2013a

 sensorArrayAnalyzer

2-375

sensorArrayAnalyzer

Sensor array analyzer

Description

You use the Sensor Array Analyzer app to construct and analyze common sensor
array configurations. These configurations range from 1-D to 3-D arrays of antennas and
microphones. You can use this app to generate the directivity of the following arrays.

Uniform Linear Array (ULA) Uniform Rectangular Array (URA)
Uniform Circular Array Uniform Hexagonal Array
Circular Plane Array Concentric Array
Spherical Array Cylindrical Array
Arbitrary Geometry

Each array type has different sets of parameters for its specification. After you select an
array type, you can modify the array parameters. The parameters you can set include
the type of antenna or microphone elements, the number and spacing of elements,
and any array tapering (also called shading). You can enter the element spacing in
meters or units of wavelength. After you enter all the information for your array, the
app then displays basic performance characteristics, such as array directivity and array
dimensions.

These are the types of elements available to populate an array.

Isotropic Antenna
Cosine Antenna
Omnidirectional Microphone
Cardioid Microphone
Custom Antenna

The Sensor Array Analyzer app lets you produce a variety of plots and images. These
are types of plots available.

2 Functions-Alphabetical List

2-376

Plot type

Array Geometry
2D Array Directivity
3D Array Directivity
Grating Lobes Available for the Uniform Linear Array,

the Uniform Rectangular Array, the
Uniform Hexagonal Array, and the
Circular Planar Array.

Examples

Uniform Linear Array

Start with 10-element uniform linear array (ULA) in a sonar application with
omnidirectional microphones. A uniform linear array has its sensor elements equally-
spaced spaced along a single line. Set the Array Type to Uniform Linear and the
Element Type to Omnidirectional Microphone. Design the array to find the arrival
direction of a 10 kHz signal by setting Signal Frequencies to 10000 and the Element
Spacing to 0.5 wavelengths. In water, for example, you can set the signal Propagation
Speed to equal the speed of sound in water, 1500 m/s.

Then, in the View dropdown menu, choose the Array Geometry option to draw the
shape of the array.

 sensorArrayAnalyzer

2-377

Next, examine the directivity of the array. To do so, select 2D Array Directivity in
the View drop-down list. The 2-D array directivity is shown below.

2 Functions-Alphabetical List

2-378

You can see the mainlobe of the array directivity function (also called the main beam)
at 0° and another mainlobe at ±180°. Two mainlobes appear because of the cylindrical
symmetry of the ULA array.

A beamscanner works by successively pointing the array mainlobe in a sequence of
different directions. Setting the Steering option to On lets you steer the mainlobe in the
direction specified by the Steering Angles option. In this case, set the steering angle to
[30;0] to point the mainlobe to 30° in azimuth and 0° elevation. In the next figure, you

 sensorArrayAnalyzer

2-379

can see two mainlobes, one at 30° as expected, and another at 150°. Again, two mainlobes
appear because of the cylindrical symmetry of the array.

A disadvantage of the ULA is its large side lobes. An examination of the array directivity
shows two side lobes close to each mainlobe, each down by about only 13 dB. A strong
sidelobe inhibits the ability of the array to detect a weaker signal in the presence of
a larger nearby signal. By using array tapering, you can reduce the side lobes. Use
the Taper option to specify the array taper as a Taylor window with Sidelobe

2 Functions-Alphabetical List

2-380

Attenuation set to 30 dB. The next figure shows how the Taylor window reduces all side
lobes to –30 dB—but at the expense of broadening the mainlobe.

Uniform Rectangular Array

Construct a 6-by-6 uniform rectangular array (URA) designed to detect and localize a
100 MHz signal. Set the Array Type to Uniform Rectangular, the Element Type
to Isotropic Antenna, and the Size to [6 6]. Design the array to find the arrival

 sensorArrayAnalyzer

2-381

direction of a 100 MHz signal by setting Signal Frequencies to 100e+6 and the row
and column Element Spacing to 0.5 wavelength. Set both the Row Taper and Column
Taper to a Taylor window. The shape of the array is shown in the figure below.

Finally, display the 3-D array directivity by setting the View option to 3D Array
Directivity, as shown in the following figure:

2 Functions-Alphabetical List

2-382

A significant performance criterion for any array is its array directivity. You can use the
app to examine the effects of tapering on array directivity. Without tapering, the array
directivity for this URA is 17.2 dB. With tapering, the array directivity loses 1 dB to yield
16.0 dB.

 sensorArrayAnalyzer

2-383

Grating Lobes for a Rectangular Array

Show the grating lobe diagram of a 4-by-4 uniform rectangular array (URA) designed to
detect and localize a 300 MHz signal. Set the Array Type to Uniform Rectangular,
the Element Type to Isotropic Antenna, and the array Size to [4 4]. Set the
Signal Frequencies to 300e+6. By setting the row and column Element Spacing to
0.7 wavelengths, you create a spatially undersampled array.

This figure shows the grating lobe diagram produced when you beamform the array
towards the angle [20,0]. The mainlobe is designated by the small black-filled circle. The
multiple grating lobes are designated by the small unfilled black circles. The larger black
circle is called the physical region, for which u2+ v2 ≤ 1. The mainlobe always lies in the
physical region. The grating lobes may or may not lie in the physical region. Any grating
lobe in the physical region leads to an ambiguity in the direction of the incoming wave.
The green region shows where the mainlobe can be pointed without any grating lobes
appearing in the physical region. If the mainlobe is set to point outside the green region,
a grating lobe moves into the physical region.

2 Functions-Alphabetical List

2-384

The next figure shows what happens when the pointing direction lies outside the green
region. In this case, one grating lobe moves into the physical region.

 sensorArrayAnalyzer

2-385

Specify Arbitrary Array Geometry

You can specify an array which has an arbitrary placement of sensors. This simple
example shows how to construct a triangular array of three isotropic antenna elements.
The elements are placed at [0,0,0]', [0,1,0.5]', and [0,0,0.866]'. All elements
have the same normal direction [0,20], pointing to 0° in azimuth and 20° in elevation.

2 Functions-Alphabetical List

2-386

Plot the 3-D array directivity in polar coordinates.

 sensorArrayAnalyzer

2-387

Specify Arbitrary Array Geometry Using Variables

Specify an array which has an arbitrary placement of sensors but, in this case, create
MATLAB variables or arrays at the command line and use them in the appropriate
sensorArrayAnalyzer fields. This simple example shows the how to construct a
triangular array of three isotropic antenna elements. At the command line, create an
element position array, pos, an element normal array, nrm, and a taper value array, tpr.

2 Functions-Alphabetical List

2-388

pos = [0,0,0;0,1,0.5;0,0,0.866];

nrm = [0,0,0;20,20,20];

tpr = [1,1,1];

Then, enter these variables in the appropriate sensorArrayAnalyzer fields.

See Also
“Uniform Linear Array” | “Uniform Rectangular Array” | “Conformal Array”

 sensorArrayAnalyzer

2-389

Introduced in R2013a

2 Functions-Alphabetical List

2-390

sensorcov

Sensor spatial covariance matrix

Syntax

xcov = sensorcov(pos,ang)

xcov = sensorcov(pos,ang,ncov)

xcov = sensorcov(pos,ang,ncov,scov)

Description

xcov = sensorcov(pos,ang) returns the sensor spatial covariance matrix, xcov, for
narrowband plane wave signals arriving at a sensor array. The sensor array is defined
by the sensor positions specified in the pos argument. The signal arrival directions are
specified by azimuth and elevation angles in the ang argument. In this syntax, the noise
power is assumed to be zero at all sensors, and the signal power is assumed to be unity
for all signals.

xcov = sensorcov(pos,ang,ncov) specifies, in addition, the spatial noise covariance
matrix, ncov. This value represents the noise power on each sensor as well as the
correlation of the noise between sensors. In this syntax, the signal power is assumed to
be unity for all signals. This syntax can use any of the input arguments in the previous
syntax.

xcov = sensorcov(pos,ang,ncov,scov) specifies, in addition, the signal covariance
matrix, scov, which represents the power in each signal and the correlation between
signals. This syntax can use any of the input arguments in the previous syntaxes.

Examples

Covariance Matrix for Two Signals without Noise

Create a covariance matrix for a 3-element, half-wavelength-spaced line array. Use the
default syntax, which assumes no noise power and unit signal power.

 sensorcov

2-391

N = 3; % Elements in array

d = 0.5; % sensor spacing half wavelength

elementPos = (0:N-1)*d;

xcov = sensorcov(elementPos,[30 60]);

xcov =

 2.0000 + 0.0000i -0.9127 - 1.4086i -0.3339 + 0.7458i

 -0.9127 + 1.4086i 2.0000 + 0.0000i -0.9127 - 1.4086i

 -0.3339 - 0.7458i -0.9127 + 1.4086i 2.0000 + 0.0000i

The diagonal terms represent the sum of the two signal powers.

Covariance Matrix for Two Independent Signals with 10 dB SNR

Create a spatial covariance matrix for a 3-element, half-wavelength-spaced line array.
Assume there are two incoming unit-power signals and there is a noise value of –10 dB.
By default, scov is the identity matrix.

 N = 3; % Elements in array

 d = 0.5; % sensor spacing half wavelength

 elementPos = (0:N-1)*d;

 xcov = sensorcov(elementPos,[30 35],db2pow(-10));

xcov =

 2.1000 + 0.0000i -0.2291 - 1.9734i -1.8950 + 0.4460i

 -0.2291 + 1.9734i 2.1000 + 0.0000i -0.2291 - 1.9734i

 -1.8950 - 0.4460i -0.2291 + 1.9734i 2.1000 + 0.0000i

The diagonal terms represent the two signal powers plus noise power at each sensor.

Covariance Matrix for Two Correlated Signals with 10 dB SNR

Compute the covariance matrix for a 3-element half-wavelength spaced line array when
there is some correlation between two signals. The correlation can model, for example,
multipath propagation caused by reflection from a surface. Assume a noise power value
of –10 dB.

N = 3; % Elements in array

d = 0.5; % sensor spacing half wavelength

elementPos = (0:N-1)*d;

scov = [1, 0.8; 0.8, 1];

xcov = sensorcov(elementPos,[30 35],db2pow(-10),scov);

2 Functions-Alphabetical List

2-392

xcov =

 3.7000 + 0.0000i -0.4124 - 3.5521i -3.4111 + 0.8028i

 -0.4124 + 3.5521i 3.6574 + 0.0000i -0.4026 - 3.4682i

 -3.4111 - 0.8028i -0.4026 + 3.4682i 3.5321 + 0.0000i

Input Arguments

pos — Positions of array sensor elements
1-by-N real-valued vector | 2-by-N real-valued matrix | 3-by-N real-valued matrix

Positions of the elements of a sensor array specified as a 1-by-N vector, a 2-by-N matrix,
or a 3-by-N matrix. In this vector or matrix, N represents the number of elements of the
array. Each column of pos represents the coordinates of an element. You define sensor
position units in term of signal wavelength. If pos is a 1-by-N vector, then it represents
the y-coordinate of the sensor elements of a line array. The x and z-coordinates are
assumed to be zero. When pos is a 2-by-N matrix, it represents the (y,z)-coordinates of
the sensor elements of a planar array. This array is assumed to lie in the yz-plane. The
x-coordinates are assumed to be zero. When pos is a 3-by-N matrix, then the array has
arbitrary shape.
Example: [0, 0, 0; .1, .2, .3; 0,0,0]
Data Types: double

ang — Arrival directions of incoming signals
1-by-M real-valued vector | 2-by-M real-valued matrix

Arrival directions of incoming signals specified as a 1-by-M vector or a 2-by-M matrix,
where M is the number of incoming signals. If ang is a 2-by-M matrix, each column
specifies the direction in azimuth and elevation of the incoming signal [az;el]. Angular
units are specified in degrees. The azimuth angle must lie between –180° and 180°
and the elevation angle must lie between –90° and 90°. The azimuth angle is the angle
between the x-axis and the projection of the arrival direction vector onto the xy plane. It
is positive when measured from the x-axis toward the y-axis. The elevation angle is the
angle between the arrival direction vector and xy-plane. It is positive when measured
towards the z axis. If ang is a 1-by-M vector, then it represents a set of azimuth angles
with the elevation angles assumed to be zero.
Example: [45;0]
Data Types: double

 sensorcov

2-393

ncov — Noise spatial covariance matrix
0 (default) | non-negative real-valued scalar | 1-by-N non-negative real-valued vector |
N-by-N positive definite, complex-valued matrix

Noise spatial covariance matrix specified as a non-negative, real-valued scalar, a non-
negative, 1-by-N real-valued vector or an N-by-N, positive definite, complex-valued
matrix. In this argument, N is the number of sensor elements. Using a non-negative
scalar results in a noise spatial covariance matrix that has identical white noise power
values (in watts) along its diagonal and has off-diagonal values of zero. Using a non-
negative real-valued vector results in a noise spatial covariance that has diagonal values
corresponding to the entries in ncov and has off-diagonal entries of zero. The diagonal
entries represent the independent white noise power values (in watts) in each sensor.
If ncov is N-by-N matrix, this value represents the full noise spatial covariance matrix
between all sensor elements.
Example: [1,1,4,6]
Data Types: double
Complex Number Support: Yes

scov — Signal covariance matrix
1 (default) | non-negative real-valued scalar | 1-by-M non-negative real-valued vector |
N-by-M positive semidefinite, complex-valued matrix

Signal covariance matrix specified as a non-negative, real-valued scalar, a 1-by-M non-
negative, real-valued vector or an M-by-M positive semidefinite, matrix representing
the covariance matrix between M signals. The number of signals is specified in ang.
If scov is a nonnegative scalar, it assigns the same power (in watts) to all incoming
signals which are assumed to be uncorrelated. If scov is a 1-by-M vector, it assigns the
separate power values (in watts) to each incoming signal which are also assumed to be
uncorrelated. If scov is an M-by-M matrix, then it represents the full covariance matrix
between all incoming signals.
Example: [1 0 ; 0 2]
Data Types: double
Complex Number Support: Yes

Output Arguments
xcov — Sensor spatial covariance matrix
complex-valued N-by-N matrix

2 Functions-Alphabetical List

2-394

Sensor spatial covariance matrix returned as a complex-valued, N-by-N matrix. In this
matrix, N represents the number of sensor elements of the array.

References

[1] Van Trees, H.L. Optimum Array Processing. New York, NY: Wiley-Interscience, 2002.

[2] Johnson, Don H. and D. Dudgeon. Array Signal Processing. Englewood Cliffs, NJ:
Prentice Hall, 1993.

[3] Van Veen, B.D. and K. M. Buckley. “Beamforming: A versatile approach to spatial
filtering”. IEEE ASSP Magazine, Vol. 5 No. 2 pp. 4–24.

See Also
cbfweights | lcmvweights | mvdrweights | phased.SteeringVector | sensorsig |
steervec

Introduced in R2013a

 sensorsig

2-395

sensorsig

Simulate received signal at sensor array

Syntax

x = sensorsig(pos,ns,ang)

x = sensorsig(pos,ns,ang,ncov)

x = sensorsig(pos,ns,ang,ncov,scov)

x = sensorsig(pos,ns,ang,ncov,scov,'Taper',taper)

[x,rt] = sensorsig(___)

[x,rt,r] = sensorsig(___)

Description

x = sensorsig(pos,ns,ang) simulates the received narrowband plane wave signals
at a sensor array. pos represents the positions of the array elements, each of which is
assumed to be isotropic. ns indicates the number of snapshots of the simulated signal.
ang represents the incoming directions of each plane wave signal. The plane wave
signals are assumed to be constant-modulus signals with random phases.

x = sensorsig(pos,ns,ang,ncov) describes the noise across all sensor elements.
ncov specifies the noise power or covariance matrix. The noise is a Gaussian distributed
signal.

x = sensorsig(pos,ns,ang,ncov,scov) specifies the power or covariance matrix
for the incoming signals.

x = sensorsig(pos,ns,ang,ncov,scov,'Taper',taper) specifies the array taper
as a comma-separated pair consisting of 'Taper' and a scalar or column vector.

[x,rt] = sensorsig(___) also returns the theoretical covariance matrix of the
received signal, using any of the input arguments in the previous syntaxes.

[x,rt,r] = sensorsig(___) also returns the sample covariance matrix of the
received signal.

2 Functions-Alphabetical List

2-396

Examples

Received Signal and Direction-of-Arrival Estimation

Simulate the received signal at an array, and use the data to estimate the arrival
directions.

Create an 8-element uniform linear array whose elements are spaced half a wavelength
apart.

fc = 3e8;

c = 3e8;

lambda = c/fc;

ha = phased.ULA(8,lambda/2);

Simulate 100 snapshots of the received signal at the array. Assume there are two signals,
coming from azimuth 30 and 60 degrees, respectively. The noise is white across all array
elements, and the SNR is 10 dB.

x = sensorsig(getElementPosition(ha)/lambda,...

 100,[30 60],db2pow(-10));

Use a beamscan spatial spectrum estimator to estimate the arrival directions, based on
the simulated data.

hdoa = phased.BeamscanEstimator('SensorArray',ha,...

 'PropagationSpeed',c,'OperatingFrequency',fc,...

 'DOAOutputPort',true,'NumSignals',2);

[~,ang_est] = step(hdoa,x);

Plot the spatial spectrum resulting from the estimation process.

plotSpectrum(hdoa);

 sensorsig

2-397

The plot shows peaks at 30 and 60 degrees.

Signals With Different Power Levels

Simulate receiving two uncorrelated incoming signals that have different power levels. A
vector named scov stores the power levels.

Create an 8-element uniform linear array whose elements are spaced half a wavelength
apart.

fc = 3e8;

c = 3e8;

lambda = c/fc;

2 Functions-Alphabetical List

2-398

ha = phased.ULA(8,lambda/2);

Simulate 100 snapshots of the received signal at the array. Assume that one incoming
signal originates from 30 degrees azimuth and has a power of 3 W. A second incoming
signal originates from 60 degrees azimuth and has a power of 1 W. The two signals are
not correlated with each other. The noise is white across all array elements, and the SNR
is 10 dB.

ang = [30 60];

scov = [3 1];

x = sensorsig(getElementPosition(ha)/lambda,...

 100,ang,db2pow(-10),scov);

Use a beamscan spatial spectrum estimator to estimate the arrival directions, based on
the simulated data.

hdoa = phased.BeamscanEstimator('SensorArray',ha,...

 'PropagationSpeed',c,'OperatingFrequency',fc,...

 'DOAOutputPort',true,'NumSignals',2);

[~,ang_est] = step(hdoa,x);

Plot the spatial spectrum resulting from the estimation process.

plotSpectrum(hdoa);

 sensorsig

2-399

The plot shows a high peak at 30 degrees and a lower peak at 60 degrees.

Reception of Correlated Signals

Simulate the reception of three signals, two of which are correlated. A matrix named
scov stores the signal covariance matrix.

Create a signal covariance matrix in which the first and third of three signals are
correlated with each other.

scov = [1 0 0.6;...

 0 2 0 ;...

 0.6 0 1];

2 Functions-Alphabetical List

2-400

Simulate receiving 100 snapshots of three incoming signals from 30, 40, and 60 degrees
azimuth, respectively. The array that receives the signals is an 8-element uniform linear
array whose elements are spaced half a wavelength apart. The noise is white across all
array elements, and the SNR is 10 dB.

pos = (0:7)*0.5;

ns = 100;

ang = [30 40 60];

ncov = db2pow(-10);

x = sensorsig(pos,ns,ang,ncov,scov);

Theoretical and Empirical Covariance of Received Signal

Simulate receiving a signal at a URA. Compare the signal’s theoretical covariance, rt,
with its sample covariance, r.

Create a 2-by-2 uniform rectangular array whose elements are spaced 1/4 of a
wavelength apart.

pos = 0.25 * [0 0 0 0; -1 1 -1 1; -1 -1 1 1];

Define the noise power independently for each of the four array elements. Each entry in
ncov is the noise power of an array element. This element’s position is the corresponding
column in pos. Assume the noise is uncorrelated across elements.

ncov = db2pow([-9 -10 -10 -11]);

Simulate 100 snapshots of the received signal at the array, and store the theoretical
and empirical covariance matrices. Assume that one incoming signal originates from 30
degrees azimuth and 10 degrees elevation. A second incoming signal originates from 50
degrees azimuth and 0 degrees elevation. The signals have a power of 1 W and are not
correlated with each other.

ns = 100;

ang1 = [30; 10];

ang2 = [50; 0];

ang = [ang1, ang2];

rng default

[x,rt,r] = sensorsig(pos,ns,ang,ncov);

View the magnitudes of the theoretical covariance and sample covariance.

abs(rt)

abs(r)

 sensorsig

2-401

ans =

 2.1259 1.8181 1.9261 1.9754

 1.8181 2.1000 1.5263 1.9261

 1.9261 1.5263 2.1000 1.8181

 1.9754 1.9261 1.8181 2.0794

ans =

 2.2107 1.7961 2.0205 1.9813

 1.7961 1.9858 1.5163 1.8384

 2.0205 1.5163 2.1762 1.8072

 1.9813 1.8384 1.8072 2.0000

Correlation of Noise Among Sensors

Simulate receiving a signal at a ULA, where the noise among different sensors is
correlated.

Create a 4-element uniform linear array whose elements are spaced half a wavelength
apart.

pos = 0.5 * (0:3);

Define the noise covariance matrix. The value in the (k, j) position in the ncov matrix is
the covariance between the kth and jth array elements listed in pos.

ncov = 0.1 * [1 0.1 0 0; 0.1 1 0.1 0; 0 0.1 1 0.1; 0 0 0.1 1];

Simulate 100 snapshots of the received signal at the array. Assume that one incoming
signal originates from 60 degrees azimuth.

ns = 100;

ang = 60;

[x,rt,r] = sensorsig(pos,ns,ang,ncov);

View the theoretical and sample covariance matrices for the received signal.

rt,r

rt =

 1.1000 -0.9027 - 0.4086i 0.6661 + 0.7458i -0.3033 - 0.9529i

 -0.9027 + 0.4086i 1.1000 -0.9027 - 0.4086i 0.6661 + 0.7458i

 0.6661 - 0.7458i -0.9027 + 0.4086i 1.1000 -0.9027 - 0.4086i

2 Functions-Alphabetical List

2-402

 -0.3033 + 0.9529i 0.6661 - 0.7458i -0.9027 + 0.4086i 1.1000

r =

 1.1059 -0.8681 - 0.4116i 0.6550 + 0.7017i -0.3151 - 0.9363i

 -0.8681 + 0.4116i 1.0037 -0.8458 - 0.3456i 0.6578 + 0.6750i

 0.6550 - 0.7017i -0.8458 + 0.3456i 1.0260 -0.8775 - 0.3753i

 -0.3151 + 0.9363i 0.6578 - 0.6750i -0.8775 + 0.3753i 1.0606

• Direction of Arrival Estimation with Beamscan and MVDR

Input Arguments

pos — Positions of elements in sensor array
1-by-N vector | 2-by-N matrix | 3-by-N matrix

Positions of elements in sensor array, specified as an N-column vector or matrix. The
values in the matrix are in units of signal wavelength. For example, [0 1 2] describes
three elements that are spaced one signal wavelength apart. N is the number of elements
in the array.

Dimensions of pos:

• For a linear array along the y axis, specify the y coordinates of the elements in a 1-by-
N vector.

• For a planar array in the yz plane, specify the y and z coordinates of the elements in
columns of a 2-by-N matrix.

• For an array of arbitrary shape, specify the x, y, and z coordinates of the elements in
columns of a 3-by-N matrix.

Data Types: double

ns — Number of snapshots of simulated signal
positive integer scalar

Number of snapshots of simulated signal, specified as a positive integer scalar. The
function returns this number of samples per array element.
Data Types: double

ang — Directions of incoming plane wave signals
1-by-M vector | 2-by-M matrix

../examples/direction-of-arrival-estimation-with-beamscan-and-mvdr.html

 sensorsig

2-403

Directions of incoming plane wave signals, specified as an M-column vector or matrix in
degrees. M is the number of incoming signals.

Dimensions of ang:

• If ang is a 2-by-M matrix, each column specifies a direction. Each column is in the
form [azimuth; elevation]. The azimuth angle must be between –180 and
180 degrees, inclusive. The elevation angle must be between –90 and 90 degrees,
inclusive.

• If ang is a 1-by-M vector, each entry specifies an azimuth angle. In this case, the
corresponding elevation angle is assumed to be 0.

Data Types: double

ncov — Noise characteristics
0 (default) | nonnegative scalar | 1-by-N vector of positive numbers | N-by-N positive
definite matrix

Noise characteristics, specified as a nonnegative scalar, 1-by-N vector of positive
numbers, or N-by-N positive definite matrix.

Dimensions of ncov:

• If ncov is a scalar, it represents the noise power of the white noise across all receiving
sensor elements, in watts. In particular, a value of 0 indicates that there is no noise.

• If ncov is a 1-by-N vector, each entry represents the noise power of one of the sensor
elements, in watts. The noise is uncorrelated across sensors.

• If ncov is an N-by-N matrix, it represents the covariance matrix for the noise across
all sensor elements.

Data Types: double

scov — Incoming signal characteristics
1 (default) | positive scalar | 1-by-M vector of positive numbers | M-by-M positive
semidefinite matrix

Incoming signal characteristics, specified as a positive scalar, 1-by-M vector of positive
numbers, or M-by-M positive semidefinite matrix.

Dimensions of scov:

2 Functions-Alphabetical List

2-404

• If scov is a scalar, it represents the power of all incoming signals, in watts. In this
case, all incoming signals are uncorrelated and share the same power level.

• If scov is a 1-by-M vector, each entry represents the power of one of the incoming
signals, in watts. In this case, all incoming signals are uncorrelated with each other.

• If scov is an M-by-M matrix, it represents the covariance matrix for all incoming
signals. The matrix describes the correlation among the incoming signals. In this case,
scov can be real or complex.

Data Types: double

taper — Array element taper
1 (default) | scalar | N-by-1 column vector

Array element taper, specified as a scalar or complex-valued N-by-1 column vector. The
dimension N is the number of array elements. If taper is a scalar, all elements in the
array use the same value. If taper is a vector, each entry specifies the taper applied to
the corresponding array element.
Data Types: double
Complex Number Support: Yes

Output Arguments

x — Received signal
complex ns-by-N matrix

Received signal at sensor array, returned as a complex ns-by-N matrix. Each column
represents the received signal at the corresponding element of the array. Each row
represents a snapshot.

rt — Theoretical covariance matrix
complex N-by-N matrix

Theoretical covariance matrix of the received signal, returned as a complex N-by-N
matrix.

r — Sample covariance matrix
complex N-by-N matrix

Sample covariance matrix of the received signal, returned as a complex N-by-N matrix. N
is the number of array elements. The function derives this matrix from x.

 sensorsig

2-405

Note: If you specify this output argument, consider making ns greater than or equal to
N. Otherwise, r is rank deficient.

More About

Azimuth Angle, Elevation Angle

The azimuth angle is the angle from the positive x-axis toward the positive y-axis, to the
vector’s orthogonal projection onto the xy plane. The azimuth angle is between –180 and
180 degrees. The elevation angle is the angle from the vector’s orthogonal projection onto
the xy plane toward the positive z-axis, to the vector. The elevation angle is between –90
and 90 degrees. These definitions assume the boresight direction is the positive x-axis.

Note: The elevation angle is sometimes defined in the literature as the angle a vector
makes with the positive z-axis. The MATLAB and Phased Array System Toolbox
products do not use this definition.

This figure illustrates the azimuth angle and elevation angle for a vector that appears
as a green solid line. The coordinate system is relative to the center of a uniform linear
array, whose elements appear as blue circles.

2 Functions-Alphabetical List

2-406

See Also
phased.SteeringVector

Introduced in R2012b

 shnidman

2-407

shnidman
Required SNR using Shnidman’s equation

Syntax

SNR = shnidman(Prob_Detect,Prob_FA)

SNR = shnidman(Prob_Detect,Prob_FA,N)

SNR = shnidman(Prob_Detect,Prob_FA,N, Swerling_Num)

Description

SNR = shnidman(Prob_Detect,Prob_FA) returns the required signal-to-noise ratio
in decibels for the specified detection and false-alarm probabilities using Shnidman's
equation. The SNR is determined for a single pulse and a Swerling case number of 0, a
nonfluctuating target.

SNR = shnidman(Prob_Detect,Prob_FA,N) returns the required SNR for a
nonfluctuating target based on the noncoherent integration of N pulses.

SNR = shnidman(Prob_Detect,Prob_FA,N, Swerling_Num) returns the required
SNR for the Swerling case number Swerling_Num.

Examples

Find and compare the required single-pulse SNR for Swerling cases I and III.

Pfa = 1e-6:1e-5:.001; % False-alarm Probabilities

Pd = 0.9; % Probability of detection

SNR_Sw1 = zeros(1,length(Pfa)); % Preallocate space.

SNR_Sw3 = zeros(1,length(Pfa)); % Preallocate space.

for j=1:length(Pfa)

 % Swerling case I-No dominant scatterer

 SNR_Sw1(j) = shnidman(Pd,Pfa(j),1,1);

 % Swerling case III-Dominant scatterer

 SNR_Sw3(j) = shnidman(Pd,Pfa(j),1,3);

end

2 Functions-Alphabetical List

2-408

semilogx(Pfa,SNR_Sw1,'k','linewidth',2);

hold on;

semilogx(Pfa,SNR_Sw3,'b','linewidth',2);

axis([1e-6 1e-3 5 25]);

xlabel('False-Alarm Probability');

ylabel('SNR');

title('Required Single-Pulse SNR for P_d=0.9');

legend('Swerling Case I','Swerling Case III',...

 'Location','SouthWest');

Note that the presence of a dominant scatterer reduces the required SNR for the
specified detection and false-alarm probabilities.

More About

Shnidman's Equation

Shnidman's equation is a series of equations that yield an estimate of the SNR required
for a specified false-alarm and detection probability. Like Albersheim's equation,
Shnidman's equation is applicable to a single pulse or the noncoherent integration of
N pulses. Unlike Albersheim's equation, Shnidman's equation holds for square-law

 shnidman

2-409

detectors and is applicable to fluctuating targets. An important parameter in Shnidman's
equation is the Swerling case number.

Swerling Case Number

The Swerling case numbers characterize the detection problem for fluctuating pulses in
terms of:

• A decorrelation model for the received pulses
• The distribution of scatterers affecting the probability density function (PDF) of the

target radar cross section (RCS).

The Swerling case numbers consider all combinations of two decorrelation models
(scan-to-scan; pulse-to-pulse) and two RCS PDFs (based on the presence or absence of a
dominant scatterer).

Swerling Case Number Description

0 (alternatively designated as 5) Nonfluctuating pulses.
I Scan-to-scan decorrelation. Rayleigh/

exponential PDF–A number of randomly
distributed scatterers with no dominant
scatterer.

II Pulse-to-pulse decorrelation. Rayleigh/
exponential PDF– A number of randomly
distributed scatterers with no dominant
scatterer.

III Scan-to-scan decorrelation. Chi-square
PDF with 4 degrees of freedom. A number
of scatterers with one dominant.

IV Pulse-to-pulse decorrelation. Chi-square
PDF with 4 degrees of freedom. A number
of scatterers with one dominant.

References

[1] Richards, M. A. Fundamentals of Radar Signal Processing. New York: McGraw-Hill,
2005, p. 337.

2 Functions-Alphabetical List

2-410

See Also
albersheim

Introduced in R2011a

 speed2dop

2-411

speed2dop
Convert speed to Doppler shift

Syntax

Doppler_shift = speed2dop(radvel,lambda)

Description

Doppler_shift = speed2dop(radvel,lambda) returns the one-way Doppler shift in
hertz corresponding to the radial velocity, radvel, for the wavelength lambda.

Definitions

The following equation defines the Doppler shift in hertz based on the radial velocity of
the source relative to the receiver and the carrier wavelength:

Df
Vs r

=
,

l

where Vs,r is the radial velocity of the source relative to the receiver in meters per second
and λ is the wavelength in meters.

Examples

Calculate the Doppler shift in hertz for a given carrier wavelength and source speed.

radvel = 35.76; % 35.76 meters per second

f0= 24.15e9; % Frequency of 24.15 GHz

lambda = physconst('LightSpeed')/f0; % wavelength

Doppler_shift = speed2dop(radvel,lambda);

% Doppler shift of 2880.67 Hz

2 Functions-Alphabetical List

2-412

References

[1] Rappaport, T. Wireless Communications: Principles & Practices. Upper Saddle River,
NJ: Prentice Hall, 1996.

[2] Skolnik, M. Introduction to Radar Systems, 3rd Ed. New York: McGraw-Hill, 2001.

See Also
dop2speed | dopsteeringvec

Introduced in R2011a

 sph2cartvec

2-413

sph2cartvec

Convert vector from spherical basis components to Cartesian components

Syntax

vr = sph2cartvec(vs,az,el)

Description

vr = sph2cartvec(vs,az,el) converts the components of a vector or set of vectors,
vs, from their spherical basis representation to their representation in a local Cartesian
coordinate system. A spherical basis representation is the set of components of a vector
projected into the right-handed spherical basis given by (� , � , �)e e e

az el R . The orientation of
a spherical basis depends upon its location on the sphere as determined by azimuth, az,
and elevation, el.

Examples

Cartesian Representation of Azimuthal Vector

Start with a vector in a spherical basis located at 45° azimuth, 45° elevation. The vector
points along the azimuth direction. Compute its components with respect to Cartesian
coordinates.

vs = [1;0;0];

vr = sph2cartvec(vs,45,45)

vr =

 -0.7071

 0.7071

2 Functions-Alphabetical List

2-414

 0

Input Arguments

vs — Vector in spherical basis representation
3-by-1 column vector | 3-by-N matrix

Vector in spherical basis representation specified as a 3-by-1 column vector or 3-by-N
matrix. Each column of vs contains the three components of a vector in the right-handed
spherical basis (� , � , �)e e e

az el R .

Example: [4.0; -3.5; 6.3]

Data Types: double
Complex Number Support: Yes

az — Azimuth angle
scalar in range [–180,180]

Azimuth angle specified as a scalar in the closed range [–180,180]. Angle units are in
degrees. To define the azimuth angle of a point on a sphere, construct a vector from the
origin to the point. The azimuth angle is the angle in the xy-plane from the positive x-
axis to the vector's orthogonal projection into the xy-plane. As examples, zero azimuth
angle and zero elevation angle specify a point on the x-axis while an azimuth angle of 90°
and an elevation angle of zero specify a point on the y-axis.
Example: 45

Data Types: double

el — Elevation angle
scalar in range [–90,90]

Elevation angle specified as a scalar in the closed range [–90,90]. Angle units are in
degrees. To define the elevation of a point on the sphere, construct a vector from the
origin to the point. The elevation angle is the angle from its orthogonal projection into the
xy-plane to the vector itself. As examples, zero elevation angle defines the equator of the
sphere and ±90° elevation define the north and south poles, respectively.
Example: 30

Data Types: double

 sph2cartvec

2-415

Output Arguments

vr — Vector in Cartesian representation
3-by-1 column vector | 3-by-N matrix

Cartesian vector returned as a 3-by-1 column vector or 3-by-N matrix having the same
dimensions as vs. Each column of vr contains the three components of the vector in the
right-handed x,y,z basis.

More About

Spherical basis representation of vectors

Spherical basis vectors are a local set of basis vectors which point along the radial and
angular directions at any point in space.

The spherical basis is a set of three mutually orthogonal unit vectors (� , � , �)e e e
az el R

defined at a point on the sphere. The first unit vector points along lines of azimuth at
constant radius and elevation. The second points along the lines of elevation at constant
azimuth and radius. Both are tangent to the surface of the sphere. The third unit vector
points radially outward.

The orientation of the basis changes from point to point on the sphere but is independent
of R so as you move out along the radius, the basis orientation stays the same. The
following figure illustrates the orientation of the spherical basis vectors as a function of
azimuth and elevation:

2 Functions-Alphabetical List

2-416

az

el

x

y

z

O

R

êaz

êRêel

P

For any point on the sphere specified by az and el, the basis vectors are given by:

 sph2cartvec

2-417

ˆ sin() cos()

ˆ sin()cos() sin()sin

e i j

e i

az

el

= - +

= - -

az az

el az el

$ $

$ (() cos()

ˆ cos()cos() cos()sin() sin

az el

el az el az

j k

e i jR

$ µ

$ $

+

= + + (()el kµ .

Any vector can be written in terms of components in this basis as
v e e eaz el R= + +v v v

az el R
ˆ ˆ ˆ . The transformations between spherical basis components and

Cartesian components take the form

v

v

v

az el az el azx

y

z

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=

- -sin() sin()cos() cos()cos()

cos(aaz el az el az

el el

) sin()sin() cos()sin()

cos() sin()

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙0

vv

v

v

az

el

R

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

.

and

v

v

v

az az

el az el

az

el

R

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=

-

- -

sin() cos()

sin()cos() sin()

0

ssin() cos()

cos()cos() cos()sin() sin()

az el

el az el az el

È

Î

Í
Í
Í

˘

˚

˙
˙̇
˙

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

v

v

v

x

y

z

.

See Also
azelaxes | cart2sphvec

Introduced in R2013a

2 Functions-Alphabetical List

2-418

spsmooth
Spatial smoothing

Syntax

RSM = spsmooth(R,L)

RSM = spsmooth(R,L,'fb')

Description

RSM = spsmooth(R,L) computes an averaged spatial covariance matrix, RSM, from
the full spatial covariance matrix, R, using spatial smoothing (see Van Trees [1], p.
605). Spatial smoothing creates a smaller averaged covariance matrix over L maximum
overlapped subarrays. L is a positive integer less than N. The resulting covariance
matrix, RSM, has dimensions (N–L+1)-by-(N–L+1). Spatial smoothing is useful when two
or more signals are correlated.

RSM = spsmooth(R,L,'fb') computes an averaged covariance matrix and at the
same time performing forward-backward averaging. This syntax can use any of the input
arguments in the previous syntax.

Examples

Comparison of Smoothed and Nonsmoothed Covariance Matrices

Construct a 10-element half-wavelength-spaced uniform line array receiving two plane
waves arriving from 0° and –25° azimuth. Both elevation angles are 0°. Assume the two
signals are partially correlated. The SNR for each signal is 5 dB. The noise is spatially
and temporally Gaussian white noise. First, create the spatial covariance matrix from
the signal and noise. Then, solve for the number of signals, using rootmusicdoa. Next,
perform spatial smoothing on the covariance matrix, using spsmooth, and solve for the
signal arrival angles, again using rootmusicdoa.

Set up the array and signals. Then, generate the spatial covariance matrix for the array
from the signals and noise.

 spsmooth

2-419

N = 10;

d = 0.5;

elementPos = (0:N-1)*d;

angles = [0 -25];

ac = [1 1/5];

scov = ac'*ac;

R = sensorcov(elementPos,angles,db2pow(-5),scov);

Solve for the arrival angles using the original covariance matrix.

Nsig = 2;

doa = rootmusicdoa(R,Nsig)

doa =

 0.3062 48.6810

The solved-for arrival angles are clearly wrong – they do not agree with the known angles
of arrival used to create the covariance matrix.

Next, solve for the arrival angles using the smoothed covariance matrix.

Nsig = 2;

L = 2;

RSM = spsmooth(R,L);

doasm = rootmusicdoa(RSM,Nsig)

doasm =

 -25.0000 -0.0000

This time they do agree with the known angles of arrival.

Input Arguments

R — Spatial covariance matrix
complex-valued positive-definite N-by-N matrix.

Spatial covariance matrix, specified as a complex-valued, positive-definite N-by-N
matrix. In this matrix, N represents the number of sensor elements.
Example: [4.3162, –0.2777 –0.2337i; –0.2777 + 0.2337i , 4.3162]
Data Types: double

2 Functions-Alphabetical List

2-420

Complex Number Support: Yes

L — Maximum number of overlapped subarrays
positive integer

Maximum number of overlapped subarrays, specified as a positive integer. The value L
must be less than the number of sensors, N.
Example: 2
Data Types: double

Output Arguments

RSM — Smoothed covariance matrix
complex-valued M-by-M matrix

Smoothed covariance matrix, returned as a complex-valued, M-by-M matrix. The
dimension M is given by M = N–L+1.

References

[1] Van Trees, H.L. Optimum Array Processing. New York, NY: Wiley-Interscience, 2002.

See Also
aictest | espritdoa | mdltest | rootmusicdoa

Introduced in R2013a

 steervec

2-421

steervec
Steering vector

Syntax

sv = steervec(pos,ang)

sv = steervec(pos,ang,nqbits)

Description

sv = steervec(pos,ang) returns the steering vector sv for each incoming plane wave
or set of plane waves impinging on a sensor array. The steering vector represents the
set of phase-delays for an incoming wave at each sensor element. The pos argument
specifies the positions of the sensor array elements. The ang argument specifies the
incoming wave arrival directions in terms of azimuth and elevation angles. The steering
vector, sv, is an N-by-M complex-valued matrix. In this matrix, N represents the number
of element positions in the sensor array while M represents the number of incoming
waves. Each column of sv contains the steering vector for the corresponding direction
specified in ang. All elements in the sensor array are assumed to be isotropic.

sv = steervec(pos,ang,nqbits) returns quantized narrowband steering vector
when the number of phase shifter bits is set to nqbits.

Examples

Line Array Steering Vector

Specify a uniform line array of five elements spaced 10 cm apart. Then, specify an
incoming plane wave with a frequency of 1 GHz and an arrival direction of 45° azimuth
and 0° elevation. Compute the steering vector of this wave.

elementPos = (0:.1:.4);

c = physconst('LightSpeed');

fc = 1e9;

lam = c/fc;

ang = [45;0];

2 Functions-Alphabetical List

2-422

sv = steervec(elementPos/lam,ang)

sv =

 1.0000 + 0.0000i

 0.0887 + 0.9961i

 -0.9843 + 0.1767i

 -0.2633 - 0.9647i

 0.9376 - 0.3478i

Quantized Line Array Steering Vector

Specify a uniform line array (ULA) containing five isotropic elements spaced 10 cm
apart. Then, specify an incoming plane wave having a frequency of 1 GHz and an arrival
direction of 45° azimuth and 0° elevation. Compute the steering vector of this wave.
Quantize the steering vector to three bits.

elementPos = (0:.1:.4);

c = physconst('LightSpeed');

fc = 1e9;

lam = c/fc;

ang = [45;0];

sv = steervec(elementPos/lam,ang,3)

sv =

 1.0000 + 0.0000i

 0.0000 + 1.0000i

 -1.0000 + 0.0000i

 -0.0000 - 1.0000i

 1.0000 + 0.0000i

Input Arguments

pos — Positions of array sensor elements
1-by-N real-valued vector | 2-by-N real-valued matrix | 3-by-N real-valued matrix

Positions of the elements of a sensor array specified as a 1-by-N vector, a 2-by-N matrix,
or a 3-by-N matrix. In this vector or matrix, N represents the number of elements of the

 steervec

2-423

array. Each column of pos represents the coordinates of an element. You define sensor
position units in term of signal wavelength. If pos is a 1-by-N vector, then it represents
the y-coordinate of the sensor elements of a line array. The x and z-coordinates are
assumed to be zero. When pos is a 2-by-N matrix, it represents the (y,z)-coordinates of
the sensor elements of a planar array. This array is assumed to lie in the yz-plane. The
x-coordinates are assumed to be zero. When pos is a 3-by-N matrix, then the array has
arbitrary shape.
Example: [0, 0, 0; .1, .2, .3; 0,0,0]
Data Types: double

ang — Arrival directions of incoming signals
1-by-M real-valued vector | 2-by-M real-valued matrix

Arrival directions of incoming signals specified as a 1-by-M vector or a 2-by-M matrix,
where M is the number of incoming signals. If ang is a 2-by-M matrix, each column
specifies the direction in azimuth and elevation of the incoming signal [az;el]. Angular
units are specified in degrees. The azimuth angle must lie between –180° and 180°
and the elevation angle must lie between –90° and 90°. The azimuth angle is the angle
between the x-axis and the projection of the arrival direction vector onto the xy plane. It
is positive when measured from the x-axis toward the y-axis. The elevation angle is the
angle between the arrival direction vector and xy-plane. It is positive when measured
towards the z axis. If ang is a 1-by-M vector, then it represents a set of azimuth angles
with the elevation angles assumed to be zero.
Example: [45;0]
Data Types: double

nqbits — Number of phase shifter quantization bits
0 (default) | non-negative integer

Number of bits used to quantize the phase shift in beamformer or steering vector
weights, specified as a non-negative integer. A value of zero indicates that no
quantization is performed.

Output Arguments

sv — Steering vector
N-by-M complex-valued matrix

2 Functions-Alphabetical List

2-424

Steering vector returned as an N-by-M complex-valued matrix. In this matrix, N
represents the number of sensor elements of the array and M represents the number of
incoming plane waves. Each column of sv corresponds to the same column in ang.

References

[1] Van Trees, H.L. Optimum Array Processing. New York, NY: Wiley-Interscience, 2002.

[2] Johnson, Don H. and D. Dudgeon. Array Signal Processing. Englewood Cliffs, NJ:
Prentice Hall, 1993.

[3] Van Veen, B.D. and K. M. Buckley. “Beamforming: A versatile approach to spatial
filtering”. IEEE ASSP Magazine, Vol. 5 No. 2 pp. 4–24.

See Also
cbfweights | lcmvweights | mvdrweights | phased.SteeringVector | sensorcov

Introduced in R2013a

 stokes

2-425

stokes

Stokes parameters of polarized field

Syntax

G = stokes(fv)

stokes(fv)

Description

G = stokes(fv) returns the four Stokes parameters G of a polarized field or set of fields
specified in fv. The field should be expressed in terms of linear polarization components.
The expression of a field in terms of a two-row vector of linear polarization components is
called the Jones vector formalism.

stokes(fv) displays the Stokes parameters corresponding to fv as points on the
Poincare sphere.

Examples

Stokes Vector

Create a left circularly-polarized field. Convert it to a linear representation and compute
the Stokes vector.

cfv = [2;0];

fv = circpol2pol(cfv);

G=stokes(fv)

G =

 4.0000

 0

 0

2 Functions-Alphabetical List

2-426

 4.0000

Poincare Sphere

Display points on the Poincare sphere for a left circularly-polarized field and a 45 degree
linear polarized field.

fv = [sqrt(2)/2, 1; sqrt(2)/2*1i, 1];

G = stokes(fv)

stokes(fv);

G =

 1.0000 2.0000

 0 0

 0 2.0000

 1.0000 0

 stokes

2-427

The point at the north pole represents the left circularly-polarized field. The point on the
equator represents the 45 degree linear polarized field.

Input Arguments

fv — Field vector in linear polarization representation or linear polarization ratio
1-by-N complex-value row vector or 2-by-N complex-value matrix

Field vector in its linear polarization representation specified as a 2-by-N complex-
valued matrix or in its linear polarization ratio representation specified as a 1-by-N
complex-valued row vector. If fv is a matrix, each column of fv represents a field in
the form [Eh;Ev], where Eh and Ev are its horizontal and vertical linear polarization

2 Functions-Alphabetical List

2-428

components. The expression of a field in terms of a two-row vector of linear polarization
components is called the Jones vector formalism. If fv is a vector, each entry in fv is
contains the polarization ratio, Ev/Eh.

Example: [sqrt(2)/2*1i; 1]
Data Types: double
Complex Number Support: Yes

Output Arguments

G — Stokes parameters
4-by-N matrix of Stokes parameters.

G contains the four Stokes parameters for each polarized field specified in fv. The Stokes
parameters are computed from combinations of intensities of the field:

• G0 describes the total intensity of the field.
• G1 describes the preponderance of horizontal linear polarization intensity over

vertical linear polarization intensity.
• G2 describes the preponderance of +45° linear polarization intensity over -45° linear

polarization intensity.
• G3 describes the preponderance of right circular polarization intensity over left

circular polarization intensity.

References

[1] Mott, H., Antennas for Radar and Communications, John Wiley & Sons, 1992.

[2] Jackson, J.D. , Classical Electrodynamics, 3rd Edition, John Wiley & Sons, 1998, pp.
299–302.

[3] Born, M. and E. Wolf, Principles of Optics, 7th Edition, Cambridge: Cambridge
University Press, 1999, pp 25–32.

See Also
circpol2pol | pol2circpol | polellip | polratio

Introduced in R2013a

 stretchfreq2rng

2-429

stretchfreq2rng
Convert frequency offset to range

Syntax

R = stretchfreq2rng(FREQ,SLOPE,REFRNG)

R = stretchfreq2rng(FREQ,SLOPE,REFRNG,V)

Description

R = stretchfreq2rng(FREQ,SLOPE,REFRNG) returns the range corresponding
to the frequency offset FREQ. The computation assumes you obtained FREQ through
stretch processing with a reference range of REFRNG. The sweeping slope of the linear FM
waveform is SLOPE.

R = stretchfreq2rng(FREQ,SLOPE,REFRNG,V) specifies the propagation speed V.

Input Arguments

FREQ

Frequency offset in hertz, specified as a scalar or vector.

SLOPE

Sweeping slope of the linear FM waveform, in hertz per second, specified as a nonzero
scalar.

REFRNG

Reference range, in meters, specified as a scalar.

V

Propagation speed, in meters per second, specified as a positive scalar.

Default: Speed of light

2 Functions-Alphabetical List

2-430

Output Arguments

R

Range in meters. R has the same dimensions as FREQ .

Examples

Range Corresponding to Frequency Offset

Calculate the range corresponding to a frequency offset of 2 kHz obtained from stretch
processing. Assume the reference range is 5000 m and the linear FM waveform has a
sweeping slope of 2 GHz/s.

r = stretchfreq2rng(2e3,2e9,5000);

• Range Estimation Using Stretch Processing

More About
• “Stretch Processing”

References

[1] Richards, M. A. Fundamentals of Radar Signal Processing. New York: McGraw-Hill,
2005.

See Also
phased.LinearFMWaveform | phased.StretchProcessor | ambgfun | beat2range |
range2beat | rdcoupling

Introduced in R2012a

../examples/range-estimation-using-stretch-processing.html

 surfacegamma

2-431

surfacegamma

Gamma value for different terrains

Syntax

G = surfacegamma(TerrainType)

G = surfacegamma(TerrainType,FREQ)

surfacegamma

Description

G = surfacegamma(TerrainType) returns the g value for the specified terrain. The
g value is for an operating frequency of 10 GHz.

G = surfacegamma(TerrainType,FREQ) specifies the operating frequency of the
system.

surfacegamma displays several terrain types and their corresponding g values. These g

values are for an operating frequency of 10 GHz.

Input Arguments

TerrainType

String that describes type of terrain. Valid values are:

• 'sea state 3'

• 'sea state 5'

• 'woods'

• 'metropolitan'

• 'rugged mountain'

2 Functions-Alphabetical List

2-432

• 'farmland'

• 'wooded hill'

• 'flatland'

FREQ

Operating frequency of radar system in hertz. This value can be a scalar or vector.

Default: 10e9

Output Arguments

G

Value of g in decibels, for constant g clutter model.

Examples

Determine the g value for a wooded area, and then simulate the clutter return from the
area. Assume the radar system uses a single cosine pattern antenna element and an
operating frequency of 300 MHz.

fc = 300e6;

g = surfacegamma('woods',fc);

hclutter = phased.ConstantGammaClutter('Gamma',g,...

 'Sensor',phased.CosineAntennaElement,...

 'OperatingFrequency',fc);

x = step(hclutter);

r = (0:numel(x)-1) / (2*hclutter.SampleRate) * ...

 hclutter.PropagationSpeed;

plot(r,abs(x));

xlabel('Range (m)'); ylabel('Clutter Magnitude (V)');

title('Clutter Return vs. Range');

 surfacegamma

2-433

More About

Gamma

A frequently used model for clutter simulation is the constant gamma model. This model
uses a parameter, g , to describe clutter characteristics of different types of terrain.
Values of g are derived from measurements.

2 Functions-Alphabetical List

2-434

Algorithms

The g values for the terrain types 'sea state 3', 'sea state 5', 'woods',
'metropolitan', and 'rugged mountain' are from [2].

The g values for the terrain types 'farmland', 'wooded hill', and 'flatland' are
from [3].

Measurements provide values of g for a system operating at 10 GHz. The g value for a
system operating at frequency f is:

g g= +
Ê

Ë
Á

ˆ

¯
˜0

0

5log
f

f

where g
0 is the value at frequency f0 = 10 GHz.

References

[1] Barton, David. “Land Clutter Models for Radar Design and Analysis,” Proceedings of
the IEEE. Vol. 73, Number 2, February, 1985, pp. 198–204.

[2] Long, Maurice W. Radar Reflectivity of Land and Sea, 3rd Ed. Boston: Artech House,
2001.

[3] Nathanson, Fred E., J. Patrick Reilly, and Marvin N. Cohen. Radar Design Principles,
2nd Ed. Mendham, NJ: SciTech Publishing, 1999.

See Also
grazingang | horizonrange | phased.ConstantGammaClutter

Introduced in R2011b

 surfclutterrcs

2-435

surfclutterrcs
Surface clutter radar cross section (RCS)

Syntax
RCS = surfclutterrcs(NRCS,R,az,el,graz,tau)

RCS = surfclutterrcs(NRCS,R,az,el,graz,tau,c)

Description
RCS = surfclutterrcs(NRCS,R,az,el,graz,tau) returns the radar cross section
(RCS) of a clutter patch that is of range R meters away from the radar system. az and el
are the radar system azimuth and elevation beamwidths, respectively, corresponding to
the clutter patch. graz is the grazing angle of the clutter patch relative to the radar. tau
is the pulse width of the transmitted signal. The calculation automatically determines
whether the surface clutter area is beam limited or pulse limited, based on the values of
the input arguments.

RCS = surfclutterrcs(NRCS,R,az,el,graz,tau,c) specifies the propagation
speed in meters per second.

Input Arguments
NRCS

Normalized radar cross section of clutter patch in units of square meters/square meters.

R

Range of clutter patch from radar system, in meters.

az

Azimuth beamwidth of radar system corresponding to clutter patch, in degrees.

el

Elevation beamwidth of radar system corresponding to clutter patch, in degrees.

2 Functions-Alphabetical List

2-436

graz

Grazing angle of clutter patch relative to radar system, in degrees.

tau

Pulse width of transmitted signal, in seconds.

c

Propagation speed, in meters per second.

Default: Speed of light

Output Arguments

RCS

Radar cross section of clutter patch.

Examples
Calculate the RCS of a clutter patch and estimate the clutter-to-noise ratio at the
receiver. Assume that the patch has an NRCS of 1 m2/m2 and is 1000 m away from
the radar system. The azimuth and elevation beamwidths are 1 degree and 3 degrees,
respectively. The grazing angle is 10 degrees. The pulse width is 10 µs. The radar is
operated at a wavelength of 1 cm with a peak power of 5 kw.

nrcs = 1; rng = 1000;

az = 1; el = 3; graz = 10;

tau = 10e-6; lambda = 0.01; ppow = 5000;

rcs = surfclutterrcs(nrcs,rng,az,el,graz,tau);

cnr = radareqsnr(lambda,rng,ppow,tau,'rcs',rcs);

More About

Tips

• You can calculate the clutter-to-noise ratio using the output of this function as the
RCS input argument value in radareqsnr.

 surfclutterrcs

2-437

Algorithms

See [1].

References

[1] Richards, M. A. Fundamentals of Radar Signal Processing. New York: McGraw-Hill,
2005, pp. 57–63.

See Also
grazingang | phitheta2azel | radareqsnr | surfacegamma | uv2azel

Introduced in R2011b

2 Functions-Alphabetical List

2-438

systemp
Receiver system-noise temperature

Syntax

STEMP = systemp(NF)

STEMP = systemp(NF,REFTEMP)

Description

STEMP = systemp(NF) calculates the effective system-noise temperature, STEMP, in
kelvin, based on the noise figure, NF. The reference temperature is 290 K.

STEMP = systemp(NF,REFTEMP) specifies the reference temperature.

Input Arguments

NF

Noise figure in decibels. The noise figure is the ratio of the actual output noise power in a
receiver to the noise power output of an ideal receiver.

REFTEMP

Reference temperature in kelvin, specified as a nonnegative scalar. The output of
an ideal receiver has a white noise power spectral density that is approximately the
Boltzmann constant times the reference temperature in kelvin.

Default: 290

Output Arguments

STEMP

Effective system-noise temperature in kelvin. The effective system-noise temperature is
REFTEMP*10^(NF/10).

 systemp

2-439

Examples

Calculate the system-noise temperature of a receiver with a 300 K reference temperature
and a 5 dB noise figure.

stemp = systemp(5,300);

References

[1] Skolnik, M. Introduction to Radar Systems. New York: McGraw-Hill, 1980.

See Also
noisepow | phased.ReceiverPreamp

Introduced in R2011a

2 Functions-Alphabetical List

2-440

time2range
Convert propagation time to propagation distance

Syntax

r = time2range(t)

r = time2range(t,c)

Description

r = time2range(t) returns the distance a signal propagates during t seconds. The
propagation is assumed to be two-way, as in a monostatic radar system.

r = time2range(t,c) specifies the signal propagation speed.

Examples

Minimum Detectable Range for Specified Pulse Width

Calculate the minimum detectable range for a monostatic radar system where the pulse
width is 2 ms.

t = 2e-3;

r = time2range(t);

Input Arguments

t — Propagation time
array of positive numbers

Propagation time in seconds, specified as an array of positive numbers.

c — Signal propagation speed
speed of light (default) | positive scalar

 time2range

2-441

Signal propagation speed, specified as a positive scalar in meters per second.
Data Types: double

Output Arguments

r — Propagation distance
array of positive numbers

Propagation distance in meters, returned as an array of positive numbers. The
dimensions of r are the same as those of t.

Data Types: double

More About

Algorithms

The function computes c*t/2.

References

[1] Skolnik, M. Introduction to Radar Systems, 3rd Ed. New York: McGraw-Hill, 2001.

See Also
phased.FMCWWaveform | range2bw | range2time

Introduced in R2012b

2 Functions-Alphabetical List

2-442

unigrid
Uniform grid

Syntax

Grid = unigrid(StartValue,Step,EndValue)

Grid = unigrid(StartValue,Step,EndValue,IntervalType)

Description

Grid = unigrid(StartValue,Step,EndValue) returns a uniformly sampled grid
from the closed interval [StartValue,EndValue], starting from StartValue. Step
specifies the step size. This syntax is the same as calling StartValue:Step:EndValue.

Grid = unigrid(StartValue,Step,EndValue,IntervalType) specifies whether
the interval is closed, or semi-open. Valid values of IntervalType are '[]' (default),
and '[)'. Specifying a closed interval does not always cause Grid to contain the value
EndValue. The inclusion of EndValue in a closed interval also depends on the step size
Step.

Examples

Create a uniform closed interval with a positive step.

Grid = unigrid(0,0.1,1);

% Note that Grid(1)=0 and Grid(end)=1

Create semi-open interval.

Grid = unigrid(0,0.1,1,'[)');

% Grid(1)=0 and Grid(end)=0.9

See Also
linspace | val2ind

Introduced in R2011a

 uv2azel

2-443

uv2azel
Convert u/v coordinates to azimuth/elevation angles

Syntax
AzEl = uv2azel(UV)

Description
AzEl = uv2azel(UV) converts the u/v space coordinates to their corresponding
azimuth/elevation angle pairs.

Examples

Conversion of U/V Coordinates

Find the corresponding azimuth/elevation representation for u = 0.5 and v = 0.

AzEl = uv2azel([0.5; 0]);

Input Arguments

UV — Angle in u/v space
two-row matrix

Angle in u/v space, specified as a two-row matrix. Each column of the matrix represents
a pair of coordinates in the form [u; v]. Each coordinate is between –1 and 1, inclusive.
Also, each pair must satisfy u2 + v2≤ 1.
Data Types: double

Output Arguments

AzEl — Azimuth/elevation angle pairs
two-row matrix

2 Functions-Alphabetical List

2-444

Azimuth and elevation angles, returned as a two-row matrix. Each column of the matrix
represents an angle in degrees, in the form [azimuth; elevation]. The matrix dimensions
of AzEl are the same as those of UV.

More About

U/V Space

The u/v coordinates for the positive hemisphere x ≥ 0 can be derived from the phi and
theta angles.

The relation between the two coordinates is

u

v

=

=

sin cos

sin sin

q f

q f

In these expressions, φ and θ are the phi and theta angles, respectively.

In terms of azimuth and elevation, the u and v coordinates are

u el az

v el

=

=

cos sin

sin

The values of u and v satisfy the inequalities

- £ £

- £ £

+ £

1 1

1 1

1
2 2

u

v

u v

Conversely, the phi and theta angles can be written in terms of u and v using

tan /

sin

f

q

=

= +

u v

u v
2 2

The azimuth and elevation angles can also be written in terms of u and v

 uv2azel

2-445

sin

tan

el v

az
u

u v

=

=

- -1
2 2

Phi Angle, Theta Angle

The φ angle is the angle from the positive y-axis toward the positive z-axis, to the vector’s
orthogonal projection onto the yz plane. The φ angle is between 0 and 360 degrees. The θ
angle is the angle from the x-axis toward the yz plane, to the vector itself. The θ angle is
between 0 and 180 degrees.

The figure illustrates φ and θ for a vector that appears as a green solid line. The
coordinate system is relative to the center of a uniform linear array, whose elements
appear as blue circles.

The coordinate transformations between φ/θ and az/el are described by the following
equations

sin() sin sin

tan() cos tan

cos cos()cos()

tan ta

el

az

el az

=

=

=

=

f q

f q

q

f nn() / sin()el az

2 Functions-Alphabetical List

2-446

Azimuth Angle, Elevation Angle

The azimuth angle is the angle from the positive x-axis toward the positive y-axis, to the
vector’s orthogonal projection onto the xy plane. The azimuth angle is between –180 and
180 degrees. The elevation angle is the angle from the vector’s orthogonal projection onto
the xy plane toward the positive z-axis, to the vector. The elevation angle is between –90
and 90 degrees. These definitions assume the boresight direction is the positive x-axis.

Note: The elevation angle is sometimes defined in the literature as the angle a vector
makes with the positive z-axis. The MATLAB and Phased Array System Toolbox
products do not use this definition.

This figure illustrates the azimuth angle and elevation angle for a vector that appears
as a green solid line. The coordinate system is relative to the center of a uniform linear
array, whose elements appear as blue circles.

• “Spherical Coordinates”

See Also
azel2uv

Introduced in R2012a

 uv2azelpat

2-447

uv2azelpat
Convert radiation pattern from u/v form to azimuth/elevation form

Syntax

pat_azel = uv2azelpat(pat_uv,u,v)

pat_azel = uv2azelpat(pat_uv,u,v,az,el)

[pat_azel,az,el] = uv2azelpat(___)

Description

pat_azel = uv2azelpat(pat_uv,u,v) expresses the antenna radiation pattern
pat_azel in azimuth/elevation angle coordinates instead of u/v space coordinates.
pat_uv samples the pattern at u angles in u and v angles in v. The pat_azel matrix
uses a default grid that covers azimuth values from –90 to 90 degrees and elevation
values from –90 to 90 degrees. In this grid, pat_azel is uniformly sampled with a step
size of 1 for azimuth and elevation. The function interpolates to estimate the response of
the antenna at a given direction.

pat_azel = uv2azelpat(pat_uv,u,v,az,el) uses vectors az and el to specify the
grid at which to sample pat_azel. To avoid interpolation errors, az should cover the
range [–90, 90] and el should cover the range [–90, 90].

[pat_azel,az,el] = uv2azelpat(___) returns vectors containing the azimuth
and elevation angles at which pat_azel samples the pattern, using any of the input
arguments in the previous syntaxes.

Examples

Conversion of Radiation Pattern

Convert a radiation pattern to azimuth/elevation form, with the angles spaced 1 degree
apart.

Define the pattern in terms of u and v. For values outside the unit circle, u and v are
undefined and the pattern value is 0.

2 Functions-Alphabetical List

2-448

u = -1:0.01:1;

v = -1:0.01:1;

[u_grid,v_grid] = meshgrid(u,v);

pat_uv = sqrt(1 - u_grid.^2 - v_grid.^2);

pat_uv(hypot(u_grid,v_grid) >= 1) = 0;

Convert the pattern to azimuth/elevation space.

pat_azel = uv2azelpat(pat_uv,u,v);

Plot Converted Radiation Pattern

Convert a radiation pattern to azimuth/elevation form, with the angles spaced one degree
apart.

Define the pattern in terms of and . For values outside the unit circle, and are
undefined and the pattern value is 0.

u = -1:0.01:1;

v = -1:0.01:1;

[u_grid,v_grid] = meshgrid(u,v);

pat_uv = sqrt(1 - u_grid.^2 - v_grid.^2);

pat_uv(hypot(u_grid,v_grid) >= 1) = 0;

Convert the pattern to azimuth/elevation space. Store the azimuth and elevation angles
to use them for plotting.

[pat_azel,az,el] = uv2azelpat(pat_uv,u,v);

Plot the result.

H = surf(az,el,pat_azel);

H.LineStyle = 'none';

xlabel('Azimuth (degrees)');

ylabel('Elevation (degrees)');

zlabel('Pattern');

 uv2azelpat

2-449

Convert Radiation Pattern Using Specific Azimuth/Elevation Values

Convert a radiation pattern to azimuth/elevation form, with the angles spaced five
degrees apart.

Define the pattern in terms of and . For values outside the unit circle, and are
undefined and the pattern value is 0.

u = -1:0.01:1;

v = -1:0.01:1;

[u_grid,v_grid] = meshgrid(u,v);

pat_uv = sqrt(1 - u_grid.^2 - v_grid.^2);

pat_uv(hypot(u_grid,v_grid) >= 1) = 0;

2 Functions-Alphabetical List

2-450

Define the set of azimuth and elevation angles at which to sample the pattern. Then
convert the pattern.

az = -90:5:90;

el = -90:5:90;

pat_azel = uv2azelpat(pat_uv,u,v,az,el);

Plot the result.

H = surf(az,el,pat_azel);

H.LineStyle = 'none';

xlabel('Azimuth (degrees)');

ylabel('Elevation (degrees)');

zlabel('Pattern');

 uv2azelpat

2-451

Input Arguments

pat_uv — Antenna radiation pattern in u/v form
Q-by-P matrix

Antenna radiation pattern in u/v form, specified as a Q-by-P matrix. pat_uv samples the
3-D magnitude pattern in decibels in terms of u and v coordinates. P is the length of the u
vector and Q is the length of the v vector.

Data Types: double

2 Functions-Alphabetical List

2-452

u — u coordinates
vector of length P

u coordinates at which pat_uv samples the pattern, specified as a vector of length P.
Each coordinate is between –1 and 1.
Data Types: double

v — v coordinates
vector of length Q

v coordinates at which pat_uv samples the pattern, specified as a vector of length Q.
Each coordinate is between –1 and 1.
Data Types: double

az — Azimuth angles
[-90:90] (default) | vector of length L

Azimuth angles at which pat_azel samples the pattern, specified as a vector of length
L. Each azimuth angle is in degrees, between –90 and 90. Such azimuth angles are in the
hemisphere for which u and v are defined.
Data Types: double

el — Elevation angles
[-90:90] (default) | vector of length M

Elevation angles at which pat_azel samples the pattern, specified as a vector of length
M. Each elevation angle is in degrees, between –90 and 90.
Data Types: double

Output Arguments

pat_azel — Antenna radiation pattern in azimuth/elevation form
M-by-L matrix

Antenna radiation pattern in azimuth/elevation form, returned as an M-by-L matrix.
pat_azel samples the 3-D magnitude pattern in decibels, in terms of azimuth and
elevation angles. L is the length of the az vector, and M is the length of the el vector.

 uv2azelpat

2-453

az — Azimuth angles
vector of length L

Azimuth angles at which pat_azel samples the pattern, returned as a vector of length
L. Angles are expressed in degrees.

el — Elevation angles
vector of length M

Elevation angles at which pat_azel samples the pattern, returned as a vector of length
M. Angles are expressed in degrees.

More About

U/V Space

The u and v coordinates are the direction cosines of a vector with respect to the y-axis
and z-axis, respectively.

The u/v coordinates for the hemisphere x ≥ 0 are derived from the phi and theta angles,
as follows:

u

v

=

=

sin cos

sin sin

q f

q f

In these expressions, φ and θ are the phi and theta angles, respectively.

In terms of azimuth and elevation, the u and v coordinates are

u el az

v el

=

=

cos sin

sin

The values of u and v satisfy the inequalities

- £ £

- £ £

+ £

1 1

1 1

1
2 2

u

v

u v

2 Functions-Alphabetical List

2-454

Conversely, the phi and theta angles can be written in terms of u and v using

tan /

sin

f

q

=

= +

u v

u v
2 2

The azimuth and elevation angles can also be written in terms of u and v

sin

tan

el v

az
u

u v

=

=

- -1
2 2

Phi Angle, Theta Angle

The φ angle is the angle from the positive y-axis toward the positive z-axis, to the vector’s
orthogonal projection onto the yz plane. The φ angle is between 0 and 360 degrees. The θ
angle is the angle from the x-axis toward the yz plane, to the vector itself. The θ angle is
between 0 and 180 degrees.

The figure illustrates φ and θ for a vector that appears as a green solid line. The
coordinate system is relative to the center of a uniform linear array, whose elements
appear as blue circles.

The coordinate transformations between φ/θ and az/el are described by the following
equations

 uv2azelpat

2-455

sin() sin sin

tan() cos tan

cos cos()cos()

tan ta

el

az

el az

=

=

=

=

f q

f q

q

f nn() / sin()el az

Azimuth Angle, Elevation Angle

The azimuth angle is the angle from the positive x-axis toward the positive y-axis, to the
vector’s orthogonal projection onto the xy plane. The azimuth angle is between –180 and
180 degrees. The elevation angle is the angle from the vector’s orthogonal projection onto
the xy plane toward the positive z-axis, to the vector. The elevation angle is between –90
and 90 degrees. These definitions assume the boresight direction is the positive x-axis.

Note: The elevation angle is sometimes defined in the literature as the angle a vector
makes with the positive z-axis. The MATLAB and Phased Array System Toolbox
products do not use this definition.

This figure illustrates the azimuth angle and elevation angle for a vector that appears
as a green solid line. The coordinate system is relative to the center of a uniform linear
array, whose elements appear as blue circles.

2 Functions-Alphabetical List

2-456

• “Spherical Coordinates”

See Also
azel2uv | azel2uvpat | phased.CustomAntennaElement | uv2azel

Introduced in R2012a

 uv2phitheta

2-457

uv2phitheta
Convert u/v coordinates to phi/theta angles

Syntax
PhiTheta = uv2phitheta(UV)

Description
PhiTheta = uv2phitheta(UV) converts the u/v space coordinates to their
corresponding phi/theta angle pairs.

Examples

Conversion of U/V Coordinates

Find the corresponding φ/θ representation for u = 0.5 and v = 0.

PhiTheta = uv2phitheta([0.5; 0]);

Input Arguments

UV — Angle in u/v space
two-row matrix

Angle in u/v space, specified as a two-row matrix. Each column of the matrix represents
a pair of coordinates in the form [u; v]. Each coordinate is between –1 and 1, inclusive.
Also, each pair must satisfy u2 + v2≤ 1.
Data Types: double

Output Arguments

PhiTheta — Phi/theta angle pairs
two-row matrix

2 Functions-Alphabetical List

2-458

Phi and theta angles, returned as a two-row matrix. Each column of the matrix
represents an angle in degrees, in the form [phi; theta]. The matrix dimensions of
PhiTheta are the same as those of UV.

More About

U/V Space

The u/v coordinates for the positive hemisphere x ≥ 0 can be derived from the phi and
theta angles.

The relation between the two coordinates is

u

v

=

=

sin cos

sin sin

q f

q f

In these expressions, φ and θ are the phi and theta angles, respectively.

In terms of azimuth and elevation, the u and v coordinates are

u el az

v el

=

=

cos sin

sin

The values of u and v satisfy the inequalities

- £ £

- £ £

+ £

1 1

1 1

1
2 2

u

v

u v

Conversely, the phi and theta angles can be written in terms of u and v using

tan /

sin

f

q

=

= +

u v

u v
2 2

The azimuth and elevation angles can also be written in terms of u and v

 uv2phitheta

2-459

sin

tan

el v

az
u

u v

=

=

- -1
2 2

Phi Angle, Theta Angle

The φ angle is the angle from the positive y-axis toward the positive z-axis, to the vector’s
orthogonal projection onto the yz plane. The φ angle is between 0 and 360 degrees. The θ
angle is the angle from the x-axis toward the yz plane, to the vector itself. The θ angle is
between 0 and 180 degrees.

The figure illustrates φ and θ for a vector that appears as a green solid line. The
coordinate system is relative to the center of a uniform linear array, whose elements
appear as blue circles.

The coordinate transformations between φ/θ and az/el are described by the following
equations

sin() sin sin

tan() cos tan

cos cos()cos()

tan ta

el

az

el az

=

=

=

=

f q

f q

q

f nn() / sin()el az

2 Functions-Alphabetical List

2-460

• “Spherical Coordinates”

See Also
phitheta2uv

Introduced in R2012a

 uv2phithetapat

2-461

uv2phithetapat

Convert radiation pattern from u/v form to phi/theta form

Syntax

pat_phitheta = uv2phithetapat(pat_uv,u,v)

pat_phitheta = uv2phithetapat(pat_uv,u,v,phi,theta)

[pat_phitheta,phi,theta] = uv2phithetapat(___)

Description

pat_phitheta = uv2phithetapat(pat_uv,u,v) expresses the antenna radiation
pattern pat_phitheta in φ/θ angle coordinates instead of u/v space coordinates. pat_uv
samples the pattern at u angles in u and v angles in v. The pat_phitheta matrix uses a
default grid that covers φ values from 0 to 360 degrees and θ values from 0 to 90 degrees.
In this grid, pat_phitheta is uniformly sampled with a step size of 1 for φ and θ. The
function interpolates to estimate the response of the antenna at a given direction.

pat_phitheta = uv2phithetapat(pat_uv,u,v,phi,theta) uses vectors phi and
theta to specify the grid at which to sample pat_phitheta. To avoid interpolation
errors, phi should cover the range [0, 360], and theta should cover the range [0, 90].

[pat_phitheta,phi,theta] = uv2phithetapat(___) returns vectors containing
the φ and θ angles at which pat_phitheta samples the pattern, using any of the input
arguments in the previous syntaxes.

Examples

Conversion of Radiation Pattern

Convert a radiation pattern to φ/θ form, with the angles spaced 1 degree apart.

Define the pattern in terms of u and v. For values outside the unit circle, u and v are
undefined, and the pattern value is 0.

2 Functions-Alphabetical List

2-462

u = -1:0.01:1;

v = -1:0.01:1;

[u_grid,v_grid] = meshgrid(u,v);

pat_uv = sqrt(1 - u_grid.^2 - v_grid.^2);

pat_uv(hypot(u_grid,v_grid) >= 1) = 0;

Convert the pattern to φ/θ space.

[pat_phitheta,phi,theta] = uv2phithetapat(pat_uv,u,v);

Plot Converted Radiation Pattern

Convert a radiation pattern to space with the angles spaced one degree apart.

Define the pattern in terms of and . For values outside the unit circle, and are
undefined, and the pattern value is 0.

u = -1:0.01:1;

v = -1:0.01:1;

[u_grid,v_grid] = meshgrid(u,v);

pat_uv = sqrt(1 - u_grid.^2 - v_grid.^2);

pat_uv(hypot(u_grid,v_grid) >= 1) = 0;

Convert the pattern to space. Store the and angles for use in plotting.

[pat_phitheta,phi,theta] = uv2phithetapat(pat_uv,u,v);

Plot the result.

H = surf(phi,theta,pat_phitheta);

H.LineStyle = 'none';

xlabel('Phi (degrees)');

ylabel('Theta (degrees)');

zlabel('Pattern');

 uv2phithetapat

2-463

Convert Radiation Pattern Using Specific Phi/Theta Values

Convert a radiation pattern to space with the angles spaced five degrees apart.

Define the pattern in terms of and . For values outside the unit circle, and are
undefined, and the pattern value is 0.

u = -1:0.01:1;

v = -1:0.01:1;

[u_grid,v_grid] = meshgrid(u,v);

pat_uv = sqrt(1 - u_grid.^2 - v_grid.^2);

pat_uv(hypot(u_grid,v_grid) >= 1) = 0;

2 Functions-Alphabetical List

2-464

Define the set of and angles at which to sample the pattern. Then, convert the
pattern.

phi = 0:5:360;

theta = 0:5:90;

pat_phitheta = uv2phithetapat(pat_uv,u,v,phi,theta);

Plot the result.

H = surf(phi,theta,pat_phitheta);

H.LineStyle = 'none';

xlabel('Phi (degrees)');

ylabel('Theta (degrees)');

zlabel('Pattern');

 uv2phithetapat

2-465

Input Arguments

pat_uv — Antenna radiation pattern in u/v form
Q-by-P matrix

Antenna radiation pattern in u/v form, specified as a Q-by-P matrix. pat_uv samples the
3-D magnitude pattern in decibels, in terms of u and v coordinates. P is the length of the
u vector, and Q is the length of the v vector.

Data Types: double

2 Functions-Alphabetical List

2-466

u — u coordinates
vector of length P

u coordinates at which pat_uv samples the pattern, specified as a vector of length P.
Each coordinate is between –1 and 1.
Data Types: double

v — v coordinates
vector of length Q

v coordinates at which pat_uv samples the pattern, specified as a vector of length Q.
Each coordinate is between –1 and 1.
Data Types: double

phi — Phi angles
[0:360] (default) | vector of length L

Phi angles at which pat_phitheta samples the pattern, specified as a vector of length
L. Each φ angle is in degrees, between 0 and 360.
Data Types: double

theta — Theta angles
[0:90] (default) | vector of length M

Theta angles at which pat_phitheta samples the pattern, specified as a vector
of length M. Each θ angle is in degrees, between 0 and 90. Such θ angles are in the
hemisphere for which u and v are defined.
Data Types: double

Output Arguments

pat_phitheta — Antenna radiation pattern in phi/theta form
M-by-L matrix

Antenna radiation pattern in phi/theta form, returned as an M-by-L matrix.
pat_phitheta samples the 3-D magnitude pattern in decibels, in terms of φ and θ
angles. L is the length of the phi vector, and M is the length of the theta vector.

 uv2phithetapat

2-467

phi — Phi angles
vector of length L

Phi angles at which pat_phitheta samples the pattern, returned as a vector of length
L. Angles are expressed in degrees.

theta — Theta angles
vector of length M

Theta angles at which pat_phitheta samples the pattern, returned as a vector of
length M. Angles are expressed in degrees.

More About

U/V Space

The u and v coordinates are the direction cosines of a vector with respect to the y-axis
and z-axis, respectively.

The u/v coordinates for the hemisphere x ≥ 0 are derived from the phi and theta angles,
as follows:

u

v

=

=

sin cos

sin sin

q f

q f

In these expressions, φ and θ are the phi and theta angles, respectively.

In terms of azimuth and elevation, the u and v coordinates are

u el az

v el

=

=

cos sin

sin

The values of u and v satisfy the inequalities

- £ £

- £ £

+ £

1 1

1 1

1
2 2

u

v

u v

2 Functions-Alphabetical List

2-468

Conversely, the phi and theta angles can be written in terms of u and v using

tan /

sin

f

q

=

= +

u v

u v
2 2

The azimuth and elevation angles can also be written in terms of u and v

sin

tan

el v

az
u

u v

=

=

- -1
2 2

Phi Angle, Theta Angle

The φ angle is the angle from the positive y-axis toward the positive z-axis, to the vector’s
orthogonal projection onto the yz plane. The φ angle is between 0 and 360 degrees. The θ
angle is the angle from the x-axis toward the yz plane, to the vector itself. The θ angle is
between 0 and 180 degrees.

The figure illustrates φ and θ for a vector that appears as a green solid line. The
coordinate system is relative to the center of a uniform linear array, whose elements
appear as blue circles.

The coordinate transformations between φ/θ and az/el are described by the following
equations

 uv2phithetapat

2-469

sin() sin sin

tan() cos tan

cos cos()cos()

tan ta

el

az

el az

=

=

=

=

f q

f q

q

f nn() / sin()el az

• “Spherical Coordinates”

See Also
phased.CustomAntennaElement | phitheta2uv | phitheta2uvpat | uv2phitheta

Introduced in R2012a

2 Functions-Alphabetical List

2-470

val2ind
Uniform grid index

Syntax

Ind = val2ind(Value,Delta)

Ind = val2ind(Value,Delta,GridStartValue)

Description

Ind = val2ind(Value,Delta) returns the index of the value Value in a uniform
grid with a spacing between elements of Delta. The first element of the uniform grid is
zero. If Value does not correspond exactly to an element of the grid, the next element is
returned. If Value is a row vector, Ind is a row vector of the same size.

Ind = val2ind(Value,Delta,GridStartValue) specifies the starting value of the
uniform grid as GridStartValue.

Examples

Find index for 0.001 in uniform grid with 1 MHz sampling rate.

Fs = 1e6;

Ind = val2ind(0.001,1/Fs);

% Ind is 1001 because the 1st grid element is zero

Find indices for vector with 1 kHz sampling rate.

Fs = 1e3;

% Construct row vector of values

Values =[0.0095 0.0125 0.0225];

% Values not divisible by 1/Fs

% with nonzero remainder

Ind = val2ind(Values,1/Fs);

% Returns Ind =[11 14 24]

Introduced in R2011a

3

Blocks — Alphabetical List

3 Blocks — Alphabetical List

3-2

ADPCA Canceller

Adaptive displaced phase center array (ADPCA) pulse canceller for a uniform linear
array

Library

Space-Time Adaptive Processing

phasedstaplib

Description

The ADPCA Canceller block implements an adaptive displaced phase center array
pulse canceller for a uniform linear array.

 ADPCA Canceller

3-3

Dialog Box

3 Blocks — Alphabetical List

3-4

Propagation speed (m/s)
Specify the propagation speed of the signal, in meters per second, as a positive scalar.
You can use the function physconst to specify the speed of light.

Operating frequency (Hz)
Specify the operating frequency of the system, in hertz, as a positive scalar.

Pulse repetition frequency (Hz)
Specify the pulse repetition frequency, PRF, as a scalar or a row vector. Units for
PRF are hertz. This parameter should be set to the same value as used in any
Waveforms library block.

Specify direction as
Specify whether the targeting direction for this STAP processor block comes from a
block parameter or via an input port. Values of this parameter are

Property • For the ADPCA Canceller and DPCA Canceller
blocks, targeting direction is specified using Receiving
mainlobe direction (deg).

• For the SMI Beamformer block, targeting direction is
specified using Targeting direction.

These parameters appear only when the Specify direction
as parameter is set to Property.

Input port Enter the targeting directions using the Ang port. This port
appears only when Specify direction as is set to Input
port.

Receiving mainlobe direction (deg)
Specify the mainlobe direction in degrees of the receiving sensor array as a
2-by-1 vector. The direction is specified in the format of [AzimuthAngle;
ElevationAngle]. The azimuth angle should be between –180° and 180° and the
elevation angle should be between –90° and 90°. This parameter appears only when
you set Specify direction as to Property.

Number of bits in phase shifters
The number of bits used to quantize the phase shift component of beamformer or
steering vector weights. Specify the number of bits as a non-negative integer. A value
of zero indicates that no quantization is performed.

 ADPCA Canceller

3-5

Specify targeting Doppler as
Specify whether targeting Doppler values for the STAP processor comes from the
Targeting Doppler (Hz) parameter of this block or via an input port. For the
ADPCA Cancellerand DPCA Canceller blocks, this parameter appears only when
the Output pre-Doppler result check box is cleared. Values of this parameter are

Property Targeting Doppler values are specified by the Targeting
Doppler parameter of the block. The Targeting Doppler
parameter appears only when Specify targeting Doppler
as is set to Property.

Input port Targeting Doppler values are entered using the Dop port.
This port appears only when Specify targeting Doppler
as is set to Input port.

Targeting Doppler (Hz)
Specify the targeting Doppler of the STAP processor as a scalar. This parameter
appears only when you set Specify targeting Doppler as to Property and when,
for the ADPCA Cancellerand DPCA Canceller blocks only, the Output pre-
Doppler result check box is cleared.

Number of guard cells
Specify the number of guard cells used in the training as an even integer. This
parameter specifies the total number of cells on both sides of the cell under test.

Number of training cells
Specify the number of training cells used in training as an even integer. Whenever
possible, the training cells are equally divided into regions before and after the test
cell.

Enable weights output
Select this check box to obtain the weights used in the STAP processor via the output
port W. The output port W only appears when you select this check box.

Output pre-Doppler result
Select this check box to output the processing results before applying Doppler
filtering. Clear this check box to output the processing result after Doppler filtering.
Selecting this check box will remove the Specify targeting Doppler as and
Targeting Doppler (Hz) parameters.

3 Blocks — Alphabetical List

3-6

Simulate using
Block simulation, specified as Interpreted Execution or Code Generation.
If you want your block to use the MATLAB interpreter, choose Interpreted
Execution. If you want your block to run as compiled code, choose Code
Generation. Compiled code requires time to compile but usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The
block runs the underlying System object in MATLAB. You can change and execute
your model quickly. When you are satisfied with your results, you can then run the
block using Code Generation. Long simulations run faster than in interpreted
execution. You can run repeated executions without recompiling. However, if you
change any block parameters, then the block automatically recompiles before
execution.

When setting this parameter, you must take into account the overall model
simulation mode. The table shows how the Simulate using parameter interacts with
the overall simulation mode.

When the Simulink model is in Accelerator mode, the block mode specified using
Simulate using overrides the simulation mode.

Acceleration Modes

When you use this simulation mode ...If you want to
simulate using ... Normal Accelerator Rapid

Accelerator

Interpreted

Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Code Generation The block is
compiled.

All blocks in the
model are compiled.

Creates a
standalone
executable from the
model.

For more information, see “Choosing a Simulation Mode” from the Simulink
documentation.

 ADPCA Canceller

3-7

3 Blocks — Alphabetical List

3-8

Array Parameters

Specify sensor array as
Specify a ULA sensor array directly or by using a MATLAB expression.

Types

Array (no subarrays)

MATLAB expression

Number of elements
Specifies the number of elements in the array as an integer.

Element spacing
Specify the spacing, in meters, between two adjacent elements in the array.

Array axis
This parameter appears when the Geometry parameter is set to ULA or when the
block supports only a ULA array geometry. You can specify this parameters as 'x',
'y', or 'z'. Then, all ULA array elements are uniformly spaced along this axis in
the local array coordinate system.

Taper
Tapers, also known as element weights, are applied to sensor elements in the array.
Tapers are used to modify both the amplitude and phase of the transmitted or
received data.

Specify element tapering as a complex-valued scalar or a complex-valued 1-by-N row
vector. In this vector, N represents the number of elements in the array. If Taper is
a scalar, the same weight is applied to each element. If Taper is a vector, a weight
from the vector is applied to the corresponding sensor element. A weight must be
applied to each element in the sensor array.

Expression
A valid MATLAB expression containing a constructor for a uniform linear array, for
example, phased.ULA.

Sensor Array Tab: Element Parameters

Element type

 ADPCA Canceller

3-9

Specify antenna or microphone type as

• Isotropic Antenna

• Cosine Antenna

• Custom Antenna

• Omni Microphone

• Custom Microphone

Exponent of cosine pattern
This parameter appears when you set Element type to Cosine Antenna.

Specify the exponent of the cosine pattern as a scalar or a 1-by-2 vector. You
must specify all values as real numbers greater than or equal to 1. When you set
Exponent of cosine pattern to a scalar, both the azimuth direction cosine pattern
and the elevation direction cosine pattern are raised to the specified value. When you
set Exponent of cosine pattern to a 1-by-2 vector, the first element is the exponent
for the azimuth direction cosine pattern and the second element is the exponent for
the elevation direction cosine pattern.

Operating frequency range (Hz)
This parameter appears when Element type is set to Isotropic Antenna, Cosine
Antenna, or Omni Microphone.

Specify the operating frequency range, in hertz, of the antenna element as a 1-by-2
row vector in the form [LowerBound,UpperBound]. The antenna element has no
response outside the specified frequency range.

Operating frequency vector (Hz)
This parameter appears when Element type is set to Custom Antenna or Custom
Microphone.

Specify L frequencies, in hertz, at which to set the antenna and microphone
frequency responses. Specify Operating frequency vector (Hz) as a 1-by-L
row vector of increasing value. Use Frequency responses to set the frequency
responses. The antenna or microphone element has no response outside the
frequency range specified by the minimum and maximum elements of Operating
frequency vector.

Frequency responses (dB)
This parameter appears when Element type is set to Custom Antenna or Custom
Microphone.

3 Blocks — Alphabetical List

3-10

Specify this parameter as the frequency response of an antenna or microphone,
in decibels, for the frequencies defined by Operating frequency vector. Specify
Frequency responses (dB) as a 1-by-L vector matching the dimensions of the
vector specified in Operating frequency vector.

Azimuth angles (deg)
This parameter appears when Element type is set to Custom Antenna.

Specify P azimuth angles, in degrees, at which to calculate the antenna radiation
pattern as a 1-by-P row vector. P must be greater than 2. The azimuth angles must
lie between –180° and 180° and be in strictly increasing order.

Elevation angles (deg)
This parameter appears when the Element type is set to Custom Antenna.

Specify the Q elevation angles, in degrees, at which to compute the radiation pattern
as a 1-by-Q vector. Q must be greater than 2. The elevation angles must lie between –
90° and 90° and be in strictly increasing order.

Radiation pattern (dB)
This parameter appears when the Element type is set to Custom Antenna.

The magnitude in db of the combined polarized antenna radiation pattern specified
as a Q-by-P matrix or a Q-by-P-by-L array. The value of Q must match the value of Q
specified by Elevation angles. The value of P must match the value of P specified by
Azimuth angles. The value of L must match the value of L specified by Operating
frequency vector (Hz).

Polar pattern frequencies (Hz)
This parameter appears when the Element type is set to Custom Microphone.

Specify the Mmeasuring frequencies in hertz of the polar patterns 1-by-M vector.
The measuring frequencies lie within the frequency range specified byOperating
frequency vector.

Polar pattern angles (deg)
This parameter appears when Element type is set to Custom Microphone.

Specify N measuring angles, in degrees, of the polar patterns as a 1-by-N. The angles
are measured from the central pickup axis of the microphone, and must be between –
180° and 180°, inclusive.

 ADPCA Canceller

3-11

Polar pattern (dB)
This parameter appears when Element type is set to Custom Microphone.

Specify the magnitude of the polar patterns, in dB, of the microphone element as
an M-by-N matrix. M is the number of measuring frequencies specified in Polar
pattern frequencies. N is the number of measuring angles specified in Polar
pattern angles. Each row of the matrix represents the magnitude of the polar
pattern measured at the corresponding frequency specified in Polar pattern
frequencies and all angles specified in Polar pattern angles. Assume that the
pattern is measured in the azimuth plane. In the azimuth plane, the elevation angle
is 0° and the central pickup axis is 0° degrees azimuth and 0° degrees elevation.
Assume also that the polar pattern is symmetric around the central axis. You can
construct the microphone’s response pattern in 3-D space from the polar pattern.

Baffle the back of the element
This check box appears only when the Element type parameter is set to Isotropic
Antenna or Omni Microphone.

Select this check box to baffle the back of the antenna element. In this case, the
antenna responses to all azimuth angles beyond ±90° from broadside are set to zero.
Define the broadside direction as 0° azimuth angle and 0° elevation angle.

Ports

Note: The block input and output ports correspond to the input and output parameters
described in the step method of the underlying System object. See link at the bottom of
this page.

Port Supported Data Types

X Double-precision floating point
Ang Double-precision floating point
Dop Double-precision floating point
Idx Double-precision floating point
W Double-precision floating point
Y Double-precision floating point

3 Blocks — Alphabetical List

3-12

See Also
phased.ADPCACanceller

Introduced in R2014b

 Angle Doppler Response

3-13

Angle Doppler Response

Angle-Doppler response

Library

Space-Time Adaptive Processing

phasedstaplib

Description

The Angle Doppler Response block computes the angle-Doppler response of the input
signal. The output response is a matrix whose rows represent Doppler bins and whose
columns represent angle bins.

3 Blocks — Alphabetical List

3-14

Dialog Box

 Angle Doppler Response

3-15

Propagation speed (m/s)
Specify the propagation speed of the signal, in meters per second, as a positive scalar.
You can use the function physconst to specify the speed of light.

Operating frequency (Hz)
Specify the operating frequency of the system, in hertz, as a positive scalar.

Pulse repetition frequency (Hz)
Specify the pulse repetition frequency, PRF, as a scalar or a row vector. Units for
PRF are hertz. This parameter should be set to the same value as used in any
Waveforms library block.

Source of elevation angle
Specify whether the elevation angle comes from the Elevation angle parameter or
from an input port. Values of this parameter are

Property The Elevation angle parameter of this block
specifies the elevation angle.

Input port The elevation angle is set via the El input port.

Elevation angle (deg)
Specify the elevation angle used to calculate the angle-Doppler response as a scalar.
Units are degrees. The angle must be between –90° and 90°. This parameter appears
when you set Source of elevation angle to Property.

Number of angle bins
Specify the number of samples in the angular domain used to calculate the angle-
Doppler response as a positive integer. This value must be greater than 2.

Number of Doppler bins
Specify the number of samples in the Doppler domain used to calculate the angle-
Doppler response as a positive integer. This value must be greater than 2.

Simulate using
Block simulation, specified as Interpreted Execution or Code Generation.
If you want your block to use the MATLAB interpreter, choose Interpreted
Execution. If you want your block to run as compiled code, choose Code
Generation. Compiled code requires time to compile but usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The
block runs the underlying System object in MATLAB. You can change and execute

3 Blocks — Alphabetical List

3-16

your model quickly. When you are satisfied with your results, you can then run the
block using Code Generation. Long simulations run faster than in interpreted
execution. You can run repeated executions without recompiling. However, if you
change any block parameters, then the block automatically recompiles before
execution.

When setting this parameter, you must take into account the overall model
simulation mode. The table shows how the Simulate using parameter interacts with
the overall simulation mode.

When the Simulink model is in Accelerator mode, the block mode specified using
Simulate using overrides the simulation mode.

Acceleration Modes

When you use this simulation mode ...If you want to
simulate using ... Normal Accelerator Rapid

Accelerator

Interpreted

Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Code Generation The block is
compiled.

All blocks in the
model are compiled.

Creates a
standalone
executable from the
model.

For more information, see “Choosing a Simulation Mode” from the Simulink
documentation.

 Angle Doppler Response

3-17

3 Blocks — Alphabetical List

3-18

Array Parameters

Specify sensor array as
Sensor element or sensor array specified. A sensor array can also contain subarrays
or as a partitioned array. This parameter can also be expressed as a MATLAB
expression.

Types

Array (no subarrays)

Partitioned array

Replicated subarray

MATLAB expression

Geometry
Specify the array geometry as one of the following

• ULA — Uniform Line Array
• URA — Uniform Rectangular Array
• UCA — Uniform Circular Array
• Conformal Array

Number of elements
Specifies the number of elements in the array as an integer.

This parameter appears when the Geometry is set to ULA or UCA. When Sensor
Array is set to Replicated subarray, this parameter applies to the sub-array.

Array size
This parameter appears when Geometry is set to URA. When Sensor Array is set to
Replicated subarray, this parameter applies to the subarrays.

Specify the size of the array as a 1-by-2 integer vector or a single integer containing.

• If Array size is a 1-by-2 vector, the vector has the form
[NumberOfRows,NumberOfColumns] where NumberOfRows and
NumberOfColumns specify the number of rows and columns of the array,
respectively.

• If Array size is an integer, the array has the same number of rows and columns.

 Angle Doppler Response

3-19

For a URA, elements are indexed from top to bottom along a column and continuing
to the next columns from left to right. In this figure, an Array size of [3,2]
produces an array of three rows and two columns.

Size and Element Indexing Order

for Uniform Rectangular Arrays

Example: Size = [3,2]

1

2

3

4

6

5

Z

Y

Element spacing
This parameter appears when Geometry is set to ULA or URA. When Sensor Array
is set to Replicated subarray, this parameter applies to the subarrays.

• For a ULA, specify the spacing, in meters, between two adjacent elements in the
array as a scalar.

• For a URA, specify the element spacing of the array, in meters, as a 1-by-2 vector
or a scalar. If Element spacing is a 1-by-2 vector, the vector has the form
[SpacingBetweenRows,SpacingBetweenColumns]. For a discussion of
these quantities, see phased.URA. If Element spacing is a scalar, the spacings
between rows and columns are equal.

Array axis
This parameter appears when the Geometry parameter is set to ULA or when the
block supports only a ULA array geometry. You can specify this parameters as 'x',
'y', or 'z'. Then, all ULA array elements are uniformly spaced along this axis in
the local array coordinate system.

3 Blocks — Alphabetical List

3-20

Array normal
This parameter appears when the Geometry parameter is set to URA or UCA. You
can specify the Array normal parameter as 'x', 'y', or 'z'. Then, all URA and
UCA array elements are placed in the yz-, zx-, or xy- planes, respectively, of the array
coordinate system.

Radius of UCA (m)
Radius of a uniform circular array specified as a positive scalar. Units are meters.

This parameter appears when the Geometry is set to UCA.
Taper

Tapers, also known as element weights, are applied to sensor elements in the array.
Tapers are used to modify both the amplitude and phase of the transmitted or
received data.

This parameter appears when Geometry is set to ULA, URA, UCA, or Conformal
Array. When Sensor Array is set to Replicated subarray, this parameter
applies to subarrays.

• For a ULA or UCA, specify element tapering as a complex-valued scalar or a
complex-valued 1-by-N row vector. In this vector, N represents the number
of elements in the array. If Taper is a scalar, the same weight is applied to
each element. If Taper is a vector, a weight from the vector is applied to the
corresponding sensor element. A weight must be applied to each element in the
sensor array.

• For a URA, specify element tapering as a complex-valued scalar or complex-valued
M-by-N matrix. In this matrix, M is the number of elements along the z-axis, and
N is the number of elements along the y-axis. M and N correspond to the values
of [NumberofRows, NumberOfColumns] in the Array size matrix. If Taper
is a scalar, the same weight is applied to each element. If the value of Taper is a
matrix, a weight from the matrix is applied to the corresponding sensor element.
A weight must be applied to each element in the sensor array.

• For a Conformal Array, specify element taper as a complex-valued scalar or
complex-valued 1-by-N vector. In this vector, N is the number of elements in the
array as determined by the size of the Element positions vector. If the Taper
parameter is a scalar, the same weight is applied to each element. If the value of
Taper is a vector, a weight from the vector is applied to the corresponding sensor
element. A weight must be applied to each element in the sensor array.

Element lattice

 Angle Doppler Response

3-21

This parameter appears when Geometry is set to URA. When Sensor Array is set to
Replicated subarray, this parameter applies to the sub-array.

Specify the element lattice as one of Rectangular or Triangular

• Rectangular — Aligns all the elements in both row and column directions.
• Triangular — Shifts the even row elements toward the positive row axis

direction. The elements are shifted a distance of half the element spacing along
the row.

Element positions
This parameter appears when Geometry is set to Conformal Array. When Sensor
Array is set to Replicated subarray, this parameter applies to subarrays.

Specify the positions of the elements, in meters, in the conformal array as a 3-by-N
matrix, where N indicates the number of elements in the conformal array. Each
column of Element positions represents the position of a single element, in the
form [x; y; z], in the array’s local coordinate system. The local coordinate system
has its origin at an arbitrary point.

Element normals (deg)
This parameter appears when Geometry is set to Conformal Array. When Sensor
Array is set to Replicated subarray, this parameter applies to subarrays.

Specify the normal directions of the elements in a conformal array as a 2-by-N
matrix or a 2-by-1 column vector in degrees. The variable N indicates the number of
elements in the array. If Element normals is a matrix, each column specifies the
normal direction of the corresponding element in the form [azimuth;elevation],
with respect to the local coordinate system. The local coordinate system aligns
the positive x-axis with the direction normal to the conformal array. If Element
normals is a 2-by-1 column vector, the vector specifies the same pointing direction
for all elements in the array.

You can use the Element positions and Element normals parameters to represent
any arrangement in which pairs of elements differ by certain transformations. You
can combine translation, azimuth rotation, and elevation rotation transformations.
However, you cannot use transformations that require rotation about the normal.

Subarray definition matrix
This parameter appears when Sensor array is set to Partitioned array.

3 Blocks — Alphabetical List

3-22

Specify the subarray selection as an M-by-N matrix. M is the number of subarrays
and N is the total number of elements in the array. Each row of the matrix indicates
which elements belong to the corresponding subarray. Each entry in the matrix is 1
or 0, where 1 indicates that the element appears in the subarray and 0 indicates the
opposite. Each row must contain at least one 1.

The phase center of each subarray is its geometric center. Subarray definition
matrix and Geometry determine the geometric center.

Subarray steering method
This parameter appears when Sensor array is set to Partitioned array or
Replicated subarray.

Specify the subarray steering method as

• None

• Phase

• Time

When using the Narrowband Receive Array, Narrowband Transmit Array,
or Wideband Receive Array blocks, select Phase or Time to create the input port
Steer on each block.

Phase shifter frequency
This parameter appears when you set Sensor array to Partitioned array or
Replicated subarray and you set Subarray steering method to Phase.

Specify the operating frequency, in hertz, of phase shifters to perform subarray
steering as a positive scalar.

Number of bits in phase shifters
This parameter appears when you set Sensor array to Partitioned array or
Replicated subarray and you set Subarray steering method to Phase.

The number of bits used to quantize the phase shift component of beamformer or
steering vector weights. Specify the number of bits as a non-negative integer. A value
of zero indicates that no quantization is performed.

Subarrays layout
This parameter appears when you set Sensor array to Replicated subarray.

Specify the layout of the replicated subarrays as Rectangular or Custom.
Grid size

 Angle Doppler Response

3-23

This parameter appears when you set Sensor array to Replicated subarray and
Subarrays layout to Rectangular.

Specify the size of the rectangular grid as a single positive integer or an positive
integer-valued 1-by-2 positive row vector.

If Grid size is a scalar, the array has an equal number of subarrays in each
row and column. If Grid size is a 1-by-2 vector of the form [NumberOfRows,
NumberOfColumns], the first entry is the number of subarrays along each column.
The second entry is the number of subarrays in each row. A row is along the local y-
axis, and a column is along the local z-axis. This figure shows how you can replicate a
3-by-2 URA subarray using a Grid size of [1,2].

3 x 2 Element URA

Replicated on a 1 x 2 Grid

1

2

3

4

6

5

Z

Y

7

8

9

10

12

11

Grid spacing
This parameter appears when you set Sensor array to Replicated subarray and
Subarrays layout to Rectangular.

Specify the rectangular grid spacing of subarrays as a real-valued positive scalar, a 1-
by-2 row vector, or Auto. Grid spacing units are expressed in meters.

• If Grid spacing is a scalar, the spacing along the row and the spacing along the
column is the same.

• If Grid spacing is a 1-by-2 row vector, the vector has the form
[SpacingBetweenRows,SpacingBetweenColumn]. The first entry specifies
the spacing between rows along a column. The second entry specifies the spacing
between columns along a row.

3 Blocks — Alphabetical List

3-24

• If Grid spacing is set to Auto, replication preserves the element spacing of the
subarray for both rows and columns while building the full array. This option is
available only when you specify Geometry as ULA or URA.

Subarray positions (m)
This parameter appears when you set Sensor array to Replicated subarray and
Subarrays layout to Custom.

Specify the positions of the subarrays in the custom grid as a 3-by-N matrix, where
N is the number of subarrays in the array. Each column of the matrix represents the
position of a single subarray, in meters, in the array’s local coordinate system. The
coordinates are expressed in the form [x; y; z].

Subarray normals
This parameter appears when you set the Sensor array parameter to Replicated
subarray and the Subarrays layout to Custom.

Specify the normal directions of the subarrays in the array. This parameter value
is a 2-by-N matrix, where N is the number of subarrays in the array. Each column
of the matrix specifies the normal direction of the corresponding subarray, in the
form [azimuth; elevation]. Each angle is in degrees and is defined in the local
coordinate system.

You can use the Subarray positions and Subarray normals parameters
to represent any arrangement in which pairs of subarrays differ by certain
transformations. The transformations can combine translation, azimuth rotation, and
elevation rotation. However, you cannot use transformations that require rotation
about the normal.

Expression
A valid MATLAB expression containing an array constructor, for example,
phased.URA.

Sensor Array Tab: Element Parameters

Element type
Specify antenna or microphone type as

• Isotropic Antenna

• Cosine Antenna

• Custom Antenna

 Angle Doppler Response

3-25

• Omni Microphone

• Custom Microphone

Exponent of cosine pattern
This parameter appears when you set Element type to Cosine Antenna.

Specify the exponent of the cosine pattern as a scalar or a 1-by-2 vector. You
must specify all values as real numbers greater than or equal to 1. When you set
Exponent of cosine pattern to a scalar, both the azimuth direction cosine pattern
and the elevation direction cosine pattern are raised to the specified value. When you
set Exponent of cosine pattern to a 1-by-2 vector, the first element is the exponent
for the azimuth direction cosine pattern and the second element is the exponent for
the elevation direction cosine pattern.

Operating frequency range (Hz)
This parameter appears when Element type is set to Isotropic Antenna, Cosine
Antenna, or Omni Microphone.

Specify the operating frequency range, in hertz, of the antenna element as a 1-by-2
row vector in the form [LowerBound,UpperBound]. The antenna element has no
response outside the specified frequency range.

Operating frequency vector (Hz)
This parameter appears when Element type is set to Custom Antenna or Custom
Microphone.

Specify L frequencies, in hertz, at which to set the antenna and microphone
frequency responses. Specify Operating frequency vector (Hz) as a 1-by-L
row vector of increasing value. Use Frequency responses to set the frequency
responses. The antenna or microphone element has no response outside the
frequency range specified by the minimum and maximum elements of Operating
frequency vector.

Frequency responses (dB)
This parameter appears when Element type is set to Custom Antenna or Custom
Microphone.

Specify this parameter as the frequency response of an antenna or microphone,
in decibels, for the frequencies defined by Operating frequency vector. Specify
Frequency responses (dB) as a 1-by-L vector matching the dimensions of the
vector specified in Operating frequency vector.

3 Blocks — Alphabetical List

3-26

Azimuth angles (deg)
This parameter appears when Element type is set to Custom Antenna.

Specify P azimuth angles, in degrees, at which to calculate the antenna radiation
pattern as a 1-by-P row vector. P must be greater than 2. The azimuth angles must
lie between –180° and 180° and be in strictly increasing order.

Elevation angles (deg)
This parameter appears when the Element type is set to Custom Antenna.

Specify the Q elevation angles, in degrees, at which to compute the radiation pattern
as a 1-by-Q vector. Q must be greater than 2. The elevation angles must lie between –
90° and 90° and be in strictly increasing order.

Radiation pattern (dB)
This parameter appears when the Element type is set to Custom Antenna.

The magnitude in db of the combined polarized antenna radiation pattern specified
as a Q-by-P matrix or a Q-by-P-by-L array. The value of Q must match the value of Q
specified by Elevation angles. The value of P must match the value of P specified by
Azimuth angles. The value of L must match the value of L specified by Operating
frequency vector (Hz).

Polar pattern frequencies (Hz)
This parameter appears when the Element type is set to Custom Microphone.

Specify the Mmeasuring frequencies in hertz of the polar patterns 1-by-M vector.
The measuring frequencies lie within the frequency range specified byOperating
frequency vector.

Polar pattern angles (deg)
This parameter appears when Element type is set to Custom Microphone.

Specify N measuring angles, in degrees, of the polar patterns as a 1-by-N. The angles
are measured from the central pickup axis of the microphone, and must be between –
180° and 180°, inclusive.

Polar pattern (dB)
This parameter appears when Element type is set to Custom Microphone.

Specify the magnitude of the polar patterns, in dB, of the microphone element as
an M-by-N matrix. M is the number of measuring frequencies specified in Polar

 Angle Doppler Response

3-27

pattern frequencies. N is the number of measuring angles specified in Polar
pattern angles. Each row of the matrix represents the magnitude of the polar
pattern measured at the corresponding frequency specified in Polar pattern
frequencies and all angles specified in Polar pattern angles. Assume that the
pattern is measured in the azimuth plane. In the azimuth plane, the elevation angle
is 0° and the central pickup axis is 0° degrees azimuth and 0° degrees elevation.
Assume also that the polar pattern is symmetric around the central axis. You can
construct the microphone’s response pattern in 3-D space from the polar pattern.

Baffle the back of the element
This check box appears only when the Element type parameter is set to Isotropic
Antenna or Omni Microphone.

Select this check box to baffle the back of the antenna element. In this case, the
antenna responses to all azimuth angles beyond ±90° from broadside are set to zero.
Define the broadside direction as 0° azimuth angle and 0° elevation angle.

Ports

Note: The block input and output ports correspond to the input and output parameters
described in the step method of the underlying System object. See link at the bottom of
this page.

Port Supported Data Types

X Double-precision floating point
El Double-precision floating point
Resp Double-precision floating point
Ang Double-precision floating point
Dop Double-precision floating point

See Also
phased.AngleDopplerResponse

Introduced in R2014b

3 Blocks — Alphabetical List

3-28

Azimuth Broadside Converter

Convert azimuth angle to broadside angle and vice versa

Library

Environment and Targets

phasedenvlib

Description

The Azimuth Broadside Converter block converts a direction expressed in terms of
broadside angle for a given elevation angle to the corresponding azimuth angle or from
azimuth angle to broadside angle.

 Azimuth Broadside Converter

3-29

Dialog Box

Conversion mode
Specify the direction of the conversion from broadside angle to azimuth angle or
azimuth angle to broadside angle..

broadside-> azimuth Convert a broadside angle and elevation
angle to azimuth angle.

azimuth-> broadside Convert a azimuth angle and elevation
angle to broadside angle.

Ports

Note: The block input and output ports correspond to the input and output parameters
described in the step method of the underlying System object. See link at the bottom of
this page.

3 Blocks — Alphabetical List

3-30

Port Supported Data Types

bsd Double-precision floating point
el Double-precision floating point
az Double-precision floating point

See Also
az2broadside | broadside2az

Introduced in R2014b

 Backscatter Radar Target

3-31

Backscatter Radar Target

Backscatter radar target

Library

Environment and Targets

phasedenvlib

Description

The Backscatter Radar Target block models the monostatic case of reflection of
nonpolarized electromagnetic signals from a radar target. Target model includes all four
Swerling target fluctuation models and non-fluctuating model. You can model several
targets simultaneously by specifying multiple radar cross-section matrices.

3 Blocks — Alphabetical List

3-32

Dialog Box

Azimuth angles (deg)

 Backscatter Radar Target

3-33

Azimuth angles used to define the angular coordinates of the RCS pattern (m^2)
parameter. Specify azimuth angles as a length P vector. Units are degrees. P must be
greater than two. This parameter determines the incident azimuthal arrival angle of
any element of the cross-section patterns.

Elevation angles (deg)
Elevation angles used to define the angular coordinates of the RCS pattern (m^2)
parameter. Specify elevation angles as a length Q vector. Units are degrees. Q must
be greater than two. This parameter determines the incident elevation arrival angle
of any element of the cross-section patterns.

RCS pattern (m^2)
Radar cross-section pattern, specified as a Q-by-P complex-valued matrix or a Q-
by-P-by-M complex-valued array.

• Q is the length of the vector in the Elevation angles (deg) parameter.
• P is the length of the vector in the Azimuth angles (deg) parameter.
• M is the number of target patterns. The number of patterns corresponds to the

number of signals passed into the input port X. You can, however, use a single
pattern to model multiple signals reflecting from a single target.

You can, however, use a single pattern to model multiple signals reflecting from a
single target. Pattern units are square-meters.

Pattern units are square-meters.
Fluctuation model

Specify the statistical model of the target as either Nonfluctuating, Swerling1,
Swerling2, Swerling3, or Swerling4. When you set this parameter to a value
other than Nonfluctuating, you then set radar cross-sections parameters using the
Update input port.

Propagation speed (m/s)
Specify the propagation speed of the signal, in meters per second, as a positive scalar.
You can use the function physconst to specify the speed of light.

Operating frequency (Hz)
Specify the carrier frequency of the signal that reflects from the target, as a positive
scalar in hertz.

Simulate using
Block simulation, specified as Interpreted Execution or Code Generation.
If you want your block to use the MATLAB interpreter, choose Interpreted

3 Blocks — Alphabetical List

3-34

Execution. If you want your block to run as compiled code, choose Code
Generation. Compiled code requires time to compile but usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The
block runs the underlying System object in MATLAB. You can change and execute
your model quickly. When you are satisfied with your results, you can then run the
block using Code Generation. Long simulations run faster than in interpreted
execution. You can run repeated executions without recompiling. However, if you
change any block parameters, then the block automatically recompiles before
execution.

When setting this parameter, you must take into account the overall model
simulation mode. The table shows how the Simulate using parameter interacts with
the overall simulation mode.

When the Simulink model is in Accelerator mode, the block mode specified using
Simulate using overrides the simulation mode.

Acceleration Modes

When you use this simulation mode ...If you want to
simulate using ... Normal Accelerator Rapid

Accelerator

Interpreted

Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Code Generation The block is
compiled.

All blocks in the
model are compiled.

Creates a
standalone
executable from the
model.

For more information, see “Choosing a Simulation Mode” from the Simulink
documentation.

Ports

Note: The block input and output ports correspond to the input and output parameters
described in the step method of the underlying System object. See link at the bottom of
this page.

 Backscatter Radar Target

3-35

Port Supported Data Types

X Double-precision floating point
Ang Double-precision floating point
Update Double-precision floating point
Out Double-precision floating point

See Also
phased.BackscatterRadarTarget

Introduced in R2016a

3 Blocks — Alphabetical List

3-36

Barrage Jammer

Barrage jammer interference source

Library

Environment and Target

phasedenvlib

Description

The Barrage Jammer block generates a wideband noise-like jamming signal.

 Barrage Jammer

3-37

Dialog Box

Effective radiated power (W)
Specify the effective radiated power (ERP) in watts of the jamming signal as a
positive scalar.

Number of samples per frame
Specify the number of samples in the jamming signal output as a positive integer.
The number of samples must match the number of samples produced by a signal
source. For example, if you use the Rectangular Waveform block as a signal source
and set its Output signal format to Samples, the value of Number of samples
per frame should match the Rectangular Waveform block's Number of samples
in output parameter. If you set the Output signal format to Pulses, the Number
of samples per frame should match the product of Sample rate and Number of
pulses in output divided by the Pulse repetition frequency.

Simulate using

3 Blocks — Alphabetical List

3-38

Block simulation, specified as Interpreted Execution or Code Generation.
If you want your block to use the MATLAB interpreter, choose Interpreted
Execution. If you want your block to run as compiled code, choose Code
Generation. Compiled code requires time to compile but usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The
block runs the underlying System object in MATLAB. You can change and execute
your model quickly. When you are satisfied with your results, you can then run the
block using Code Generation. Long simulations run faster than in interpreted
execution. You can run repeated executions without recompiling. However, if you
change any block parameters, then the block automatically recompiles before
execution.

When setting this parameter, you must take into account the overall model
simulation mode. The table shows how the Simulate using parameter interacts with
the overall simulation mode.

When the Simulink model is in Accelerator mode, the block mode specified using
Simulate using overrides the simulation mode.

Acceleration Modes

When you use this simulation mode ...If you want to
simulate using ... Normal Accelerator Rapid

Accelerator

Interpreted

Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Code Generation The block is
compiled.

All blocks in the
model are compiled.

Creates a
standalone
executable from the
model.

For more information, see “Choosing a Simulation Mode” from the Simulink
documentation.

Ports

Note: The block input and output ports correspond to the input and output parameters
described in the step method of the underlying System object. See link at the bottom of
this page.

 Barrage Jammer

3-39

Port Supported Data Types

Out Double-precision floating point

See Also
phased.BarrageJammer

Introduced in R2014b

3 Blocks — Alphabetical List

3-40

Beamscan Spectrum

Beamscan spatial spectrum estimator

Library

Direction of Arrival (DOA)

phaseddoalib

Description

The Beamscan Spectrum block estimates the spatial spectrum of incoming narrowband
signals by scanning a range of azimuth and elevation angles using a narrowband
conventional beamformer. The block optionally calculates the direction of arrival of a
specified number of signals by locating peaks of the spectrum.

 Beamscan Spectrum

3-41

Dialog Box

3 Blocks — Alphabetical List

3-42

Propagation speed (m/s)
Specify the propagation speed of the signal, in meters per second, as a positive scalar.
You can use the function physconst to specify the speed of light.

Operating frequency (Hz)
Specify the operating frequency of the system, in hertz, as a positive scalar.

Number of bits in phase shifters
The number of bits used to quantize the phase shift component of beamformer or
steering vector weights. Specify the number of bits as a non-negative integer. A value
of zero indicates that no quantization is performed.

Forward-backward averaging
Select this check box to use forward-backward averaging to estimate the covariance
matrix for sensor arrays with a conjugate symmetric array manifold.

Azimuth scan angles (deg)
Specify the azimuth scan angles, in degrees, as a real vector. The angles must be
between –180° and 180°, inclusive. You must specify the angles in ascending order.

Elevation scan angles (deg)
Specify the elevation scan angles, in degrees, as a real vector or scalar. The angles
must be between –90° and 90°, inclusive. You must specify the angles in an ascending
order.

Enable DOA output
Select this check box to obtain the signal's direction of arrival (DOA) from the output
port Ang. Selecting this check box also enables the Number of signals parameter in
the dialog box.

Number of signals
Specify the number of signals for DOA estimation as a positive scalar integer. This
parameter appears when you select the Enable DOA output check box.

Simulate using
Block simulation, specified as Interpreted Execution or Code Generation.
If you want your block to use the MATLAB interpreter, choose Interpreted
Execution. If you want your block to run as compiled code, choose Code
Generation. Compiled code requires time to compile but usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The
block runs the underlying System object in MATLAB. You can change and execute

 Beamscan Spectrum

3-43

your model quickly. When you are satisfied with your results, you can then run the
block using Code Generation. Long simulations run faster than in interpreted
execution. You can run repeated executions without recompiling. However, if you
change any block parameters, then the block automatically recompiles before
execution.

When setting this parameter, you must take into account the overall model
simulation mode. The table shows how the Simulate using parameter interacts with
the overall simulation mode.

When the Simulink model is in Accelerator mode, the block mode specified using
Simulate using overrides the simulation mode.

Acceleration Modes

When you use this simulation mode ...If you want to
simulate using ... Normal Accelerator Rapid

Accelerator

Interpreted

Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Code Generation The block is
compiled.

All blocks in the
model are compiled.

Creates a
standalone
executable from the
model.

For more information, see “Choosing a Simulation Mode” from the Simulink
documentation.

3 Blocks — Alphabetical List

3-44

 Beamscan Spectrum

3-45

Array Parameters

Specify sensor array as
Specify a sensor array directly or by using a MATLAB expression.

Types

Array (no subarrays)

MATLAB expression

Geometry
Specify the array geometry as one of the following

• ULA — Uniform Line Array
• URA — Uniform Rectangular Array
• UCA — Uniform Circular Array
• Conformal Array

Number of elements
Specifies the number of elements in the array as an integer.

This parameter appears when the Geometry is set to ULA or UCA. When Sensor
Array is set to Replicated subarray, this parameter applies to the sub-array.

Array size
This parameter appears when Geometry is set to URA. When Sensor Array is set to
Replicated subarray, this parameter applies to the subarrays.

Specify the size of the array as a 1-by-2 integer vector or a single integer containing.

• If Array size is a 1-by-2 vector, the vector has the form
[NumberOfRows,NumberOfColumns] where NumberOfRows and
NumberOfColumns specify the number of rows and columns of the array,
respectively.

• If Array size is an integer, the array has the same number of rows and columns.

For a URA, elements are indexed from top to bottom along a column and continuing
to the next columns from left to right. In this figure, an Array size of [3,2]
produces an array of three rows and two columns.

3 Blocks — Alphabetical List

3-46

Size and Element Indexing Order

for Uniform Rectangular Arrays

Example: Size = [3,2]

1

2

3

4

6

5

Z

Y

Element spacing
This parameter appears when Geometry is set to ULA or URA. When Sensor Array
is set to Replicated subarray, this parameter applies to the subarrays.

• For a ULA, specify the spacing, in meters, between two adjacent elements in the
array as a scalar.

• For a URA, specify the element spacing of the array, in meters, as a 1-by-2 vector
or a scalar. If Element spacing is a 1-by-2 vector, the vector has the form
[SpacingBetweenRows,SpacingBetweenColumns]. For a discussion of
these quantities, see phased.URA. If Element spacing is a scalar, the spacings
between rows and columns are equal.

Array axis
This parameter appears when the Geometry parameter is set to ULA or when the
block supports only a ULA array geometry. You can specify this parameters as 'x',
'y', or 'z'. Then, all ULA array elements are uniformly spaced along this axis in
the local array coordinate system.

Array normal
This parameter appears when the Geometry parameter is set to URA or UCA. You
can specify the Array normal parameter as 'x', 'y', or 'z'. Then, all URA and

 Beamscan Spectrum

3-47

UCA array elements are placed in the yz-, zx-, or xy- planes, respectively, of the array
coordinate system.

Radius of UCA (m)
Radius of a uniform circular array specified as a positive scalar. Units are meters.

This parameter appears when the Geometry is set to UCA.
Taper

Tapers, also known as element weights, are applied to sensor elements in the array.
Tapers are used to modify both the amplitude and phase of the transmitted or
received data.

This parameter appears when Geometry is set to ULA, URA, UCA, or Conformal
Array. When Sensor Array is set to Replicated subarray, this parameter
applies to subarrays.

• For a ULA or UCA, specify element tapering as a complex-valued scalar or a
complex-valued 1-by-N row vector. In this vector, N represents the number
of elements in the array. If Taper is a scalar, the same weight is applied to
each element. If Taper is a vector, a weight from the vector is applied to the
corresponding sensor element. A weight must be applied to each element in the
sensor array.

• For a URA, specify element tapering as a complex-valued scalar or complex-valued
M-by-N matrix. In this matrix, M is the number of elements along the z-axis, and
N is the number of elements along the y-axis. M and N correspond to the values
of [NumberofRows, NumberOfColumns] in the Array size matrix. If Taper
is a scalar, the same weight is applied to each element. If the value of Taper is a
matrix, a weight from the matrix is applied to the corresponding sensor element.
A weight must be applied to each element in the sensor array.

• For a Conformal Array, specify element taper as a complex-valued scalar or
complex-valued 1-by-N vector. In this vector, N is the number of elements in the
array as determined by the size of the Element positions vector. If the Taper
parameter is a scalar, the same weight is applied to each element. If the value of
Taper is a vector, a weight from the vector is applied to the corresponding sensor
element. A weight must be applied to each element in the sensor array.

Element lattice
This parameter appears when Geometry is set to URA. When Sensor Array is set to
Replicated subarray, this parameter applies to the sub-array.

3 Blocks — Alphabetical List

3-48

Specify the element lattice as one of Rectangular or Triangular

• Rectangular — Aligns all the elements in both row and column directions.
• Triangular — Shifts the even row elements toward the positive row axis

direction. The elements are shifted a distance of half the element spacing along
the row.

Element positions
This parameter appears when Geometry is set to Conformal Array. When Sensor
Array is set to Replicated subarray, this parameter applies to subarrays.

Specify the positions of the elements, in meters, in the conformal array as a 3-by-N
matrix, where N indicates the number of elements in the conformal array. Each
column of Element positions represents the position of a single element, in the
form [x; y; z], in the array’s local coordinate system. The local coordinate system
has its origin at an arbitrary point.

Element normals (deg)
This parameter appears when Geometry is set to Conformal Array. When Sensor
Array is set to Replicated subarray, this parameter applies to subarrays.

Specify the normal directions of the elements in a conformal array as a 2-by-N
matrix or a 2-by-1 column vector in degrees. The variable N indicates the number of
elements in the array. If Element normals is a matrix, each column specifies the
normal direction of the corresponding element in the form [azimuth;elevation],
with respect to the local coordinate system. The local coordinate system aligns
the positive x-axis with the direction normal to the conformal array. If Element
normals is a 2-by-1 column vector, the vector specifies the same pointing direction
for all elements in the array.

You can use the Element positions and Element normals parameters to represent
any arrangement in which pairs of elements differ by certain transformations. You
can combine translation, azimuth rotation, and elevation rotation transformations.
However, you cannot use transformations that require rotation about the normal.

Expression
A valid MATLAB expression containing an array constructor, for example,
phased.URA.

Sensor Array Tab: Element Parameters

Element type

 Beamscan Spectrum

3-49

Specify antenna or microphone type as

• Isotropic Antenna

• Cosine Antenna

• Custom Antenna

• Omni Microphone

• Custom Microphone

Exponent of cosine pattern
This parameter appears when you set Element type to Cosine Antenna.

Specify the exponent of the cosine pattern as a scalar or a 1-by-2 vector. You
must specify all values as real numbers greater than or equal to 1. When you set
Exponent of cosine pattern to a scalar, both the azimuth direction cosine pattern
and the elevation direction cosine pattern are raised to the specified value. When you
set Exponent of cosine pattern to a 1-by-2 vector, the first element is the exponent
for the azimuth direction cosine pattern and the second element is the exponent for
the elevation direction cosine pattern.

Operating frequency range (Hz)
This parameter appears when Element type is set to Isotropic Antenna, Cosine
Antenna, or Omni Microphone.

Specify the operating frequency range, in hertz, of the antenna element as a 1-by-2
row vector in the form [LowerBound,UpperBound]. The antenna element has no
response outside the specified frequency range.

Operating frequency vector (Hz)
This parameter appears when Element type is set to Custom Antenna or Custom
Microphone.

Specify L frequencies, in hertz, at which to set the antenna and microphone
frequency responses. Specify Operating frequency vector (Hz) as a 1-by-L
row vector of increasing value. Use Frequency responses to set the frequency
responses. The antenna or microphone element has no response outside the
frequency range specified by the minimum and maximum elements of Operating
frequency vector.

Frequency responses (dB)
This parameter appears when Element type is set to Custom Antenna or Custom
Microphone.

3 Blocks — Alphabetical List

3-50

Specify this parameter as the frequency response of an antenna or microphone,
in decibels, for the frequencies defined by Operating frequency vector. Specify
Frequency responses (dB) as a 1-by-L vector matching the dimensions of the
vector specified in Operating frequency vector.

Azimuth angles (deg)
This parameter appears when Element type is set to Custom Antenna.

Specify P azimuth angles, in degrees, at which to calculate the antenna radiation
pattern as a 1-by-P row vector. P must be greater than 2. The azimuth angles must
lie between –180° and 180° and be in strictly increasing order.

Elevation angles (deg)
This parameter appears when the Element type is set to Custom Antenna.

Specify the Q elevation angles, in degrees, at which to compute the radiation pattern
as a 1-by-Q vector. Q must be greater than 2. The elevation angles must lie between –
90° and 90° and be in strictly increasing order.

Radiation pattern (dB)
This parameter appears when the Element type is set to Custom Antenna.

The magnitude in db of the combined polarized antenna radiation pattern specified
as a Q-by-P matrix or a Q-by-P-by-L array. The value of Q must match the value of Q
specified by Elevation angles. The value of P must match the value of P specified by
Azimuth angles. The value of L must match the value of L specified by Operating
frequency vector (Hz).

Polar pattern frequencies (Hz)
This parameter appears when the Element type is set to Custom Microphone.

Specify the Mmeasuring frequencies in hertz of the polar patterns 1-by-M vector.
The measuring frequencies lie within the frequency range specified byOperating
frequency vector.

Polar pattern angles (deg)
This parameter appears when Element type is set to Custom Microphone.

Specify N measuring angles, in degrees, of the polar patterns as a 1-by-N. The angles
are measured from the central pickup axis of the microphone, and must be between –
180° and 180°, inclusive.

 Beamscan Spectrum

3-51

Polar pattern (dB)
This parameter appears when Element type is set to Custom Microphone.

Specify the magnitude of the polar patterns, in dB, of the microphone element as
an M-by-N matrix. M is the number of measuring frequencies specified in Polar
pattern frequencies. N is the number of measuring angles specified in Polar
pattern angles. Each row of the matrix represents the magnitude of the polar
pattern measured at the corresponding frequency specified in Polar pattern
frequencies and all angles specified in Polar pattern angles. Assume that the
pattern is measured in the azimuth plane. In the azimuth plane, the elevation angle
is 0° and the central pickup axis is 0° degrees azimuth and 0° degrees elevation.
Assume also that the polar pattern is symmetric around the central axis. You can
construct the microphone’s response pattern in 3-D space from the polar pattern.

Baffle the back of the element
This check box appears only when the Element type parameter is set to Isotropic
Antenna or Omni Microphone.

Select this check box to baffle the back of the antenna element. In this case, the
antenna responses to all azimuth angles beyond ±90° from broadside are set to zero.
Define the broadside direction as 0° azimuth angle and 0° elevation angle.

Ports

Note: The block input and output ports correspond to the input and output parameters
described in the step method of the underlying System object. See link at the bottom of
this page.

Port Supported Data Types

In Double-precision floating point
Ang Double-precision floating point
Y Double-precision floating point

See Also
phased.BeamscanEstimator2D

3 Blocks — Alphabetical List

3-52

Introduced in R2014b

 Beamspace ESPRIT DOA

3-53

Beamspace ESPRIT DOA

Beamspace ESPRIT direction of arrival (DOA) estimator

Library

Direction of Arrival (DOA)

phaseddoalib

Description

The Beamspace ESPRIT DOA block estimates the direction of arrival of a specified
number of narrowband signals incident on a uniform linear array using the estimation of
signal parameters via rotational invariance technique (ESPRIT) algorithm in beamspace.

3 Blocks — Alphabetical List

3-54

Dialog Box

 Beamspace ESPRIT DOA

3-55

Propagation speed (m/s)
Specify the propagation speed of the signal, in meters per second, as a positive scalar.
You can use the function physconst to specify the speed of light.

Operating frequency (Hz)
Specify the operating frequency of the system, in hertz, as a positive scalar.

Number of signals
Specify the number of signals as a positive integer scalar.

Spatial smoothing
Specify the amount of averaging, L, used by spatial smoothing to estimate the
covariance matrix as a nonnegative integer. Each increase in smoothing handles
one extra coherent source, but reduces the effective number of elements by one. The
maximum value of this parameter is N – 2, where N is the number of sensors.

Type of least squares method
Specify the least squares method used for ESPRIT as one of TLS or LS where TLS
refers to total least squares and LSrefers to least squares.

Beam fan center direction (deg)
Specify the direction of the center of the beam fan, in degrees, as a real scalar value
between –90° and 90°.

Source of number of beams
Specify the source of the number of beams as one of Auto or Property. If you set
this parameter to Auto, the number of beams equals N – L, where N is the number of
array elements and L is the value of Spatial smoothing.

Number of beams
Specify the number of beams as a positive scalar integer. The lower the number of
beams, the greater the reduction in computational cost. This parameter appears
when you set Source of number of beams to Property.

Simulate using
Block simulation, specified as Interpreted Execution or Code Generation.
If you want your block to use the MATLAB interpreter, choose Interpreted
Execution. If you want your block to run as compiled code, choose Code
Generation. Compiled code requires time to compile but usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The
block runs the underlying System object in MATLAB. You can change and execute

3 Blocks — Alphabetical List

3-56

your model quickly. When you are satisfied with your results, you can then run the
block using Code Generation. Long simulations run faster than in interpreted
execution. You can run repeated executions without recompiling. However, if you
change any block parameters, then the block automatically recompiles before
execution.

When setting this parameter, you must take into account the overall model
simulation mode. The table shows how the Simulate using parameter interacts with
the overall simulation mode.

When the Simulink model is in Accelerator mode, the block mode specified using
Simulate using overrides the simulation mode.

Acceleration Modes

When you use this simulation mode ...If you want to
simulate using ... Normal Accelerator Rapid

Accelerator

Interpreted

Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Code Generation The block is
compiled.

All blocks in the
model are compiled.

Creates a
standalone
executable from the
model.

For more information, see “Choosing a Simulation Mode” from the Simulink
documentation.

 Beamspace ESPRIT DOA

3-57

3 Blocks — Alphabetical List

3-58

Array Parameters

Specify sensor array as
Specify a ULA sensor array directly or by using a MATLAB expression.

Types

Array (no subarrays)

MATLAB expression

Number of elements
Specifies the number of elements in the array as an integer.

Element spacing
Specify the spacing, in meters, between two adjacent elements in the array.

Array axis
This parameter appears when the Geometry parameter is set to ULA or when the
block supports only a ULA array geometry. You can specify this parameters as 'x',
'y', or 'z'. Then, all ULA array elements are uniformly spaced along this axis in
the local array coordinate system.

Taper
Tapers, also known as element weights, are applied to sensor elements in the array.
Tapers are used to modify both the amplitude and phase of the transmitted or
received data.

Specify element tapering as a complex-valued scalar or a complex-valued 1-by-N row
vector. In this vector, N represents the number of elements in the array. If Taper is
a scalar, the same weight is applied to each element. If Taper is a vector, a weight
from the vector is applied to the corresponding sensor element. A weight must be
applied to each element in the sensor array.

Expression
A valid MATLAB expression containing a constructor for a uniform linear array, for
example, phased.ULA.

Sensor Array Tab: Element Parameters

Element type

 Beamspace ESPRIT DOA

3-59

Specify antenna or microphone type as

• Isotropic Antenna

• Cosine Antenna

• Custom Antenna

• Omni Microphone

• Custom Microphone

Exponent of cosine pattern
This parameter appears when you set Element type to Cosine Antenna.

Specify the exponent of the cosine pattern as a scalar or a 1-by-2 vector. You
must specify all values as real numbers greater than or equal to 1. When you set
Exponent of cosine pattern to a scalar, both the azimuth direction cosine pattern
and the elevation direction cosine pattern are raised to the specified value. When you
set Exponent of cosine pattern to a 1-by-2 vector, the first element is the exponent
for the azimuth direction cosine pattern and the second element is the exponent for
the elevation direction cosine pattern.

Operating frequency range (Hz)
This parameter appears when Element type is set to Isotropic Antenna, Cosine
Antenna, or Omni Microphone.

Specify the operating frequency range, in hertz, of the antenna element as a 1-by-2
row vector in the form [LowerBound,UpperBound]. The antenna element has no
response outside the specified frequency range.

Operating frequency vector (Hz)
This parameter appears when Element type is set to Custom Antenna or Custom
Microphone.

Specify L frequencies, in hertz, at which to set the antenna and microphone
frequency responses. Specify Operating frequency vector (Hz) as a 1-by-L
row vector of increasing value. Use Frequency responses to set the frequency
responses. The antenna or microphone element has no response outside the
frequency range specified by the minimum and maximum elements of Operating
frequency vector.

Frequency responses (dB)
This parameter appears when Element type is set to Custom Antenna or Custom
Microphone.

3 Blocks — Alphabetical List

3-60

Specify this parameter as the frequency response of an antenna or microphone,
in decibels, for the frequencies defined by Operating frequency vector. Specify
Frequency responses (dB) as a 1-by-L vector matching the dimensions of the
vector specified in Operating frequency vector.

Azimuth angles (deg)
This parameter appears when Element type is set to Custom Antenna.

Specify P azimuth angles, in degrees, at which to calculate the antenna radiation
pattern as a 1-by-P row vector. P must be greater than 2. The azimuth angles must
lie between –180° and 180° and be in strictly increasing order.

Elevation angles (deg)
This parameter appears when the Element type is set to Custom Antenna.

Specify the Q elevation angles, in degrees, at which to compute the radiation pattern
as a 1-by-Q vector. Q must be greater than 2. The elevation angles must lie between –
90° and 90° and be in strictly increasing order.

Radiation pattern (dB)
This parameter appears when the Element type is set to Custom Antenna.

The magnitude in db of the combined polarized antenna radiation pattern specified
as a Q-by-P matrix or a Q-by-P-by-L array. The value of Q must match the value of Q
specified by Elevation angles. The value of P must match the value of P specified by
Azimuth angles. The value of L must match the value of L specified by Operating
frequency vector (Hz).

Polar pattern frequencies (Hz)
This parameter appears when the Element type is set to Custom Microphone.

Specify the Mmeasuring frequencies in hertz of the polar patterns 1-by-M vector.
The measuring frequencies lie within the frequency range specified byOperating
frequency vector.

Polar pattern angles (deg)
This parameter appears when Element type is set to Custom Microphone.

Specify N measuring angles, in degrees, of the polar patterns as a 1-by-N. The angles
are measured from the central pickup axis of the microphone, and must be between –
180° and 180°, inclusive.

Polar pattern (dB)

 Beamspace ESPRIT DOA

3-61

This parameter appears when Element type is set to Custom Microphone.

Specify the magnitude of the polar patterns, in dB, of the microphone element as
an M-by-N matrix. M is the number of measuring frequencies specified in Polar
pattern frequencies. N is the number of measuring angles specified in Polar
pattern angles. Each row of the matrix represents the magnitude of the polar
pattern measured at the corresponding frequency specified in Polar pattern
frequencies and all angles specified in Polar pattern angles. Assume that the
pattern is measured in the azimuth plane. In the azimuth plane, the elevation angle
is 0° and the central pickup axis is 0° degrees azimuth and 0° degrees elevation.
Assume also that the polar pattern is symmetric around the central axis. You can
construct the microphone’s response pattern in 3-D space from the polar pattern.

Baffle the back of the element
This check box appears only when the Element type parameter is set to Isotropic
Antenna or Omni Microphone.

Select this check box to baffle the back of the antenna element. In this case, the
antenna responses to all azimuth angles beyond ±90° from broadside are set to zero.
Define the broadside direction as 0° azimuth angle and 0° elevation angle.

Ports

Note: The block input and output ports correspond to the input and output parameters
described in the step method of the underlying System object. See link at the bottom of
this page.

Port Supported Data Types

In Double-precision floating point
Ang Double-precision floating point

See Also
phased.BeamspaceESPRITEstimator

Introduced in R2014b

3 Blocks — Alphabetical List

3-62

CFAR Detector

Constant false alarm rate (CFAR) detector

Library

Detection

phaseddetectlib

Description

The CA CFAR block implements a constant false-alarm rate detector using an estimate
of the noise power. The CFAR detector estimates noise power from neighboring cells
surrounding the cell under test. There are four methods for estimating noise: cell-
averaging (CA), greatest-of cell averaging (GOCA), smallest-of cell averaging (SOCA),
and order statistics (OS).

 CFAR Detector

3-63

Dialog Box

CFAR algorithm
Specify the CFAR detection algorithm using one of the values

CA Cell-averaging
GOCA Greatest-of cell averaging

3 Blocks — Alphabetical List

3-64

OS Order statistic
SOCA Smallest-of cell averaging

Number of guard cells
Specify the number of guard cells used in training as an even integer. This parameter
specifies the total number of cells on both sides of the cell under test.

Number of training cells
Specify the number of training cells used in training as an even integer. Whenever
possible, the training cells are equally divided before and after the cell under test.

Rank of order statistic
This parameter appears when CFAR algorithm is set to OS. Specify the rank of the
order statistic as a positive integer scalar. The value must be less than or equal to the
value of Number of training cells.

Threshold factor method
Specify whether the threshold factor comes from an automatic calculation, the
Custom threshold factor parameter, or an input argument. Values of this
parameter are:

Auto The application calculates the threshold factor
automatically based on the desired probability of
false alarm specified in the Probability of false
alarm parameter. The calculation assumes each
independent signal in the input is a single pulse
coming out of a square law detector with no pulse
integration. The calculation also assumes the noise
is white Gaussian.

Custom The Custom threshold factor parameter specifies
the threshold factor.

Input port Threshold factor is set using the input port K. This
port appears only when Threshold factor method
is set to Input port.

Probability of false alarm
This parameter appears only when you set Threshold factor method to Auto.
Specify the desired probability of false alarm as a scalar between 0 and 1 (not
inclusive).

 CFAR Detector

3-65

Custom threshold factor
This parameter appears only when you set Threshold factor method to Custom.
Specify the custom threshold factor as a positive scalar.

Output detection threshold
Select this check box to create an output port Th containing the detection threshold.

Simulate using
Block simulation, specified as Interpreted Execution or Code Generation.
If you want your block to use the MATLAB interpreter, choose Interpreted
Execution. If you want your block to run as compiled code, choose Code
Generation. Compiled code requires time to compile but usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The
block runs the underlying System object in MATLAB. You can change and execute
your model quickly. When you are satisfied with your results, you can then run the
block using Code Generation. Long simulations run faster than in interpreted
execution. You can run repeated executions without recompiling. However, if you
change any block parameters, then the block automatically recompiles before
execution.

When setting this parameter, you must take into account the overall model
simulation mode. The table shows how the Simulate using parameter interacts with
the overall simulation mode.

When the Simulink model is in Accelerator mode, the block mode specified using
Simulate using overrides the simulation mode.

Acceleration Modes

When you use this simulation mode ...If you want to
simulate using ... Normal Accelerator Rapid

Accelerator

Interpreted

Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Code Generation The block is
compiled.

All blocks in the
model are compiled.

Creates a
standalone
executable from the
model.

For more information, see “Choosing a Simulation Mode” from the Simulink
documentation.

3 Blocks — Alphabetical List

3-66

Ports

Note: The block input and output ports correspond to the input and output parameters
described in the step method of the underlying System object. See link at the bottom of
this page.

Port Supported Data Types

X Double-precision floating point
Idx Double-precision floating point
K Double-precision floating point
Th Double-precision floating point
Y Double-precision floating point

See Also
phased.CFARDetector

Introduced in R2014b

 Constant Gamma Clutter

3-67

Constant Gamma Clutter

Constant gamma clutter simulation

Library

Environment and Targets

phasedenvlib

Description

The Constant Gamma Clutter block generates constant gamma clutter reflected from
homogeneous terrain for a monostatic radar transmitting a narrowband signal into free
space. The radar is assumed to be at constant altitude moving at constant speed.

3 Blocks — Alphabetical List

3-68

Dialog Box

 Constant Gamma Clutter

3-69

Terrain gamma value (dB)
Specify the g value used in the constant g clutter model, as a scalar in dB. The g

value depends on both terrain type and the operating frequency.
Earth model

Specify the earth model used in clutter simulation as Flat or Curved. When you set
this parameter to Flat, the earth is assumed to be a flat plane. When you set this
parameter to Curved, the earth is assumed to be a sphere.

Maximum range (m)
Specify the maximum range in meters for the clutter simulation as a positive scalar.
The maximum range must be greater than the value specified in the Radar height
parameter on the Radar panel.

Azimuth coverage (deg)
Specify the azimuth coverage in degrees as a positive scalar. The clutter simulation
covers a region having the specified azimuth span, symmetric to zero degrees
azimuth. Typically, all clutter patches have their azimuth centers within the region,
but by setting the Clutter patch azimuth span value, you can cause some patches
to extend beyond the region.

Clutter patch azimuth span (deg)
Specify the azimuth span of each clutter patch in degrees as a positive scalar.

Clutter coherence time (s)
Specify the coherence time in seconds for the clutter simulation as a positive scalar.
After the coherence time elapses, block updates the random numbers it uses for the
clutter simulation at the next pulse. A value of inf means the random numbers are
never updated.

Propagation speed (m/s)
Specify the propagation speed of the signal, in meters per second, as a positive scalar.
You can use the function physconst to specify the speed of light.

Sample rate (Hz)
Specify the signal sample rate in hertz as a positive scalar. This parameter should be
set to the same value as used in any of the Waveforms library blocks.

Pulse repetition frequency (Hz)
Specify the pulse repetition frequency, PRF, as a scalar or a row vector. Units for
PRF are hertz. This parameter should be set to the same value as used in any
Waveforms library block.

Output signal format

3 Blocks — Alphabetical List

3-70

Specify the format of the output signal as one of Pulses or Samples

. This parameter should be set to the same value as used in any Waveforms library
blocks.

Number of pulses in output
Specify the number of pulses in the block output as a positive integer. This
parameter appears only when you set the Output signal format parameter to
Pulses and should be set to the same value as used in any Waveforms library
blocks.

Number of samples in output
Specify the number of samples in the block output as a positive integer. This
parameter appears only when you set the Output signal format parameter to
Samples and should be set to the same value as used in any Waveforms library
blocks.

Simulate using
Block simulation, specified as Interpreted Execution or Code Generation.
If you want your block to use the MATLAB interpreter, choose Interpreted
Execution. If you want your block to run as compiled code, choose Code
Generation. Compiled code requires time to compile but usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The
block runs the underlying System object in MATLAB. You can change and execute
your model quickly. When you are satisfied with your results, you can then run the
block using Code Generation. Long simulations run faster than in interpreted
execution. You can run repeated executions without recompiling. However, if you
change any block parameters, then the block automatically recompiles before
execution.

When setting this parameter, you must take into account the overall model
simulation mode. The table shows how the Simulate using parameter interacts with
the overall simulation mode.

When the Simulink model is in Accelerator mode, the block mode specified using
Simulate using overrides the simulation mode.

Acceleration Modes

If you want to
simulate using ...

When you use this simulation mode ...

 Constant Gamma Clutter

3-71

Normal Accelerator Rapid

Accelerator

Interpreted

Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Code Generation The block is
compiled.

All blocks in the
model are compiled.

Creates a
standalone
executable from the
model.

For more information, see “Choosing a Simulation Mode” from the Simulink
documentation.

3 Blocks — Alphabetical List

3-72

 Constant Gamma Clutter

3-73

Operating frequency (Hz)
Specify the operating frequency of the system, in hertz, as a positive scalar.

Effective transmitted power (W)
Specify the transmitted effective radiated power (ERP) of the radar system in watts
as a positive scalar.

Radar height (m)
Specify the radar platform height (in meters) measured upward from the surface as a
nonnegative scalar.

Radar speed (m/s)
Specify the radar platform’s speed as a nonnegative scalar in meters per second.

Radar motion direction (deg)
Specify the direction of radar platform motion as a 2-by-1 vector in the form
[AzimuthAngle; ElevationAngle] in degrees. Both azimuth and elevation angle
are measured in the local coordinate system of the radar antenna or antenna array.
Azimuth angle must be between –180° and 180°. Elevation angle must be between –
90° and 90°.

Broadside depression angle (deg)
Specify the depression angle of the radar antenna array in degrees with respect to
broadside as a scalar. Broadside is defined as zero degrees azimuth and zero degrees
elevation. The depression angle is measured downward from the horizontal.

3 Blocks — Alphabetical List

3-74

 Constant Gamma Clutter

3-75

Array Parameters

Specify sensor array as
Sensor element or sensor array specified. A sensor array can also contain subarrays
or as a partitioned array. This parameter can also be expressed as a MATLAB
expression.

Types

Single element

Array (no subarrays)

Partitioned array

Replicated subarray

MATLAB expression

Geometry
Specify the array geometry as one of the following

• ULA — Uniform Line Array
• URA — Uniform Rectangular Array
• UCA — Uniform Circular Array
• Conformal Array

Number of elements
Specifies the number of elements in the array as an integer.

This parameter appears when the Geometry is set to ULA or UCA. When Sensor
Array is set to Replicated subarray, this parameter applies to the sub-array.

Array size
This parameter appears when Geometry is set to URA. When Sensor Array is set to
Replicated subarray, this parameter applies to the subarrays.

Specify the size of the array as a 1-by-2 integer vector or a single integer containing.

• If Array size is a 1-by-2 vector, the vector has the form
[NumberOfRows,NumberOfColumns] where NumberOfRows and
NumberOfColumns specify the number of rows and columns of the array,
respectively.

3 Blocks — Alphabetical List

3-76

• If Array size is an integer, the array has the same number of rows and columns.

For a URA, elements are indexed from top to bottom along a column and continuing
to the next columns from left to right. In this figure, an Array size of [3,2]
produces an array of three rows and two columns.

Size and Element Indexing Order

for Uniform Rectangular Arrays

Example: Size = [3,2]

1

2

3

4

6

5

Z

Y

Element spacing
This parameter appears when Geometry is set to ULA or URA. When Sensor Array
is set to Replicated subarray, this parameter applies to the subarrays.

• For a ULA, specify the spacing, in meters, between two adjacent elements in the
array as a scalar.

• For a URA, specify the element spacing of the array, in meters, as a 1-by-2 vector
or a scalar. If Element spacing is a 1-by-2 vector, the vector has the form
[SpacingBetweenRows,SpacingBetweenColumns]. For a discussion of
these quantities, see phased.URA. If Element spacing is a scalar, the spacings
between rows and columns are equal.

Array axis
This parameter appears when the Geometry parameter is set to ULA or when the
block supports only a ULA array geometry. You can specify this parameters as 'x',

 Constant Gamma Clutter

3-77

'y', or 'z'. Then, all ULA array elements are uniformly spaced along this axis in
the local array coordinate system.

Array normal
This parameter appears when the Geometry parameter is set to URA or UCA. You
can specify the Array normal parameter as 'x', 'y', or 'z'. Then, all URA and
UCA array elements are placed in the yz-, zx-, or xy- planes, respectively, of the array
coordinate system.

Radius of UCA (m)
Radius of a uniform circular array specified as a positive scalar. Units are meters.

This parameter appears when the Geometry is set to UCA.
Taper

Tapers, also known as element weights, are applied to sensor elements in the array.
Tapers are used to modify both the amplitude and phase of the transmitted or
received data.

This parameter appears when Geometry is set to ULA, URA, UCA, or Conformal
Array. When Sensor Array is set to Replicated subarray, this parameter
applies to subarrays.

• For a ULA or UCA, specify element tapering as a complex-valued scalar or a
complex-valued 1-by-N row vector. In this vector, N represents the number
of elements in the array. If Taper is a scalar, the same weight is applied to
each element. If Taper is a vector, a weight from the vector is applied to the
corresponding sensor element. A weight must be applied to each element in the
sensor array.

• For a URA, specify element tapering as a complex-valued scalar or complex-valued
M-by-N matrix. In this matrix, M is the number of elements along the z-axis, and
N is the number of elements along the y-axis. M and N correspond to the values
of [NumberofRows, NumberOfColumns] in the Array size matrix. If Taper
is a scalar, the same weight is applied to each element. If the value of Taper is a
matrix, a weight from the matrix is applied to the corresponding sensor element.
A weight must be applied to each element in the sensor array.

• For a Conformal Array, specify element taper as a complex-valued scalar or
complex-valued 1-by-N vector. In this vector, N is the number of elements in the
array as determined by the size of the Element positions vector. If the Taper
parameter is a scalar, the same weight is applied to each element. If the value of

3 Blocks — Alphabetical List

3-78

Taper is a vector, a weight from the vector is applied to the corresponding sensor
element. A weight must be applied to each element in the sensor array.

Element lattice
This parameter appears when Geometry is set to URA. When Sensor Array is set to
Replicated subarray, this parameter applies to the sub-array.

Specify the element lattice as one of Rectangular or Triangular

• Rectangular — Aligns all the elements in both row and column directions.
• Triangular — Shifts the even row elements toward the positive row axis

direction. The elements are shifted a distance of half the element spacing along
the row.

Element positions
This parameter appears when Geometry is set to Conformal Array. When Sensor
Array is set to Replicated subarray, this parameter applies to subarrays.

Specify the positions of the elements, in meters, in the conformal array as a 3-by-N
matrix, where N indicates the number of elements in the conformal array. Each
column of Element positions represents the position of a single element, in the
form [x; y; z], in the array’s local coordinate system. The local coordinate system
has its origin at an arbitrary point.

Element normals (deg)
This parameter appears when Geometry is set to Conformal Array. When Sensor
Array is set to Replicated subarray, this parameter applies to subarrays.

Specify the normal directions of the elements in a conformal array as a 2-by-N
matrix or a 2-by-1 column vector in degrees. The variable N indicates the number of
elements in the array. If Element normals is a matrix, each column specifies the
normal direction of the corresponding element in the form [azimuth;elevation],
with respect to the local coordinate system. The local coordinate system aligns
the positive x-axis with the direction normal to the conformal array. If Element
normals is a 2-by-1 column vector, the vector specifies the same pointing direction
for all elements in the array.

You can use the Element positions and Element normals parameters to represent
any arrangement in which pairs of elements differ by certain transformations. You
can combine translation, azimuth rotation, and elevation rotation transformations.
However, you cannot use transformations that require rotation about the normal.

 Constant Gamma Clutter

3-79

Subarray definition matrix
This parameter appears when Sensor array is set to Partitioned array.

Specify the subarray selection as an M-by-N matrix. M is the number of subarrays
and N is the total number of elements in the array. Each row of the matrix indicates
which elements belong to the corresponding subarray. Each entry in the matrix is 1
or 0, where 1 indicates that the element appears in the subarray and 0 indicates the
opposite. Each row must contain at least one 1.

The phase center of each subarray is its geometric center. Subarray definition
matrix and Geometry determine the geometric center.

Subarray steering method
This parameter appears when Sensor array is set to Partitioned array or
Replicated subarray.

Specify the subarray steering method as

• None

• Phase

• Time

When using the Narrowband Receive Array, Narrowband Transmit Array,
or Wideband Receive Array blocks, select Phase or Time to create the input port
Steer on each block.

Phase shifter frequency
This parameter appears when you set Sensor array to Partitioned array or
Replicated subarray and you set Subarray steering method to Phase.

Specify the operating frequency, in hertz, of phase shifters to perform subarray
steering as a positive scalar.

Number of bits in phase shifters
This parameter appears when you set Sensor array to Partitioned array or
Replicated subarray and you set Subarray steering method to Phase.

The number of bits used to quantize the phase shift component of beamformer or
steering vector weights. Specify the number of bits as a non-negative integer. A value
of zero indicates that no quantization is performed.

Subarrays layout

3 Blocks — Alphabetical List

3-80

This parameter appears when you set Sensor array to Replicated subarray.

Specify the layout of the replicated subarrays as Rectangular or Custom.
Grid size

This parameter appears when you set Sensor array to Replicated subarray and
Subarrays layout to Rectangular.

Specify the size of the rectangular grid as a single positive integer or an positive
integer-valued 1-by-2 positive row vector.

If Grid size is a scalar, the array has an equal number of subarrays in each
row and column. If Grid size is a 1-by-2 vector of the form [NumberOfRows,
NumberOfColumns], the first entry is the number of subarrays along each column.
The second entry is the number of subarrays in each row. A row is along the local y-
axis, and a column is along the local z-axis. This figure shows how you can replicate a
3-by-2 URA subarray using a Grid size of [1,2].

3 x 2 Element URA

Replicated on a 1 x 2 Grid

1

2

3

4

6

5

Z

Y

7

8

9

10

12

11

Grid spacing
This parameter appears when you set Sensor array to Replicated subarray and
Subarrays layout to Rectangular.

Specify the rectangular grid spacing of subarrays as a real-valued positive scalar, a 1-
by-2 row vector, or Auto. Grid spacing units are expressed in meters.

• If Grid spacing is a scalar, the spacing along the row and the spacing along the
column is the same.

 Constant Gamma Clutter

3-81

• If Grid spacing is a 1-by-2 row vector, the vector has the form
[SpacingBetweenRows,SpacingBetweenColumn]. The first entry specifies
the spacing between rows along a column. The second entry specifies the spacing
between columns along a row.

• If Grid spacing is set to Auto, replication preserves the element spacing of the
subarray for both rows and columns while building the full array. This option is
available only when you specify Geometry as ULA or URA.

Subarray positions (m)
This parameter appears when you set Sensor array to Replicated subarray and
Subarrays layout to Custom.

Specify the positions of the subarrays in the custom grid as a 3-by-N matrix, where
N is the number of subarrays in the array. Each column of the matrix represents the
position of a single subarray, in meters, in the array’s local coordinate system. The
coordinates are expressed in the form [x; y; z].

Subarray normals
This parameter appears when you set the Sensor array parameter to Replicated
subarray and the Subarrays layout to Custom.

Specify the normal directions of the subarrays in the array. This parameter value
is a 2-by-N matrix, where N is the number of subarrays in the array. Each column
of the matrix specifies the normal direction of the corresponding subarray, in the
form [azimuth; elevation]. Each angle is in degrees and is defined in the local
coordinate system.

You can use the Subarray positions and Subarray normals parameters
to represent any arrangement in which pairs of subarrays differ by certain
transformations. The transformations can combine translation, azimuth rotation, and
elevation rotation. However, you cannot use transformations that require rotation
about the normal.

Expression
A valid MATLAB expression containing an array constructor, for example,
phased.URA.

Sensor Array Tab: Element Parameters

Element type

3 Blocks — Alphabetical List

3-82

Specify the antenna or microphone type as

• Isotropic Antenna

• Cosine Antenna

• Custom Antenna

Exponent of cosine pattern
This parameter appears when you set Element type to Cosine Antenna.

Specify the exponent of the cosine pattern as a scalar or a 1-by-2 vector. You
must specify all values as real numbers greater than or equal to 1. When you set
Exponent of cosine pattern to a scalar, both the azimuth direction cosine pattern
and the elevation direction cosine pattern are raised to the specified value. When you
set Exponent of cosine pattern to a 1-by-2 vector, the first element is the exponent
for the azimuth direction cosine pattern and the second element is the exponent for
the elevation direction cosine pattern.

Operating frequency range
This parameter appears when Element type is set to Isotropic Antenna or
Cosine Antenna.

Specify the operating frequency range, in hertz, of the antenna element as a 1-by-2
row vector in the form [LowerBound,UpperBound]. The antenna element has no
response outside the specified frequency range.

Operating frequency vector (Hz)
This parameter appears when Element type is set to Custom Antenna or Custom
Microphone.

Specify L frequencies, in hertz, at which to set the antenna and microphone
frequency responses. Specify Operating frequency vector (Hz) as a 1-by-L
row vector of increasing value. Use Frequency responses to set the frequency
responses. The antenna or microphone element has no response outside the
frequency range specified by the minimum and maximum elements of Operating
frequency vector.

Frequency responses (dB)
This parameter appears when Element type is set to Custom Antenna or Custom
Microphone.

Specify this parameter as the frequency response of an antenna or microphone,
in decibels, for the frequencies defined by Operating frequency vector. Specify

 Constant Gamma Clutter

3-83

Frequency responses (dB) as a 1-by-L vector matching the dimensions of the
vector specified in Operating frequency vector.

Azimuth angles (deg)
This parameter appears when Element type is set to Custom Antenna.

Specify P azimuth angles, in degrees, at which to calculate the antenna radiation
pattern as a 1-by-P row vector. P must be greater than 2. The azimuth angles must
lie between –180° and 180° and be in strictly increasing order.

Elevation angles (deg)
This parameter appears when the Element type is set to Custom Antenna.

Specify the Q elevation angles, in degrees, at which to compute the radiation pattern
as a 1-by-Q vector. Q must be greater than 2. The elevation angles must lie between –
90° and 90° and be in strictly increasing order.

Radiation pattern (dB)
This parameter appears when the Element type is set to Custom Antenna.

The magnitude in db of the combined polarized antenna radiation pattern specified
as a Q-by-P matrix or a Q-by-P-by-L array. The value of Q must match the value of Q
specified by Elevation angles. The value of P must match the value of P specified by
Azimuth angles. The value of L must match the value of L specified by Operating
frequency vector (Hz).

Baffle the back of the element
This check box appears only when the Element type parameter is set to Isotropic
Antenna or Omni Microphone.

Select this check box to baffle the back of the antenna element. In this case, the
antenna responses to all azimuth angles beyond ±90° from broadside are set to zero.
Define the broadside direction as 0° azimuth angle and 0° elevation angle.

Ports

Note: The block input and output ports correspond to the input and output parameters
described in the step method of the underlying System object. See link at the bottom of
this page.

3 Blocks — Alphabetical List

3-84

Port Supported Data Types

Out Double-precision floating point

See Also
phased.ConstantGammaClutter

Introduced in R2014b

 GPU Constant Gamma Clutter

3-85

GPU Constant Gamma Clutter

Constant gamma clutter simulation using gpu

Library

Environment and Targets

phasedenvlib

Description

The GPU Constant Gamma Clutter block generates, using a GPU, constant gamma
clutter reflected from homogeneous terrain for a monostatic radar transmitting a
narrowband signal into free space. The radar is assumed to be at constant altitude
moving at constant speed.

3 Blocks — Alphabetical List

3-86

Dialog Box

 GPU Constant Gamma Clutter

3-87

Terrain gamma value (dB)
Specify the g value used in the constant g clutter model, as a scalar in dB. The g

value depends on both terrain type and the operating frequency.
Earth model

Specify the earth model used in clutter simulation as Flat or Curved. When you set
this parameter to Flat, the earth is assumed to be a flat plane. When you set this
parameter to Curved, the earth is assumed to be a sphere.

Maximum range (m)
Specify the maximum range in meters for the clutter simulation as a positive scalar.
The maximum range must be greater than the value specified in the Radar height
parameter on the Radar panel.

Azimuth coverage (deg)
Specify the azimuth coverage in degrees as a positive scalar. The clutter simulation
covers a region having the specified azimuth span, symmetric to zero degrees
azimuth. Typically, all clutter patches have their azimuth centers within the region,
but by setting the Clutter patch azimuth span value, you can cause some patches
to extend beyond the region.

Clutter patch azimuth span (deg)
Specify the azimuth span of each clutter patch in degrees as a positive scalar.

Clutter coherence time (s)
Specify the coherence time in seconds for the clutter simulation as a positive scalar.
After the coherence time elapses, block updates the random numbers it uses for the
clutter simulation at the next pulse. A value of inf means the random numbers are
never updated.

Propagation speed (m/s)
Specify the propagation speed of the signal, in meters per second, as a positive scalar.
You can use the function physconst to specify the speed of light.

Sample rate (Hz)
Specify the signal sample rate in hertz as a positive scalar. This parameter should be
set to the same value as used in any of the Waveforms library blocks.

Pulse repetition frequency (Hz)
Specify the pulse repetition frequency, PRF, as a scalar or a row vector. Units for
PRF are hertz. This parameter should be set to the same value as used in any
Waveforms library block.

Output signal format

3 Blocks — Alphabetical List

3-88

Specify the format of the output signal as one of Pulses or Samples

. This parameter should be set to the same value as used in any Waveforms library
blocks.

Number of pulses in output
Specify the number of pulses in the block output as a positive integer. This
parameter appears only when you set the Output signal format parameter to
Pulses and should be set to the same value as used in any Waveforms library
blocks.

Number of samples in output
Specify the number of samples in the block output as a positive integer. This
parameter appears only when you set the Output signal format parameter to
Samples and should be set to the same value as used in any Waveforms library
blocks.

Simulate using
Block simulation, specified as Interpreted Execution or Code Generation.
If you want your block to use the MATLAB interpreter, choose Interpreted
Execution. If you want your block to run as compiled code, choose Code
Generation. Compiled code requires time to compile but usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The
block runs the underlying System object in MATLAB. You can change and execute
your model quickly. When you are satisfied with your results, you can then run the
block using Code Generation. Long simulations run faster than in interpreted
execution. You can run repeated executions without recompiling. However, if you
change any block parameters, then the block automatically recompiles before
execution.

When setting this parameter, you must take into account the overall model
simulation mode. The table shows how the Simulate using parameter interacts with
the overall simulation mode.

When the Simulink model is in Accelerator mode, the block mode specified using
Simulate using overrides the simulation mode.

Acceleration Modes

If you want to
simulate using ...

When you use this simulation mode ...

 GPU Constant Gamma Clutter

3-89

Normal Accelerator Rapid

Accelerator

Interpreted

Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Code Generation The block is
compiled.

All blocks in the
model are compiled.

Creates a
standalone
executable from the
model.

For more information, see “Choosing a Simulation Mode” from the Simulink
documentation.

3 Blocks — Alphabetical List

3-90

 GPU Constant Gamma Clutter

3-91

Operating frequency (Hz)
Specify the operating frequency of the system, in hertz, as a positive scalar.

Effective transmitted power (W)
Specify the transmitted effective radiated power (ERP) of the radar system in watts
as a positive scalar.

Radar height (m)
Specify the radar platform height in meters, measured upward from the surface as a
nonnegative scalar.

Radar speed (m/s)
Specify the radar platform’s speed as a nonnegative scalar in meters per second.

Radar motion direction (deg)
Specify the direction of radar platform motion as a 2-by-1 vector in the form
[AzimuthAngle; ElevationAngle] in degrees. Both azimuth and elevation angle
are measured in the local coordinate system of the radar antenna or antenna array.
Azimuth angle must be between –180° and 180°. Elevation angle must be between –
90° and 90°.

Broadside depression angle (deg)
Specify the depression angle of the radar antenna array in degrees with respect to
broadside. This value is a scalar. Broadside is defined as zero degrees azimuth and
zero degrees elevation. The depression angle is measured downward from horizontal.

3 Blocks — Alphabetical List

3-92

 GPU Constant Gamma Clutter

3-93

Array Parameters

Specify sensor array as
Sensor element or sensor array specified. A sensor array can also contain subarrays
or as a partitioned array. This parameter can also be expressed as a MATLAB
expression.

Types

Single element

Array (no subarrays)

Partitioned array

Replicated subarray

MATLAB expression

Geometry
Specify the array geometry as one of the following

• ULA — Uniform Line Array
• URA — Uniform Rectangular Array
• UCA — Uniform Circular Array
• Conformal Array

Number of elements
Specifies the number of elements in the array as an integer.

This parameter appears when the Geometry is set to ULA or UCA. When Sensor
Array is set to Replicated subarray, this parameter applies to the sub-array.

Array size
This parameter appears when Geometry is set to URA. When Sensor Array is set to
Replicated subarray, this parameter applies to the subarrays.

Specify the size of the array as a 1-by-2 integer vector or a single integer containing.

• If Array size is a 1-by-2 vector, the vector has the form
[NumberOfRows,NumberOfColumns] where NumberOfRows and
NumberOfColumns specify the number of rows and columns of the array,
respectively.

3 Blocks — Alphabetical List

3-94

• If Array size is an integer, the array has the same number of rows and columns.

For a URA, elements are indexed from top to bottom along a column and continuing
to the next columns from left to right. In this figure, an Array size of [3,2]
produces an array of three rows and two columns.

Size and Element Indexing Order

for Uniform Rectangular Arrays

Example: Size = [3,2]

1

2

3

4

6

5

Z

Y

Element spacing
This parameter appears when Geometry is set to ULA or URA. When Sensor Array
is set to Replicated subarray, this parameter applies to the subarrays.

• For a ULA, specify the spacing, in meters, between two adjacent elements in the
array as a scalar.

• For a URA, specify the element spacing of the array, in meters, as a 1-by-2 vector
or a scalar. If Element spacing is a 1-by-2 vector, the vector has the form
[SpacingBetweenRows,SpacingBetweenColumns]. For a discussion of
these quantities, see phased.URA. If Element spacing is a scalar, the spacings
between rows and columns are equal.

Array axis
This parameter appears when the Geometry parameter is set to ULA or when the
block supports only a ULA array geometry. You can specify this parameters as 'x',

 GPU Constant Gamma Clutter

3-95

'y', or 'z'. Then, all ULA array elements are uniformly spaced along this axis in
the local array coordinate system.

Array normal
This parameter appears when the Geometry parameter is set to URA or UCA. You
can specify the Array normal parameter as 'x', 'y', or 'z'. Then, all URA and
UCA array elements are placed in the yz-, zx-, or xy- planes, respectively, of the array
coordinate system.

Radius of UCA (m)
Radius of a uniform circular array specified as a positive scalar. Units are meters.

This parameter appears when the Geometry is set to UCA.
Taper

Tapers, also known as element weights, are applied to sensor elements in the array.
Tapers are used to modify both the amplitude and phase of the transmitted or
received data.

This parameter appears when Geometry is set to ULA, URA, UCA, or Conformal
Array. When Sensor Array is set to Replicated subarray, this parameter
applies to subarrays.

• For a ULA or UCA, specify element tapering as a complex-valued scalar or a
complex-valued 1-by-N row vector. In this vector, N represents the number
of elements in the array. If Taper is a scalar, the same weight is applied to
each element. If Taper is a vector, a weight from the vector is applied to the
corresponding sensor element. A weight must be applied to each element in the
sensor array.

• For a URA, specify element tapering as a complex-valued scalar or complex-valued
M-by-N matrix. In this matrix, M is the number of elements along the z-axis, and
N is the number of elements along the y-axis. M and N correspond to the values
of [NumberofRows, NumberOfColumns] in the Array size matrix. If Taper
is a scalar, the same weight is applied to each element. If the value of Taper is a
matrix, a weight from the matrix is applied to the corresponding sensor element.
A weight must be applied to each element in the sensor array.

• For a Conformal Array, specify element taper as a complex-valued scalar or
complex-valued 1-by-N vector. In this vector, N is the number of elements in the
array as determined by the size of the Element positions vector. If the Taper
parameter is a scalar, the same weight is applied to each element. If the value of

3 Blocks — Alphabetical List

3-96

Taper is a vector, a weight from the vector is applied to the corresponding sensor
element. A weight must be applied to each element in the sensor array.

Element lattice
This parameter appears when Geometry is set to URA. When Sensor Array is set to
Replicated subarray, this parameter applies to the sub-array.

Specify the element lattice as one of Rectangular or Triangular

• Rectangular — Aligns all the elements in both row and column directions.
• Triangular — Shifts the even row elements toward the positive row axis

direction. The elements are shifted a distance of half the element spacing along
the row.

Element positions
This parameter appears when Geometry is set to Conformal Array. When Sensor
Array is set to Replicated subarray, this parameter applies to subarrays.

Specify the positions of the elements, in meters, in the conformal array as a 3-by-N
matrix, where N indicates the number of elements in the conformal array. Each
column of Element positions represents the position of a single element, in the
form [x; y; z], in the array’s local coordinate system. The local coordinate system
has its origin at an arbitrary point.

Element normals (deg)
This parameter appears when Geometry is set to Conformal Array. When Sensor
Array is set to Replicated subarray, this parameter applies to subarrays.

Specify the normal directions of the elements in a conformal array as a 2-by-N
matrix or a 2-by-1 column vector in degrees. The variable N indicates the number of
elements in the array. If Element normals is a matrix, each column specifies the
normal direction of the corresponding element in the form [azimuth;elevation],
with respect to the local coordinate system. The local coordinate system aligns
the positive x-axis with the direction normal to the conformal array. If Element
normals is a 2-by-1 column vector, the vector specifies the same pointing direction
for all elements in the array.

You can use the Element positions and Element normals parameters to represent
any arrangement in which pairs of elements differ by certain transformations. You
can combine translation, azimuth rotation, and elevation rotation transformations.
However, you cannot use transformations that require rotation about the normal.

 GPU Constant Gamma Clutter

3-97

Subarray definition matrix
This parameter appears when Sensor array is set to Partitioned array.

Specify the subarray selection as an M-by-N matrix. M is the number of subarrays
and N is the total number of elements in the array. Each row of the matrix indicates
which elements belong to the corresponding subarray. Each entry in the matrix is 1
or 0, where 1 indicates that the element appears in the subarray and 0 indicates the
opposite. Each row must contain at least one 1.

The phase center of each subarray is its geometric center. Subarray definition
matrix and Geometry determine the geometric center.

Subarray steering method
This parameter appears when Sensor array is set to Partitioned array or
Replicated subarray.

Specify the subarray steering method as

• None

• Phase

• Time

When using the Narrowband Receive Array, Narrowband Transmit Array,
or Wideband Receive Array blocks, select Phase or Time to create the input port
Steer on each block.

Phase shifter frequency
This parameter appears when you set Sensor array to Partitioned array or
Replicated subarray and you set Subarray steering method to Phase.

Specify the operating frequency, in hertz, of phase shifters to perform subarray
steering as a positive scalar.

Number of bits in phase shifters
This parameter appears when you set Sensor array to Partitioned array or
Replicated subarray and you set Subarray steering method to Phase.

The number of bits used to quantize the phase shift component of beamformer or
steering vector weights. Specify the number of bits as a non-negative integer. A value
of zero indicates that no quantization is performed.

Subarrays layout

3 Blocks — Alphabetical List

3-98

This parameter appears when you set Sensor array to Replicated subarray.

Specify the layout of the replicated subarrays as Rectangular or Custom.
Grid size

This parameter appears when you set Sensor array to Replicated subarray and
Subarrays layout to Rectangular.

Specify the size of the rectangular grid as a single positive integer or an positive
integer-valued 1-by-2 positive row vector.

If Grid size is a scalar, the array has an equal number of subarrays in each
row and column. If Grid size is a 1-by-2 vector of the form [NumberOfRows,
NumberOfColumns], the first entry is the number of subarrays along each column.
The second entry is the number of subarrays in each row. A row is along the local y-
axis, and a column is along the local z-axis. This figure shows how you can replicate a
3-by-2 URA subarray using a Grid size of [1,2].

3 x 2 Element URA

Replicated on a 1 x 2 Grid

1

2

3

4

6

5

Z

Y

7

8

9

10

12

11

Grid spacing
This parameter appears when you set Sensor array to Replicated subarray and
Subarrays layout to Rectangular.

Specify the rectangular grid spacing of subarrays as a real-valued positive scalar, a 1-
by-2 row vector, or Auto. Grid spacing units are expressed in meters.

• If Grid spacing is a scalar, the spacing along the row and the spacing along the
column is the same.

 GPU Constant Gamma Clutter

3-99

• If Grid spacing is a 1-by-2 row vector, the vector has the form
[SpacingBetweenRows,SpacingBetweenColumn]. The first entry specifies
the spacing between rows along a column. The second entry specifies the spacing
between columns along a row.

• If Grid spacing is set to Auto, replication preserves the element spacing of the
subarray for both rows and columns while building the full array. This option is
available only when you specify Geometry as ULA or URA.

Subarray positions (m)
This parameter appears when you set Sensor array to Replicated subarray and
Subarrays layout to Custom.

Specify the positions of the subarrays in the custom grid as a 3-by-N matrix, where
N is the number of subarrays in the array. Each column of the matrix represents the
position of a single subarray, in meters, in the array’s local coordinate system. The
coordinates are expressed in the form [x; y; z].

Subarray normals
This parameter appears when you set the Sensor array parameter to Replicated
subarray and the Subarrays layout to Custom.

Specify the normal directions of the subarrays in the array. This parameter value
is a 2-by-N matrix, where N is the number of subarrays in the array. Each column
of the matrix specifies the normal direction of the corresponding subarray, in the
form [azimuth; elevation]. Each angle is in degrees and is defined in the local
coordinate system.

You can use the Subarray positions and Subarray normals parameters
to represent any arrangement in which pairs of subarrays differ by certain
transformations. The transformations can combine translation, azimuth rotation, and
elevation rotation. However, you cannot use transformations that require rotation
about the normal.

Expression
A valid MATLAB expression containing an array constructor, for example,
phased.URA.

Sensor Array Tab: Element Parameters

Element type

3 Blocks — Alphabetical List

3-100

Specify the antenna or microphone type as

• Isotropic Antenna

• Cosine Antenna

• Custom Antenna

Exponent of cosine pattern
This parameter appears when you set Element type to Cosine Antenna.

Specify the exponent of the cosine pattern as a scalar or a 1-by-2 vector. You
must specify all values as real numbers greater than or equal to 1. When you set
Exponent of cosine pattern to a scalar, both the azimuth direction cosine pattern
and the elevation direction cosine pattern are raised to the specified value. When you
set Exponent of cosine pattern to a 1-by-2 vector, the first element is the exponent
for the azimuth direction cosine pattern and the second element is the exponent for
the elevation direction cosine pattern.

Operating frequency range
This parameter appears when Element type is set to Isotropic Antenna or
Cosine Antenna.

Specify the operating frequency range, in hertz, of the antenna element as a 1-by-2
row vector in the form [LowerBound,UpperBound]. The antenna element has no
response outside the specified frequency range.

Operating frequency vector (Hz)
This parameter appears when Element type is set to Custom Antenna or Custom
Microphone.

Specify L frequencies, in hertz, at which to set the antenna and microphone
frequency responses. Specify Operating frequency vector (Hz) as a 1-by-L
row vector of increasing value. Use Frequency responses to set the frequency
responses. The antenna or microphone element has no response outside the
frequency range specified by the minimum and maximum elements of Operating
frequency vector.

Frequency responses (dB)
This parameter appears when Element type is set to Custom Antenna or Custom
Microphone.

Specify this parameter as the frequency response of an antenna or microphone,
in decibels, for the frequencies defined by Operating frequency vector. Specify

 GPU Constant Gamma Clutter

3-101

Frequency responses (dB) as a 1-by-L vector matching the dimensions of the
vector specified in Operating frequency vector.

Azimuth angles (deg)
This parameter appears when Element type is set to Custom Antenna.

Specify P azimuth angles, in degrees, at which to calculate the antenna radiation
pattern as a 1-by-P row vector. P must be greater than 2. The azimuth angles must
lie between –180° and 180° and be in strictly increasing order.

Elevation angles (deg)
This parameter appears when the Element type is set to Custom Antenna.

Specify the Q elevation angles, in degrees, at which to compute the radiation pattern
as a 1-by-Q vector. Q must be greater than 2. The elevation angles must lie between –
90° and 90° and be in strictly increasing order.

Radiation pattern (dB)
This parameter appears when the Element type is set to Custom Antenna.

The magnitude in db of the combined polarized antenna radiation pattern specified
as a Q-by-P matrix or a Q-by-P-by-L array. The value of Q must match the value of Q
specified by Elevation angles. The value of P must match the value of P specified by
Azimuth angles. The value of L must match the value of L specified by Operating
frequency vector (Hz).

Baffle the back of the element
This check box appears only when the Element type parameter is set to Isotropic
Antenna or Omni Microphone.

Select this check box to baffle the back of the antenna element. In this case, the
antenna responses to all azimuth angles beyond ±90° from broadside are set to zero.
Define the broadside direction as 0° azimuth angle and 0° elevation angle.

Ports

Note: The block input and output ports correspond to the input and output parameters
described in the step method of the underlying System object. See link at the bottom of
this page.

3 Blocks — Alphabetical List

3-102

Port Supported Data Types

Out Double-precision floating point

See Also
phased.gpu.ConstantGammaClutter

Introduced in R2014b

 Data Cube Slicer

3-103

Data Cube Slicer

Slice a data cube along specified dimensions

Library

Space-Time Adaptive Processing

phasedstaplib

Description

The Data Cube Slicer block slices a data cube along the specified dimensions. The
input is a data cube of dimensions M-by-Q-by-N. The first dimension is range, or fast
time. The second dimension is angle, or channels. The third dimension is Doppler, or slow
time. If you set Output Slice to Angle-Doppler, the output has dimension Q-by-N. If
you set Output Slice to Range-Doppler, the output has dimension M-by-N. If you set
Output Slice to Range-angle, the output has dimension M-by-Q.

3 Blocks — Alphabetical List

3-104

Dialog Box

Output slice
Select desired output for a M-by-Q-by-N data cube. Parameter values are

Value Dimension

Angle-Doppler Q-by-N

 Data Cube Slicer

3-105

Value Dimension

Range-Doppler M-by-N
Range-angle M-by-Q

Ports

Port Supported Data Types

X Double-precision floating point
Idx Double-precision floating point
Out Double-precision floating point

Introduced in R2014b

3 Blocks — Alphabetical List

3-106

Dechirp Mixer

Dechirping operation on input signal

Library

Detection

phaseddetectlib

Description

The Dechirp Mixer block mixes the incoming signal with a reference signal incoming
through the Ref port. The signals can be complex baseband signals. The input signal
can be a matrix where each column is an independent channel. The reference signal is a
vector. The reference signal is complex conjugated and then multiplied with each signal
column to compute the output.

 Dechirp Mixer

3-107

Dialog Box

Ports

Note: The block input and output ports correspond to the input and output parameters
described in the step method of the underlying System object. See link at the bottom of
this page.

Port Supported Data Types

X Double-precision floating point
RefX Double-precision floating point
Out Double-precision floating point

See Also
dechirp

Introduced in R2014b

3 Blocks — Alphabetical List

3-108

DPCA Canceller

Displaced phase center array (DPCA) pulse canceller for a uniform linear array

Library

Space-Time Adaptive Processing

phasedstaplib

Description

The DPCA Canceller block filters clutter for a uniform linear array using a displaced
phase center array (DPCA) pulse canceller.

 DPCA Canceller

3-109

Dialog Box

3 Blocks — Alphabetical List

3-110

Propagation speed (m/s)
Specify the propagation speed of the signal, in meters per second, as a positive scalar.
You can use the function physconst to specify the speed of light.

Operating frequency (Hz)
Specify the operating frequency of the system, in hertz, as a positive scalar.

Pulse repetition frequency (Hz)
Specify the pulse repetition frequency, PRF, as a scalar or a row vector. Units for
PRF are hertz. This parameter should be set to the same value as used in any
Waveforms library block.

Specify direction as
Specify whether the targeting direction for this STAP processor block comes from a
block parameter or via an input port. Values of this parameter are

Property • For the ADPCA Canceller and DPCA Canceller
blocks, targeting direction is specified using Receiving
mainlobe direction (deg).

• For the SMI Beamformer block, targeting direction is
specified using Targeting direction.

These parameters appear only when the Specify direction
as parameter is set to Property.

Input port Enter the targeting directions using the Ang port. This port
appears only when Specify direction as is set to Input
port.

Receiving mainlobe direction (deg)
Specify the mainlobe direction in degrees of the receiving sensor array as a
2-by-1 vector. The direction is specified in the format of [AzimuthAngle;
ElevationAngle]. The azimuth angle should be between –180° and 180° and the
elevation angle should be between –90° and 90°. This parameter appears only when
you set Specify direction as to Property.

Number of bits in phase shifters
The number of bits used to quantize the phase shift component of beamformer or
steering vector weights. Specify the number of bits as a non-negative integer. A value
of zero indicates that no quantization is performed.

 DPCA Canceller

3-111

Specify targeting Doppler as
Specify whether targeting Doppler values for the STAP processor comes from the
Targeting Doppler (Hz) parameter of this block or via an input port. For the
ADPCA Cancellerand DPCA Canceller blocks, this parameter appears only when
the Output pre-Doppler result check box is cleared. Values of this parameter are

Property Targeting Doppler values are specified by the Targeting
Doppler parameter of the block. The Targeting Doppler
parameter appears only when Specify targeting Doppler
as is set to Property.

Input port Targeting Doppler values are entered using the Dop port.
This port appears only when Specify targeting Doppler
as is set to Input port.

Targeting Doppler (Hz)
Specify the targeting Doppler of the STAP processor as a scalar. This parameter
appears only when you set Specify targeting Doppler as to Property and when,
for the ADPCA Cancellerand DPCA Canceller blocks only, the Output pre-
Doppler result check box is cleared.

Enable weights output
Select this check box to obtain the weights used in the STAP processor via the output
port W. The output port W only appears when you select this check box.

Output pre-Doppler result
Select this check box to output the processing results before applying Doppler
filtering. Clear this check box to output the processing result after Doppler filtering.
Selecting this check box will remove the Specify targeting Doppler as and
Targeting Doppler (Hz) parameters.

Simulate using
Block simulation, specified as Interpreted Execution or Code Generation.
If you want your block to use the MATLAB interpreter, choose Interpreted
Execution. If you want your block to run as compiled code, choose Code
Generation. Compiled code requires time to compile but usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The
block runs the underlying System object in MATLAB. You can change and execute

3 Blocks — Alphabetical List

3-112

your model quickly. When you are satisfied with your results, you can then run the
block using Code Generation. Long simulations run faster than in interpreted
execution. You can run repeated executions without recompiling. However, if you
change any block parameters, then the block automatically recompiles before
execution.

When setting this parameter, you must take into account the overall model
simulation mode. The table shows how the Simulate using parameter interacts with
the overall simulation mode.

When the Simulink model is in Accelerator mode, the block mode specified using
Simulate using overrides the simulation mode.

Acceleration Modes

When you use this simulation mode ...If you want to
simulate using ... Normal Accelerator Rapid

Accelerator

Interpreted

Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Code Generation The block is
compiled.

All blocks in the
model are compiled.

Creates a
standalone
executable from the
model.

For more information, see “Choosing a Simulation Mode” from the Simulink
documentation.

 DPCA Canceller

3-113

3 Blocks — Alphabetical List

3-114

Array Parameters

Specify sensor array as
Specify a ULA sensor array directly or by using a MATLAB expression.

Types

Array (no subarrays)

MATLAB expression

Number of elements
Specifies the number of elements in the array as an integer.

Element spacing
Specify the spacing, in meters, between two adjacent elements in the array.

Array axis
This parameter appears when the Geometry parameter is set to ULA or when the
block supports only a ULA array geometry. You can specify this parameters as 'x',
'y', or 'z'. Then, all ULA array elements are uniformly spaced along this axis in
the local array coordinate system.

Taper
Tapers, also known as element weights, are applied to sensor elements in the array.
Tapers are used to modify both the amplitude and phase of the transmitted or
received data.

Specify element tapering as a complex-valued scalar or a complex-valued 1-by-N row
vector. In this vector, N represents the number of elements in the array. If Taper is
a scalar, the same weight is applied to each element. If Taper is a vector, a weight
from the vector is applied to the corresponding sensor element. A weight must be
applied to each element in the sensor array.

Expression
A valid MATLAB expression containing a constructor for a uniform linear array, for
example, phased.ULA.

Sensor Array Tab: Element Parameters

Element type

 DPCA Canceller

3-115

Specify antenna or microphone type as

• Isotropic Antenna

• Cosine Antenna

• Custom Antenna

• Omni Microphone

• Custom Microphone

Exponent of cosine pattern
This parameter appears when you set Element type to Cosine Antenna.

Specify the exponent of the cosine pattern as a scalar or a 1-by-2 vector. You
must specify all values as real numbers greater than or equal to 1. When you set
Exponent of cosine pattern to a scalar, both the azimuth direction cosine pattern
and the elevation direction cosine pattern are raised to the specified value. When you
set Exponent of cosine pattern to a 1-by-2 vector, the first element is the exponent
for the azimuth direction cosine pattern and the second element is the exponent for
the elevation direction cosine pattern.

Operating frequency range (Hz)
This parameter appears when Element type is set to Isotropic Antenna, Cosine
Antenna, or Omni Microphone.

Specify the operating frequency range, in hertz, of the antenna element as a 1-by-2
row vector in the form [LowerBound,UpperBound]. The antenna element has no
response outside the specified frequency range.

Operating frequency vector (Hz)
This parameter appears when Element type is set to Custom Antenna or Custom
Microphone.

Specify L frequencies, in hertz, at which to set the antenna and microphone
frequency responses. Specify Operating frequency vector (Hz) as a 1-by-L
row vector of increasing value. Use Frequency responses to set the frequency
responses. The antenna or microphone element has no response outside the
frequency range specified by the minimum and maximum elements of Operating
frequency vector.

Frequency responses (dB)
This parameter appears when Element type is set to Custom Antenna or Custom
Microphone.

3 Blocks — Alphabetical List

3-116

Specify this parameter as the frequency response of an antenna or microphone,
in decibels, for the frequencies defined by Operating frequency vector. Specify
Frequency responses (dB) as a 1-by-L vector matching the dimensions of the
vector specified in Operating frequency vector.

Azimuth angles (deg)
This parameter appears when Element type is set to Custom Antenna.

Specify P azimuth angles, in degrees, at which to calculate the antenna radiation
pattern as a 1-by-P row vector. P must be greater than 2. The azimuth angles must
lie between –180° and 180° and be in strictly increasing order.

Elevation angles (deg)
This parameter appears when the Element type is set to Custom Antenna.

Specify the Q elevation angles, in degrees, at which to compute the radiation pattern
as a 1-by-Q vector. Q must be greater than 2. The elevation angles must lie between –
90° and 90° and be in strictly increasing order.

Radiation pattern (dB)
This parameter appears when the Element type is set to Custom Antenna.

The magnitude in db of the combined polarized antenna radiation pattern specified
as a Q-by-P matrix or a Q-by-P-by-L array. The value of Q must match the value of Q
specified by Elevation angles. The value of P must match the value of P specified by
Azimuth angles. The value of L must match the value of L specified by Operating
frequency vector (Hz).

Polar pattern frequencies (Hz)
This parameter appears when the Element type is set to Custom Microphone.

Specify the Mmeasuring frequencies in hertz of the polar patterns 1-by-M vector.
The measuring frequencies lie within the frequency range specified byOperating
frequency vector.

Polar pattern angles (deg)
This parameter appears when Element type is set to Custom Microphone.

Specify N measuring angles, in degrees, of the polar patterns as a 1-by-N. The angles
are measured from the central pickup axis of the microphone, and must be between –
180° and 180°, inclusive.

 DPCA Canceller

3-117

Polar pattern (dB)
This parameter appears when Element type is set to Custom Microphone.

Specify the magnitude of the polar patterns, in dB, of the microphone element as
an M-by-N matrix. M is the number of measuring frequencies specified in Polar
pattern frequencies. N is the number of measuring angles specified in Polar
pattern angles. Each row of the matrix represents the magnitude of the polar
pattern measured at the corresponding frequency specified in Polar pattern
frequencies and all angles specified in Polar pattern angles. Assume that the
pattern is measured in the azimuth plane. In the azimuth plane, the elevation angle
is 0° and the central pickup axis is 0° degrees azimuth and 0° degrees elevation.
Assume also that the polar pattern is symmetric around the central axis. You can
construct the microphone’s response pattern in 3-D space from the polar pattern.

Baffle the back of the element
This check box appears only when the Element type parameter is set to Isotropic
Antenna or Omni Microphone.

Select this check box to baffle the back of the antenna element. In this case, the
antenna responses to all azimuth angles beyond ±90° from broadside are set to zero.
Define the broadside direction as 0° azimuth angle and 0° elevation angle.

Ports

Note: The block input and output ports correspond to the input and output parameters
described in the step method of the underlying System object. See link at the bottom of
this page.

Port Supported Data Types

X Double-precision floating point
Ang Double-precision floating point
Dop Double-precision floating point
Idx Double-precision floating point
W Double-precision floating point
Y Double-precision floating point

3 Blocks — Alphabetical List

3-118

See Also
phased.DPCACanceller

Introduced in R2014b

 ESPRIT DOA

3-119

ESPRIT DOA

ESPRIT direction of arrival (DOA) estimator

Library

Direction of Arrival (DOA)

phaseddoalib

Description

The ESPRIT DOA block estimates the direction of arrival of a specified number of
narrowband signals incident on a uniform linear array using the ESPRIT algorithm.

3 Blocks — Alphabetical List

3-120

Dialog Box

 ESPRIT DOA

3-121

Propagation speed (m/s)
Specify the propagation speed of the signal, in meters per second, as a positive scalar.
You can use the function physconst to specify the speed of light.

Operating frequency (Hz)
Specify the operating frequency of the system, in hertz, as a positive scalar.

Number of signals
Specify the number of signals as a positive integer scalar.

Spatial smoothing
Specify the amount of averaging, L, used by spatial smoothing to estimate the
covariance matrix as a nonnegative integer. Each increase in smoothing handles
one extra coherent source, but reduces the effective number of elements by one. The
maximum value of this parameter is N – 2, where N is the number of sensors.

Type of least squares method
Specify the least squares method used for ESPRIT as one of TLS or LS where TLS
refers to total least squares and LSrefers to least squares.

Forward-backward averaging
Select this check box to use forward-backward averaging to estimate the covariance
matrix for sensor arrays with a conjugate symmetric array manifold.

Row weighting factor
Specify the row weighting factor for signal subspace eigenvectors as a positive integer
scalar. This parameter controls the weights applied to the selection matrices. In most
cases higher value are better. However, the value can never be greater than (N-1)/2
where N is the number of elements of the array.

Simulate using
Block simulation, specified as Interpreted Execution or Code Generation.
If you want your block to use the MATLAB interpreter, choose Interpreted
Execution. If you want your block to run as compiled code, choose Code
Generation. Compiled code requires time to compile but usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The
block runs the underlying System object in MATLAB. You can change and execute
your model quickly. When you are satisfied with your results, you can then run the
block using Code Generation. Long simulations run faster than in interpreted
execution. You can run repeated executions without recompiling. However, if you

3 Blocks — Alphabetical List

3-122

change any block parameters, then the block automatically recompiles before
execution.

When setting this parameter, you must take into account the overall model
simulation mode. The table shows how the Simulate using parameter interacts with
the overall simulation mode.

When the Simulink model is in Accelerator mode, the block mode specified using
Simulate using overrides the simulation mode.

Acceleration Modes

When you use this simulation mode ...If you want to
simulate using ... Normal Accelerator Rapid

Accelerator

Interpreted

Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Code Generation The block is
compiled.

All blocks in the
model are compiled.

Creates a
standalone
executable from the
model.

For more information, see “Choosing a Simulation Mode” from the Simulink
documentation.

 ESPRIT DOA

3-123

3 Blocks — Alphabetical List

3-124

Array Parameters

Specify sensor array as
Specify a ULA sensor array directly or by using a MATLAB expression.

Types

Array (no subarrays)

MATLAB expression

Number of elements
Specifies the number of elements in the array as an integer.

Element spacing
Specify the spacing, in meters, between two adjacent elements in the array.

Array axis
This parameter appears when the Geometry parameter is set to ULA or when the
block supports only a ULA array geometry. You can specify this parameters as 'x',
'y', or 'z'. Then, all ULA array elements are uniformly spaced along this axis in
the local array coordinate system.

Taper
Tapers, also known as element weights, are applied to sensor elements in the array.
Tapers are used to modify both the amplitude and phase of the transmitted or
received data.

Specify element tapering as a complex-valued scalar or a complex-valued 1-by-N row
vector. In this vector, N represents the number of elements in the array. If Taper is
a scalar, the same weight is applied to each element. If Taper is a vector, a weight
from the vector is applied to the corresponding sensor element. A weight must be
applied to each element in the sensor array.

Expression
A valid MATLAB expression containing a constructor for a uniform linear array, for
example, phased.ULA.

Sensor Array Tab: Element Parameters

Element type

 ESPRIT DOA

3-125

Specify antenna or microphone type as

• Isotropic Antenna

• Cosine Antenna

• Custom Antenna

• Omni Microphone

• Custom Microphone

Exponent of cosine pattern
This parameter appears when you set Element type to Cosine Antenna.

Specify the exponent of the cosine pattern as a scalar or a 1-by-2 vector. You
must specify all values as real numbers greater than or equal to 1. When you set
Exponent of cosine pattern to a scalar, both the azimuth direction cosine pattern
and the elevation direction cosine pattern are raised to the specified value. When you
set Exponent of cosine pattern to a 1-by-2 vector, the first element is the exponent
for the azimuth direction cosine pattern and the second element is the exponent for
the elevation direction cosine pattern.

Operating frequency range (Hz)
This parameter appears when Element type is set to Isotropic Antenna, Cosine
Antenna, or Omni Microphone.

Specify the operating frequency range, in hertz, of the antenna element as a 1-by-2
row vector in the form [LowerBound,UpperBound]. The antenna element has no
response outside the specified frequency range.

Operating frequency vector (Hz)
This parameter appears when Element type is set to Custom Antenna or Custom
Microphone.

Specify L frequencies, in hertz, at which to set the antenna and microphone
frequency responses. Specify Operating frequency vector (Hz) as a 1-by-L
row vector of increasing value. Use Frequency responses to set the frequency
responses. The antenna or microphone element has no response outside the
frequency range specified by the minimum and maximum elements of Operating
frequency vector.

Frequency responses (dB)
This parameter appears when Element type is set to Custom Antenna or Custom
Microphone.

3 Blocks — Alphabetical List

3-126

Specify this parameter as the frequency response of an antenna or microphone,
in decibels, for the frequencies defined by Operating frequency vector. Specify
Frequency responses (dB) as a 1-by-L vector matching the dimensions of the
vector specified in Operating frequency vector.

Azimuth angles (deg)
This parameter appears when Element type is set to Custom Antenna.

Specify P azimuth angles, in degrees, at which to calculate the antenna radiation
pattern as a 1-by-P row vector. P must be greater than 2. The azimuth angles must
lie between –180° and 180° and be in strictly increasing order.

Elevation angles (deg)
This parameter appears when the Element type is set to Custom Antenna.

Specify the Q elevation angles, in degrees, at which to compute the radiation pattern
as a 1-by-Q vector. Q must be greater than 2. The elevation angles must lie between –
90° and 90° and be in strictly increasing order.

Radiation pattern (dB)
This parameter appears when the Element type is set to Custom Antenna.

The magnitude in db of the combined polarized antenna radiation pattern specified
as a Q-by-P matrix or a Q-by-P-by-L array. The value of Q must match the value of Q
specified by Elevation angles. The value of P must match the value of P specified by
Azimuth angles. The value of L must match the value of L specified by Operating
frequency vector (Hz).

Polar pattern frequencies (Hz)
This parameter appears when the Element type is set to Custom Microphone.

Specify the Mmeasuring frequencies in hertz of the polar patterns 1-by-M vector.
The measuring frequencies lie within the frequency range specified byOperating
frequency vector.

Polar pattern angles (deg)
This parameter appears when Element type is set to Custom Microphone.

Specify N measuring angles, in degrees, of the polar patterns as a 1-by-N. The angles
are measured from the central pickup axis of the microphone, and must be between –
180° and 180°, inclusive.

Polar pattern (dB)

 ESPRIT DOA

3-127

This parameter appears when Element type is set to Custom Microphone.

Specify the magnitude of the polar patterns, in dB, of the microphone element as
an M-by-N matrix. M is the number of measuring frequencies specified in Polar
pattern frequencies. N is the number of measuring angles specified in Polar
pattern angles. Each row of the matrix represents the magnitude of the polar
pattern measured at the corresponding frequency specified in Polar pattern
frequencies and all angles specified in Polar pattern angles. Assume that the
pattern is measured in the azimuth plane. In the azimuth plane, the elevation angle
is 0° and the central pickup axis is 0° degrees azimuth and 0° degrees elevation.
Assume also that the polar pattern is symmetric around the central axis. You can
construct the microphone’s response pattern in 3-D space from the polar pattern.

Baffle the back of the element
This check box appears only when the Element type parameter is set to Isotropic
Antenna or Omni Microphone.

Select this check box to baffle the back of the antenna element. In this case, the
antenna responses to all azimuth angles beyond ±90° from broadside are set to zero.
Define the broadside direction as 0° azimuth angle and 0° elevation angle.

Ports

Note: The block input and output ports correspond to the input and output parameters
described in the step method of the underlying System object. See link at the bottom of
this page.

Port Supported Data Types

X Double-precision floating point
Ang Double-precision floating point

See Also
phased.ESPRITEstimator

Introduced in R2014b

3 Blocks — Alphabetical List

3-128

FMCW Waveform

Frequency-modulated continuous (FMCW) waveform source

Library

Waveforms

phasedwavlib

Description

The FMCW Waveform block generates a frequency modulated continuous wave (FMCW)
waveform with a specified sweep time and sweep bandwidth. The block output can be
either an integer number of pulses or samples.

 FMCW Waveform

3-129

Dialog Box

Sample rate

3 Blocks — Alphabetical List

3-130

Specify the sample rate of the signal as a positive scalar. Units are hertz. The
product of Sample rate and Sweep time must be integers.

Sweep time
Specify the duration, in seconds, of the upsweep or the downsweep of the signal as a
scalar or row vector of positive, real numbers. The product of the Sample rate value
and each Sweep time entry must be an integer.

To implement a varying sweep time, specify Sweep time as a row vector. The
waveform uses successive entries of the vector as the sweep time for successive
periods of the waveform. If the last element of the vector is reached, the process
continues cyclically with the first entry of the vector.

If Sweep time and Sweep bandwidth are both row vectors, the vectors must have
the same length.

If Sweep direction is Up or Down, the sweep period equals the sweep time. If
Sweep direction is Triangle, the sweep period is twice the sweep time because
each period consists of an upsweep segment and a downsweep segment.

Sweep bandwidth
Specify the bandwidth of the linear FM sweeping, in hertz, as a scalar or row vector
of positive, real numbers.

To implement a varying bandwidth, specify Sweep bandwidth as a row vector. The
waveform uses successive entries of the vector as the sweep bandwidth for successive
periods of the waveform. If the waveform reaches the last element of the Sweep
bandwidth vector, the process continues cyclically with the first entry of the vector.

If Sweep time and Sweep bandwidth are both row vectors, the vectors must have
the same length.

Sweep direction
Specify the direction of the linear FM sweep as one of Up, Down, or Triangle.

Sweep interval
If you set this parameter value to Positive, the waveform sweeps in the interval
between 0 and B, where B is the value of the Sweep bandwidth parameter. If you
set this parameter to Symmetric, the waveform sweeps in the interval between –B/2
and B/2.

Output signal format

 FMCW Waveform

3-131

Specify the format of the output signal as Sweeps or Samples.

If you set this parameter to Sweeps, the output of the block is in the form of multiple
sweeps. The number of sweeps is the value of the Number of sweeps in output
parameter.

If you set this parameter to Samples, the output of the block is in the form of
multiple samples. The number of samples is the value of the Number of samples in
output parameter.

If the Sweep direction parameter is set to Triangle, each sweep is one-half of a
period.

Number of sweeps in output
Specify the number of sweeps in the block output as a positive integer. This
parameter appears only when you set Output signal format to Sweeps.

Number of samples in output
Number of samples in the block output, specified as a positive integer. This
parameter appears only when you set Output signal format to Samples.

Simulate using
Block simulation, specified as Interpreted Execution or Code Generation.
If you want your block to use the MATLAB interpreter, choose Interpreted
Execution. If you want your block to run as compiled code, choose Code
Generation. Compiled code requires time to compile but usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The
block runs the underlying System object in MATLAB. You can change and execute
your model quickly. When you are satisfied with your results, you can then run the
block using Code Generation. Long simulations run faster than in interpreted
execution. You can run repeated executions without recompiling. However, if you
change any block parameters, then the block automatically recompiles before
execution.

When setting this parameter, you must take into account the overall model
simulation mode. The table shows how the Simulate using parameter interacts with
the overall simulation mode.

When the Simulink model is in Accelerator mode, the block mode specified using
Simulate using overrides the simulation mode.

3 Blocks — Alphabetical List

3-132

Acceleration Modes

When you use this simulation mode ...If you want to
simulate using ... Normal Accelerator Rapid

Accelerator

Interpreted

Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Code Generation The block is
compiled.

All blocks in the
model are compiled.

Creates a
standalone
executable from the
model.

For more information, see “Choosing a Simulation Mode” from the Simulink
documentation.

Ports

Note: The block input and output ports correspond to the input and output parameters
described in the step method of the underlying System object. See link at the bottom of
this page.

Port Supported Data Types

Out Double-precision floating point

See Also
phased.FMCWWaveform

Introduced in R2014b

 Free Space

3-133

Free Space

Free space environment

Library

Environment and Targets

phasedenvlib

Description

The Free Space Channel block propagates the signal from one point to another in
space. The block models propagation time, free space propagation loss and Doppler shift.
The block assumes that the propagation speed is much greater than the target or array
speed in which case the stop-and-hop model is valid.

When propagating a signal in free-space to an object and back, you have the choice of
either using a single block to compute a two-way free space propagation delay or two
blocks to perform one-way propagation delays in each direction. Because the free-space
propagation delay is not necessarily an integer multiple of the sampling interval, it may
turn out that the total round trip delay in samples when you use a two-way propagation
block differs from the delay in samples when you use two one-way propagation blocks.
For this reason, it is recommended that, when possible, you use a single two-way
propagation block.

3 Blocks — Alphabetical List

3-134

Dialog Box

Propagation speed (m/s)
Specify the propagation speed of the signal, in meters per second, as a positive scalar.
You can use the function physconst to specify the speed of light.

Signal carrier frequency (Hz)

 Free Space

3-135

Specify the carrier frequency of the signal in hertz of the narrowband signal as a
positive scalar.

Perform two-way propagation
Select this check box to perform round-trip propagation between the origin and
destination. Otherwise the block performs one-way propagation from the origin to the
destination.

Maximum one-way propagation distance (m)
The maximum distance , in meters, between the origin and the destination as a
positive scalar. Amplitudes of any signals that propagate beyond this distance will be
set to zero.

Simulate using
Block simulation, specified as Interpreted Execution or Code Generation.
If you want your block to use the MATLAB interpreter, choose Interpreted
Execution. If you want your block to run as compiled code, choose Code
Generation. Compiled code requires time to compile but usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The
block runs the underlying System object in MATLAB. You can change and execute
your model quickly. When you are satisfied with your results, you can then run the
block using Code Generation. Long simulations run faster than in interpreted
execution. You can run repeated executions without recompiling. However, if you
change any block parameters, then the block automatically recompiles before
execution.

When setting this parameter, you must take into account the overall model
simulation mode. The table shows how the Simulate using parameter interacts with
the overall simulation mode.

When the Simulink model is in Accelerator mode, the block mode specified using
Simulate using overrides the simulation mode.

Acceleration Modes

When you use this simulation mode ...If you want to
simulate using ... Normal Accelerator Rapid

Accelerator

Interpreted

Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Creates a
standalone

3 Blocks — Alphabetical List

3-136

Code Generation The block is
compiled.

All blocks in the
model are compiled.

executable from the
model.

For more information, see “Choosing a Simulation Mode” from the Simulink
documentation.

Ports

Note: The block input and output ports correspond to the input and output parameters
described in the step method of the underlying System object. See link at the bottom of
this page.

Port Supported Data Types

X Double-precision floating point
Pos1 Double-precision floating point
Pos2 Double-precision floating point
Vel1 Double-precision floating point
Vel2 Double-precision floating point
Out Double-precision floating point

Algorithms

When the origin and destination are stationary relative to each other, the block output
can be written as y(t) = x(t – τ)/L. The quantity τ is the delay and L is the propagation
loss. The delay is computed from τ = R/c where R is the propagation distance and c is the
propagation speed. The free space path loss is given by

L
R

fsp =
()

,
4 2

2

p

l

where λ is the signal wavelength.

 Free Space

3-137

This formula assumes that the target is in the far-field of the transmitting element or
array. In the near-field, the free-space path loss formula is not valid and can result in
losses smaller than one, equivalent to a signal gain. For this reason, the loss is set to
unity for range values, R ≤ λ/4π.

When there is relative motion between the origin and destination, the processing also
introduces a frequency shift. This shift corresponds to the Doppler shift between the
origin and destination. The frequency shift is v/λ for one-way propagation and 2v/λ
for two-way propagation. The parameter v is the relative speed of the destination with
respect to the origin.

See Also
phased.FreeSpace

Introduced in R2014b

3 Blocks — Alphabetical List

3-138

Frost Beamformer

Frost beamformer

Library

Beamforming

phasedbflib

Description

The Frost Beamformer block implements a Frost beamformer. The Frost beamformer
consists of a time-domain MVDR beamformer combined with a bank of FIR filters. The
beamformer steers the beam towards a given direction. The FIR filters preserve the input
signal power.

 Frost Beamformer

3-139

Dialog Box

3 Blocks — Alphabetical List

3-140

Signal propagation speed (m/s)
Specify the propagation speed of the signal, in meters per second, as a positive scalar.
You can use the function physconst to specify the speed of light.

FIR filter length
Specify the length of FIR filter behind each sensor element in the array as a positive
integer.

Diagonal loading factor
Specify the diagonal loading factor as a positive scalar. Diagonal loading is a
technique used to achieve robust beamforming performance, especially when the
sample support is small.

Enable training data input
Select this check box to specify additional training data via the input port XT. To use
the input signal as the training data, clear the check box which removes the port.

Source of beamforming direction
Specify whether the beamforming direction comes from the Beamforming
direction parameter or from an input port. Values of this parameter are:

Property Specify the beamforming direction using
Beamforming direction.

Input port Specify the beamforming direction using the Ang
input port.

Beamforming direction (deg)
Specify the beamforming direction of the beamformer, in degrees, as a 1-by-2 vector.
The direction is specified in the format of [AzimuthAngle; ElevationAngle].
The azimuth angle should be between –180° and 180°. The elevation angle should
be between –90° and 90°. This parameter appears only when you set Source of
beamforming direction to Property.

Enable weights output
Select this check box to obtain the beamformer weights from the output port W.

Simulate using
Block simulation, specified as Interpreted Execution or Code Generation.
If you want your block to use the MATLAB interpreter, choose Interpreted

 Frost Beamformer

3-141

Execution. If you want your block to run as compiled code, choose Code
Generation. Compiled code requires time to compile but usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The
block runs the underlying System object in MATLAB. You can change and execute
your model quickly. When you are satisfied with your results, you can then run the
block using Code Generation. Long simulations run faster than in interpreted
execution. You can run repeated executions without recompiling. However, if you
change any block parameters, then the block automatically recompiles before
execution.

When setting this parameter, you must take into account the overall model
simulation mode. The table shows how the Simulate using parameter interacts with
the overall simulation mode.

When the Simulink model is in Accelerator mode, the block mode specified using
Simulate using overrides the simulation mode.

Acceleration Modes

When you use this simulation mode ...If you want to
simulate using ... Normal Accelerator Rapid

Accelerator

Interpreted

Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Code Generation The block is
compiled.

All blocks in the
model are compiled.

Creates a
standalone
executable from the
model.

For more information, see “Choosing a Simulation Mode” from the Simulink
documentation.

3 Blocks — Alphabetical List

3-142

 Frost Beamformer

3-143

Array Parameters

Specify sensor array as
Specify a sensor array directly or by using a MATLAB expression.

Types

Array (no subarrays)

MATLAB expression

Geometry
Specify the array geometry as one of the following

• ULA — Uniform Line Array
• URA — Uniform Rectangular Array
• UCA — Uniform Circular Array
• Conformal Array

Number of elements
Specifies the number of elements in the array as an integer.

This parameter appears when the Geometry is set to ULA or UCA. When Sensor
Array is set to Replicated subarray, this parameter applies to the sub-array.

Array size
This parameter appears when Geometry is set to URA. When Sensor Array is set to
Replicated subarray, this parameter applies to the subarrays.

Specify the size of the array as a 1-by-2 integer vector or a single integer containing.

• If Array size is a 1-by-2 vector, the vector has the form
[NumberOfRows,NumberOfColumns] where NumberOfRows and
NumberOfColumns specify the number of rows and columns of the array,
respectively.

• If Array size is an integer, the array has the same number of rows and columns.

For a URA, elements are indexed from top to bottom along a column and continuing
to the next columns from left to right. In this figure, an Array size of [3,2]
produces an array of three rows and two columns.

3 Blocks — Alphabetical List

3-144

Size and Element Indexing Order

for Uniform Rectangular Arrays

Example: Size = [3,2]

1

2

3

4

6

5

Z

Y

Element spacing
This parameter appears when Geometry is set to ULA or URA. When Sensor Array
is set to Replicated subarray, this parameter applies to the subarrays.

• For a ULA, specify the spacing, in meters, between two adjacent elements in the
array as a scalar.

• For a URA, specify the element spacing of the array, in meters, as a 1-by-2 vector
or a scalar. If Element spacing is a 1-by-2 vector, the vector has the form
[SpacingBetweenRows,SpacingBetweenColumns]. For a discussion of
these quantities, see phased.URA. If Element spacing is a scalar, the spacings
between rows and columns are equal.

Array axis
This parameter appears when the Geometry parameter is set to ULA or when the
block supports only a ULA array geometry. You can specify this parameters as 'x',
'y', or 'z'. Then, all ULA array elements are uniformly spaced along this axis in
the local array coordinate system.

Array normal
This parameter appears when the Geometry parameter is set to URA or UCA. You
can specify the Array normal parameter as 'x', 'y', or 'z'. Then, all URA and

 Frost Beamformer

3-145

UCA array elements are placed in the yz-, zx-, or xy- planes, respectively, of the array
coordinate system.

Radius of UCA (m)
Radius of a uniform circular array specified as a positive scalar. Units are meters.

This parameter appears when the Geometry is set to UCA.
Taper

Tapers, also known as element weights, are applied to sensor elements in the array.
Tapers are used to modify both the amplitude and phase of the transmitted or
received data.

This parameter appears when Geometry is set to ULA, URA, UCA, or Conformal
Array. When Sensor Array is set to Replicated subarray, this parameter
applies to subarrays.

• For a ULA or UCA, specify element tapering as a complex-valued scalar or a
complex-valued 1-by-N row vector. In this vector, N represents the number
of elements in the array. If Taper is a scalar, the same weight is applied to
each element. If Taper is a vector, a weight from the vector is applied to the
corresponding sensor element. A weight must be applied to each element in the
sensor array.

• For a URA, specify element tapering as a complex-valued scalar or complex-valued
M-by-N matrix. In this matrix, M is the number of elements along the z-axis, and
N is the number of elements along the y-axis. M and N correspond to the values
of [NumberofRows, NumberOfColumns] in the Array size matrix. If Taper
is a scalar, the same weight is applied to each element. If the value of Taper is a
matrix, a weight from the matrix is applied to the corresponding sensor element.
A weight must be applied to each element in the sensor array.

• For a Conformal Array, specify element taper as a complex-valued scalar or
complex-valued 1-by-N vector. In this vector, N is the number of elements in the
array as determined by the size of the Element positions vector. If the Taper
parameter is a scalar, the same weight is applied to each element. If the value of
Taper is a vector, a weight from the vector is applied to the corresponding sensor
element. A weight must be applied to each element in the sensor array.

Element lattice
This parameter appears when Geometry is set to URA. When Sensor Array is set to
Replicated subarray, this parameter applies to the sub-array.

3 Blocks — Alphabetical List

3-146

Specify the element lattice as one of Rectangular or Triangular

• Rectangular — Aligns all the elements in both row and column directions.
• Triangular — Shifts the even row elements toward the positive row axis

direction. The elements are shifted a distance of half the element spacing along
the row.

Element positions
This parameter appears when Geometry is set to Conformal Array. When Sensor
Array is set to Replicated subarray, this parameter applies to subarrays.

Specify the positions of the elements, in meters, in the conformal array as a 3-by-N
matrix, where N indicates the number of elements in the conformal array. Each
column of Element positions represents the position of a single element, in the
form [x; y; z], in the array’s local coordinate system. The local coordinate system
has its origin at an arbitrary point.

Element normals (deg)
This parameter appears when Geometry is set to Conformal Array. When Sensor
Array is set to Replicated subarray, this parameter applies to subarrays.

Specify the normal directions of the elements in a conformal array as a 2-by-N
matrix or a 2-by-1 column vector in degrees. The variable N indicates the number of
elements in the array. If Element normals is a matrix, each column specifies the
normal direction of the corresponding element in the form [azimuth;elevation],
with respect to the local coordinate system. The local coordinate system aligns
the positive x-axis with the direction normal to the conformal array. If Element
normals is a 2-by-1 column vector, the vector specifies the same pointing direction
for all elements in the array.

You can use the Element positions and Element normals parameters to represent
any arrangement in which pairs of elements differ by certain transformations. You
can combine translation, azimuth rotation, and elevation rotation transformations.
However, you cannot use transformations that require rotation about the normal.

Expression
A valid MATLAB expression containing an array constructor, for example,
phased.URA.

Sensor Array Tab: Element Parameters

Element type

 Frost Beamformer

3-147

Specify antenna or microphone type as

• Isotropic Antenna

• Cosine Antenna

• Custom Antenna

• Omni Microphone

• Custom Microphone

Exponent of cosine pattern
This parameter appears when you set Element type to Cosine Antenna.

Specify the exponent of the cosine pattern as a scalar or a 1-by-2 vector. You
must specify all values as real numbers greater than or equal to 1. When you set
Exponent of cosine pattern to a scalar, both the azimuth direction cosine pattern
and the elevation direction cosine pattern are raised to the specified value. When you
set Exponent of cosine pattern to a 1-by-2 vector, the first element is the exponent
for the azimuth direction cosine pattern and the second element is the exponent for
the elevation direction cosine pattern.

Operating frequency range (Hz)
This parameter appears when Element type is set to Isotropic Antenna, Cosine
Antenna, or Omni Microphone.

Specify the operating frequency range, in hertz, of the antenna element as a 1-by-2
row vector in the form [LowerBound,UpperBound]. The antenna element has no
response outside the specified frequency range.

Operating frequency vector (Hz)
This parameter appears when Element type is set to Custom Antenna or Custom
Microphone.

Specify L frequencies, in hertz, at which to set the antenna and microphone
frequency responses. Specify Operating frequency vector (Hz) as a 1-by-L
row vector of increasing value. Use Frequency responses to set the frequency
responses. The antenna or microphone element has no response outside the
frequency range specified by the minimum and maximum elements of Operating
frequency vector.

Frequency responses (dB)
This parameter appears when Element type is set to Custom Antenna or Custom
Microphone.

3 Blocks — Alphabetical List

3-148

Specify this parameter as the frequency response of an antenna or microphone,
in decibels, for the frequencies defined by Operating frequency vector. Specify
Frequency responses (dB) as a 1-by-L vector matching the dimensions of the
vector specified in Operating frequency vector.

Azimuth angles (deg)
This parameter appears when Element type is set to Custom Antenna.

Specify P azimuth angles, in degrees, at which to calculate the antenna radiation
pattern as a 1-by-P row vector. P must be greater than 2. The azimuth angles must
lie between –180° and 180° and be in strictly increasing order.

Elevation angles (deg)
This parameter appears when the Element type is set to Custom Antenna.

Specify the Q elevation angles, in degrees, at which to compute the radiation pattern
as a 1-by-Q vector. Q must be greater than 2. The elevation angles must lie between –
90° and 90° and be in strictly increasing order.

Radiation pattern (dB)
This parameter appears when the Element type is set to Custom Antenna.

The magnitude in db of the combined polarized antenna radiation pattern specified
as a Q-by-P matrix or a Q-by-P-by-L array. The value of Q must match the value of Q
specified by Elevation angles. The value of P must match the value of P specified by
Azimuth angles. The value of L must match the value of L specified by Operating
frequency vector (Hz).

Polar pattern frequencies (Hz)
This parameter appears when the Element type is set to Custom Microphone.

Specify the Mmeasuring frequencies in hertz of the polar patterns 1-by-M vector.
The measuring frequencies lie within the frequency range specified byOperating
frequency vector.

Polar pattern angles (deg)
This parameter appears when Element type is set to Custom Microphone.

Specify N measuring angles, in degrees, of the polar patterns as a 1-by-N. The angles
are measured from the central pickup axis of the microphone, and must be between –
180° and 180°, inclusive.

Polar pattern (dB)
This parameter appears when Element type is set to Custom Microphone.

 Frost Beamformer

3-149

Specify the magnitude of the polar patterns, in dB, of the microphone element as
an M-by-N matrix. M is the number of measuring frequencies specified in Polar
pattern frequencies. N is the number of measuring angles specified in Polar
pattern angles. Each row of the matrix represents the magnitude of the polar
pattern measured at the corresponding frequency specified in Polar pattern
frequencies and all angles specified in Polar pattern angles. Assume that the
pattern is measured in the azimuth plane. In the azimuth plane, the elevation angle
is 0° and the central pickup axis is 0° degrees azimuth and 0° degrees elevation.
Assume also that the polar pattern is symmetric around the central axis. You can
construct the microphone’s response pattern in 3-D space from the polar pattern.

Baffle the back of the element
This check box appears only when the Element type parameter is set to Isotropic
Antenna or Omni Microphone.

Select this check box to baffle the back of the antenna element. In this case, the
antenna responses to all azimuth angles beyond ±90° from broadside are set to zero.
Define the broadside direction as 0° azimuth angle and 0° elevation angle.

Ports

Note: The block input and output ports correspond to the input and output parameters
described in the step method of the underlying System object. See link at the bottom of
this page.

Port Supported Data Types

X Double-precision floating point
XT Double-precision floating point
Ang Double-precision floating point
Y Double-precision floating point
W Double-precision floating point

See Also
phased.FrostBeamformer

3 Blocks — Alphabetical List

3-150

Introduced in R2014b

 GCC DOA and TOA

3-151

GCC DOA and TOA

Generalized cross-correlator with phase transform

Library

Direction of arrival

phaseddoalib

Description

The GCC DOA and TOA block estimates direction of arrival and time of arrival of a signal
at an array. The block uses a generalized cross-correlation with phased transform (GCC-
PHAT) algorithm.

3 Blocks — Alphabetical List

3-152

Dialog Box

 GCC DOA and TOA

3-153

Signal propagation speed (m/s)
Specify the propagation speed of the signal, in meters per second, as a positive scalar.
You can use the function physconst to specify the speed of light.

Sample rate
Specify the signal sampling rate (in hertz) as a positive scalar.

Source of sensor pairs
Source

Property When you set this parameter to Property, specify
the sensor pairs for computing correlation using
the Sensor pairs parameter.
.

Auto When you set this parameter to Auto, correlations
are computed between the first element and all
other elements. The first element serves as the
reference channel.

Sensor pairs
Sensor pairs, specified as a 2-by-M matrix of strictly positive integers. This
parameter appears only when you set the Source of sensor pairs parameter to
Property.

Enable correlation output
Check this box to output the correlations computed using the GCC-PHAT algorithm
as well as the corresponding lags between each sensor pairs. Correlation values are
output via the Rxy port. Lag values are output via the Lags port. These ports appear
only when you check the Enable correlation output box. Clear this checkbox to
disable output of correlations.

Enable delay output
Check this box to output the delay corresponding to the arrival angle of a signal
between each sensor pair. The delay is output in the Tau port. This port appears only
when you check the Enable delay output box. Clear this checkboixbox to disable
output of delays.

Simulate using
Block simulation, specified as Interpreted Execution or Code Generation.
If you want your block to use the MATLAB interpreter, choose Interpreted

3 Blocks — Alphabetical List

3-154

Execution. If you want your block to run as compiled code, choose Code
Generation. Compiled code requires time to compile but usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The
block runs the underlying System object in MATLAB. You can change and execute
your model quickly. When you are satisfied with your results, you can then run the
block using Code Generation. Long simulations run faster than in interpreted
execution. You can run repeated executions without recompiling. However, if you
change any block parameters, then the block automatically recompiles before
execution.

When setting this parameter, you must take into account the overall model
simulation mode. The table shows how the Simulate using parameter interacts with
the overall simulation mode.

When the Simulink model is in Accelerator mode, the block mode specified using
Simulate using overrides the simulation mode.

Acceleration Modes

When you use this simulation mode ...If you want to
simulate using ... Normal Accelerator Rapid

Accelerator

Interpreted

Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Code Generation The block is
compiled.

All blocks in the
model are compiled.

Creates a
standalone
executable from the
model.

For more information, see “Choosing a Simulation Mode” from the Simulink
documentation.

 GCC DOA and TOA

3-155

3 Blocks — Alphabetical List

3-156

Array Parameters

Specify sensor array as
Sensor element or sensor array specified. A sensor array can also contain subarrays
or as a partitioned array. This parameter can also be expressed as a MATLAB
expression.

Types

Array (no subarrays)

Partitioned array

Replicated subarray

MATLAB expression

Geometry
Specify the array geometry as one of the following

• ULA — Uniform Line Array
• URA — Uniform Rectangular Array
• UCA — Uniform Circular Array
• Conformal Array

Number of elements
Specifies the number of elements in the array as an integer.

This parameter appears when the Geometry is set to ULA or UCA. When Sensor
Array is set to Replicated subarray, this parameter applies to the sub-array.

Array size
This parameter appears when Geometry is set to URA. When Sensor Array is set to
Replicated subarray, this parameter applies to the subarrays.

Specify the size of the array as a 1-by-2 integer vector or a single integer containing.

• If Array size is a 1-by-2 vector, the vector has the form
[NumberOfRows,NumberOfColumns] where NumberOfRows and
NumberOfColumns specify the number of rows and columns of the array,
respectively.

• If Array size is an integer, the array has the same number of rows and columns.

 GCC DOA and TOA

3-157

For a URA, elements are indexed from top to bottom along a column and continuing
to the next columns from left to right. In this figure, an Array size of [3,2]
produces an array of three rows and two columns.

Size and Element Indexing Order

for Uniform Rectangular Arrays

Example: Size = [3,2]

1

2

3

4

6

5

Z

Y

Element spacing
This parameter appears when Geometry is set to ULA or URA. When Sensor Array
is set to Replicated subarray, this parameter applies to the subarrays.

• For a ULA, specify the spacing, in meters, between two adjacent elements in the
array as a scalar.

• For a URA, specify the element spacing of the array, in meters, as a 1-by-2 vector
or a scalar. If Element spacing is a 1-by-2 vector, the vector has the form
[SpacingBetweenRows,SpacingBetweenColumns]. For a discussion of
these quantities, see phased.URA. If Element spacing is a scalar, the spacings
between rows and columns are equal.

Array axis
This parameter appears when the Geometry parameter is set to ULA or when the
block supports only a ULA array geometry. You can specify this parameters as 'x',
'y', or 'z'. Then, all ULA array elements are uniformly spaced along this axis in
the local array coordinate system.

3 Blocks — Alphabetical List

3-158

Array normal
This parameter appears when the Geometry parameter is set to URA or UCA. You
can specify the Array normal parameter as 'x', 'y', or 'z'. Then, all URA and
UCA array elements are placed in the yz-, zx-, or xy- planes, respectively, of the array
coordinate system.

Radius of UCA (m)
Radius of a uniform circular array specified as a positive scalar. Units are meters.

This parameter appears when the Geometry is set to UCA.
Taper

Tapers, also known as element weights, are applied to sensor elements in the array.
Tapers are used to modify both the amplitude and phase of the transmitted or
received data.

This parameter appears when Geometry is set to ULA, URA, UCA, or Conformal
Array. When Sensor Array is set to Replicated subarray, this parameter
applies to subarrays.

• For a ULA or UCA, specify element tapering as a complex-valued scalar or a
complex-valued 1-by-N row vector. In this vector, N represents the number
of elements in the array. If Taper is a scalar, the same weight is applied to
each element. If Taper is a vector, a weight from the vector is applied to the
corresponding sensor element. A weight must be applied to each element in the
sensor array.

• For a URA, specify element tapering as a complex-valued scalar or complex-valued
M-by-N matrix. In this matrix, M is the number of elements along the z-axis, and
N is the number of elements along the y-axis. M and N correspond to the values
of [NumberofRows, NumberOfColumns] in the Array size matrix. If Taper
is a scalar, the same weight is applied to each element. If the value of Taper is a
matrix, a weight from the matrix is applied to the corresponding sensor element.
A weight must be applied to each element in the sensor array.

• For a Conformal Array, specify element taper as a complex-valued scalar or
complex-valued 1-by-N vector. In this vector, N is the number of elements in the
array as determined by the size of the Element positions vector. If the Taper
parameter is a scalar, the same weight is applied to each element. If the value of
Taper is a vector, a weight from the vector is applied to the corresponding sensor
element. A weight must be applied to each element in the sensor array.

Element lattice

 GCC DOA and TOA

3-159

This parameter appears when Geometry is set to URA. When Sensor Array is set to
Replicated subarray, this parameter applies to the sub-array.

Specify the element lattice as one of Rectangular or Triangular

• Rectangular — Aligns all the elements in both row and column directions.
• Triangular — Shifts the even row elements toward the positive row axis

direction. The elements are shifted a distance of half the element spacing along
the row.

Element positions
This parameter appears when Geometry is set to Conformal Array. When Sensor
Array is set to Replicated subarray, this parameter applies to subarrays.

Specify the positions of the elements, in meters, in the conformal array as a 3-by-N
matrix, where N indicates the number of elements in the conformal array. Each
column of Element positions represents the position of a single element, in the
form [x; y; z], in the array’s local coordinate system. The local coordinate system
has its origin at an arbitrary point.

Element normals (deg)
This parameter appears when Geometry is set to Conformal Array. When Sensor
Array is set to Replicated subarray, this parameter applies to subarrays.

Specify the normal directions of the elements in a conformal array as a 2-by-N
matrix or a 2-by-1 column vector in degrees. The variable N indicates the number of
elements in the array. If Element normals is a matrix, each column specifies the
normal direction of the corresponding element in the form [azimuth;elevation],
with respect to the local coordinate system. The local coordinate system aligns
the positive x-axis with the direction normal to the conformal array. If Element
normals is a 2-by-1 column vector, the vector specifies the same pointing direction
for all elements in the array.

You can use the Element positions and Element normals parameters to represent
any arrangement in which pairs of elements differ by certain transformations. You
can combine translation, azimuth rotation, and elevation rotation transformations.
However, you cannot use transformations that require rotation about the normal.

Subarray definition matrix
This parameter appears when Sensor array is set to Partitioned array.

3 Blocks — Alphabetical List

3-160

Specify the subarray selection as an M-by-N matrix. M is the number of subarrays
and N is the total number of elements in the array. Each row of the matrix indicates
which elements belong to the corresponding subarray. Each entry in the matrix is 1
or 0, where 1 indicates that the element appears in the subarray and 0 indicates the
opposite. Each row must contain at least one 1.

The phase center of each subarray is its geometric center. Subarray definition
matrix and Geometry determine the geometric center.

Subarray steering method
This parameter appears when Sensor array is set to Partitioned array or
Replicated subarray.

Specify the subarray steering method as

• None

• Phase

• Time

When using the Narrowband Receive Array, Narrowband Transmit Array,
or Wideband Receive Array blocks, select Phase or Time to create the input port
Steer on each block.

Phase shifter frequency
This parameter appears when you set Sensor array to Partitioned array or
Replicated subarray and you set Subarray steering method to Phase.

Specify the operating frequency, in hertz, of phase shifters to perform subarray
steering as a positive scalar.

Number of bits in phase shifters
This parameter appears when you set Sensor array to Partitioned array or
Replicated subarray and you set Subarray steering method to Phase.

The number of bits used to quantize the phase shift component of beamformer or
steering vector weights. Specify the number of bits as a non-negative integer. A value
of zero indicates that no quantization is performed.

Subarrays layout
This parameter appears when you set Sensor array to Replicated subarray.

Specify the layout of the replicated subarrays as Rectangular or Custom.
Grid size

 GCC DOA and TOA

3-161

This parameter appears when you set Sensor array to Replicated subarray and
Subarrays layout to Rectangular.

Specify the size of the rectangular grid as a single positive integer or an positive
integer-valued 1-by-2 positive row vector.

If Grid size is a scalar, the array has an equal number of subarrays in each
row and column. If Grid size is a 1-by-2 vector of the form [NumberOfRows,
NumberOfColumns], the first entry is the number of subarrays along each column.
The second entry is the number of subarrays in each row. A row is along the local y-
axis, and a column is along the local z-axis. This figure shows how you can replicate a
3-by-2 URA subarray using a Grid size of [1,2].

3 x 2 Element URA

Replicated on a 1 x 2 Grid

1

2

3

4

6

5

Z

Y

7

8

9

10

12

11

Grid spacing
This parameter appears when you set Sensor array to Replicated subarray and
Subarrays layout to Rectangular.

Specify the rectangular grid spacing of subarrays as a real-valued positive scalar, a 1-
by-2 row vector, or Auto. Grid spacing units are expressed in meters.

• If Grid spacing is a scalar, the spacing along the row and the spacing along the
column is the same.

• If Grid spacing is a 1-by-2 row vector, the vector has the form
[SpacingBetweenRows,SpacingBetweenColumn]. The first entry specifies
the spacing between rows along a column. The second entry specifies the spacing
between columns along a row.

3 Blocks — Alphabetical List

3-162

• If Grid spacing is set to Auto, replication preserves the element spacing of the
subarray for both rows and columns while building the full array. This option is
available only when you specify Geometry as ULA or URA.

Subarray positions (m)
This parameter appears when you set Sensor array to Replicated subarray and
Subarrays layout to Custom.

Specify the positions of the subarrays in the custom grid as a 3-by-N matrix, where
N is the number of subarrays in the array. Each column of the matrix represents the
position of a single subarray, in meters, in the array’s local coordinate system. The
coordinates are expressed in the form [x; y; z].

Subarray normals
This parameter appears when you set the Sensor array parameter to Replicated
subarray and the Subarrays layout to Custom.

Specify the normal directions of the subarrays in the array. This parameter value
is a 2-by-N matrix, where N is the number of subarrays in the array. Each column
of the matrix specifies the normal direction of the corresponding subarray, in the
form [azimuth; elevation]. Each angle is in degrees and is defined in the local
coordinate system.

You can use the Subarray positions and Subarray normals parameters
to represent any arrangement in which pairs of subarrays differ by certain
transformations. The transformations can combine translation, azimuth rotation, and
elevation rotation. However, you cannot use transformations that require rotation
about the normal.

Expression
A valid MATLAB expression containing an array constructor, for example,
phased.URA.

Sensor Array Tab: Element Parameters

Element type
Specify antenna or microphone type as

• Isotropic Antenna

• Cosine Antenna

• Custom Antenna

 GCC DOA and TOA

3-163

• Omni Microphone

• Custom Microphone

Exponent of cosine pattern
This parameter appears when you set Element type to Cosine Antenna.

Specify the exponent of the cosine pattern as a scalar or a 1-by-2 vector. You
must specify all values as real numbers greater than or equal to 1. When you set
Exponent of cosine pattern to a scalar, both the azimuth direction cosine pattern
and the elevation direction cosine pattern are raised to the specified value. When you
set Exponent of cosine pattern to a 1-by-2 vector, the first element is the exponent
for the azimuth direction cosine pattern and the second element is the exponent for
the elevation direction cosine pattern.

Operating frequency range (Hz)
This parameter appears when Element type is set to Isotropic Antenna, Cosine
Antenna, or Omni Microphone.

Specify the operating frequency range, in hertz, of the antenna element as a 1-by-2
row vector in the form [LowerBound,UpperBound]. The antenna element has no
response outside the specified frequency range.

Operating frequency vector (Hz)
This parameter appears when Element type is set to Custom Antenna or Custom
Microphone.

Specify L frequencies, in hertz, at which to set the antenna and microphone
frequency responses. Specify Operating frequency vector (Hz) as a 1-by-L
row vector of increasing value. Use Frequency responses to set the frequency
responses. The antenna or microphone element has no response outside the
frequency range specified by the minimum and maximum elements of Operating
frequency vector.

Frequency responses (dB)
This parameter appears when Element type is set to Custom Antenna or Custom
Microphone.

Specify this parameter as the frequency response of an antenna or microphone,
in decibels, for the frequencies defined by Operating frequency vector. Specify
Frequency responses (dB) as a 1-by-L vector matching the dimensions of the
vector specified in Operating frequency vector.

3 Blocks — Alphabetical List

3-164

Azimuth angles (deg)
This parameter appears when Element type is set to Custom Antenna.

Specify P azimuth angles, in degrees, at which to calculate the antenna radiation
pattern as a 1-by-P row vector. P must be greater than 2. The azimuth angles must
lie between –180° and 180° and be in strictly increasing order.

Elevation angles (deg)
This parameter appears when the Element type is set to Custom Antenna.

Specify the Q elevation angles, in degrees, at which to compute the radiation pattern
as a 1-by-Q vector. Q must be greater than 2. The elevation angles must lie between –
90° and 90° and be in strictly increasing order.

Radiation pattern (dB)
This parameter appears when the Element type is set to Custom Antenna.

The magnitude in db of the combined polarized antenna radiation pattern specified
as a Q-by-P matrix or a Q-by-P-by-L array. The value of Q must match the value of Q
specified by Elevation angles. The value of P must match the value of P specified by
Azimuth angles. The value of L must match the value of L specified by Operating
frequency vector (Hz).

Polar pattern frequencies (Hz)
This parameter appears when the Element type is set to Custom Microphone.

Specify the Mmeasuring frequencies in hertz of the polar patterns 1-by-M vector.
The measuring frequencies lie within the frequency range specified byOperating
frequency vector.

Polar pattern angles (deg)
This parameter appears when Element type is set to Custom Microphone.

Specify N measuring angles, in degrees, of the polar patterns as a 1-by-N. The angles
are measured from the central pickup axis of the microphone, and must be between –
180° and 180°, inclusive.

Polar pattern (dB)
This parameter appears when Element type is set to Custom Microphone.

Specify the magnitude of the polar patterns, in dB, of the microphone element as
an M-by-N matrix. M is the number of measuring frequencies specified in Polar

 GCC DOA and TOA

3-165

pattern frequencies. N is the number of measuring angles specified in Polar
pattern angles. Each row of the matrix represents the magnitude of the polar
pattern measured at the corresponding frequency specified in Polar pattern
frequencies and all angles specified in Polar pattern angles. Assume that the
pattern is measured in the azimuth plane. In the azimuth plane, the elevation angle
is 0° and the central pickup axis is 0° degrees azimuth and 0° degrees elevation.
Assume also that the polar pattern is symmetric around the central axis. You can
construct the microphone’s response pattern in 3-D space from the polar pattern.

Baffle the back of the element
This check box appears only when the Element type parameter is set to Isotropic
Antenna or Omni Microphone.

Select this check box to baffle the back of the antenna element. In this case, the
antenna responses to all azimuth angles beyond ±90° from broadside are set to zero.
Define the broadside direction as 0° azimuth angle and 0° elevation angle.

Ports

Note: The block input and output ports correspond to the input and output parameters
described in the step method of the underlying System object. See link at the bottom of
this page.

Port Supported Data Types

In Double-precision floating point
Ang Double-precision floating point
Rxy Double-precision floating point
Lag Double-precision floating point
Tau Double-precision floating point

See Also
phased.GCCEstimator | gccphat

Introduced in R2015b

3 Blocks — Alphabetical List

3-166

LCMV Beamformer

Narrowband linear constraint minimum variance (LCMV) beamformer

Library

Beamforming

phasedbflib

Description

The LCMV Beamformer block performs narrowband linear constraint minimum variance
(LCMV) beamforming. The number of constraints must be less than the number of
elements or subarrays in the array.

 LCMV Beamformer

3-167

Dialog Box

Constraint matrix
Specify the constraint matrix used for LCMV beamforming as an N-by-K matrix.
Each of the K columns of the matrix sets a constraint. The dimension N is the
number of elements or subarrays in the sensor array.

3 Blocks — Alphabetical List

3-168

Desired response vector
Specify the desired response used for LCMV beamforming as a column vector of
length K, where K is the number of constraints in the Constraint matrix. Each
element in the vector defines the desired response of the constraint specified in the
corresponding column of the Constraint matrix parameter.

Diagonal loading factor
Specify the diagonal loading factor as a positive scalar. Diagonal loading is a
technique used to achieve robust beamforming performance, especially when the
sample support is small.

Enable training data input
Select this check box to specify additional training data via the input port XT. To use
the input signal as the training data, clear the check box which removes the port.

Enable weights output
Select this check box to obtain the beamformer weights from the output port W.

Simulate using
Block simulation, specified as Interpreted Execution or Code Generation.
If you want your block to use the MATLAB interpreter, choose Interpreted
Execution. If you want your block to run as compiled code, choose Code
Generation. Compiled code requires time to compile but usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The
block runs the underlying System object in MATLAB. You can change and execute
your model quickly. When you are satisfied with your results, you can then run the
block using Code Generation. Long simulations run faster than in interpreted
execution. You can run repeated executions without recompiling. However, if you
change any block parameters, then the block automatically recompiles before
execution.

When setting this parameter, you must take into account the overall model
simulation mode. The table shows how the Simulate using parameter interacts with
the overall simulation mode.

When the Simulink model is in Accelerator mode, the block mode specified using
Simulate using overrides the simulation mode.

Acceleration Modes

If you want to
simulate using ...

When you use this simulation mode ...

 LCMV Beamformer

3-169

Normal Accelerator Rapid

Accelerator

Interpreted

Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Code Generation The block is
compiled.

All blocks in the
model are compiled.

Creates a
standalone
executable from the
model.

For more information, see “Choosing a Simulation Mode” from the Simulink
documentation.

Ports

Note: The block input and output ports correspond to the input and output parameters
described in the step method of the underlying System object. See link at the bottom of
this page.

Port Supported Data Types

X Double-precision floating point
XT Double-precision floating point
Y Double-precision floating point
W Double-precision floating point

See Also
phased.LCMVBeamformer

Introduced in R2014b

3 Blocks — Alphabetical List

3-170

Linear FM Waveform

Linear FM (LFM) pulse waveform

Library

Waveforms

phasedwavlib

Description

The Linear FM Waveform block generates a linear FM pulse waveform with specified
pulse width, pulse repetition frequency (PRF), and sweep bandwidth. The block outputs
an integer number of pulses or samples.

 Linear FM Waveform

3-171

Dialog Box

3 Blocks — Alphabetical List

3-172

Sample rate
Specify the sample rate, in hertz, as a positive scalar. The ratio of the Sample rate
parameter to the Pulse repetition frequency parameter must be an integer. This
is equivalent to requiring that the pulse repetition interval be an integer multiple of
the sample interval.

Method to specify pulse duration
Specify the method to set the pulse duration as Pulse width or Duty cycle.
When you set this parameter to Pulse width, the pulse duration is set using the
PulseWidth parameter. When you set this parameter to Duty cycle, the pulse
duration is computed from the values of the Pulse repetition frequency (Hz) and
Duty Cycle paremeters.

Pulse width (s)
Specify the duration of each pulse, in seconds, as a positive scalar. The product of
Pulse width and Pulse repetition frequency must be less than or equal to one.

Duty Cycle
Specify the waveform duty cycle as a scalar between 0 and 1, inclusive. This
parameter appears when you set the Method to specify pulse duration parameter
to Duty cycle

Pulse repetition frequency (Hz)
Specify pulse repetition frequency (PRF) as a scalar or a row vector. Units for PRF
are hertz.

To implement a constant PRF, specify Pulse repetition frequency as a positive
scalar.

To implement a staggered PRF, specify Pulse repetition frequency as a row
vector with all strictly positive values. When PRF is staggered, the time between
successive output pulses is determined sequentially by the successive values of
the PRF vector. If the waveform reaches the last element of the vector, the process
continues cyclically with the first element of the vector. When the value of the Pulse
repetition frequency (Hz) parameter is a row vector, the value of Output signal
format must be set to Samples.

The value of this parameter must satisfy these constraints

• The product of Pulse width and Pulse repetition frequency parameter must
be less than or equal to one.

 Linear FM Waveform

3-173

• The ratio of sample rate to each element of Pulse repetition frequency be an
integer. Sample rate is specified in any of the waveform library blocks.

Enable PRF selection input
Check this box to select which predefined PRF to use during the simulation via input.
Uncheck this box to use the Pulse repetition frequency parameter to define the
PRF sequence used in the simulation.

Sweep bandwidth
Specify the bandwidth of the linear FM sweep, in hertz, as a positive scalar.

Sweep direction
Specify the direction of the linear FM sweep as Up or Down.

Sweep interval
If you set this parameter to Positive, the waveform sweeps in the interval between
0 and B, where B is the value of the Sweep bandwidth parameter. If you set this
parameter value to Symmetric, the waveform sweeps in the interval between –B/2
and B/2.

Envelope function
Specify the envelope function as Rectangular or Gaussian.

Output signal format
Specify the format of the output signal as Pulses or Samples.

If you set the this parameter to Samples, the output of the block is in the form of
multiple samples. The number of samples is the value of the Number of samples in
output parameter.

If you set the this parameter to Pulses, the output of the block is in the form of
multiple pulses. The number of pulses is the value of the Number of pulses in
output parameter.

The value of Output signal format must be set to Samples when the Pulse
repetition frequency (Hz) parameter is a row vector.

Number of samples in output
Number of samples in the block output, specified as a positive integer. This
parameter appears only when you set Output signal format to Samples.

Number of pulses in output

3 Blocks — Alphabetical List

3-174

Specify the number of pulses in the block output as a positive integer. This
parameter appears only when you set Output signal format to Pulses.

Simulate using
Block simulation, specified as Interpreted Execution or Code Generation.
If you want your block to use the MATLAB interpreter, choose Interpreted
Execution. If you want your block to run as compiled code, choose Code
Generation. Compiled code requires time to compile but usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The
block runs the underlying System object in MATLAB. You can change and execute
your model quickly. When you are satisfied with your results, you can then run the
block using Code Generation. Long simulations run faster than in interpreted
execution. You can run repeated executions without recompiling. However, if you
change any block parameters, then the block automatically recompiles before
execution.

When setting this parameter, you must take into account the overall model
simulation mode. The table shows how the Simulate using parameter interacts with
the overall simulation mode.

When the Simulink model is in Accelerator mode, the block mode specified using
Simulate using overrides the simulation mode.

Acceleration Modes

When you use this simulation mode ...If you want to
simulate using ... Normal Accelerator Rapid

Accelerator

Interpreted

Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Code Generation The block is
compiled.

All blocks in the
model are compiled.

Creates a
standalone
executable from the
model.

For more information, see “Choosing a Simulation Mode” from the Simulink
documentation.

 Linear FM Waveform

3-175

Ports

Note: The block input and output ports correspond to the input and output parameters
described in the step method of the underlying System object. See link at the bottom of
this page.

Port Supported Data Types

Out Double-precision floating point

See Also
phased.LinearFMWaveform

Introduced in R2014b

3 Blocks — Alphabetical List

3-176

LOS Channel

Narrowband line-of-sight propagation channel

Library

Environment and Targets

phasedenvlib

Description

The LOS Channel block propagates signals from one point in space to multiple points or
from multiple points back to one point via line-of-sight (LOS) channels. The block models
propagation time, free-space propagation loss, Doppler shift, and atmospheric as well as
weather loss. The block assumes that the propagation speed is much greater than the
object's speed in which case the stop-and-hop model is valid.

When propagating a signal in an LOS channel to an object and back, you have the
choice of either using a single block to compute two-way LOS channel propagation delay
or two blocks to perform one-way propagation delays in each direction. Because the
LOS channel propagation delay is not necessarily an integer multiple of the sampling
interval, it may turn out that the total round trip delay in samples when you use a two-
way propagation block differs from the delay in samples when you use two one-way
propagation blocks. For this reason, it is recommended that, when possible, you use a
single two-way propagation block.

 LOS Channel

3-177

Dialog Box

Propagation speed (m/s)

3 Blocks — Alphabetical List

3-178

Specify the propagation speed of the signal, in meters per second, as a positive scalar.
You can use the function physconst to specify the speed of light.

Signal carrier frequency (Hz)
Specify the carrier frequency of the signal in hertz of the narrowband signal as a
positive scalar.

Specify atmospheric parameters
Select this check box to enable atmospheric attenuation modeling.

Temperature (degrees Celsius)
Ambient atmospheric temperature, specified as a real-valued scalar. Units are
degrees Celsius. This parameter appears when you select the Specify atmospheric
parameters check box. Units are degrees Celsius.

Dry air pressure (Pa)
Atmospheric dry air pressure, specified as a positive real-valued scalar. Units
are Pascals (Pa). The value 101325 for this property corresponds to one standard
atmosphere. This parameter appears when you select the Specify atmospheric
parameters check box.

Water vapour density (g/m^3)
Atmospheric water vapor density, specified as a positive real-valued scalar. Units
are gm/m3. This parameter appears when you select the Specify atmospheric
parameters check box.

Liquid water density (g/m^3)
Liquid water density of fog or clouds, specified as a non-negative real-valued scalar.
Units are gm/m3. Typical values for liquid water density are 0.05 for medium fog and
0.5 for thick fog. This parameter appears when you select the Specify atmospheric
parameters check box.

Rain rate (mm/hr)
Rainfall rate, specified as a non-negative real-valued scalar. Units are in mm/hour.
This parameter appears when you select the Specify atmospheric parameters
check box.

Perform two-way propagation
Select this check box to perform round-trip propagation between the origin and
destination. Otherwise the block performs one-way propagation from the origin to the
destination.

Maximum one-way propagation distance (m)

 LOS Channel

3-179

The maximum distance, in meters, between the signal origin and the destination,
specified as a positive scalar. Amplitudes of any signals that propagate beyond this
distance will be set to zero.

Simulate using
Block simulation, specified as Interpreted Execution or Code Generation.
If you want your block to use the MATLAB interpreter, choose Interpreted
Execution. If you want your block to run as compiled code, choose Code
Generation. Compiled code requires time to compile but usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The
block runs the underlying System object in MATLAB. You can change and execute
your model quickly. When you are satisfied with your results, you can then run the
block using Code Generation. Long simulations run faster than in interpreted
execution. You can run repeated executions without recompiling. However, if you
change any block parameters, then the block automatically recompiles before
execution.

When setting this parameter, you must take into account the overall model
simulation mode. The table shows how the Simulate using parameter interacts with
the overall simulation mode.

When the Simulink model is in Accelerator mode, the block mode specified using
Simulate using overrides the simulation mode.

Acceleration Modes

When you use this simulation mode ...If you want to
simulate using ... Normal Accelerator Rapid

Accelerator

Interpreted

Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Code Generation The block is
compiled.

All blocks in the
model are compiled.

Creates a
standalone
executable from the
model.

For more information, see “Choosing a Simulation Mode” from the Simulink
documentation.

3 Blocks — Alphabetical List

3-180

Ports

Note: The block input and output ports correspond to the input and output parameters
described in the step method of the underlying System object. See link at the bottom of
this page.

Port Supported Data Types

X Double-precision floating point
Pos1 Double-precision floating point
Pos2 Double-precision floating point
Vel1 Double-precision floating point
Vel2 Double-precision floating point
Out Double-precision floating point

Definitions

When the origin and destination are stationary relative to each other, the block output
can be written as y(t) = x(t – τ)/L. The quantity τ is the delay and L is the propagation
loss. The delay is computed from τ = R/c where R is the propagation distance and c is the
propagation speed. The free space path loss is given by

L
R

fsp =
()

,
4 2

2

p

l

where λ is the signal wavelength.

This formula assumes that the target is in the far-field of the transmitting element or
array. In the near-field, the free-space path loss formula is not valid and can result in
losses smaller than one, equivalent to a signal gain. For this reason, the loss is set to
unity for range values, R ≤ λ/4π.

When there is relative motion between the origin and destination, the processing also
introduces a frequency shift. This shift corresponds to the Doppler shift between the
origin and destination. The frequency shift is v/λ for one-way propagation and 2v/λ

 LOS Channel

3-181

for two-way propagation. The parameter v is the relative speed of the destination with
respect to the origin.

See Also
phased.LOSChannel

Introduced in R2016a

3 Blocks — Alphabetical List

3-182

Matched Filter

Matched filter

Library

Detection

phaseddetectlib

Description

The Matched Filter block implements matched filtering of an input signal. Matched
filtering is an FIR filtering operation with the coefficients equal to the time reversed
samples of the transmitted signal. The filter can improve SNR before detection.

 Matched Filter

3-183

Dialog Box

Source of coefficients
Specify whether the matched filter coefficients come from Coefficients or from an
input port.

Property Matched filter coefficients are specified by
Coefficients.

Input port Matched filter coefficients are specified via the
input port Coeff.

Coefficients

3 Blocks — Alphabetical List

3-184

Specify the matched filter coefficients as a column vector. This parameter appears
when you set Source of coefficients to Property.

Spectrum window
Specify the window used for spectrum weighting using one of

None

Hamming

Chebyshev

Hann

Kaiser

Taylor

Spectrum weighting is often used with linear FM waveforms to reduce sidelobe levels
in the time domain. The block computes the window length internally to match the
FFT length.

Spectrum window range
This parameter appears when you set the Spectrum window parameter
to any value other than None. Specify the spectrum region, in hertz, on
which the spectrum window is applied as a 1-by-2 vector in the form of
[StartFrequency,EndFrequency].

Note that both StartFrequency and EndFrequency are measured in baseband.
That is, they are within [-Fs/2,Fs/2], where Fs is the sample rate specified in any
of the waveform library blocks. The parameter StartFrequency must be less than
EndFrequency.

Sidelobe attenuation level
This parameter appears when you set Spectrum window to Chebyshev or Taylor.
Specify the sidelobe attenuation level, in dB, of a Chebyshev or Taylor window as a
positive scalar.

Kaiser shape parameter
This parameter appears when you set the Spectrum window parameter to Kaiser.
Specify the parameter that affects the Kaiser window sidelobe attenuation as a
nonnegative scalar. Please refer to the function kaiser for more details.

Number of constant level sidelobes

 Matched Filter

3-185

This parameter appears when you set the Spectrum window parameter to Taylor.
Specify the number of nearly-constant-level sidelobes adjacent to the mainlobe in a
Taylor window as a positive integer.

Enable SNR gain output
Select this check this box to obtain the matched filter SNR gain via the output port G.
The output port appears only when this box is selected.

Simulate using
Block simulation, specified as Interpreted Execution or Code Generation.
If you want your block to use the MATLAB interpreter, choose Interpreted
Execution. If you want your block to run as compiled code, choose Code
Generation. Compiled code requires time to compile but usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The
block runs the underlying System object in MATLAB. You can change and execute
your model quickly. When you are satisfied with your results, you can then run the
block using Code Generation. Long simulations run faster than in interpreted
execution. You can run repeated executions without recompiling. However, if you
change any block parameters, then the block automatically recompiles before
execution.

When setting this parameter, you must take into account the overall model
simulation mode. The table shows how the Simulate using parameter interacts with
the overall simulation mode.

When the Simulink model is in Accelerator mode, the block mode specified using
Simulate using overrides the simulation mode.

Acceleration Modes

When you use this simulation mode ...If you want to
simulate using ... Normal Accelerator Rapid

Accelerator

Interpreted

Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Code Generation The block is
compiled.

All blocks in the
model are compiled.

Creates a
standalone
executable from the
model.

For more information, see “Choosing a Simulation Mode” from the Simulink
documentation.

3 Blocks — Alphabetical List

3-186

Ports

Note: The block input and output ports correspond to the input and output parameters
described in the step method of the underlying System object. See link at the bottom of
this page.

Port Supported Data Types

X Double-precision floating point
Coeff Double-precision floating point
Y Double-precision floating point
G Double-precision floating point

See Also
phased.MatchedFilter

Introduced in R2014b

 MFSK waveform

3-187

MFSK waveform

Multiple frequency shift keying (MFSK) continuous waveform

Library

Waveforms

phasedwavlib

Description

The MFSK Waveform block generates a multiple frequency- shift keying (MFSK)
continuous waveform with a specified step time, sweep bandwidth, frequency offset, and
number of steps. The block outputs an integer number of samples, steps, or sweeps. For
details on the structure of an MFSK waveform, see phased.MFSKWaveform.

3 Blocks — Alphabetical List

3-188

Dialog Box

 MFSK waveform

3-189

Sample rate (Hz)
Sample rate of the signal, specified as a positive scalar. Units are in hertz.

Sweep bandwidth (Hz)
Bandwidth of the MFSK sweep, specified as a positive scalar. Units are in hertz.

Frequency step burst time (s)
Time duration of each frequency step, specified as a positive scalar. Units are in
seconds.

Number of steps per sweep
Total number of steps in each sweep, specified as an even positive integer.

Chirp offset frequency (Hz)
Chirp offset frequency, specified as a real scalar. Units are in hertz. The offset
determines the frequency translation between the two sequences.

Output signal format
Format of the output signal, specified as one of the following:

• 'Steps' — The block outputs the number of samples contained in an integer
number of frequency steps, Number of steps in output.

• 'Samples' — The block outputs the number of samples specified in Number of
samples in output.

• 'Sweeps' — The block outputs the number of samples contained in an integer
number of sweeps, Number of sweeps in output.

Number of sweeps in output
Number of sweeps in the block output, specified as a positive integer. This parameter
appears only when you set Output signal format to Sweeps.

Number of samples in output
Number of samples in the block output, specified as a positive integer. This
parameter appears only when you set Output signal format to Samples.

Number of steps in output
Number of steps in the block output, specified as a positive integer. This parameter
appears only when you set Output signal format to Steps.

Simulate using
Block simulation, specified as Interpreted Execution or Code Generation.
If you want your block to use the MATLAB interpreter, choose Interpreted

3 Blocks — Alphabetical List

3-190

Execution. If you want your block to run as compiled code, choose Code
Generation. Compiled code requires time to compile but usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The
block runs the underlying System object in MATLAB. You can change and execute
your model quickly. When you are satisfied with your results, you can then run the
block using Code Generation. Long simulations run faster than in interpreted
execution. You can run repeated executions without recompiling. However, if you
change any block parameters, then the block automatically recompiles before
execution.

When setting this parameter, you must take into account the overall model
simulation mode. The table shows how the Simulate using parameter interacts with
the overall simulation mode.

When the Simulink model is in Accelerator mode, the block mode specified using
Simulate using overrides the simulation mode.

Acceleration Modes

When you use this simulation mode ...If you want to
simulate using ... Normal Accelerator Rapid

Accelerator

Interpreted

Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Code Generation The block is
compiled.

All blocks in the
model are compiled.

Creates a
standalone
executable from the
model.

For more information, see “Choosing a Simulation Mode” from the Simulink
documentation.

Ports

Note: The block input and output ports correspond to the input and output parameters
described in the step method of the underlying System object. See link at the bottom of
this page.

 MFSK waveform

3-191

Port Supported Data Types

Out Double-precision floating point

See Also
phased.MFSKWaveform

Introduced in R2015a

3 Blocks — Alphabetical List

3-192

MVDR Beamformer

Narrowband MVDR (Capon) beamformer

Library

Beamforming

phasedbflib

Description

The MVDR Beamformer block performs minimum variance distortionless response
(MVDR) beamforming. The block preserves the signal power in the given direction while
suppressing interference and noise from other directions. The MVDR beamformer is also
called the Capon beamformer.

 MVDR Beamformer

3-193

Dialog Box

3 Blocks — Alphabetical List

3-194

Signal propagation speed (m/s)
Specify the propagation speed of the signal, in meters per second, as a positive scalar.
You can use the function physconst to specify the speed of light.

Operating frequency (Hz)
Specify the operating frequency of the system, in hertz, as a positive scalar.

Diagonal loading factor
Specify the diagonal loading factor as a positive scalar. Diagonal loading is a
technique used to achieve robust beamforming performance, especially when the
sample support is small.

Enable training data input
Select this check box to specify additional training data via the input port XT. To use
the input signal as the training data, clear the check box which removes the port.

Source of beamforming direction
Specify whether the beamforming direction comes from the Beamforming
direction parameter or from an input port. Values of this parameter are:

Property Specify the beamforming direction using
Beamforming direction.

Input port Specify the beamforming direction using the Ang
input port.

Beamforming direction (deg)
Specify the beamforming direction of the beamformer, in degrees, as a 1-by-2 vector.
The direction is specified in the format of [AzimuthAngle; ElevationAngle].
The azimuth angle should be between –180° and 180°. The elevation angle should
be between –90° and 90°. This parameter appears only when you set Source of
beamforming direction to Property.

Number of bits in phase shifters
The number of bits used to quantize the phase shift component of beamformer or
steering vector weights. Specify the number of bits as a non-negative integer. A value
of zero indicates that no quantization is performed.

Enable weights output
Select this check box to obtain the beamformer weights from the output port W.

 MVDR Beamformer

3-195

Simulate using
Block simulation, specified as Interpreted Execution or Code Generation.
If you want your block to use the MATLAB interpreter, choose Interpreted
Execution. If you want your block to run as compiled code, choose Code
Generation. Compiled code requires time to compile but usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The
block runs the underlying System object in MATLAB. You can change and execute
your model quickly. When you are satisfied with your results, you can then run the
block using Code Generation. Long simulations run faster than in interpreted
execution. You can run repeated executions without recompiling. However, if you
change any block parameters, then the block automatically recompiles before
execution.

When setting this parameter, you must take into account the overall model
simulation mode. The table shows how the Simulate using parameter interacts with
the overall simulation mode.

When the Simulink model is in Accelerator mode, the block mode specified using
Simulate using overrides the simulation mode.

Acceleration Modes

When you use this simulation mode ...If you want to
simulate using ... Normal Accelerator Rapid

Accelerator

Interpreted

Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Code Generation The block is
compiled.

All blocks in the
model are compiled.

Creates a
standalone
executable from the
model.

For more information, see “Choosing a Simulation Mode” from the Simulink
documentation.

3 Blocks — Alphabetical List

3-196

 MVDR Beamformer

3-197

Array Parameters

Specify sensor array as
Sensor element or sensor array specified. A sensor array can also contain subarrays
or as a partitioned array. This parameter can also be expressed as a MATLAB
expression.

Types

Array (no subarrays)

Partitioned array

Replicated subarray

MATLAB expression

Geometry
Specify the array geometry as one of the following

• ULA — Uniform Line Array
• URA — Uniform Rectangular Array
• UCA — Uniform Circular Array
• Conformal Array

Number of elements
Specifies the number of elements in the array as an integer.

This parameter appears when the Geometry is set to ULA or UCA. When Sensor
Array is set to Replicated subarray, this parameter applies to the sub-array.

Array size
This parameter appears when Geometry is set to URA. When Sensor Array is set to
Replicated subarray, this parameter applies to the subarrays.

Specify the size of the array as a 1-by-2 integer vector or a single integer containing.

• If Array size is a 1-by-2 vector, the vector has the form
[NumberOfRows,NumberOfColumns] where NumberOfRows and
NumberOfColumns specify the number of rows and columns of the array,
respectively.

• If Array size is an integer, the array has the same number of rows and columns.

3 Blocks — Alphabetical List

3-198

For a URA, elements are indexed from top to bottom along a column and continuing
to the next columns from left to right. In this figure, an Array size of [3,2]
produces an array of three rows and two columns.

Size and Element Indexing Order

for Uniform Rectangular Arrays

Example: Size = [3,2]

1

2

3

4

6

5

Z

Y

Element spacing
This parameter appears when Geometry is set to ULA or URA. When Sensor Array
is set to Replicated subarray, this parameter applies to the subarrays.

• For a ULA, specify the spacing, in meters, between two adjacent elements in the
array as a scalar.

• For a URA, specify the element spacing of the array, in meters, as a 1-by-2 vector
or a scalar. If Element spacing is a 1-by-2 vector, the vector has the form
[SpacingBetweenRows,SpacingBetweenColumns]. For a discussion of
these quantities, see phased.URA. If Element spacing is a scalar, the spacings
between rows and columns are equal.

Array axis
This parameter appears when the Geometry parameter is set to ULA or when the
block supports only a ULA array geometry. You can specify this parameters as 'x',
'y', or 'z'. Then, all ULA array elements are uniformly spaced along this axis in
the local array coordinate system.

 MVDR Beamformer

3-199

Array normal
This parameter appears when the Geometry parameter is set to URA or UCA. You
can specify the Array normal parameter as 'x', 'y', or 'z'. Then, all URA and
UCA array elements are placed in the yz-, zx-, or xy- planes, respectively, of the array
coordinate system.

Radius of UCA (m)
Radius of a uniform circular array specified as a positive scalar. Units are meters.

This parameter appears when the Geometry is set to UCA.
Taper

Tapers, also known as element weights, are applied to sensor elements in the array.
Tapers are used to modify both the amplitude and phase of the transmitted or
received data.

This parameter appears when Geometry is set to ULA, URA, UCA, or Conformal
Array. When Sensor Array is set to Replicated subarray, this parameter
applies to subarrays.

• For a ULA or UCA, specify element tapering as a complex-valued scalar or a
complex-valued 1-by-N row vector. In this vector, N represents the number
of elements in the array. If Taper is a scalar, the same weight is applied to
each element. If Taper is a vector, a weight from the vector is applied to the
corresponding sensor element. A weight must be applied to each element in the
sensor array.

• For a URA, specify element tapering as a complex-valued scalar or complex-valued
M-by-N matrix. In this matrix, M is the number of elements along the z-axis, and
N is the number of elements along the y-axis. M and N correspond to the values
of [NumberofRows, NumberOfColumns] in the Array size matrix. If Taper
is a scalar, the same weight is applied to each element. If the value of Taper is a
matrix, a weight from the matrix is applied to the corresponding sensor element.
A weight must be applied to each element in the sensor array.

• For a Conformal Array, specify element taper as a complex-valued scalar or
complex-valued 1-by-N vector. In this vector, N is the number of elements in the
array as determined by the size of the Element positions vector. If the Taper
parameter is a scalar, the same weight is applied to each element. If the value of
Taper is a vector, a weight from the vector is applied to the corresponding sensor
element. A weight must be applied to each element in the sensor array.

Element lattice

3 Blocks — Alphabetical List

3-200

This parameter appears when Geometry is set to URA. When Sensor Array is set to
Replicated subarray, this parameter applies to the sub-array.

Specify the element lattice as one of Rectangular or Triangular

• Rectangular — Aligns all the elements in both row and column directions.
• Triangular — Shifts the even row elements toward the positive row axis

direction. The elements are shifted a distance of half the element spacing along
the row.

Element positions
This parameter appears when Geometry is set to Conformal Array. When Sensor
Array is set to Replicated subarray, this parameter applies to subarrays.

Specify the positions of the elements, in meters, in the conformal array as a 3-by-N
matrix, where N indicates the number of elements in the conformal array. Each
column of Element positions represents the position of a single element, in the
form [x; y; z], in the array’s local coordinate system. The local coordinate system
has its origin at an arbitrary point.

Element normals (deg)
This parameter appears when Geometry is set to Conformal Array. When Sensor
Array is set to Replicated subarray, this parameter applies to subarrays.

Specify the normal directions of the elements in a conformal array as a 2-by-N
matrix or a 2-by-1 column vector in degrees. The variable N indicates the number of
elements in the array. If Element normals is a matrix, each column specifies the
normal direction of the corresponding element in the form [azimuth;elevation],
with respect to the local coordinate system. The local coordinate system aligns
the positive x-axis with the direction normal to the conformal array. If Element
normals is a 2-by-1 column vector, the vector specifies the same pointing direction
for all elements in the array.

You can use the Element positions and Element normals parameters to represent
any arrangement in which pairs of elements differ by certain transformations. You
can combine translation, azimuth rotation, and elevation rotation transformations.
However, you cannot use transformations that require rotation about the normal.

Subarray definition matrix
This parameter appears when Sensor array is set to Partitioned array.

 MVDR Beamformer

3-201

Specify the subarray selection as an M-by-N matrix. M is the number of subarrays
and N is the total number of elements in the array. Each row of the matrix indicates
which elements belong to the corresponding subarray. Each entry in the matrix is 1
or 0, where 1 indicates that the element appears in the subarray and 0 indicates the
opposite. Each row must contain at least one 1.

The phase center of each subarray is its geometric center. Subarray definition
matrix and Geometry determine the geometric center.

Subarray steering method
This parameter appears when Sensor array is set to Partitioned array or
Replicated subarray.

Specify the subarray steering method as

• None

• Phase

• Time

When using the Narrowband Receive Array, Narrowband Transmit Array,
or Wideband Receive Array blocks, select Phase or Time to create the input port
Steer on each block.

Phase shifter frequency
This parameter appears when you set Sensor array to Partitioned array or
Replicated subarray and you set Subarray steering method to Phase.

Specify the operating frequency, in hertz, of phase shifters to perform subarray
steering as a positive scalar.

Number of bits in phase shifters
This parameter appears when you set Sensor array to Partitioned array or
Replicated subarray and you set Subarray steering method to Phase.

The number of bits used to quantize the phase shift component of beamformer or
steering vector weights. Specify the number of bits as a non-negative integer. A value
of zero indicates that no quantization is performed.

Subarrays layout
This parameter appears when you set Sensor array to Replicated subarray.

Specify the layout of the replicated subarrays as Rectangular or Custom.
Grid size

3 Blocks — Alphabetical List

3-202

This parameter appears when you set Sensor array to Replicated subarray and
Subarrays layout to Rectangular.

Specify the size of the rectangular grid as a single positive integer or an positive
integer-valued 1-by-2 positive row vector.

If Grid size is a scalar, the array has an equal number of subarrays in each
row and column. If Grid size is a 1-by-2 vector of the form [NumberOfRows,
NumberOfColumns], the first entry is the number of subarrays along each column.
The second entry is the number of subarrays in each row. A row is along the local y-
axis, and a column is along the local z-axis. This figure shows how you can replicate a
3-by-2 URA subarray using a Grid size of [1,2].

3 x 2 Element URA

Replicated on a 1 x 2 Grid

1

2

3

4

6

5

Z

Y

7

8

9

10

12

11

Grid spacing
This parameter appears when you set Sensor array to Replicated subarray and
Subarrays layout to Rectangular.

Specify the rectangular grid spacing of subarrays as a real-valued positive scalar, a 1-
by-2 row vector, or Auto. Grid spacing units are expressed in meters.

• If Grid spacing is a scalar, the spacing along the row and the spacing along the
column is the same.

• If Grid spacing is a 1-by-2 row vector, the vector has the form
[SpacingBetweenRows,SpacingBetweenColumn]. The first entry specifies
the spacing between rows along a column. The second entry specifies the spacing
between columns along a row.

 MVDR Beamformer

3-203

• If Grid spacing is set to Auto, replication preserves the element spacing of the
subarray for both rows and columns while building the full array. This option is
available only when you specify Geometry as ULA or URA.

Subarray positions (m)
This parameter appears when you set Sensor array to Replicated subarray and
Subarrays layout to Custom.

Specify the positions of the subarrays in the custom grid as a 3-by-N matrix, where
N is the number of subarrays in the array. Each column of the matrix represents the
position of a single subarray, in meters, in the array’s local coordinate system. The
coordinates are expressed in the form [x; y; z].

Subarray normals
This parameter appears when you set the Sensor array parameter to Replicated
subarray and the Subarrays layout to Custom.

Specify the normal directions of the subarrays in the array. This parameter value
is a 2-by-N matrix, where N is the number of subarrays in the array. Each column
of the matrix specifies the normal direction of the corresponding subarray, in the
form [azimuth; elevation]. Each angle is in degrees and is defined in the local
coordinate system.

You can use the Subarray positions and Subarray normals parameters
to represent any arrangement in which pairs of subarrays differ by certain
transformations. The transformations can combine translation, azimuth rotation, and
elevation rotation. However, you cannot use transformations that require rotation
about the normal.

Expression
A valid MATLAB expression containing an array constructor, for example,
phased.URA.

Sensor Array Tab: Element Parameters

Element type
Specify antenna or microphone type as

• Isotropic Antenna

• Cosine Antenna

• Custom Antenna

3 Blocks — Alphabetical List

3-204

• Omni Microphone

• Custom Microphone

Exponent of cosine pattern
This parameter appears when you set Element type to Cosine Antenna.

Specify the exponent of the cosine pattern as a scalar or a 1-by-2 vector. You
must specify all values as real numbers greater than or equal to 1. When you set
Exponent of cosine pattern to a scalar, both the azimuth direction cosine pattern
and the elevation direction cosine pattern are raised to the specified value. When you
set Exponent of cosine pattern to a 1-by-2 vector, the first element is the exponent
for the azimuth direction cosine pattern and the second element is the exponent for
the elevation direction cosine pattern.

Operating frequency range (Hz)
This parameter appears when Element type is set to Isotropic Antenna, Cosine
Antenna, or Omni Microphone.

Specify the operating frequency range, in hertz, of the antenna element as a 1-by-2
row vector in the form [LowerBound,UpperBound]. The antenna element has no
response outside the specified frequency range.

Operating frequency vector (Hz)
This parameter appears when Element type is set to Custom Antenna or Custom
Microphone.

Specify L frequencies, in hertz, at which to set the antenna and microphone
frequency responses. Specify Operating frequency vector (Hz) as a 1-by-L
row vector of increasing value. Use Frequency responses to set the frequency
responses. The antenna or microphone element has no response outside the
frequency range specified by the minimum and maximum elements of Operating
frequency vector.

Frequency responses (dB)
This parameter appears when Element type is set to Custom Antenna or Custom
Microphone.

Specify this parameter as the frequency response of an antenna or microphone,
in decibels, for the frequencies defined by Operating frequency vector. Specify
Frequency responses (dB) as a 1-by-L vector matching the dimensions of the
vector specified in Operating frequency vector.

 MVDR Beamformer

3-205

Azimuth angles (deg)
This parameter appears when Element type is set to Custom Antenna.

Specify P azimuth angles, in degrees, at which to calculate the antenna radiation
pattern as a 1-by-P row vector. P must be greater than 2. The azimuth angles must
lie between –180° and 180° and be in strictly increasing order.

Elevation angles (deg)
This parameter appears when the Element type is set to Custom Antenna.

Specify the Q elevation angles, in degrees, at which to compute the radiation pattern
as a 1-by-Q vector. Q must be greater than 2. The elevation angles must lie between –
90° and 90° and be in strictly increasing order.

Radiation pattern (dB)
This parameter appears when the Element type is set to Custom Antenna.

The magnitude in db of the combined polarized antenna radiation pattern specified
as a Q-by-P matrix or a Q-by-P-by-L array. The value of Q must match the value of Q
specified by Elevation angles. The value of P must match the value of P specified by
Azimuth angles. The value of L must match the value of L specified by Operating
frequency vector (Hz).

Polar pattern frequencies (Hz)
This parameter appears when the Element type is set to Custom Microphone.

Specify the Mmeasuring frequencies in hertz of the polar patterns 1-by-M vector.
The measuring frequencies lie within the frequency range specified byOperating
frequency vector.

Polar pattern angles (deg)
This parameter appears when Element type is set to Custom Microphone.

Specify N measuring angles, in degrees, of the polar patterns as a 1-by-N. The angles
are measured from the central pickup axis of the microphone, and must be between –
180° and 180°, inclusive.

Polar pattern (dB)
This parameter appears when Element type is set to Custom Microphone.

Specify the magnitude of the polar patterns, in dB, of the microphone element as
an M-by-N matrix. M is the number of measuring frequencies specified in Polar

3 Blocks — Alphabetical List

3-206

pattern frequencies. N is the number of measuring angles specified in Polar
pattern angles. Each row of the matrix represents the magnitude of the polar
pattern measured at the corresponding frequency specified in Polar pattern
frequencies and all angles specified in Polar pattern angles. Assume that the
pattern is measured in the azimuth plane. In the azimuth plane, the elevation angle
is 0° and the central pickup axis is 0° degrees azimuth and 0° degrees elevation.
Assume also that the polar pattern is symmetric around the central axis. You can
construct the microphone’s response pattern in 3-D space from the polar pattern.

Baffle the back of the element
This check box appears only when the Element type parameter is set to Isotropic
Antenna or Omni Microphone.

Select this check box to baffle the back of the antenna element. In this case, the
antenna responses to all azimuth angles beyond ±90° from broadside are set to zero.
Define the broadside direction as 0° azimuth angle and 0° elevation angle.

Ports

Note: The block input and output ports correspond to the input and output parameters
described in the step method of the underlying System object. See link at the bottom of
this page.

Port Supported Data Types

X Double-precision floating point
XT Double-precision floating point
Ang Double-precision floating point
Y Double-precision floating point
W Double-precision floating point

See Also
phased.MVDRBeamformer

Introduced in R2014b

 MVDR Spectrum

3-207

MVDR Spectrum

Minimum variation distortionless response (MVDR) spatial spectrum estimator

Library

Direction of Arrival (DOA)

phaseddoalib

Description

The Narrowband MVDR Spectrum block estimates the spatial spectrum of incoming
narrowband signals by scanning a range of azimuth and elevation angles using an
MVDR conventional beamformer. The block optionally calculate the direction of arrival of
a specified number of signals by estimating the peaks of the spectrum. This estimator is
also referred to as a Capon estimator.

3 Blocks — Alphabetical List

3-208

Dialog Box

 MVDR Spectrum

3-209

Propagation speed (m/s)
Specify the propagation speed of the signal, in meters per second, as a positive scalar.
You can use the function physconst to specify the speed of light.

Operating frequency (Hz)
Specify the operating frequency of the system, in hertz, as a positive scalar.

Number of bits in phase shifters
The number of bits used to quantize the phase shift component of beamformer or
steering vector weights. Specify the number of bits as a non-negative integer. A value
of zero indicates that no quantization is performed.

Forward-backward averaging
Select this check box to use forward-backward averaging to estimate the covariance
matrix for sensor arrays with a conjugate symmetric array manifold.

Azimuth scan angles (deg)
Specify the azimuth scan angles, in degrees, as a real vector. The angles must be
between –180° and 180°, inclusive. You must specify the angles in ascending order.

Elevation scan angles (deg)
Specify the elevation scan angles, in degrees, as a real vector or scalar. The angles
must be between –90° and 90°, inclusive. You must specify the angles in an ascending
order.

Enable DOA output
Select this check box to obtain the signal's direction of arrival (DOA) from the output
port Ang. Selecting this check box also enables the Number of signals parameter in
the dialog box.

Number of signals
Specify the number of signals for DOA estimation as a positive scalar integer. This
parameter appears when you select the Enable DOA output check box.

Simulate using
Block simulation, specified as Interpreted Execution or Code Generation.
If you want your block to use the MATLAB interpreter, choose Interpreted
Execution. If you want your block to run as compiled code, choose Code
Generation. Compiled code requires time to compile but usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The
block runs the underlying System object in MATLAB. You can change and execute

3 Blocks — Alphabetical List

3-210

your model quickly. When you are satisfied with your results, you can then run the
block using Code Generation. Long simulations run faster than in interpreted
execution. You can run repeated executions without recompiling. However, if you
change any block parameters, then the block automatically recompiles before
execution.

When setting this parameter, you must take into account the overall model
simulation mode. The table shows how the Simulate using parameter interacts with
the overall simulation mode.

When the Simulink model is in Accelerator mode, the block mode specified using
Simulate using overrides the simulation mode.

Acceleration Modes

When you use this simulation mode ...If you want to
simulate using ... Normal Accelerator Rapid

Accelerator

Interpreted

Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Code Generation The block is
compiled.

All blocks in the
model are compiled.

Creates a
standalone
executable from the
model.

For more information, see “Choosing a Simulation Mode” from the Simulink
documentation.

 MVDR Spectrum

3-211

3 Blocks — Alphabetical List

3-212

Array Parameters

Specify sensor array as
Specify a sensor array directly or by using a MATLAB expression.

Types

Array (no subarrays)

MATLAB expression

Geometry
Specify the array geometry as one of the following

• ULA — Uniform Line Array
• URA — Uniform Rectangular Array
• UCA — Uniform Circular Array
• Conformal Array

Number of elements
Specifies the number of elements in the array as an integer.

This parameter appears when the Geometry is set to ULA or UCA. When Sensor
Array is set to Replicated subarray, this parameter applies to the sub-array.

Array size
This parameter appears when Geometry is set to URA. When Sensor Array is set to
Replicated subarray, this parameter applies to the subarrays.

Specify the size of the array as a 1-by-2 integer vector or a single integer containing.

• If Array size is a 1-by-2 vector, the vector has the form
[NumberOfRows,NumberOfColumns] where NumberOfRows and
NumberOfColumns specify the number of rows and columns of the array,
respectively.

• If Array size is an integer, the array has the same number of rows and columns.

For a URA, elements are indexed from top to bottom along a column and continuing
to the next columns from left to right. In this figure, an Array size of [3,2]
produces an array of three rows and two columns.

 MVDR Spectrum

3-213

Size and Element Indexing Order

for Uniform Rectangular Arrays

Example: Size = [3,2]

1

2

3

4

6

5

Z

Y

Element spacing
This parameter appears when Geometry is set to ULA or URA. When Sensor Array
is set to Replicated subarray, this parameter applies to the subarrays.

• For a ULA, specify the spacing, in meters, between two adjacent elements in the
array as a scalar.

• For a URA, specify the element spacing of the array, in meters, as a 1-by-2 vector
or a scalar. If Element spacing is a 1-by-2 vector, the vector has the form
[SpacingBetweenRows,SpacingBetweenColumns]. For a discussion of
these quantities, see phased.URA. If Element spacing is a scalar, the spacings
between rows and columns are equal.

Array axis
This parameter appears when the Geometry parameter is set to ULA or when the
block supports only a ULA array geometry. You can specify this parameters as 'x',
'y', or 'z'. Then, all ULA array elements are uniformly spaced along this axis in
the local array coordinate system.

Array normal
This parameter appears when the Geometry parameter is set to URA or UCA. You
can specify the Array normal parameter as 'x', 'y', or 'z'. Then, all URA and

3 Blocks — Alphabetical List

3-214

UCA array elements are placed in the yz-, zx-, or xy- planes, respectively, of the array
coordinate system.

Radius of UCA (m)
Radius of a uniform circular array specified as a positive scalar. Units are meters.

This parameter appears when the Geometry is set to UCA.
Taper

Tapers, also known as element weights, are applied to sensor elements in the array.
Tapers are used to modify both the amplitude and phase of the transmitted or
received data.

This parameter appears when Geometry is set to ULA, URA, UCA, or Conformal
Array. When Sensor Array is set to Replicated subarray, this parameter
applies to subarrays.

• For a ULA or UCA, specify element tapering as a complex-valued scalar or a
complex-valued 1-by-N row vector. In this vector, N represents the number
of elements in the array. If Taper is a scalar, the same weight is applied to
each element. If Taper is a vector, a weight from the vector is applied to the
corresponding sensor element. A weight must be applied to each element in the
sensor array.

• For a URA, specify element tapering as a complex-valued scalar or complex-valued
M-by-N matrix. In this matrix, M is the number of elements along the z-axis, and
N is the number of elements along the y-axis. M and N correspond to the values
of [NumberofRows, NumberOfColumns] in the Array size matrix. If Taper
is a scalar, the same weight is applied to each element. If the value of Taper is a
matrix, a weight from the matrix is applied to the corresponding sensor element.
A weight must be applied to each element in the sensor array.

• For a Conformal Array, specify element taper as a complex-valued scalar or
complex-valued 1-by-N vector. In this vector, N is the number of elements in the
array as determined by the size of the Element positions vector. If the Taper
parameter is a scalar, the same weight is applied to each element. If the value of
Taper is a vector, a weight from the vector is applied to the corresponding sensor
element. A weight must be applied to each element in the sensor array.

Element lattice
This parameter appears when Geometry is set to URA. When Sensor Array is set to
Replicated subarray, this parameter applies to the sub-array.

 MVDR Spectrum

3-215

Specify the element lattice as one of Rectangular or Triangular

• Rectangular — Aligns all the elements in both row and column directions.
• Triangular — Shifts the even row elements toward the positive row axis

direction. The elements are shifted a distance of half the element spacing along
the row.

Element positions
This parameter appears when Geometry is set to Conformal Array. When Sensor
Array is set to Replicated subarray, this parameter applies to subarrays.

Specify the positions of the elements, in meters, in the conformal array as a 3-by-N
matrix, where N indicates the number of elements in the conformal array. Each
column of Element positions represents the position of a single element, in the
form [x; y; z], in the array’s local coordinate system. The local coordinate system
has its origin at an arbitrary point.

Element normals (deg)
This parameter appears when Geometry is set to Conformal Array. When Sensor
Array is set to Replicated subarray, this parameter applies to subarrays.

Specify the normal directions of the elements in a conformal array as a 2-by-N
matrix or a 2-by-1 column vector in degrees. The variable N indicates the number of
elements in the array. If Element normals is a matrix, each column specifies the
normal direction of the corresponding element in the form [azimuth;elevation],
with respect to the local coordinate system. The local coordinate system aligns
the positive x-axis with the direction normal to the conformal array. If Element
normals is a 2-by-1 column vector, the vector specifies the same pointing direction
for all elements in the array.

You can use the Element positions and Element normals parameters to represent
any arrangement in which pairs of elements differ by certain transformations. You
can combine translation, azimuth rotation, and elevation rotation transformations.
However, you cannot use transformations that require rotation about the normal.

Expression
A valid MATLAB expression containing an array constructor, for example,
phased.URA.

Sensor Array Tab: Element Parameters

Element type

3 Blocks — Alphabetical List

3-216

Specify antenna or microphone type as

• Isotropic Antenna

• Cosine Antenna

• Custom Antenna

• Omni Microphone

• Custom Microphone

Exponent of cosine pattern
This parameter appears when you set Element type to Cosine Antenna.

Specify the exponent of the cosine pattern as a scalar or a 1-by-2 vector. You
must specify all values as real numbers greater than or equal to 1. When you set
Exponent of cosine pattern to a scalar, both the azimuth direction cosine pattern
and the elevation direction cosine pattern are raised to the specified value. When you
set Exponent of cosine pattern to a 1-by-2 vector, the first element is the exponent
for the azimuth direction cosine pattern and the second element is the exponent for
the elevation direction cosine pattern.

Operating frequency range (Hz)
This parameter appears when Element type is set to Isotropic Antenna, Cosine
Antenna, or Omni Microphone.

Specify the operating frequency range, in hertz, of the antenna element as a 1-by-2
row vector in the form [LowerBound,UpperBound]. The antenna element has no
response outside the specified frequency range.

Operating frequency vector (Hz)
This parameter appears when Element type is set to Custom Antenna or Custom
Microphone.

Specify L frequencies, in hertz, at which to set the antenna and microphone
frequency responses. Specify Operating frequency vector (Hz) as a 1-by-L
row vector of increasing value. Use Frequency responses to set the frequency
responses. The antenna or microphone element has no response outside the
frequency range specified by the minimum and maximum elements of Operating
frequency vector.

Frequency responses (dB)
This parameter appears when Element type is set to Custom Antenna or Custom
Microphone.

 MVDR Spectrum

3-217

Specify this parameter as the frequency response of an antenna or microphone,
in decibels, for the frequencies defined by Operating frequency vector. Specify
Frequency responses (dB) as a 1-by-L vector matching the dimensions of the
vector specified in Operating frequency vector.

Azimuth angles (deg)
This parameter appears when Element type is set to Custom Antenna.

Specify P azimuth angles, in degrees, at which to calculate the antenna radiation
pattern as a 1-by-P row vector. P must be greater than 2. The azimuth angles must
lie between –180° and 180° and be in strictly increasing order.

Elevation angles (deg)
This parameter appears when the Element type is set to Custom Antenna.

Specify the Q elevation angles, in degrees, at which to compute the radiation pattern
as a 1-by-Q vector. Q must be greater than 2. The elevation angles must lie between –
90° and 90° and be in strictly increasing order.

Radiation pattern (dB)
This parameter appears when the Element type is set to Custom Antenna.

The magnitude in db of the combined polarized antenna radiation pattern specified
as a Q-by-P matrix or a Q-by-P-by-L array. The value of Q must match the value of Q
specified by Elevation angles. The value of P must match the value of P specified by
Azimuth angles. The value of L must match the value of L specified by Operating
frequency vector (Hz).

Polar pattern frequencies (Hz)
This parameter appears when the Element type is set to Custom Microphone.

Specify the Mmeasuring frequencies in hertz of the polar patterns 1-by-M vector.
The measuring frequencies lie within the frequency range specified byOperating
frequency vector.

Polar pattern angles (deg)
This parameter appears when Element type is set to Custom Microphone.

Specify N measuring angles, in degrees, of the polar patterns as a 1-by-N. The angles
are measured from the central pickup axis of the microphone, and must be between –
180° and 180°, inclusive.

3 Blocks — Alphabetical List

3-218

Polar pattern (dB)
This parameter appears when Element type is set to Custom Microphone.

Specify the magnitude of the polar patterns, in dB, of the microphone element as
an M-by-N matrix. M is the number of measuring frequencies specified in Polar
pattern frequencies. N is the number of measuring angles specified in Polar
pattern angles. Each row of the matrix represents the magnitude of the polar
pattern measured at the corresponding frequency specified in Polar pattern
frequencies and all angles specified in Polar pattern angles. Assume that the
pattern is measured in the azimuth plane. In the azimuth plane, the elevation angle
is 0° and the central pickup axis is 0° degrees azimuth and 0° degrees elevation.
Assume also that the polar pattern is symmetric around the central axis. You can
construct the microphone’s response pattern in 3-D space from the polar pattern.

Baffle the back of the element
This check box appears only when the Element type parameter is set to Isotropic
Antenna or Omni Microphone.

Select this check box to baffle the back of the antenna element. In this case, the
antenna responses to all azimuth angles beyond ±90° from broadside are set to zero.
Define the broadside direction as 0° azimuth angle and 0° elevation angle.

Ports

Note: The block input and output ports correspond to the input and output parameters
described in the step method of the underlying System object. See link at the bottom of
this page.

Port Supported Data Types

In Double-precision floating point
Y Double-precision floating point
Ang Double-precision floating point

See Also
phased.MVDREstimator

 MVDR Spectrum

3-219

Introduced in R2014b

3 Blocks — Alphabetical List

3-220

Narrowband Receive Array

Narrowband receive array

Library

Transmitters and Receivers

phasedtxrxlib

Description

The Narrowband Receive Array block implements a narrowband receive array. The
array processes narrowband plane waves incident on the sensor elements of the array.
The delay at each element is approximated using a corresponding phase shift in the time
domain.

 Narrowband Receive Array

3-221

Main Panel

3 Blocks — Alphabetical List

3-222

Propagation speed (m/s)
Specify the propagation speed of the signal, in meters per second, as a positive scalar.
You can use the function physconst to specify the speed of light.

Operating frequency (Hz)
Specify the operating frequency of the system, in hertz, as a positive scalar.

Enable weights input
Select this check box to specify array weights via the input port W. The input port
appears only when this box is selected.

Simulate using
Block simulation, specified as Interpreted Execution or Code Generation.
If you want your block to use the MATLAB interpreter, choose Interpreted
Execution. If you want your block to run as compiled code, choose Code
Generation. Compiled code requires time to compile but usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The
block runs the underlying System object in MATLAB. You can change and execute
your model quickly. When you are satisfied with your results, you can then run the
block using Code Generation. Long simulations run faster than in interpreted
execution. You can run repeated executions without recompiling. However, if you
change any block parameters, then the block automatically recompiles before
execution.

When setting this parameter, you must take into account the overall model
simulation mode. The table shows how the Simulate using parameter interacts with
the overall simulation mode.

When the Simulink model is in Accelerator mode, the block mode specified using
Simulate using overrides the simulation mode.

Acceleration Modes

When you use this simulation mode ...If you want to
simulate using ... Normal Accelerator Rapid

Accelerator

Interpreted

Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Creates a
standalone
executable from the
model.

 Narrowband Receive Array

3-223

Code Generation The block is
compiled.

All blocks in the
model are compiled.

For more information, see “Choosing a Simulation Mode” from the Simulink
documentation.

3 Blocks — Alphabetical List

3-224

 Narrowband Receive Array

3-225

Clicking the Analyze button launches the sensorArrayAnalyzer app. The app lets you
examine important array properties such as array response and array geometry.

Array Parameters

Specify sensor array as
Sensor element or sensor array specified. A sensor array can also contain subarrays
or as a partitioned array. This parameter can also be expressed as a MATLAB
expression.

Types

Single element

Array (no subarrays)

Partitioned array

Replicated subarray

MATLAB expression

Geometry
Specify the array geometry as one of the following

• ULA — Uniform Line Array
• URA — Uniform Rectangular Array
• UCA — Uniform Circular Array
• Conformal Array

Number of elements
Specifies the number of elements in the array as an integer.

This parameter appears when the Geometry is set to ULA or UCA. When Sensor
Array is set to Replicated subarray, this parameter applies to the sub-array.

Array size
This parameter appears when Geometry is set to URA. When Sensor Array is set to
Replicated subarray, this parameter applies to the subarrays.

Specify the size of the array as a 1-by-2 integer vector or a single integer containing.

3 Blocks — Alphabetical List

3-226

• If Array size is a 1-by-2 vector, the vector has the form
[NumberOfRows,NumberOfColumns] where NumberOfRows and
NumberOfColumns specify the number of rows and columns of the array,
respectively.

• If Array size is an integer, the array has the same number of rows and columns.

For a URA, elements are indexed from top to bottom along a column and continuing
to the next columns from left to right. In this figure, an Array size of [3,2]
produces an array of three rows and two columns.

Size and Element Indexing Order

for Uniform Rectangular Arrays

Example: Size = [3,2]

1

2

3

4

6

5

Z

Y

Element spacing
This parameter appears when Geometry is set to ULA or URA. When Sensor Array
is set to Replicated subarray, this parameter applies to the subarrays.

• For a ULA, specify the spacing, in meters, between two adjacent elements in the
array as a scalar.

• For a URA, specify the element spacing of the array, in meters, as a 1-by-2 vector
or a scalar. If Element spacing is a 1-by-2 vector, the vector has the form
[SpacingBetweenRows,SpacingBetweenColumns]. For a discussion of

 Narrowband Receive Array

3-227

these quantities, see phased.URA. If Element spacing is a scalar, the spacings
between rows and columns are equal.

Array axis
This parameter appears when the Geometry parameter is set to ULA or when the
block supports only a ULA array geometry. You can specify this parameters as 'x',
'y', or 'z'. Then, all ULA array elements are uniformly spaced along this axis in
the local array coordinate system.

Array normal
This parameter appears when the Geometry parameter is set to URA or UCA. You
can specify the Array normal parameter as 'x', 'y', or 'z'. Then, all URA and
UCA array elements are placed in the yz-, zx-, or xy- planes, respectively, of the array
coordinate system.

Radius of UCA (m)
Radius of a uniform circular array specified as a positive scalar. Units are meters.

This parameter appears when the Geometry is set to UCA.
Taper

Tapers, also known as element weights, are applied to sensor elements in the array.
Tapers are used to modify both the amplitude and phase of the transmitted or
received data.

This parameter appears when Geometry is set to ULA, URA, UCA, or Conformal
Array. When Sensor Array is set to Replicated subarray, this parameter
applies to subarrays.

• For a ULA or UCA, specify element tapering as a complex-valued scalar or a
complex-valued 1-by-N row vector. In this vector, N represents the number
of elements in the array. If Taper is a scalar, the same weight is applied to
each element. If Taper is a vector, a weight from the vector is applied to the
corresponding sensor element. A weight must be applied to each element in the
sensor array.

• For a URA, specify element tapering as a complex-valued scalar or complex-valued
M-by-N matrix. In this matrix, M is the number of elements along the z-axis, and
N is the number of elements along the y-axis. M and N correspond to the values
of [NumberofRows, NumberOfColumns] in the Array size matrix. If Taper
is a scalar, the same weight is applied to each element. If the value of Taper is a
matrix, a weight from the matrix is applied to the corresponding sensor element.
A weight must be applied to each element in the sensor array.

3 Blocks — Alphabetical List

3-228

• For a Conformal Array, specify element taper as a complex-valued scalar or
complex-valued 1-by-N vector. In this vector, N is the number of elements in the
array as determined by the size of the Element positions vector. If the Taper
parameter is a scalar, the same weight is applied to each element. If the value of
Taper is a vector, a weight from the vector is applied to the corresponding sensor
element. A weight must be applied to each element in the sensor array.

Element lattice
This parameter appears when Geometry is set to URA. When Sensor Array is set to
Replicated subarray, this parameter applies to the sub-array.

Specify the element lattice as one of Rectangular or Triangular

• Rectangular — Aligns all the elements in both row and column directions.
• Triangular — Shifts the even row elements toward the positive row axis

direction. The elements are shifted a distance of half the element spacing along
the row.

Element positions
This parameter appears when Geometry is set to Conformal Array. When Sensor
Array is set to Replicated subarray, this parameter applies to subarrays.

Specify the positions of the elements, in meters, in the conformal array as a 3-by-N
matrix, where N indicates the number of elements in the conformal array. Each
column of Element positions represents the position of a single element, in the
form [x; y; z], in the array’s local coordinate system. The local coordinate system
has its origin at an arbitrary point.

Element normals (deg)
This parameter appears when Geometry is set to Conformal Array. When Sensor
Array is set to Replicated subarray, this parameter applies to subarrays.

Specify the normal directions of the elements in a conformal array as a 2-by-N
matrix or a 2-by-1 column vector in degrees. The variable N indicates the number of
elements in the array. If Element normals is a matrix, each column specifies the
normal direction of the corresponding element in the form [azimuth;elevation],
with respect to the local coordinate system. The local coordinate system aligns
the positive x-axis with the direction normal to the conformal array. If Element
normals is a 2-by-1 column vector, the vector specifies the same pointing direction
for all elements in the array.

 Narrowband Receive Array

3-229

You can use the Element positions and Element normals parameters to represent
any arrangement in which pairs of elements differ by certain transformations. You
can combine translation, azimuth rotation, and elevation rotation transformations.
However, you cannot use transformations that require rotation about the normal.

Subarray definition matrix
This parameter appears when Sensor array is set to Partitioned array.

Specify the subarray selection as an M-by-N matrix. M is the number of subarrays
and N is the total number of elements in the array. Each row of the matrix indicates
which elements belong to the corresponding subarray. Each entry in the matrix is 1
or 0, where 1 indicates that the element appears in the subarray and 0 indicates the
opposite. Each row must contain at least one 1.

The phase center of each subarray is its geometric center. Subarray definition
matrix and Geometry determine the geometric center.

Subarray steering method
This parameter appears when Sensor array is set to Partitioned array or
Replicated subarray.

Specify the subarray steering method as

• None

• Phase

• Time

When using the Narrowband Receive Array, Narrowband Transmit Array,
or Wideband Receive Array blocks, select Phase or Time to create the input port
Steer on each block.

Phase shifter frequency
This parameter appears when you set Sensor array to Partitioned array or
Replicated subarray and you set Subarray steering method to Phase.

Specify the operating frequency, in hertz, of phase shifters to perform subarray
steering as a positive scalar.

Number of bits in phase shifters
This parameter appears when you set Sensor array to Partitioned array or
Replicated subarray and you set Subarray steering method to Phase.

3 Blocks — Alphabetical List

3-230

The number of bits used to quantize the phase shift component of beamformer or
steering vector weights. Specify the number of bits as a non-negative integer. A value
of zero indicates that no quantization is performed.

Subarrays layout
This parameter appears when you set Sensor array to Replicated subarray.

Specify the layout of the replicated subarrays as Rectangular or Custom.
Grid size

This parameter appears when you set Sensor array to Replicated subarray and
Subarrays layout to Rectangular.

Specify the size of the rectangular grid as a single positive integer or an positive
integer-valued 1-by-2 positive row vector.

If Grid size is a scalar, the array has an equal number of subarrays in each
row and column. If Grid size is a 1-by-2 vector of the form [NumberOfRows,
NumberOfColumns], the first entry is the number of subarrays along each column.
The second entry is the number of subarrays in each row. A row is along the local y-
axis, and a column is along the local z-axis. This figure shows how you can replicate a
3-by-2 URA subarray using a Grid size of [1,2].

3 x 2 Element URA

Replicated on a 1 x 2 Grid

1

2

3

4

6

5

Z

Y

7

8

9

10

12

11

Grid spacing
This parameter appears when you set Sensor array to Replicated subarray and
Subarrays layout to Rectangular.

 Narrowband Receive Array

3-231

Specify the rectangular grid spacing of subarrays as a real-valued positive scalar, a 1-
by-2 row vector, or Auto. Grid spacing units are expressed in meters.

• If Grid spacing is a scalar, the spacing along the row and the spacing along the
column is the same.

• If Grid spacing is a 1-by-2 row vector, the vector has the form
[SpacingBetweenRows,SpacingBetweenColumn]. The first entry specifies
the spacing between rows along a column. The second entry specifies the spacing
between columns along a row.

• If Grid spacing is set to Auto, replication preserves the element spacing of the
subarray for both rows and columns while building the full array. This option is
available only when you specify Geometry as ULA or URA.

Subarray positions (m)
This parameter appears when you set Sensor array to Replicated subarray and
Subarrays layout to Custom.

Specify the positions of the subarrays in the custom grid as a 3-by-N matrix, where
N is the number of subarrays in the array. Each column of the matrix represents the
position of a single subarray, in meters, in the array’s local coordinate system. The
coordinates are expressed in the form [x; y; z].

Subarray normals
This parameter appears when you set the Sensor array parameter to Replicated
subarray and the Subarrays layout to Custom.

Specify the normal directions of the subarrays in the array. This parameter value
is a 2-by-N matrix, where N is the number of subarrays in the array. Each column
of the matrix specifies the normal direction of the corresponding subarray, in the
form [azimuth; elevation]. Each angle is in degrees and is defined in the local
coordinate system.

You can use the Subarray positions and Subarray normals parameters
to represent any arrangement in which pairs of subarrays differ by certain
transformations. The transformations can combine translation, azimuth rotation, and
elevation rotation. However, you cannot use transformations that require rotation
about the normal.

Expression
A valid MATLAB expression containing an array constructor, for example,
phased.URA.

3 Blocks — Alphabetical List

3-232

Sensor Array Tab: Element Parameters

Element type
Specify antenna or microphone type as

• Isotropic Antenna

• Cosine Antenna

• Custom Antenna

• Omni Microphone

• Custom Microphone

Exponent of cosine pattern
This parameter appears when you set Element type to Cosine Antenna.

Specify the exponent of the cosine pattern as a scalar or a 1-by-2 vector. You
must specify all values as real numbers greater than or equal to 1. When you set
Exponent of cosine pattern to a scalar, both the azimuth direction cosine pattern
and the elevation direction cosine pattern are raised to the specified value. When you
set Exponent of cosine pattern to a 1-by-2 vector, the first element is the exponent
for the azimuth direction cosine pattern and the second element is the exponent for
the elevation direction cosine pattern.

Operating frequency range (Hz)
This parameter appears when Element type is set to Isotropic Antenna, Cosine
Antenna, or Omni Microphone.

Specify the operating frequency range, in hertz, of the antenna element as a 1-by-2
row vector in the form [LowerBound,UpperBound]. The antenna element has no
response outside the specified frequency range.

Operating frequency vector (Hz)
This parameter appears when Element type is set to Custom Antenna or Custom
Microphone.

Specify L frequencies, in hertz, at which to set the antenna and microphone
frequency responses. Specify Operating frequency vector (Hz) as a 1-by-L
row vector of increasing value. Use Frequency responses to set the frequency
responses. The antenna or microphone element has no response outside the
frequency range specified by the minimum and maximum elements of Operating
frequency vector.

 Narrowband Receive Array

3-233

Frequency responses (dB)
This parameter appears when Element type is set to Custom Antenna or Custom
Microphone.

Specify this parameter as the frequency response of an antenna or microphone,
in decibels, for the frequencies defined by Operating frequency vector. Specify
Frequency responses (dB) as a 1-by-L vector matching the dimensions of the
vector specified in Operating frequency vector.

Azimuth angles (deg)
This parameter appears when Element type is set to Custom Antenna.

Specify P azimuth angles, in degrees, at which to calculate the antenna radiation
pattern as a 1-by-P row vector. P must be greater than 2. The azimuth angles must
lie between –180° and 180° and be in strictly increasing order.

Elevation angles (deg)
This parameter appears when the Element type is set to Custom Antenna.

Specify the Q elevation angles, in degrees, at which to compute the radiation pattern
as a 1-by-Q vector. Q must be greater than 2. The elevation angles must lie between –
90° and 90° and be in strictly increasing order.

Radiation pattern (dB)
This parameter appears when the Element type is set to Custom Antenna.

The magnitude in db of the combined polarized antenna radiation pattern specified
as a Q-by-P matrix or a Q-by-P-by-L array. The value of Q must match the value of Q
specified by Elevation angles. The value of P must match the value of P specified by
Azimuth angles. The value of L must match the value of L specified by Operating
frequency vector (Hz).

Polar pattern frequencies (Hz)
This parameter appears when the Element type is set to Custom Microphone.

Specify the Mmeasuring frequencies in hertz of the polar patterns 1-by-M vector.
The measuring frequencies lie within the frequency range specified byOperating
frequency vector.

Polar pattern angles (deg)
This parameter appears when Element type is set to Custom Microphone.

3 Blocks — Alphabetical List

3-234

Specify N measuring angles, in degrees, of the polar patterns as a 1-by-N. The angles
are measured from the central pickup axis of the microphone, and must be between –
180° and 180°, inclusive.

Polar pattern (dB)
This parameter appears when Element type is set to Custom Microphone.

Specify the magnitude of the polar patterns, in dB, of the microphone element as
an M-by-N matrix. M is the number of measuring frequencies specified in Polar
pattern frequencies. N is the number of measuring angles specified in Polar
pattern angles. Each row of the matrix represents the magnitude of the polar
pattern measured at the corresponding frequency specified in Polar pattern
frequencies and all angles specified in Polar pattern angles. Assume that the
pattern is measured in the azimuth plane. In the azimuth plane, the elevation angle
is 0° and the central pickup axis is 0° degrees azimuth and 0° degrees elevation.
Assume also that the polar pattern is symmetric around the central axis. You can
construct the microphone’s response pattern in 3-D space from the polar pattern.

Baffle the back of the element
This check box appears only when the Element type parameter is set to Isotropic
Antenna or Omni Microphone.

Select this check box to baffle the back of the antenna element. In this case, the
antenna responses to all azimuth angles beyond ±90° from broadside are set to zero.
Define the broadside direction as 0° azimuth angle and 0° elevation angle.

Ports

Note: The block input and output ports correspond to the input and output parameters
described in the step method of the underlying System object. See link at the bottom of
this page.

Port Supported Data Types

X Double-precision floating point
Ang Double-precision floating point
W Double-precision floating point

 Narrowband Receive Array

3-235

Port Supported Data Types

Steer Double-precision floating point
Out Double-precision floating point

See Also
phased.Collector

Introduced in R2014b

3 Blocks — Alphabetical List

3-236

Narrowband Transmit Array

Narrowband transmit array

Library

Transmitters and Receivers

phasedtxrxlib

Description

The Narrowband Transmit Array block generates narrowband plane waves in the far
field of the array by adding the far-field radiated signals of each element. Think of the
block output as the field at a reference distance from the element or from the center of
the array.

 Narrowband Transmit Array

3-237

Main Panel

3 Blocks — Alphabetical List

3-238

Propagation speed (m/s)
Specify the propagation speed of the signal, in meters per second, as a positive scalar.
You can use the function physconst to specify the speed of light.

Operating frequency (Hz)
Specify the operating frequency of the system, in hertz, as a positive scalar.

Enable weights input
Select this check box to specify array weights using the input port W. The input port
appears only when this box is checked.

Simulate using
Block simulation, specified as Interpreted Execution or Code Generation.
If you want your block to use the MATLAB interpreter, choose Interpreted
Execution. If you want your block to run as compiled code, choose Code
Generation. Compiled code requires time to compile but usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The
block runs the underlying System object in MATLAB. You can change and execute
your model quickly. When you are satisfied with your results, you can then run the
block using Code Generation. Long simulations run faster than in interpreted
execution. You can run repeated executions without recompiling. However, if you
change any block parameters, then the block automatically recompiles before
execution.

When setting this parameter, you must take into account the overall model
simulation mode. The table shows how the Simulate using parameter interacts with
the overall simulation mode.

When the Simulink model is in Accelerator mode, the block mode specified using
Simulate using overrides the simulation mode.

Acceleration Modes

When you use this simulation mode ...If you want to
simulate using ... Normal Accelerator Rapid

Accelerator

Interpreted

Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Creates a
standalone
executable from the
model.

 Narrowband Transmit Array

3-239

Code Generation The block is
compiled.

All blocks in the
model are compiled.

For more information, see “Choosing a Simulation Mode” from the Simulink
documentation.

3 Blocks — Alphabetical List

3-240

 Narrowband Transmit Array

3-241

Clicking the Analyze button launches the sensorArrayAnalyzer app. The app lets you
examine important array properties such as array response and array geometry.

Array Parameters

Specify sensor array as
Sensor element or sensor array specified. A sensor array can also contain subarrays
or as a partitioned array. This parameter can also be expressed as a MATLAB
expression.

Types

Single element

Array (no subarrays)

Partitioned array

Replicated subarray

MATLAB expression

Geometry
Specify the array geometry as one of the following

• ULA — Uniform Line Array
• URA — Uniform Rectangular Array
• UCA — Uniform Circular Array
• Conformal Array

Number of elements
Specifies the number of elements in the array as an integer.

This parameter appears when the Geometry is set to ULA or UCA. When Sensor
Array is set to Replicated subarray, this parameter applies to the sub-array.

Array size
This parameter appears when Geometry is set to URA. When Sensor Array is set to
Replicated subarray, this parameter applies to the subarrays.

Specify the size of the array as a 1-by-2 integer vector or a single integer containing.

3 Blocks — Alphabetical List

3-242

• If Array size is a 1-by-2 vector, the vector has the form
[NumberOfRows,NumberOfColumns] where NumberOfRows and
NumberOfColumns specify the number of rows and columns of the array,
respectively.

• If Array size is an integer, the array has the same number of rows and columns.

For a URA, elements are indexed from top to bottom along a column and continuing
to the next columns from left to right. In this figure, an Array size of [3,2]
produces an array of three rows and two columns.

Size and Element Indexing Order

for Uniform Rectangular Arrays

Example: Size = [3,2]

1

2

3

4

6

5

Z

Y

Element spacing
This parameter appears when Geometry is set to ULA or URA. When Sensor Array
is set to Replicated subarray, this parameter applies to the subarrays.

• For a ULA, specify the spacing, in meters, between two adjacent elements in the
array as a scalar.

• For a URA, specify the element spacing of the array, in meters, as a 1-by-2 vector
or a scalar. If Element spacing is a 1-by-2 vector, the vector has the form
[SpacingBetweenRows,SpacingBetweenColumns]. For a discussion of

 Narrowband Transmit Array

3-243

these quantities, see phased.URA. If Element spacing is a scalar, the spacings
between rows and columns are equal.

Array axis
This parameter appears when the Geometry parameter is set to ULA or when the
block supports only a ULA array geometry. You can specify this parameters as 'x',
'y', or 'z'. Then, all ULA array elements are uniformly spaced along this axis in
the local array coordinate system.

Array normal
This parameter appears when the Geometry parameter is set to URA or UCA. You
can specify the Array normal parameter as 'x', 'y', or 'z'. Then, all URA and
UCA array elements are placed in the yz-, zx-, or xy- planes, respectively, of the array
coordinate system.

Radius of UCA (m)
Radius of a uniform circular array specified as a positive scalar. Units are meters.

This parameter appears when the Geometry is set to UCA.
Taper

Tapers, also known as element weights, are applied to sensor elements in the array.
Tapers are used to modify both the amplitude and phase of the transmitted or
received data.

This parameter appears when Geometry is set to ULA, URA, UCA, or Conformal
Array. When Sensor Array is set to Replicated subarray, this parameter
applies to subarrays.

• For a ULA or UCA, specify element tapering as a complex-valued scalar or a
complex-valued 1-by-N row vector. In this vector, N represents the number
of elements in the array. If Taper is a scalar, the same weight is applied to
each element. If Taper is a vector, a weight from the vector is applied to the
corresponding sensor element. A weight must be applied to each element in the
sensor array.

• For a URA, specify element tapering as a complex-valued scalar or complex-valued
M-by-N matrix. In this matrix, M is the number of elements along the z-axis, and
N is the number of elements along the y-axis. M and N correspond to the values
of [NumberofRows, NumberOfColumns] in the Array size matrix. If Taper
is a scalar, the same weight is applied to each element. If the value of Taper is a
matrix, a weight from the matrix is applied to the corresponding sensor element.
A weight must be applied to each element in the sensor array.

3 Blocks — Alphabetical List

3-244

• For a Conformal Array, specify element taper as a complex-valued scalar or
complex-valued 1-by-N vector. In this vector, N is the number of elements in the
array as determined by the size of the Element positions vector. If the Taper
parameter is a scalar, the same weight is applied to each element. If the value of
Taper is a vector, a weight from the vector is applied to the corresponding sensor
element. A weight must be applied to each element in the sensor array.

Element lattice
This parameter appears when Geometry is set to URA. When Sensor Array is set to
Replicated subarray, this parameter applies to the sub-array.

Specify the element lattice as one of Rectangular or Triangular

• Rectangular — Aligns all the elements in both row and column directions.
• Triangular — Shifts the even row elements toward the positive row axis

direction. The elements are shifted a distance of half the element spacing along
the row.

Element positions
This parameter appears when Geometry is set to Conformal Array. When Sensor
Array is set to Replicated subarray, this parameter applies to subarrays.

Specify the positions of the elements, in meters, in the conformal array as a 3-by-N
matrix, where N indicates the number of elements in the conformal array. Each
column of Element positions represents the position of a single element, in the
form [x; y; z], in the array’s local coordinate system. The local coordinate system
has its origin at an arbitrary point.

Element normals (deg)
This parameter appears when Geometry is set to Conformal Array. When Sensor
Array is set to Replicated subarray, this parameter applies to subarrays.

Specify the normal directions of the elements in a conformal array as a 2-by-N
matrix or a 2-by-1 column vector in degrees. The variable N indicates the number of
elements in the array. If Element normals is a matrix, each column specifies the
normal direction of the corresponding element in the form [azimuth;elevation],
with respect to the local coordinate system. The local coordinate system aligns
the positive x-axis with the direction normal to the conformal array. If Element
normals is a 2-by-1 column vector, the vector specifies the same pointing direction
for all elements in the array.

 Narrowband Transmit Array

3-245

You can use the Element positions and Element normals parameters to represent
any arrangement in which pairs of elements differ by certain transformations. You
can combine translation, azimuth rotation, and elevation rotation transformations.
However, you cannot use transformations that require rotation about the normal.

Subarray definition matrix
This parameter appears when Sensor array is set to Partitioned array.

Specify the subarray selection as an M-by-N matrix. M is the number of subarrays
and N is the total number of elements in the array. Each row of the matrix indicates
which elements belong to the corresponding subarray. Each entry in the matrix is 1
or 0, where 1 indicates that the element appears in the subarray and 0 indicates the
opposite. Each row must contain at least one 1.

The phase center of each subarray is its geometric center. Subarray definition
matrix and Geometry determine the geometric center.

Subarray steering method
This parameter appears when Sensor array is set to Partitioned array or
Replicated subarray.

Specify the subarray steering method as

• None

• Phase

• Time

When using the Narrowband Receive Array, Narrowband Transmit Array,
or Wideband Receive Array blocks, select Phase or Time to create the input port
Steer on each block.

Phase shifter frequency
This parameter appears when you set Sensor array to Partitioned array or
Replicated subarray and you set Subarray steering method to Phase.

Specify the operating frequency, in hertz, of phase shifters to perform subarray
steering as a positive scalar.

Number of bits in phase shifters
This parameter appears when you set Sensor array to Partitioned array or
Replicated subarray and you set Subarray steering method to Phase.

3 Blocks — Alphabetical List

3-246

The number of bits used to quantize the phase shift component of beamformer or
steering vector weights. Specify the number of bits as a non-negative integer. A value
of zero indicates that no quantization is performed.

Subarrays layout
This parameter appears when you set Sensor array to Replicated subarray.

Specify the layout of the replicated subarrays as Rectangular or Custom.
Grid size

This parameter appears when you set Sensor array to Replicated subarray and
Subarrays layout to Rectangular.

Specify the size of the rectangular grid as a single positive integer or an positive
integer-valued 1-by-2 positive row vector.

If Grid size is a scalar, the array has an equal number of subarrays in each
row and column. If Grid size is a 1-by-2 vector of the form [NumberOfRows,
NumberOfColumns], the first entry is the number of subarrays along each column.
The second entry is the number of subarrays in each row. A row is along the local y-
axis, and a column is along the local z-axis. This figure shows how you can replicate a
3-by-2 URA subarray using a Grid size of [1,2].

3 x 2 Element URA

Replicated on a 1 x 2 Grid

1

2

3

4

6

5

Z

Y

7

8

9

10

12

11

Grid spacing
This parameter appears when you set Sensor array to Replicated subarray and
Subarrays layout to Rectangular.

 Narrowband Transmit Array

3-247

Specify the rectangular grid spacing of subarrays as a real-valued positive scalar, a 1-
by-2 row vector, or Auto. Grid spacing units are expressed in meters.

• If Grid spacing is a scalar, the spacing along the row and the spacing along the
column is the same.

• If Grid spacing is a 1-by-2 row vector, the vector has the form
[SpacingBetweenRows,SpacingBetweenColumn]. The first entry specifies
the spacing between rows along a column. The second entry specifies the spacing
between columns along a row.

• If Grid spacing is set to Auto, replication preserves the element spacing of the
subarray for both rows and columns while building the full array. This option is
available only when you specify Geometry as ULA or URA.

Subarray positions (m)
This parameter appears when you set Sensor array to Replicated subarray and
Subarrays layout to Custom.

Specify the positions of the subarrays in the custom grid as a 3-by-N matrix, where
N is the number of subarrays in the array. Each column of the matrix represents the
position of a single subarray, in meters, in the array’s local coordinate system. The
coordinates are expressed in the form [x; y; z].

Subarray normals
This parameter appears when you set the Sensor array parameter to Replicated
subarray and the Subarrays layout to Custom.

Specify the normal directions of the subarrays in the array. This parameter value
is a 2-by-N matrix, where N is the number of subarrays in the array. Each column
of the matrix specifies the normal direction of the corresponding subarray, in the
form [azimuth; elevation]. Each angle is in degrees and is defined in the local
coordinate system.

You can use the Subarray positions and Subarray normals parameters
to represent any arrangement in which pairs of subarrays differ by certain
transformations. The transformations can combine translation, azimuth rotation, and
elevation rotation. However, you cannot use transformations that require rotation
about the normal.

Expression
A valid MATLAB expression containing an array constructor, for example,
phased.URA.

3 Blocks — Alphabetical List

3-248

Sensor Array Tab: Element Parameters

Element type
Specify antenna or microphone type as

• Isotropic Antenna

• Cosine Antenna

• Custom Antenna

• Omni Microphone

• Custom Microphone

Exponent of cosine pattern
This parameter appears when you set Element type to Cosine Antenna.

Specify the exponent of the cosine pattern as a scalar or a 1-by-2 vector. You
must specify all values as real numbers greater than or equal to 1. When you set
Exponent of cosine pattern to a scalar, both the azimuth direction cosine pattern
and the elevation direction cosine pattern are raised to the specified value. When you
set Exponent of cosine pattern to a 1-by-2 vector, the first element is the exponent
for the azimuth direction cosine pattern and the second element is the exponent for
the elevation direction cosine pattern.

Operating frequency range (Hz)
This parameter appears when Element type is set to Isotropic Antenna, Cosine
Antenna, or Omni Microphone.

Specify the operating frequency range, in hertz, of the antenna element as a 1-by-2
row vector in the form [LowerBound,UpperBound]. The antenna element has no
response outside the specified frequency range.

Operating frequency vector (Hz)
This parameter appears when Element type is set to Custom Antenna or Custom
Microphone.

Specify L frequencies, in hertz, at which to set the antenna and microphone
frequency responses. Specify Operating frequency vector (Hz) as a 1-by-L
row vector of increasing value. Use Frequency responses to set the frequency
responses. The antenna or microphone element has no response outside the
frequency range specified by the minimum and maximum elements of Operating
frequency vector.

 Narrowband Transmit Array

3-249

Frequency responses (dB)
This parameter appears when Element type is set to Custom Antenna or Custom
Microphone.

Specify this parameter as the frequency response of an antenna or microphone,
in decibels, for the frequencies defined by Operating frequency vector. Specify
Frequency responses (dB) as a 1-by-L vector matching the dimensions of the
vector specified in Operating frequency vector.

Azimuth angles (deg)
This parameter appears when Element type is set to Custom Antenna.

Specify P azimuth angles, in degrees, at which to calculate the antenna radiation
pattern as a 1-by-P row vector. P must be greater than 2. The azimuth angles must
lie between –180° and 180° and be in strictly increasing order.

Elevation angles (deg)
This parameter appears when the Element type is set to Custom Antenna.

Specify the Q elevation angles, in degrees, at which to compute the radiation pattern
as a 1-by-Q vector. Q must be greater than 2. The elevation angles must lie between –
90° and 90° and be in strictly increasing order.

Radiation pattern (dB)
This parameter appears when the Element type is set to Custom Antenna.

The magnitude in db of the combined polarized antenna radiation pattern specified
as a Q-by-P matrix or a Q-by-P-by-L array. The value of Q must match the value of Q
specified by Elevation angles. The value of P must match the value of P specified by
Azimuth angles. The value of L must match the value of L specified by Operating
frequency vector (Hz).

Polar pattern frequencies (Hz)
This parameter appears when the Element type is set to Custom Microphone.

Specify the Mmeasuring frequencies in hertz of the polar patterns 1-by-M vector.
The measuring frequencies lie within the frequency range specified byOperating
frequency vector.

Polar pattern angles (deg)
This parameter appears when Element type is set to Custom Microphone.

3 Blocks — Alphabetical List

3-250

Specify N measuring angles, in degrees, of the polar patterns as a 1-by-N. The angles
are measured from the central pickup axis of the microphone, and must be between –
180° and 180°, inclusive.

Polar pattern (dB)
This parameter appears when Element type is set to Custom Microphone.

Specify the magnitude of the polar patterns, in dB, of the microphone element as
an M-by-N matrix. M is the number of measuring frequencies specified in Polar
pattern frequencies. N is the number of measuring angles specified in Polar
pattern angles. Each row of the matrix represents the magnitude of the polar
pattern measured at the corresponding frequency specified in Polar pattern
frequencies and all angles specified in Polar pattern angles. Assume that the
pattern is measured in the azimuth plane. In the azimuth plane, the elevation angle
is 0° and the central pickup axis is 0° degrees azimuth and 0° degrees elevation.
Assume also that the polar pattern is symmetric around the central axis. You can
construct the microphone’s response pattern in 3-D space from the polar pattern.

Baffle the back of the element
This check box appears only when the Element type parameter is set to Isotropic
Antenna or Omni Microphone.

Select this check box to baffle the back of the antenna element. In this case, the
antenna responses to all azimuth angles beyond ±90° from broadside are set to zero.
Define the broadside direction as 0° azimuth angle and 0° elevation angle.

Ports

Note: The block input and output ports correspond to the input and output parameters
described in the step method of the underlying System object. See link at the bottom of
this page.

Port Supported Data Types

X Double-precision floating point
Ang Double-precision floating point
W Double-precision floating point

 Narrowband Transmit Array

3-251

Port Supported Data Types

Steer Double-precision floating point
Out Double-precision floating point

See Also
phased.Radiator

Introduced in R2014b

3 Blocks — Alphabetical List

3-252

Phase Coded Waveform

Phase-coded pulse waveform

Library

Waveforms

phasedwavlib

Description

The Phase-Coded Waveform block generates samples of a phase-coded pulse waveform
with specified chip width, pulse repetition frequency (PRF), and phase code. The block
outputs an integer number of pulses or samples.

 Phase Coded Waveform

3-253

Dialog Box

3 Blocks — Alphabetical List

3-254

Sample rate
Specify the sample rate, in hertz, as a positive scalar. The value of this parameter
must satisfy these constraints:

• The ratio of Sample rate to Pulse repetition frequency must be an integer
scalar or row vector of integers.

• The product of Sample rate and Chip width must be an integer.

Phase code
Specify the phase code type to use in phase modulation. Valid values are:

• Barker

• Frank

• P1

• P2

• P3

• P4

• Px

• Zadoff-Chu

Chip width (s)
Specify the duration, in seconds, of each chip in a phase-coded waveform as a positive
scalar.

The value of this parameter must satisfy these constraints:

• The product of Chip width, Number of chips, and Pulse repetition
frequency must be less than or equal to one.

• The product of Sample rate and Chip width must be an integer.

Number of chips
Specify the number of chips in a phase-coded waveform as a positive integer. The
product of the Chip width, Number of chips, and Pulse repetition frequency
parameters must be less than or equal to one.

The table shows additional constraints on the number of chips for different code
types.

 Phase Coded Waveform

3-255

If the Phase code parameter is... Then the Number of chips parameter must
be...

Frank, P1, or Px A perfect square
P2 An even number that is a perfect square
Barker 2, 3, 4, 5, 7, 11, or 13

Zadoff-Chu sequence index
Specify the sequence index used in Zadoff-Chu code as a positive integer. This
parameter appears only when you set Phase code to Zadoff-Chu. The value of the
Zadoff-Chu sequence index parameter must be prime, relative to the value of the
Number of chips parameter.

Pulse repetition frequency (Hz)
Specify pulse repetition frequency (PRF) as a scalar or a row vector. Units for PRF
are hertz.

To implement a constant PRF, specify Pulse repetition frequency as a positive
scalar.

To implement a staggered PRF, specify Pulse repetition frequency as a row
vector with all strictly positive values. When PRF is staggered, the time between
successive output pulses is determined sequentially by the successive values of
the PRF vector. If the waveform reaches the last element of the vector, the process
continues cyclically with the first element of the vector. When the value of the Pulse
repetition frequency (Hz) parameter is a row vector, the value of Output signal
format must be set to Samples.

The value of this parameter must satisfy these constraints

• The product of Pulse width and Pulse repetition frequency parameter must
be less than or equal to one.

• The ratio of sample rate to each element of Pulse repetition frequency be an
integer. Sample rate is specified in any of the waveform library blocks.

Enable PRF selection input
Check this box to select which predefined PRF to use during the simulation via input.
Uncheck this box to use the Pulse repetition frequency parameter to define the
PRF sequence used in the simulation.

3 Blocks — Alphabetical List

3-256

Output signal format
Specify the format of the output signal as Pulses or Samples.

If you set the this parameter to Samples, the output of the block is in the form of
multiple samples. The number of samples is the value of the Number of samples in
output parameter.

If you set the this parameter to Pulses, the output of the block is in the form of
multiple pulses. The number of pulses is the value of the Number of pulses in
output parameter.

The value of Output signal format must be set to Samples when the Pulse
repetition frequency (Hz) parameter is a row vector.

Number of samples in output
Number of samples in the block output, specified as a positive integer. This
parameter appears only when you set Output signal format to Samples.

Number of pulses in output
Specify the number of pulses in the block output as a positive integer. This
parameter appears only when you set Output signal format to Pulses.

Simulate using
Block simulation, specified as Interpreted Execution or Code Generation.
If you want your block to use the MATLAB interpreter, choose Interpreted
Execution. If you want your block to run as compiled code, choose Code
Generation. Compiled code requires time to compile but usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The
block runs the underlying System object in MATLAB. You can change and execute
your model quickly. When you are satisfied with your results, you can then run the
block using Code Generation. Long simulations run faster than in interpreted
execution. You can run repeated executions without recompiling. However, if you
change any block parameters, then the block automatically recompiles before
execution.

When setting this parameter, you must take into account the overall model
simulation mode. The table shows how the Simulate using parameter interacts with
the overall simulation mode.

When the Simulink model is in Accelerator mode, the block mode specified using
Simulate using overrides the simulation mode.

 Phase Coded Waveform

3-257

Acceleration Modes

When you use this simulation mode ...If you want to
simulate using ... Normal Accelerator Rapid

Accelerator

Interpreted

Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Code Generation The block is
compiled.

All blocks in the
model are compiled.

Creates a
standalone
executable from the
model.

For more information, see “Choosing a Simulation Mode” from the Simulink
documentation.

Ports

Note: The block input and output ports correspond to the input and output parameters
described in the step method of the underlying System object. See link at the bottom of
this page.

Port Supported Data Types

Out Double-precision floating point

See Also
phased.PhaseCodedWaveform

Introduced in R2014b

3 Blocks — Alphabetical List

3-258

Phase Shift Beamformer

Narrowband phase shift beamformer

Library

Beamforming

phasedbflib

Description

The Phase Shift Beamformer block performs delay-and-sum beamforming. The delay
is approximated using a phase shift in the time domain.

 Phase Shift Beamformer

3-259

Dialog Box

3 Blocks — Alphabetical List

3-260

Signal propagation speed (m/s)
Specify the propagation speed of the signal, in meters per second, as a positive scalar.
You can use the function physconst to specify the speed of light.

Operating frequency (Hz)
Specify the operating frequency of the system, in hertz, as a positive scalar.

Source of beamforming direction
Specify whether the beamforming direction comes from the Beamforming
direction parameter or from an input port. Values of this parameter are:

Property Specify the beamforming direction using
Beamforming direction.

Input port Specify the beamforming direction using the Ang
input port.

Beamforming direction (deg)
Specify the beamforming direction of the beamformer, in degrees, as a 1-by-2 vector.
The direction is specified in the format of [AzimuthAngle; ElevationAngle].
The azimuth angle should be between –180° and 180°. The elevation angle should
be between –90° and 90°. This parameter appears only when you set Source of
beamforming direction to Property.

Number of bits in phase shifters
The number of bits used to quantize the phase shift component of beamformer or
steering vector weights. Specify the number of bits as a non-negative integer. A value
of zero indicates that no quantization is performed.

Weights normalizing method
Specify this parameter to set the weights normalizing method. Choose
Distortionless to set the gain in the beamforming direction to 0 dB. Choose
Preserve power to set the norm of the weights to 1.

Enable weights output
Select this check box to obtain the beamformer weights from the output port W.

Simulate using
Block simulation, specified as Interpreted Execution or Code Generation.
If you want your block to use the MATLAB interpreter, choose Interpreted

 Phase Shift Beamformer

3-261

Execution. If you want your block to run as compiled code, choose Code
Generation. Compiled code requires time to compile but usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The
block runs the underlying System object in MATLAB. You can change and execute
your model quickly. When you are satisfied with your results, you can then run the
block using Code Generation. Long simulations run faster than in interpreted
execution. You can run repeated executions without recompiling. However, if you
change any block parameters, then the block automatically recompiles before
execution.

When setting this parameter, you must take into account the overall model
simulation mode. The table shows how the Simulate using parameter interacts with
the overall simulation mode.

When the Simulink model is in Accelerator mode, the block mode specified using
Simulate using overrides the simulation mode.

Acceleration Modes

When you use this simulation mode ...If you want to
simulate using ... Normal Accelerator Rapid

Accelerator

Interpreted

Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Code Generation The block is
compiled.

All blocks in the
model are compiled.

Creates a
standalone
executable from the
model.

For more information, see “Choosing a Simulation Mode” from the Simulink
documentation.

3 Blocks — Alphabetical List

3-262

 Phase Shift Beamformer

3-263

Array Parameters

Specify sensor array as
Sensor element or sensor array specified. A sensor array can also contain subarrays
or as a partitioned array. This parameter can also be expressed as a MATLAB
expression.

Types

Array (no subarrays)

Partitioned array

Replicated subarray

MATLAB expression

Geometry
Specify the array geometry as one of the following

• ULA — Uniform Line Array
• URA — Uniform Rectangular Array
• UCA — Uniform Circular Array
• Conformal Array

Number of elements
Specifies the number of elements in the array as an integer.

This parameter appears when the Geometry is set to ULA or UCA. When Sensor
Array is set to Replicated subarray, this parameter applies to the sub-array.

Array size
This parameter appears when Geometry is set to URA. When Sensor Array is set to
Replicated subarray, this parameter applies to the subarrays.

Specify the size of the array as a 1-by-2 integer vector or a single integer containing.

• If Array size is a 1-by-2 vector, the vector has the form
[NumberOfRows,NumberOfColumns] where NumberOfRows and
NumberOfColumns specify the number of rows and columns of the array,
respectively.

3 Blocks — Alphabetical List

3-264

• If Array size is an integer, the array has the same number of rows and columns.

For a URA, elements are indexed from top to bottom along a column and continuing
to the next columns from left to right. In this figure, an Array size of [3,2]
produces an array of three rows and two columns.

Size and Element Indexing Order

for Uniform Rectangular Arrays

Example: Size = [3,2]

1

2

3

4

6

5

Z

Y

Element spacing
This parameter appears when Geometry is set to ULA or URA. When Sensor Array
is set to Replicated subarray, this parameter applies to the subarrays.

• For a ULA, specify the spacing, in meters, between two adjacent elements in the
array as a scalar.

• For a URA, specify the element spacing of the array, in meters, as a 1-by-2 vector
or a scalar. If Element spacing is a 1-by-2 vector, the vector has the form
[SpacingBetweenRows,SpacingBetweenColumns]. For a discussion of
these quantities, see phased.URA. If Element spacing is a scalar, the spacings
between rows and columns are equal.

Array axis
This parameter appears when the Geometry parameter is set to ULA or when the
block supports only a ULA array geometry. You can specify this parameters as 'x',

 Phase Shift Beamformer

3-265

'y', or 'z'. Then, all ULA array elements are uniformly spaced along this axis in
the local array coordinate system.

Array normal
This parameter appears when the Geometry parameter is set to URA or UCA. You
can specify the Array normal parameter as 'x', 'y', or 'z'. Then, all URA and
UCA array elements are placed in the yz-, zx-, or xy- planes, respectively, of the array
coordinate system.

Radius of UCA (m)
Radius of a uniform circular array specified as a positive scalar. Units are meters.

This parameter appears when the Geometry is set to UCA.
Taper

Tapers, also known as element weights, are applied to sensor elements in the array.
Tapers are used to modify both the amplitude and phase of the transmitted or
received data.

This parameter appears when Geometry is set to ULA, URA, UCA, or Conformal
Array. When Sensor Array is set to Replicated subarray, this parameter
applies to subarrays.

• For a ULA or UCA, specify element tapering as a complex-valued scalar or a
complex-valued 1-by-N row vector. In this vector, N represents the number
of elements in the array. If Taper is a scalar, the same weight is applied to
each element. If Taper is a vector, a weight from the vector is applied to the
corresponding sensor element. A weight must be applied to each element in the
sensor array.

• For a URA, specify element tapering as a complex-valued scalar or complex-valued
M-by-N matrix. In this matrix, M is the number of elements along the z-axis, and
N is the number of elements along the y-axis. M and N correspond to the values
of [NumberofRows, NumberOfColumns] in the Array size matrix. If Taper
is a scalar, the same weight is applied to each element. If the value of Taper is a
matrix, a weight from the matrix is applied to the corresponding sensor element.
A weight must be applied to each element in the sensor array.

• For a Conformal Array, specify element taper as a complex-valued scalar or
complex-valued 1-by-N vector. In this vector, N is the number of elements in the
array as determined by the size of the Element positions vector. If the Taper
parameter is a scalar, the same weight is applied to each element. If the value of

3 Blocks — Alphabetical List

3-266

Taper is a vector, a weight from the vector is applied to the corresponding sensor
element. A weight must be applied to each element in the sensor array.

Element lattice
This parameter appears when Geometry is set to URA. When Sensor Array is set to
Replicated subarray, this parameter applies to the sub-array.

Specify the element lattice as one of Rectangular or Triangular

• Rectangular — Aligns all the elements in both row and column directions.
• Triangular — Shifts the even row elements toward the positive row axis

direction. The elements are shifted a distance of half the element spacing along
the row.

Element positions
This parameter appears when Geometry is set to Conformal Array. When Sensor
Array is set to Replicated subarray, this parameter applies to subarrays.

Specify the positions of the elements, in meters, in the conformal array as a 3-by-N
matrix, where N indicates the number of elements in the conformal array. Each
column of Element positions represents the position of a single element, in the
form [x; y; z], in the array’s local coordinate system. The local coordinate system
has its origin at an arbitrary point.

Element normals (deg)
This parameter appears when Geometry is set to Conformal Array. When Sensor
Array is set to Replicated subarray, this parameter applies to subarrays.

Specify the normal directions of the elements in a conformal array as a 2-by-N
matrix or a 2-by-1 column vector in degrees. The variable N indicates the number of
elements in the array. If Element normals is a matrix, each column specifies the
normal direction of the corresponding element in the form [azimuth;elevation],
with respect to the local coordinate system. The local coordinate system aligns
the positive x-axis with the direction normal to the conformal array. If Element
normals is a 2-by-1 column vector, the vector specifies the same pointing direction
for all elements in the array.

You can use the Element positions and Element normals parameters to represent
any arrangement in which pairs of elements differ by certain transformations. You
can combine translation, azimuth rotation, and elevation rotation transformations.
However, you cannot use transformations that require rotation about the normal.

 Phase Shift Beamformer

3-267

Subarray definition matrix
This parameter appears when Sensor array is set to Partitioned array.

Specify the subarray selection as an M-by-N matrix. M is the number of subarrays
and N is the total number of elements in the array. Each row of the matrix indicates
which elements belong to the corresponding subarray. Each entry in the matrix is 1
or 0, where 1 indicates that the element appears in the subarray and 0 indicates the
opposite. Each row must contain at least one 1.

The phase center of each subarray is its geometric center. Subarray definition
matrix and Geometry determine the geometric center.

Subarray steering method
This parameter appears when Sensor array is set to Partitioned array or
Replicated subarray.

Specify the subarray steering method as

• None

• Phase

• Time

When using the Narrowband Receive Array, Narrowband Transmit Array,
or Wideband Receive Array blocks, select Phase or Time to create the input port
Steer on each block.

Phase shifter frequency
This parameter appears when you set Sensor array to Partitioned array or
Replicated subarray and you set Subarray steering method to Phase.

Specify the operating frequency, in hertz, of phase shifters to perform subarray
steering as a positive scalar.

Number of bits in phase shifters
This parameter appears when you set Sensor array to Partitioned array or
Replicated subarray and you set Subarray steering method to Phase.

The number of bits used to quantize the phase shift component of beamformer or
steering vector weights. Specify the number of bits as a non-negative integer. A value
of zero indicates that no quantization is performed.

Subarrays layout

3 Blocks — Alphabetical List

3-268

This parameter appears when you set Sensor array to Replicated subarray.

Specify the layout of the replicated subarrays as Rectangular or Custom.
Grid size

This parameter appears when you set Sensor array to Replicated subarray and
Subarrays layout to Rectangular.

Specify the size of the rectangular grid as a single positive integer or an positive
integer-valued 1-by-2 positive row vector.

If Grid size is a scalar, the array has an equal number of subarrays in each
row and column. If Grid size is a 1-by-2 vector of the form [NumberOfRows,
NumberOfColumns], the first entry is the number of subarrays along each column.
The second entry is the number of subarrays in each row. A row is along the local y-
axis, and a column is along the local z-axis. This figure shows how you can replicate a
3-by-2 URA subarray using a Grid size of [1,2].

3 x 2 Element URA

Replicated on a 1 x 2 Grid

1

2

3

4

6

5

Z

Y

7

8

9

10

12

11

Grid spacing
This parameter appears when you set Sensor array to Replicated subarray and
Subarrays layout to Rectangular.

Specify the rectangular grid spacing of subarrays as a real-valued positive scalar, a 1-
by-2 row vector, or Auto. Grid spacing units are expressed in meters.

• If Grid spacing is a scalar, the spacing along the row and the spacing along the
column is the same.

 Phase Shift Beamformer

3-269

• If Grid spacing is a 1-by-2 row vector, the vector has the form
[SpacingBetweenRows,SpacingBetweenColumn]. The first entry specifies
the spacing between rows along a column. The second entry specifies the spacing
between columns along a row.

• If Grid spacing is set to Auto, replication preserves the element spacing of the
subarray for both rows and columns while building the full array. This option is
available only when you specify Geometry as ULA or URA.

Subarray positions (m)
This parameter appears when you set Sensor array to Replicated subarray and
Subarrays layout to Custom.

Specify the positions of the subarrays in the custom grid as a 3-by-N matrix, where
N is the number of subarrays in the array. Each column of the matrix represents the
position of a single subarray, in meters, in the array’s local coordinate system. The
coordinates are expressed in the form [x; y; z].

Subarray normals
This parameter appears when you set the Sensor array parameter to Replicated
subarray and the Subarrays layout to Custom.

Specify the normal directions of the subarrays in the array. This parameter value
is a 2-by-N matrix, where N is the number of subarrays in the array. Each column
of the matrix specifies the normal direction of the corresponding subarray, in the
form [azimuth; elevation]. Each angle is in degrees and is defined in the local
coordinate system.

You can use the Subarray positions and Subarray normals parameters
to represent any arrangement in which pairs of subarrays differ by certain
transformations. The transformations can combine translation, azimuth rotation, and
elevation rotation. However, you cannot use transformations that require rotation
about the normal.

Expression
A valid MATLAB expression containing an array constructor, for example,
phased.URA.

Sensor Array Tab: Element Parameters

Element type

3 Blocks — Alphabetical List

3-270

Specify antenna or microphone type as

• Isotropic Antenna

• Cosine Antenna

• Custom Antenna

• Omni Microphone

• Custom Microphone

Exponent of cosine pattern
This parameter appears when you set Element type to Cosine Antenna.

Specify the exponent of the cosine pattern as a scalar or a 1-by-2 vector. You
must specify all values as real numbers greater than or equal to 1. When you set
Exponent of cosine pattern to a scalar, both the azimuth direction cosine pattern
and the elevation direction cosine pattern are raised to the specified value. When you
set Exponent of cosine pattern to a 1-by-2 vector, the first element is the exponent
for the azimuth direction cosine pattern and the second element is the exponent for
the elevation direction cosine pattern.

Operating frequency range (Hz)
This parameter appears when Element type is set to Isotropic Antenna, Cosine
Antenna, or Omni Microphone.

Specify the operating frequency range, in hertz, of the antenna element as a 1-by-2
row vector in the form [LowerBound,UpperBound]. The antenna element has no
response outside the specified frequency range.

Operating frequency vector (Hz)
This parameter appears when Element type is set to Custom Antenna or Custom
Microphone.

Specify L frequencies, in hertz, at which to set the antenna and microphone
frequency responses. Specify Operating frequency vector (Hz) as a 1-by-L
row vector of increasing value. Use Frequency responses to set the frequency
responses. The antenna or microphone element has no response outside the
frequency range specified by the minimum and maximum elements of Operating
frequency vector.

Frequency responses (dB)
This parameter appears when Element type is set to Custom Antenna or Custom
Microphone.

 Phase Shift Beamformer

3-271

Specify this parameter as the frequency response of an antenna or microphone,
in decibels, for the frequencies defined by Operating frequency vector. Specify
Frequency responses (dB) as a 1-by-L vector matching the dimensions of the
vector specified in Operating frequency vector.

Azimuth angles (deg)
This parameter appears when Element type is set to Custom Antenna.

Specify P azimuth angles, in degrees, at which to calculate the antenna radiation
pattern as a 1-by-P row vector. P must be greater than 2. The azimuth angles must
lie between –180° and 180° and be in strictly increasing order.

Elevation angles (deg)
This parameter appears when the Element type is set to Custom Antenna.

Specify the Q elevation angles, in degrees, at which to compute the radiation pattern
as a 1-by-Q vector. Q must be greater than 2. The elevation angles must lie between –
90° and 90° and be in strictly increasing order.

Radiation pattern (dB)
This parameter appears when the Element type is set to Custom Antenna.

The magnitude in db of the combined polarized antenna radiation pattern specified
as a Q-by-P matrix or a Q-by-P-by-L array. The value of Q must match the value of Q
specified by Elevation angles. The value of P must match the value of P specified by
Azimuth angles. The value of L must match the value of L specified by Operating
frequency vector (Hz).

Polar pattern frequencies (Hz)
This parameter appears when the Element type is set to Custom Microphone.

Specify the Mmeasuring frequencies in hertz of the polar patterns 1-by-M vector.
The measuring frequencies lie within the frequency range specified byOperating
frequency vector.

Polar pattern angles (deg)
This parameter appears when Element type is set to Custom Microphone.

Specify N measuring angles, in degrees, of the polar patterns as a 1-by-N. The angles
are measured from the central pickup axis of the microphone, and must be between –
180° and 180°, inclusive.

Polar pattern (dB)

3 Blocks — Alphabetical List

3-272

This parameter appears when Element type is set to Custom Microphone.

Specify the magnitude of the polar patterns, in dB, of the microphone element as
an M-by-N matrix. M is the number of measuring frequencies specified in Polar
pattern frequencies. N is the number of measuring angles specified in Polar
pattern angles. Each row of the matrix represents the magnitude of the polar
pattern measured at the corresponding frequency specified in Polar pattern
frequencies and all angles specified in Polar pattern angles. Assume that the
pattern is measured in the azimuth plane. In the azimuth plane, the elevation angle
is 0° and the central pickup axis is 0° degrees azimuth and 0° degrees elevation.
Assume also that the polar pattern is symmetric around the central axis. You can
construct the microphone’s response pattern in 3-D space from the polar pattern.

Baffle the back of the element
This check box appears only when the Element type parameter is set to Isotropic
Antenna or Omni Microphone.

Select this check box to baffle the back of the antenna element. In this case, the
antenna responses to all azimuth angles beyond ±90° from broadside are set to zero.
Define the broadside direction as 0° azimuth angle and 0° elevation angle.

Ports

Note: The block input and output ports correspond to the input and output parameters
described in the step method of the underlying System object. See link at the bottom of
this page.

Port Supported Data Types

X Double-precision floating point
Ang Double-precision floating point
Y Double-precision floating point
W Double-precision floating point

See Also
phased.PhaseShiftBeamformer

 Phase Shift Beamformer

3-273

Introduced in R2014b

3 Blocks — Alphabetical List

3-274

Motion Platform

Motion platform

Library

Environment and Targets

phasedenvlib

Description

The Motion Platform block models the motion of multiple platforms such as airplanes,
ground vehicles, and/or receiving and transmitting sensors arrays, determining their
positions and velocities. The platforms move along trajectories determined by initial
positions and velocities, according to a velocity or acceleration model. The platform
positions and velocities are updated at each sample time. In addition, you can specify
initial orientations for the platforms and obtain orientation updates.

 Motion Platform

3-275

Dialog Box

Model of object motion

3 Blocks — Alphabetical List

3-276

Specify the motion model as either Velocity or Acceleration. The same motion
model applies to all platforms.

Initial position (m)
Specify the initial position of the platform in meters as a 3-by-N matrix where
each column represents the initial position of a platform in the form [x;y;z]. The
quantity N is the number of platforms.

Initial velocity (m/s)
Specify the initial velocity of the platform in meters/sec as a 3-by-N matrix where
each column represents the initial velocity of a platform in the form [vx;vy;vz].
The quantity N is the number of platforms. This parameter appears only when you
set the Source of velocity or the Source of acceleration parameters to Input
port.

Source of velocity
This parameter appears only when you set the Model of object motion parameter
to Velocity. Then, you must supply velocity data for the model. Specify the Source
of velocity data as either coming from a Property or an Input port.

When Source of velocity is specified as Property, use the Velocity (m/s)
parameter to specify velocity.

When you specify the Source of velocity as Input port, you specify velocity
data via the Vel input port. In this case, you must also specify the Initial Velocity
parameter.

Velocity (m/s)
Specify the current velocity of the platforms in meters/sec as a 3-by-N matrix where
each column represents the current velocity of a platform in the form [vx;vy;vz].
This parameter appears only when you set the Model of object motion parameter
to Velocity and set the Source of velocity parameter to Property.

Source of acceleration
This parameter appears only when you set the Model of object motion parameter
to Acceleration. Then, you must supply acceleration data for the model. Specify
the Source of acceleration data as either coming from a Property or an Input
port.

When Source of acceleration is specified as Property, you use the Acceleration
(m/s^2) parameter to specify acceleration.

 Motion Platform

3-277

When you specify the Source of acceleration as Input port, you then specify
velocity data via the Acl input port. You must also specify the Initial Velocity
parameter.

Acceleration (m/s^2)
Specify the current acceleration of the platforms in meters per second^2 as a 3-
by-N matrix where each column represents the current acceleration of a platform
in the form [ax;ay;az]. This parameter appears only when you set the Model of
object motion parameter to Acceleration and set the Source of acceleration
parameter to Property.

Initial orientation axes
Specify the three axes that define the initial local (x, y, z) coordinate system at the
platform as a 3-by-3-by-N matrix. Each column of the matrix represents an axis of
the local coordinate system. The three axes must be orthonormal.

Enable orientation axes output
Select this check box to obtain the instantaneous orientation axes of the platform via
the output port LAxes. The port appears only when the checkbox is selected.

Simulate using
Block simulation, specified as Interpreted Execution or Code Generation.
If you want your block to use the MATLAB interpreter, choose Interpreted
Execution. If you want your block to run as compiled code, choose Code
Generation. Compiled code requires time to compile but usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The
block runs the underlying System object in MATLAB. You can change and execute
your model quickly. When you are satisfied with your results, you can then run the
block using Code Generation. Long simulations run faster than in interpreted
execution. You can run repeated executions without recompiling. However, if you
change any block parameters, then the block automatically recompiles before
execution.

When setting this parameter, you must take into account the overall model
simulation mode. The table shows how the Simulate using parameter interacts with
the overall simulation mode.

When the Simulink model is in Accelerator mode, the block mode specified using
Simulate using overrides the simulation mode.

Acceleration Modes

3 Blocks — Alphabetical List

3-278

When you use this simulation mode ...If you want to
simulate using ... Normal Accelerator Rapid

Accelerator

Interpreted

Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Code Generation The block is
compiled.

All blocks in the
model are compiled.

Creates a
standalone
executable from the
model.

For more information, see “Choosing a Simulation Mode” from the Simulink
documentation.

Ports

Note: The block input and output ports correspond to the input and output parameters
described in the step method of the underlying System object. See link at the bottom of
this page.

Port Supported Data Types

Vel Double-precision floating point
Acl Double-precision floating point
Pos Double-precision floating point
Vel Double-precision floating point
LAxes Double-precision floating point

See Also
phased.Platform

Introduced in R2014b

 Pulse Integrator

3-279

Pulse Integrator

Coherent or noncoherent pulse integration

Library

Detection

phaseddetectlib

Description

The Pulse Integrator block performs coherent or noncoherent integration of
successive pulses of a signal and puts out an integrated output. You can specify how
many pulses to integrate and the number of overlapped pulses in successive integrations.

3 Blocks — Alphabetical List

3-280

Dialog Box

Integration method
Specify the integration method as Coherent or Noncoherent.

Number of pulses to integrate
Specify the number of pulses to integrate as an integer.

Integration overlap (in pulses)

 Pulse Integrator

3-281

Specify the number of overlapped pulses in successive integrations as an integer.
This number must be less than the value specified in Number of pulses to
integrate.

Ports

Note: The block input and output ports correspond to the input and output parameters
described in the step method of the underlying System object. See link at the bottom of
this page.

Port Supported Data Types

X Double-precision floating point
∑ X Double-precision floating point

See Also
pulsint

Introduced in R2014b

3 Blocks — Alphabetical List

3-282

Radar Target

Radar target

Library

Environment and Targets

phasedenvlib

Description

The Radar Target block models a radar target that reflects the signal according to the
specified radar cross section (RCS). The block supports all four Swerling models.

 Radar Target

3-283

Dialog Box

Source of mean radar cross section

3 Blocks — Alphabetical List

3-284

Specify whether the target’s mean radar cross-section (RCS) value comes from the
Mean radar cross section parameter of this block or from an input port. Values of
this parameter are

Property The Mean radar cross section parameter for this
block specifies the mean RCS value.

Input port Choosing this value creates the RCS input port to
specify the mean radar cross-section.

Mean radar cross section (m^2)
Specify the mean value of the target's radar cross section, in square meters, as a
nonnegative scalar. This parameter appears only when the Source of mean radar
cross section parameter is set to Property.

Fluctuation model
Specify the statistical model of the target as one of Nonfluctuating, Swerling1,
Swerling2, Swerling3, or Swerling4. Setting this parameter to a value other
than Nonfluctuating, allows setting cross-sections parameters via an input port,
Update.

Propagation speed (m/s)
Specify the propagation speed of the signal, in meters per second, as a positive scalar.
You can use the function physconst to specify the speed of light.

Operating frequency (Hz)
Specify the carrier frequency of the signal that reflects from the target, as a positive
scalar in hertz.

Simulate using
Block simulation, specified as Interpreted Execution or Code Generation.
If you want your block to use the MATLAB interpreter, choose Interpreted
Execution. If you want your block to run as compiled code, choose Code
Generation. Compiled code requires time to compile but usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The
block runs the underlying System object in MATLAB. You can change and execute
your model quickly. When you are satisfied with your results, you can then run the
block using Code Generation. Long simulations run faster than in interpreted
execution. You can run repeated executions without recompiling. However, if you
change any block parameters, then the block automatically recompiles before
execution.

 Radar Target

3-285

When setting this parameter, you must take into account the overall model
simulation mode. The table shows how the Simulate using parameter interacts with
the overall simulation mode.

When the Simulink model is in Accelerator mode, the block mode specified using
Simulate using overrides the simulation mode.

Acceleration Modes

When you use this simulation mode ...If you want to
simulate using ... Normal Accelerator Rapid

Accelerator

Interpreted

Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Code Generation The block is
compiled.

All blocks in the
model are compiled.

Creates a
standalone
executable from the
model.

For more information, see “Choosing a Simulation Mode” from the Simulink
documentation.

Ports

Note: The block input and output ports correspond to the input and output parameters
described in the step method of the underlying System object. See link at the bottom of
this page.

Port Supported Data Types

X Double-precision floating point
RCS Double-precision floating point
Update Double-precision floating point
Out Double-precision floating point

See Also
phased.RadarTarget

3 Blocks — Alphabetical List

3-286

Introduced in R2014b

 Range Angle Calculator

3-287

Range Angle Calculator

Range and angle calculations

Library

Environment and Targets

phasedenvlib

Description

The Range Angle Calculator block calculates the ranges and/or the azimuth and
elevation angles of several positions with respect to a reference position and with respect
to a reference axes orientation. The reference position and reference axes can be specified
in the block dialog or using input ports.

3 Blocks — Alphabetical List

3-288

Dialog Box

Propagation model

 Range Angle Calculator

3-289

Specify the propagation model by setting this parameter to Free space or Two-ray.
Reference position source

Specify the reference position source by setting this parameter to Property or
Input port. If Reference position source is set to Property, set the position
using the Reference position parameter. If Reference position source is set to
Input port, use the input port labeled RefPos.

Reference position
Specify the reference position as a 3-by-1 vector of rectangular coordinates in
meters in the form [x;y;z]. The reference position serves as the origin of the local
coordinate system. Ranges and angles of the input positions are measured with
respect to the reference position. This parameter appears only when Reference
position source is set to Property.

Reference axes source
Specify the reference axes source by setting this parameter to Property or Input
port. If Reference axes source is set to Property, set the axes using the
Reference axes parameter. If Reference axes source is set to Input port, use
the input port labeled RefAxes.

Reference axes
Specify the reference axes of the local coordinate system with which to calculate
range and angles in the form of a 3-by-3 orthonormal matrix. Each column of the
matrix specifies the direction of an axis for the local coordinate system in the form of
[x; y; z] with origin at the reference position. This parameter appears only when
Reference axes source is set to Property.

Output(s)
Specify the desired output(s) of the block. Each type of output is sent to a different
port depending on the parameter value.

Value Port

Angle Ang

Range Range

Range and Angle Ang and Range

Simulate using
Block simulation, specified as Interpreted Execution or Code Generation.
If you want your block to use the MATLAB interpreter, choose Interpreted

3 Blocks — Alphabetical List

3-290

Execution. If you want your block to run as compiled code, choose Code
Generation. Compiled code requires time to compile but usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The
block runs the underlying System object in MATLAB. You can change and execute
your model quickly. When you are satisfied with your results, you can then run the
block using Code Generation. Long simulations run faster than in interpreted
execution. You can run repeated executions without recompiling. However, if you
change any block parameters, then the block automatically recompiles before
execution.

When setting this parameter, you must take into account the overall model
simulation mode. The table shows how the Simulate using parameter interacts with
the overall simulation mode.

When the Simulink model is in Accelerator mode, the block mode specified using
Simulate using overrides the simulation mode.

Acceleration Modes

When you use this simulation mode ...If you want to
simulate using ... Normal Accelerator Rapid

Accelerator

Interpreted

Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Code Generation The block is
compiled.

All blocks in the
model are compiled.

Creates a
standalone
executable from the
model.

For more information, see “Choosing a Simulation Mode” from the Simulink
documentation.

Ports

Note: The block input and output ports correspond to the input and output parameters
described in the step method of the underlying System object. See link at the bottom of
this page.

 Range Angle Calculator

3-291

Port Supported Data Types

Pos Double-precision floating point
RefPos Double-precision floating point
RefAxes Double-precision floating point
Range Double-precision floating point
Ang Double-precision floating point

See Also
rangeangle

Introduced in R2014b

3 Blocks — Alphabetical List

3-292

Range Doppler Response

Range-Doppler response

Library

Detection

phaseddetectlib

Description

The Range-Doppler Response block computes the range-doppler map of an input
signal. The output response is a matrix whose rows represent range gates and whose
columns represent Doppler bins.

 Range Doppler Response

3-293

Dialog Box

Range processing method
Specify the method of range processing as Matched filter or FFT

Matched filter Applies a matched filter to the incoming signal. This
technique is commonly used for pulsed signals, where
the matched filter is the time reverse of the transmitted
signal. Choosing this option creates the Coeff input
port.

3 Blocks — Alphabetical List

3-294

FFT Performs range processing by applying an FFT to the
input signal. This approach is commonly used with
FMCW and linear FM pulsed signals.

Signal propagation speed (m/s)
Specify the propagation speed of the signal, in meters per second, as a positive scalar.

Source of FFT length in Doppler processing
Specify how the block determines the length of the FFT used in Doppler processing.
Values of this parameter are

Auto The FFT length equals the number of rows of the input
signal.

Property The FFT length in Doppler processing parameter of
this block specifies the FFT length.

FFT length in Doppler processing
This parameter appears only when you set Source of FFT length in Doppler
processing to Property. Specify the length of the FFT used in Doppler processing
as a positive integer.

Doppler processing window
Specify the window used for Doppler processing using one of

None

Hamming

Chebyshev

Hann

Kaiser

Taylor

If you set this parameter to Taylor, the generated Taylor window has four nearly-
constant sidelobes adjacent to the mainlobe.

Doppler sidelobe attenuation level

 Range Doppler Response

3-295

This parameter appears only when Doppler processing window is set to Kaiser,
Chebyshev, or Taylor. Specify the sidelobe attenuation level as a positive scalar, in
decibels.

Doppler output
Specify the Doppler domain output as Frequency or Speed

Frequency Doppler shift, in hertz.
Speed Radial speed corresponding to Doppler shift, in meters

per second.

Signal carrier frequency (Hz)
This parameter appears only when you set Doppler output to Speed. Specify the
carrier frequency, in hertz, as a scalar.

FM sweep slope (Hz/s)
This parameter appears only when you set Range processing method to FFT.
Specify the slope of the linear FM sweeping, in hertz per second, as a scalar.

Dechirp input signal
This check box appears only when you set Range processing method to FFT. Select
this check box to make the block perform the dechirp operation on the input signal.
Clear this check box to indicate that the input signal is already dechirped and no
dechirp operation is necessary.

Source of FFT length in range processing
Specify how the block determines the FFT length in range processing. Values of this
parameter are

Auto The FFT length equals the number of rows of the input
signal.

Property The FFT length is specified by FFT length in range
processing.

This parameter appears only when you set Range processing method to FFT.
FFT length in range processing

This parameter appears only when you set Range processing method to FFT and
Source of FFT length in range processing to Property. Specify the FFT length
in the range domain as a positive integer.

3 Blocks — Alphabetical List

3-296

Range processing window
This parameter appears only when you set Range processing method to FFT.
Specify the window used for range processing using one of

None

Hamming

Chebyshev

Hann

Kaiser

Taylor

If you set this parameter to Taylor, the generated Taylor window has four nearly-
constant sidelobes adjacent to the mainlobe.

Range sidelobe attenuation level
This parameter appears only when you set Range processing method to FFT
and Range processing window to Kaiser, Chebyshev, or Taylor. Specify the
sidelobe attenuation level as a positive scalar, in decibels.

Simulate using
Block simulation, specified as Interpreted Execution or Code Generation.
If you want your block to use the MATLAB interpreter, choose Interpreted
Execution. If you want your block to run as compiled code, choose Code
Generation. Compiled code requires time to compile but usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The
block runs the underlying System object in MATLAB. You can change and execute
your model quickly. When you are satisfied with your results, you can then run the
block using Code Generation. Long simulations run faster than in interpreted
execution. You can run repeated executions without recompiling. However, if you
change any block parameters, then the block automatically recompiles before
execution.

When setting this parameter, you must take into account the overall model
simulation mode. The table shows how the Simulate using parameter interacts with
the overall simulation mode.

When the Simulink model is in Accelerator mode, the block mode specified using
Simulate using overrides the simulation mode.

 Range Doppler Response

3-297

Acceleration Modes

When you use this simulation mode ...If you want to
simulate using ... Normal Accelerator Rapid

Accelerator

Interpreted

Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Code Generation The block is
compiled.

All blocks in the
model are compiled.

Creates a
standalone
executable from the
model.

For more information, see “Choosing a Simulation Mode” from the Simulink
documentation.

Ports

Note: The block input and output ports correspond to the input and output parameters
described in the step method of the underlying System object. See link at the bottom of
this page.

Port Supported Data Types

X Double-precision floating point
Coeff Double-precision floating point
Resp Double-precision floating point
Range Double-precision floating point
Dop Double-precision floating point

See Also
phased.RangeDopplerResponse

Introduced in R2014b

3 Blocks — Alphabetical List

3-298

Receiver Preamp

Receiver preamplifier

Library

Transmitters and Receivers

phasedtxrxlib

Description

The Receiver Preamp block implements a receiver preamplifier that amplifies an input
signal and adds thermal noise. In addition, you can add phase noise using an input port.

 Receiver Preamp

3-299

Dialog Box

Gain (dB)
Specify a scalar containing the gain in dB of the receiver preamplifier.

3 Blocks — Alphabetical List

3-300

Loss factor (dB)
Specify a scalar containing the loss factor in dB of the receiver preamplifier.

Noise specification method
Specify the receiver noise as Noise power or Noise temperature.

Noise power
Specify a scalar containing the noise power in watts at the receiver preamplifier. If
the receiver has multiple channels or sensors, the noise bandwidth applies to each
channel or sensor. This parameter appears only when you set Noise specification
method to Noise power.

Noise figure (dB)
Specify ascalar containing the noise figure in dB of the receiver preamplifier. If the
receiver has multiple channels or sensors, the noise figure applies to each channel or
sensor. This parameter appears only when you set Noise specification method to
Noise temperature.

Reference temperature (K)
A scalar containing the reference temperature in degrees kelvin of the receiver
preamplifier. If the receiver has multiple channels or sensors, the reference
temperature applies to each channel or sensor. This parameter appears only when
you set Noise specification method to Noise temperature.

Enable enabling signal input
Select this check box to allow input of the receiver-enabling signal via the input port
TR. This parameter appears only when Noise specification method is set to Noise
temperature.

Enable phase noise input
Select this check box to allow input of phase noise for each incoming sample using the
input port Ph. You can use this information to emulate coherent-on-receive systems.
This parameter appears only when you set Noise specification method to Noise
temperature.

Simulate using
Block simulation, specified as Interpreted Execution or Code Generation.
If you want your block to use the MATLAB interpreter, choose Interpreted
Execution. If you want your block to run as compiled code, choose Code
Generation. Compiled code requires time to compile but usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The
block runs the underlying System object in MATLAB. You can change and execute

 Receiver Preamp

3-301

your model quickly. When you are satisfied with your results, you can then run the
block using Code Generation. Long simulations run faster than in interpreted
execution. You can run repeated executions without recompiling. However, if you
change any block parameters, then the block automatically recompiles before
execution.

When setting this parameter, you must take into account the overall model
simulation mode. The table shows how the Simulate using parameter interacts with
the overall simulation mode.

When the Simulink model is in Accelerator mode, the block mode specified using
Simulate using overrides the simulation mode.

Acceleration Modes

When you use this simulation mode ...If you want to
simulate using ... Normal Accelerator Rapid

Accelerator

Interpreted

Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Code Generation The block is
compiled.

All blocks in the
model are compiled.

Creates a
standalone
executable from the
model.

For more information, see “Choosing a Simulation Mode” from the Simulink
documentation.

Ports

Note: The block input and output ports correspond to the input and output parameters
described in the step method of the underlying System object. See link at the bottom of
this page.

Port Supported Data Types

X Double-precision floating point
TR Double-precision floating point

3 Blocks — Alphabetical List

3-302

Port Supported Data Types

Ph Double-precision floating point
Out Double-precision floating point

See Also
phased.ReceiverPreamp

Introduced in R2014b

 Rectangular Waveform

3-303

Rectangular Waveform

Rectangular pulse waveform

Library

Waveforms

phasedwavlib

Description

The Rectangular Waveform block generates a rectangular pulse waveform with a
specified pulse width and pulse repetition frequency (PRF). The block outputs an integer
number of pulses or samples.

3 Blocks — Alphabetical List

3-304

Dialog Box

Sample rate

 Rectangular Waveform

3-305

Specify the sample rate, in hertz, as a positive scalar. The ratio of the Sample rate
parameter to the Pulse repetition frequency parameter must be an integer. This
is equivalent to requiring that the pulse repetition interval be an integer multiple of
the sample interval.

Method to specify pulse duration
Specify the method to set the pulse duration as Pulse width or Duty cycle.
When you set this parameter to Pulse width, the pulse duration is set using the
PulseWidth parameter. When you set this parameter to Duty cycle, the pulse
duration is computed from the values of the Pulse repetition frequency (Hz) and
Duty Cycle paremeters.

Pulse width (s)
Specify the duration of each pulse, in seconds, as a positive scalar. The product of
Pulse width and Pulse repetition frequency must be less than or equal to one.

Duty Cycle
Specify the waveform duty cycle as a scalar between 0 and 1, inclusive. This
parameter appears when you set the Method to specify pulse duration parameter
to Duty cycle

Pulse repetition frequency (Hz)
Specify pulse repetition frequency (PRF) as a scalar or a row vector. Units for PRF
are hertz.

To implement a constant PRF, specify Pulse repetition frequency as a positive
scalar.

To implement a staggered PRF, specify Pulse repetition frequency as a row
vector with all strictly positive values. When PRF is staggered, the time between
successive output pulses is determined sequentially by the successive values of
the PRF vector. If the waveform reaches the last element of the vector, the process
continues cyclically with the first element of the vector. When the value of the Pulse
repetition frequency (Hz) parameter is a row vector, the value of Output signal
format must be set to Samples.

The value of this parameter must satisfy these constraints

• The product of Pulse width and Pulse repetition frequency parameter must
be less than or equal to one.

• The ratio of sample rate to each element of Pulse repetition frequency be an
integer. Sample rate is specified in any of the waveform library blocks.

3 Blocks — Alphabetical List

3-306

Enable PRF selection input
Check this box to select which predefined PRF to use during the simulation via input.
Uncheck this box to use the Pulse repetition frequency parameter to define the
PRF sequence used in the simulation.

Output signal format
Specify the format of the output signal as Pulses or Samples.

If you set the this parameter to Samples, the output of the block is in the form of
multiple samples. The number of samples is the value of the Number of samples in
output parameter.

If you set the this parameter to Pulses, the output of the block is in the form of
multiple pulses. The number of pulses is the value of the Number of pulses in
output parameter.

The value of Output signal format must be set to Samples when the Pulse
repetition frequency (Hz) parameter is a row vector.

Number of samples in output
Number of samples in the block output, specified as a positive integer. This
parameter appears only when you set Output signal format to Samples.

Number of pulses in output
Specify the number of pulses in the block output as a positive integer. This
parameter appears only when you set Output signal format to Pulses.

Simulate using
Block simulation, specified as Interpreted Execution or Code Generation.
If you want your block to use the MATLAB interpreter, choose Interpreted
Execution. If you want your block to run as compiled code, choose Code
Generation. Compiled code requires time to compile but usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The
block runs the underlying System object in MATLAB. You can change and execute
your model quickly. When you are satisfied with your results, you can then run the
block using Code Generation. Long simulations run faster than in interpreted
execution. You can run repeated executions without recompiling. However, if you
change any block parameters, then the block automatically recompiles before
execution.

 Rectangular Waveform

3-307

When setting this parameter, you must take into account the overall model
simulation mode. The table shows how the Simulate using parameter interacts with
the overall simulation mode.

When the Simulink model is in Accelerator mode, the block mode specified using
Simulate using overrides the simulation mode.

Acceleration Modes

When you use this simulation mode ...If you want to
simulate using ... Normal Accelerator Rapid

Accelerator

Interpreted

Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Code Generation The block is
compiled.

All blocks in the
model are compiled.

Creates a
standalone
executable from the
model.

For more information, see “Choosing a Simulation Mode” from the Simulink
documentation.

Ports

Note: The block input and output ports correspond to the input and output parameters
described in the step method of the underlying System object. See link at the bottom of
this page.

Port Supported Data Types

Out Double-precision floating point

See Also
phased.RectangularWaveform

Introduced in R2014b

3 Blocks — Alphabetical List

3-308

Root MUSIC DOA

Root multiple signal classification (MUSIC) direction of arrival (DOA) estimator

Library

Direction of Arrival (DOA)

phaseddoalib

Description

The Root MUSIC DOA block estimates the direction of arrival of a specified number of
narrowband signals incident on a uniform linear array using the root multiple signal
classification (Root MUSIC) algorithm.

 Root MUSIC DOA

3-309

Dialog Box

3 Blocks — Alphabetical List

3-310

Propagation speed (m/s)
Specify the propagation speed of the signal, in meters per second, as a positive scalar.
You can use the function physconst to specify the speed of light.

Operating frequency (Hz)
Specify the operating frequency of the system, in hertz, as a positive scalar.

Number of signals
Specify the number of signals as a positive integer scalar.

Forward-backward averaging
Select this check box to use forward-backward averaging to estimate the covariance
matrix for sensor arrays with a conjugate symmetric array manifold.

Spatial smoothing
Specify the amount of averaging, L, used by spatial smoothing to estimate the
covariance matrix as a nonnegative integer. Each increase in smoothing handles
one extra coherent source, but reduces the effective number of elements by one. The
maximum value of this parameter is N – 2, where N is the number of sensors.

Simulate using
Block simulation, specified as Interpreted Execution or Code Generation.
If you want your block to use the MATLAB interpreter, choose Interpreted
Execution. If you want your block to run as compiled code, choose Code
Generation. Compiled code requires time to compile but usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The
block runs the underlying System object in MATLAB. You can change and execute
your model quickly. When you are satisfied with your results, you can then run the
block using Code Generation. Long simulations run faster than in interpreted
execution. You can run repeated executions without recompiling. However, if you
change any block parameters, then the block automatically recompiles before
execution.

When setting this parameter, you must take into account the overall model
simulation mode. The table shows how the Simulate using parameter interacts with
the overall simulation mode.

When the Simulink model is in Accelerator mode, the block mode specified using
Simulate using overrides the simulation mode.

Acceleration Modes

 Root MUSIC DOA

3-311

When you use this simulation mode ...If you want to
simulate using ... Normal Accelerator Rapid

Accelerator

Interpreted

Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Code Generation The block is
compiled.

All blocks in the
model are compiled.

Creates a
standalone
executable from the
model.

For more information, see “Choosing a Simulation Mode” from the Simulink
documentation.

3 Blocks — Alphabetical List

3-312

 Root MUSIC DOA

3-313

Array Parameters

Specify sensor array as
Specify a ULA sensor array directly or by using a MATLAB expression.

Types

Array (no subarrays)

MATLAB expression

Geometry
Specify the array geometry as one of the following

• ULA — Uniform Line Array
• UCA — Uniform Circular Array

Number of elements
Specifies the number of elements in the array as an integer.

This parameter appears when the Geometry is set to ULA or UCA. When Sensor
Array is set to Replicated subarray, this parameter applies to the sub-array.

Element spacing
Specify the spacing, in meters, between two adjacent elements in the array.

Array axis
This parameter appears when the Geometry parameter is set to ULA or when the
block supports only a ULA array geometry. You can specify this parameters as 'x',
'y', or 'z'. Then, all ULA array elements are uniformly spaced along this axis in
the local array coordinate system.

Array normal
This parameter appears when the Geometry parameter is set to URA or UCA. You
can specify the Array normal parameter as 'x', 'y', or 'z'. Then, all URA and
UCA array elements are placed in the yz-, zx-, or xy- planes, respectively, of the array
coordinate system.

Radius of UCA (m)
Radius of a uniform circular array specified as a positive scalar. Units are meters.

3 Blocks — Alphabetical List

3-314

This parameter appears when the Geometry is set to UCA.
Taper

Tapers, also known as element weights, are applied to sensor elements in the array.
Tapers are used to modify both the amplitude and phase of the transmitted or
received data.

Specify element tapering as a complex-valued scalar or a complex-valued 1-by-N row
vector. In this vector, N represents the number of elements in the array. If Taper is
a scalar, the same weight is applied to each element. If Taper is a vector, a weight
from the vector is applied to the corresponding sensor element. A weight must be
applied to each element in the sensor array.

Expression
A valid MATLAB expression containing a constructor for a uniform linear array, for
example, phased.ULA.

Sensor Array Tab: Element Parameters

Element type
Specify antenna or microphone type as

• Isotropic Antenna

• Cosine Antenna

• Custom Antenna

• Omni Microphone

• Custom Microphone

Exponent of cosine pattern
This parameter appears when you set Element type to Cosine Antenna.

Specify the exponent of the cosine pattern as a scalar or a 1-by-2 vector. You
must specify all values as real numbers greater than or equal to 1. When you set
Exponent of cosine pattern to a scalar, both the azimuth direction cosine pattern
and the elevation direction cosine pattern are raised to the specified value. When you
set Exponent of cosine pattern to a 1-by-2 vector, the first element is the exponent
for the azimuth direction cosine pattern and the second element is the exponent for
the elevation direction cosine pattern.

Operating frequency range (Hz)

 Root MUSIC DOA

3-315

This parameter appears when Element type is set to Isotropic Antenna, Cosine
Antenna, or Omni Microphone.

Specify the operating frequency range, in hertz, of the antenna element as a 1-by-2
row vector in the form [LowerBound,UpperBound]. The antenna element has no
response outside the specified frequency range.

Operating frequency vector (Hz)
This parameter appears when Element type is set to Custom Antenna or Custom
Microphone.

Specify L frequencies, in hertz, at which to set the antenna and microphone
frequency responses. Specify Operating frequency vector (Hz) as a 1-by-L
row vector of increasing value. Use Frequency responses to set the frequency
responses. The antenna or microphone element has no response outside the
frequency range specified by the minimum and maximum elements of Operating
frequency vector.

Frequency responses (dB)
This parameter appears when Element type is set to Custom Antenna or Custom
Microphone.

Specify this parameter as the frequency response of an antenna or microphone,
in decibels, for the frequencies defined by Operating frequency vector. Specify
Frequency responses (dB) as a 1-by-L vector matching the dimensions of the
vector specified in Operating frequency vector.

Azimuth angles (deg)
This parameter appears when Element type is set to Custom Antenna.

Specify P azimuth angles, in degrees, at which to calculate the antenna radiation
pattern as a 1-by-P row vector. P must be greater than 2. The azimuth angles must
lie between –180° and 180° and be in strictly increasing order.

Elevation angles (deg)
This parameter appears when the Element type is set to Custom Antenna.

Specify the Q elevation angles, in degrees, at which to compute the radiation pattern
as a 1-by-Q vector. Q must be greater than 2. The elevation angles must lie between –
90° and 90° and be in strictly increasing order.

Radiation pattern (dB)
This parameter appears when the Element type is set to Custom Antenna.

3 Blocks — Alphabetical List

3-316

The magnitude in db of the combined polarized antenna radiation pattern specified
as a Q-by-P matrix or a Q-by-P-by-L array. The value of Q must match the value of Q
specified by Elevation angles. The value of P must match the value of P specified by
Azimuth angles. The value of L must match the value of L specified by Operating
frequency vector (Hz).

Polar pattern frequencies (Hz)
This parameter appears when the Element type is set to Custom Microphone.

Specify the Mmeasuring frequencies in hertz of the polar patterns 1-by-M vector.
The measuring frequencies lie within the frequency range specified byOperating
frequency vector.

Polar pattern angles (deg)
This parameter appears when Element type is set to Custom Microphone.

Specify N measuring angles, in degrees, of the polar patterns as a 1-by-N. The angles
are measured from the central pickup axis of the microphone, and must be between –
180° and 180°, inclusive.

Polar pattern (dB)
This parameter appears when Element type is set to Custom Microphone.

Specify the magnitude of the polar patterns, in dB, of the microphone element as
an M-by-N matrix. M is the number of measuring frequencies specified in Polar
pattern frequencies. N is the number of measuring angles specified in Polar
pattern angles. Each row of the matrix represents the magnitude of the polar
pattern measured at the corresponding frequency specified in Polar pattern
frequencies and all angles specified in Polar pattern angles. Assume that the
pattern is measured in the azimuth plane. In the azimuth plane, the elevation angle
is 0° and the central pickup axis is 0° degrees azimuth and 0° degrees elevation.
Assume also that the polar pattern is symmetric around the central axis. You can
construct the microphone’s response pattern in 3-D space from the polar pattern.

Baffle the back of the element
This check box appears only when the Element type parameter is set to Isotropic
Antenna or Omni Microphone.

Select this check box to baffle the back of the antenna element. In this case, the
antenna responses to all azimuth angles beyond ±90° from broadside are set to zero.
Define the broadside direction as 0° azimuth angle and 0° elevation angle.

 Root MUSIC DOA

3-317

Ports

Note: The block input and output ports correspond to the input and output parameters
described in the step method of the underlying System object. See link at the bottom of
this page.

Port Supported Data Types

In Double-precision floating point
Ang Double-precision floating point

See Also
phased.RootMUSICEstimator

Introduced in R2014b

3 Blocks — Alphabetical List

3-318

Root WSF DOA

Root weighted subspace fitting (WSF) direction of arrival (DOA) estimator

Library

Direction of Arrival (DOA)

phaseddoalib

Description

The Root WSF DOA block estimates the direction of arrival of a specified number of
narrowband signals incident on a uniform linear array using the Root weighted subspace
fitting (RootWSF) algorithm.

 Root WSF DOA

3-319

Dialog Box

3 Blocks — Alphabetical List

3-320

Propagation speed (m/s)
Specify the propagation speed of the signal, in meters per second, as a positive scalar.
You can use the function physconst to specify the speed of light.

Operating frequency (Hz)
Specify the operating frequency of the system, in hertz, as a positive scalar.

Number of signals
Specify the number of signals as a positive integer.

Iterative method
Specify the iterative method as one of IMODE or IQML.

Maximum number of iterations
Specify the maximum number of iterations as a positive integer or Inf.

Simulate using
Block simulation, specified as Interpreted Execution or Code Generation.
If you want your block to use the MATLAB interpreter, choose Interpreted
Execution. If you want your block to run as compiled code, choose Code
Generation. Compiled code requires time to compile but usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The
block runs the underlying System object in MATLAB. You can change and execute
your model quickly. When you are satisfied with your results, you can then run the
block using Code Generation. Long simulations run faster than in interpreted
execution. You can run repeated executions without recompiling. However, if you
change any block parameters, then the block automatically recompiles before
execution.

When setting this parameter, you must take into account the overall model
simulation mode. The table shows how the Simulate using parameter interacts with
the overall simulation mode.

When the Simulink model is in Accelerator mode, the block mode specified using
Simulate using overrides the simulation mode.

Acceleration Modes

If you want to
simulate using ...

When you use this simulation mode ...

 Root WSF DOA

3-321

Normal Accelerator Rapid

Accelerator

Interpreted

Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Code Generation The block is
compiled.

All blocks in the
model are compiled.

Creates a
standalone
executable from the
model.

For more information, see “Choosing a Simulation Mode” from the Simulink
documentation.

3 Blocks — Alphabetical List

3-322

 Root WSF DOA

3-323

Array Parameters

Specify sensor array as
Specify a ULA sensor array directly or by using a MATLAB expression.

Types

Array (no subarrays)

MATLAB expression

Number of elements
Specifies the number of elements in the array as an integer.

Element spacing
Specify the spacing, in meters, between two adjacent elements in the array.

Array axis
This parameter appears when the Geometry parameter is set to ULA or when the
block supports only a ULA array geometry. You can specify this parameters as 'x',
'y', or 'z'. Then, all ULA array elements are uniformly spaced along this axis in
the local array coordinate system.

Taper
Tapers, also known as element weights, are applied to sensor elements in the array.
Tapers are used to modify both the amplitude and phase of the transmitted or
received data.

Specify element tapering as a complex-valued scalar or a complex-valued 1-by-N row
vector. In this vector, N represents the number of elements in the array. If Taper is
a scalar, the same weight is applied to each element. If Taper is a vector, a weight
from the vector is applied to the corresponding sensor element. A weight must be
applied to each element in the sensor array.

Expression
A valid MATLAB expression containing a constructor for a uniform linear array, for
example, phased.ULA.

Sensor Array Tab: Element Parameters

Element type

3 Blocks — Alphabetical List

3-324

Specify antenna or microphone type as

• Isotropic Antenna

• Cosine Antenna

• Custom Antenna

• Omni Microphone

• Custom Microphone

Exponent of cosine pattern
This parameter appears when you set Element type to Cosine Antenna.

Specify the exponent of the cosine pattern as a scalar or a 1-by-2 vector. You
must specify all values as real numbers greater than or equal to 1. When you set
Exponent of cosine pattern to a scalar, both the azimuth direction cosine pattern
and the elevation direction cosine pattern are raised to the specified value. When you
set Exponent of cosine pattern to a 1-by-2 vector, the first element is the exponent
for the azimuth direction cosine pattern and the second element is the exponent for
the elevation direction cosine pattern.

Operating frequency range (Hz)
This parameter appears when Element type is set to Isotropic Antenna, Cosine
Antenna, or Omni Microphone.

Specify the operating frequency range, in hertz, of the antenna element as a 1-by-2
row vector in the form [LowerBound,UpperBound]. The antenna element has no
response outside the specified frequency range.

Operating frequency vector (Hz)
This parameter appears when Element type is set to Custom Antenna or Custom
Microphone.

Specify L frequencies, in hertz, at which to set the antenna and microphone
frequency responses. Specify Operating frequency vector (Hz) as a 1-by-L
row vector of increasing value. Use Frequency responses to set the frequency
responses. The antenna or microphone element has no response outside the
frequency range specified by the minimum and maximum elements of Operating
frequency vector.

Frequency responses (dB)
This parameter appears when Element type is set to Custom Antenna or Custom
Microphone.

 Root WSF DOA

3-325

Specify this parameter as the frequency response of an antenna or microphone,
in decibels, for the frequencies defined by Operating frequency vector. Specify
Frequency responses (dB) as a 1-by-L vector matching the dimensions of the
vector specified in Operating frequency vector.

Azimuth angles (deg)
This parameter appears when Element type is set to Custom Antenna.

Specify P azimuth angles, in degrees, at which to calculate the antenna radiation
pattern as a 1-by-P row vector. P must be greater than 2. The azimuth angles must
lie between –180° and 180° and be in strictly increasing order.

Elevation angles (deg)
This parameter appears when the Element type is set to Custom Antenna.

Specify the Q elevation angles, in degrees, at which to compute the radiation pattern
as a 1-by-Q vector. Q must be greater than 2. The elevation angles must lie between –
90° and 90° and be in strictly increasing order.

Radiation pattern (dB)
This parameter appears when the Element type is set to Custom Antenna.

The magnitude in db of the combined polarized antenna radiation pattern specified
as a Q-by-P matrix or a Q-by-P-by-L array. The value of Q must match the value of Q
specified by Elevation angles. The value of P must match the value of P specified by
Azimuth angles. The value of L must match the value of L specified by Operating
frequency vector (Hz).

Polar pattern frequencies (Hz)
This parameter appears when the Element type is set to Custom Microphone.

Specify the Mmeasuring frequencies in hertz of the polar patterns 1-by-M vector.
The measuring frequencies lie within the frequency range specified byOperating
frequency vector.

Polar pattern angles (deg)
This parameter appears when Element type is set to Custom Microphone.

Specify N measuring angles, in degrees, of the polar patterns as a 1-by-N. The angles
are measured from the central pickup axis of the microphone, and must be between –
180° and 180°, inclusive.

Polar pattern (dB)

3 Blocks — Alphabetical List

3-326

This parameter appears when Element type is set to Custom Microphone.

Specify the magnitude of the polar patterns, in dB, of the microphone element as
an M-by-N matrix. M is the number of measuring frequencies specified in Polar
pattern frequencies. N is the number of measuring angles specified in Polar
pattern angles. Each row of the matrix represents the magnitude of the polar
pattern measured at the corresponding frequency specified in Polar pattern
frequencies and all angles specified in Polar pattern angles. Assume that the
pattern is measured in the azimuth plane. In the azimuth plane, the elevation angle
is 0° and the central pickup axis is 0° degrees azimuth and 0° degrees elevation.
Assume also that the polar pattern is symmetric around the central axis. You can
construct the microphone’s response pattern in 3-D space from the polar pattern.

Baffle the back of the element
This check box appears only when the Element type parameter is set to Isotropic
Antenna or Omni Microphone.

Select this check box to baffle the back of the antenna element. In this case, the
antenna responses to all azimuth angles beyond ±90° from broadside are set to zero.
Define the broadside direction as 0° azimuth angle and 0° elevation angle.

Ports

Note: The block input and output ports correspond to the input and output parameters
described in the step method of the underlying System object. See link at the bottom of
this page.

Port Supported Data Types

In Double-precision floating point
Ang Double-precision floating point

See Also
phased.RootWSFEstimator

Introduced in R2014b

 SMI Beamformer

3-327

SMI Beamformer

Sample matrix inversion (SMI) beamformer

Library

Space-Time Adaptive Processing

phasedstaplib

Description

The SMI Beamformer block implements a sample matrix inversion (SMI) space-time
adaptive beamformer employing the sample space-time covariance matrix.

3 Blocks — Alphabetical List

3-328

Dialog Box

 SMI Beamformer

3-329

Propagation speed (m/s)
Specify the propagation speed of the signal, in meters per second, as a positive scalar.
You can use the function physconst to specify the speed of light.

Operating frequency (Hz)
Specify the operating frequency of the system, in hertz, as a positive scalar.

Pulse repetition frequency (Hz)
Specify the pulse repetition frequency, PRF, as a scalar or a row vector. Units for
PRF are hertz. This parameter should be set to the same value as used in any
Waveforms library block.

Specify direction as
Specify whether the targeting direction for this STAP processor block comes from a
block parameter or via an input port. Values of this parameter are

Property • For the ADPCA Canceller and DPCA Canceller
blocks, targeting direction is specified using Receiving
mainlobe direction (deg).

• For the SMI Beamformer block, targeting direction is
specified using Targeting direction.

These parameters appear only when the Specify direction
as parameter is set to Property.

Input port Enter the targeting directions using the Ang port. This port
appears only when Specify direction as is set to Input
port.

Targeting direction (deg)
Specify the targeting direction of the SMI processor as a column vector of length 2.
The direction is specified in the format of [AzimuthAngle; ElevationAngle]
(in degrees). Azimuth angle should be between –180° and 180°. Elevation angle
should be between –90° and 90°. This parameter appear only when you set Specify
direction as to Property.

Number of bits in phase shifters
The number of bits used to quantize the phase shift component of beamformer or
steering vector weights. Specify the number of bits as a non-negative integer. A value
of zero indicates that no quantization is performed.

3 Blocks — Alphabetical List

3-330

Specify targeting Doppler as
Specify whether targeting Doppler values for the STAP processor comes from the
Targeting Doppler (Hz) parameter of this block or via an input port. For the
ADPCA Cancellerand DPCA Canceller blocks, this parameter appears only when
the Output pre-Doppler result check box is cleared. Values of this parameter are

Property Targeting Doppler values are specified by the Targeting
Doppler parameter of the block. The Targeting Doppler
parameter appears only when Specify targeting Doppler
as is set to Property.

Input port Targeting Doppler values are entered using the Dop port.
This port appears only when Specify targeting Doppler
as is set to Input port.

Targeting Doppler (Hz)
Specify the targeting Doppler of the STAP processor as a scalar. This parameter
appears only when you set Specify targeting Doppler as to Property and when,
for the ADPCA Cancellerand DPCA Canceller blocks only, the Output pre-
Doppler result check box is cleared.

Number of guard cells
Specify the number of guard cells used in the training as an even integer. This
parameter specifies the total number of cells on both sides of the cell under test.

Number of training cells
Specify the number of training cells used in training as an even integer. Whenever
possible, the training cells are equally divided into regions before and after the test
cell.

Enable weights output
Select this check box to obtain the beamformer weights from the output port W.

Simulate using
Block simulation, specified as Interpreted Execution or Code Generation.
If you want your block to use the MATLAB interpreter, choose Interpreted
Execution. If you want your block to run as compiled code, choose Code
Generation. Compiled code requires time to compile but usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The
block runs the underlying System object in MATLAB. You can change and execute

 SMI Beamformer

3-331

your model quickly. When you are satisfied with your results, you can then run the
block using Code Generation. Long simulations run faster than in interpreted
execution. You can run repeated executions without recompiling. However, if you
change any block parameters, then the block automatically recompiles before
execution.

When setting this parameter, you must take into account the overall model
simulation mode. The table shows how the Simulate using parameter interacts with
the overall simulation mode.

When the Simulink model is in Accelerator mode, the block mode specified using
Simulate using overrides the simulation mode.

Acceleration Modes

When you use this simulation mode ...If you want to
simulate using ... Normal Accelerator Rapid

Accelerator

Interpreted

Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Code Generation The block is
compiled.

All blocks in the
model are compiled.

Creates a
standalone
executable from the
model.

For more information, see “Choosing a Simulation Mode” from the Simulink
documentation.

3 Blocks — Alphabetical List

3-332

 SMI Beamformer

3-333

Array Parameters

Specify sensor array as
Sensor element or sensor array specified. A sensor array can also contain subarrays
or as a partitioned array. This parameter can also be expressed as a MATLAB
expression.

Types

Array (no subarrays)

Partitioned array

Replicated subarray

MATLAB expression

Geometry
Specify the array geometry as one of the following

• ULA — Uniform Line Array
• URA — Uniform Rectangular Array
• UCA — Uniform Circular Array
• Conformal Array

Number of elements
Specifies the number of elements in the array as an integer.

This parameter appears when the Geometry is set to ULA or UCA. When Sensor
Array is set to Replicated subarray, this parameter applies to the sub-array.

Array size
This parameter appears when Geometry is set to URA. When Sensor Array is set to
Replicated subarray, this parameter applies to the subarrays.

Specify the size of the array as a 1-by-2 integer vector or a single integer containing.

• If Array size is a 1-by-2 vector, the vector has the form
[NumberOfRows,NumberOfColumns] where NumberOfRows and
NumberOfColumns specify the number of rows and columns of the array,
respectively.

3 Blocks — Alphabetical List

3-334

• If Array size is an integer, the array has the same number of rows and columns.

For a URA, elements are indexed from top to bottom along a column and continuing
to the next columns from left to right. In this figure, an Array size of [3,2]
produces an array of three rows and two columns.

Size and Element Indexing Order

for Uniform Rectangular Arrays

Example: Size = [3,2]

1

2

3

4

6

5

Z

Y

Element spacing
This parameter appears when Geometry is set to ULA or URA. When Sensor Array
is set to Replicated subarray, this parameter applies to the subarrays.

• For a ULA, specify the spacing, in meters, between two adjacent elements in the
array as a scalar.

• For a URA, specify the element spacing of the array, in meters, as a 1-by-2 vector
or a scalar. If Element spacing is a 1-by-2 vector, the vector has the form
[SpacingBetweenRows,SpacingBetweenColumns]. For a discussion of
these quantities, see phased.URA. If Element spacing is a scalar, the spacings
between rows and columns are equal.

Array axis
This parameter appears when the Geometry parameter is set to ULA or when the
block supports only a ULA array geometry. You can specify this parameters as 'x',

 SMI Beamformer

3-335

'y', or 'z'. Then, all ULA array elements are uniformly spaced along this axis in
the local array coordinate system.

Array normal
This parameter appears when the Geometry parameter is set to URA or UCA. You
can specify the Array normal parameter as 'x', 'y', or 'z'. Then, all URA and
UCA array elements are placed in the yz-, zx-, or xy- planes, respectively, of the array
coordinate system.

Radius of UCA (m)
Radius of a uniform circular array specified as a positive scalar. Units are meters.

This parameter appears when the Geometry is set to UCA.
Taper

Tapers, also known as element weights, are applied to sensor elements in the array.
Tapers are used to modify both the amplitude and phase of the transmitted or
received data.

This parameter appears when Geometry is set to ULA, URA, UCA, or Conformal
Array. When Sensor Array is set to Replicated subarray, this parameter
applies to subarrays.

• For a ULA or UCA, specify element tapering as a complex-valued scalar or a
complex-valued 1-by-N row vector. In this vector, N represents the number
of elements in the array. If Taper is a scalar, the same weight is applied to
each element. If Taper is a vector, a weight from the vector is applied to the
corresponding sensor element. A weight must be applied to each element in the
sensor array.

• For a URA, specify element tapering as a complex-valued scalar or complex-valued
M-by-N matrix. In this matrix, M is the number of elements along the z-axis, and
N is the number of elements along the y-axis. M and N correspond to the values
of [NumberofRows, NumberOfColumns] in the Array size matrix. If Taper
is a scalar, the same weight is applied to each element. If the value of Taper is a
matrix, a weight from the matrix is applied to the corresponding sensor element.
A weight must be applied to each element in the sensor array.

• For a Conformal Array, specify element taper as a complex-valued scalar or
complex-valued 1-by-N vector. In this vector, N is the number of elements in the
array as determined by the size of the Element positions vector. If the Taper
parameter is a scalar, the same weight is applied to each element. If the value of

3 Blocks — Alphabetical List

3-336

Taper is a vector, a weight from the vector is applied to the corresponding sensor
element. A weight must be applied to each element in the sensor array.

Element lattice
This parameter appears when Geometry is set to URA. When Sensor Array is set to
Replicated subarray, this parameter applies to the sub-array.

Specify the element lattice as one of Rectangular or Triangular

• Rectangular — Aligns all the elements in both row and column directions.
• Triangular — Shifts the even row elements toward the positive row axis

direction. The elements are shifted a distance of half the element spacing along
the row.

Element positions
This parameter appears when Geometry is set to Conformal Array. When Sensor
Array is set to Replicated subarray, this parameter applies to subarrays.

Specify the positions of the elements, in meters, in the conformal array as a 3-by-N
matrix, where N indicates the number of elements in the conformal array. Each
column of Element positions represents the position of a single element, in the
form [x; y; z], in the array’s local coordinate system. The local coordinate system
has its origin at an arbitrary point.

Element normals (deg)
This parameter appears when Geometry is set to Conformal Array. When Sensor
Array is set to Replicated subarray, this parameter applies to subarrays.

Specify the normal directions of the elements in a conformal array as a 2-by-N
matrix or a 2-by-1 column vector in degrees. The variable N indicates the number of
elements in the array. If Element normals is a matrix, each column specifies the
normal direction of the corresponding element in the form [azimuth;elevation],
with respect to the local coordinate system. The local coordinate system aligns
the positive x-axis with the direction normal to the conformal array. If Element
normals is a 2-by-1 column vector, the vector specifies the same pointing direction
for all elements in the array.

You can use the Element positions and Element normals parameters to represent
any arrangement in which pairs of elements differ by certain transformations. You
can combine translation, azimuth rotation, and elevation rotation transformations.
However, you cannot use transformations that require rotation about the normal.

 SMI Beamformer

3-337

Subarray definition matrix
This parameter appears when Sensor array is set to Partitioned array.

Specify the subarray selection as an M-by-N matrix. M is the number of subarrays
and N is the total number of elements in the array. Each row of the matrix indicates
which elements belong to the corresponding subarray. Each entry in the matrix is 1
or 0, where 1 indicates that the element appears in the subarray and 0 indicates the
opposite. Each row must contain at least one 1.

The phase center of each subarray is its geometric center. Subarray definition
matrix and Geometry determine the geometric center.

Subarray steering method
This parameter appears when Sensor array is set to Partitioned array or
Replicated subarray.

Specify the subarray steering method as

• None

• Phase

• Time

When using the Narrowband Receive Array, Narrowband Transmit Array,
or Wideband Receive Array blocks, select Phase or Time to create the input port
Steer on each block.

Phase shifter frequency
This parameter appears when you set Sensor array to Partitioned array or
Replicated subarray and you set Subarray steering method to Phase.

Specify the operating frequency, in hertz, of phase shifters to perform subarray
steering as a positive scalar.

Number of bits in phase shifters
This parameter appears when you set Sensor array to Partitioned array or
Replicated subarray and you set Subarray steering method to Phase.

The number of bits used to quantize the phase shift component of beamformer or
steering vector weights. Specify the number of bits as a non-negative integer. A value
of zero indicates that no quantization is performed.

Subarrays layout

3 Blocks — Alphabetical List

3-338

This parameter appears when you set Sensor array to Replicated subarray.

Specify the layout of the replicated subarrays as Rectangular or Custom.
Grid size

This parameter appears when you set Sensor array to Replicated subarray and
Subarrays layout to Rectangular.

Specify the size of the rectangular grid as a single positive integer or an positive
integer-valued 1-by-2 positive row vector.

If Grid size is a scalar, the array has an equal number of subarrays in each
row and column. If Grid size is a 1-by-2 vector of the form [NumberOfRows,
NumberOfColumns], the first entry is the number of subarrays along each column.
The second entry is the number of subarrays in each row. A row is along the local y-
axis, and a column is along the local z-axis. This figure shows how you can replicate a
3-by-2 URA subarray using a Grid size of [1,2].

3 x 2 Element URA

Replicated on a 1 x 2 Grid

1

2

3

4

6

5

Z

Y

7

8

9

10

12

11

Grid spacing
This parameter appears when you set Sensor array to Replicated subarray and
Subarrays layout to Rectangular.

Specify the rectangular grid spacing of subarrays as a real-valued positive scalar, a 1-
by-2 row vector, or Auto. Grid spacing units are expressed in meters.

• If Grid spacing is a scalar, the spacing along the row and the spacing along the
column is the same.

 SMI Beamformer

3-339

• If Grid spacing is a 1-by-2 row vector, the vector has the form
[SpacingBetweenRows,SpacingBetweenColumn]. The first entry specifies
the spacing between rows along a column. The second entry specifies the spacing
between columns along a row.

• If Grid spacing is set to Auto, replication preserves the element spacing of the
subarray for both rows and columns while building the full array. This option is
available only when you specify Geometry as ULA or URA.

Subarray positions (m)
This parameter appears when you set Sensor array to Replicated subarray and
Subarrays layout to Custom.

Specify the positions of the subarrays in the custom grid as a 3-by-N matrix, where
N is the number of subarrays in the array. Each column of the matrix represents the
position of a single subarray, in meters, in the array’s local coordinate system. The
coordinates are expressed in the form [x; y; z].

Subarray normals
This parameter appears when you set the Sensor array parameter to Replicated
subarray and the Subarrays layout to Custom.

Specify the normal directions of the subarrays in the array. This parameter value
is a 2-by-N matrix, where N is the number of subarrays in the array. Each column
of the matrix specifies the normal direction of the corresponding subarray, in the
form [azimuth; elevation]. Each angle is in degrees and is defined in the local
coordinate system.

You can use the Subarray positions and Subarray normals parameters
to represent any arrangement in which pairs of subarrays differ by certain
transformations. The transformations can combine translation, azimuth rotation, and
elevation rotation. However, you cannot use transformations that require rotation
about the normal.

Expression
A valid MATLAB expression containing an array constructor, for example,
phased.URA.

Sensor Array Tab: Element Parameters

Element type

3 Blocks — Alphabetical List

3-340

Specify antenna or microphone type as

• Isotropic Antenna

• Cosine Antenna

• Custom Antenna

• Omni Microphone

• Custom Microphone

Exponent of cosine pattern
This parameter appears when you set Element type to Cosine Antenna.

Specify the exponent of the cosine pattern as a scalar or a 1-by-2 vector. You
must specify all values as real numbers greater than or equal to 1. When you set
Exponent of cosine pattern to a scalar, both the azimuth direction cosine pattern
and the elevation direction cosine pattern are raised to the specified value. When you
set Exponent of cosine pattern to a 1-by-2 vector, the first element is the exponent
for the azimuth direction cosine pattern and the second element is the exponent for
the elevation direction cosine pattern.

Operating frequency range (Hz)
This parameter appears when Element type is set to Isotropic Antenna, Cosine
Antenna, or Omni Microphone.

Specify the operating frequency range, in hertz, of the antenna element as a 1-by-2
row vector in the form [LowerBound,UpperBound]. The antenna element has no
response outside the specified frequency range.

Operating frequency vector (Hz)
This parameter appears when Element type is set to Custom Antenna or Custom
Microphone.

Specify L frequencies, in hertz, at which to set the antenna and microphone
frequency responses. Specify Operating frequency vector (Hz) as a 1-by-L
row vector of increasing value. Use Frequency responses to set the frequency
responses. The antenna or microphone element has no response outside the
frequency range specified by the minimum and maximum elements of Operating
frequency vector.

Frequency responses (dB)
This parameter appears when Element type is set to Custom Antenna or Custom
Microphone.

 SMI Beamformer

3-341

Specify this parameter as the frequency response of an antenna or microphone,
in decibels, for the frequencies defined by Operating frequency vector. Specify
Frequency responses (dB) as a 1-by-L vector matching the dimensions of the
vector specified in Operating frequency vector.

Azimuth angles (deg)
This parameter appears when Element type is set to Custom Antenna.

Specify P azimuth angles, in degrees, at which to calculate the antenna radiation
pattern as a 1-by-P row vector. P must be greater than 2. The azimuth angles must
lie between –180° and 180° and be in strictly increasing order.

Elevation angles (deg)
This parameter appears when the Element type is set to Custom Antenna.

Specify the Q elevation angles, in degrees, at which to compute the radiation pattern
as a 1-by-Q vector. Q must be greater than 2. The elevation angles must lie between –
90° and 90° and be in strictly increasing order.

Radiation pattern (dB)
This parameter appears when the Element type is set to Custom Antenna.

The magnitude in db of the combined polarized antenna radiation pattern specified
as a Q-by-P matrix or a Q-by-P-by-L array. The value of Q must match the value of Q
specified by Elevation angles. The value of P must match the value of P specified by
Azimuth angles. The value of L must match the value of L specified by Operating
frequency vector (Hz).

Polar pattern frequencies (Hz)
This parameter appears when the Element type is set to Custom Microphone.

Specify the Mmeasuring frequencies in hertz of the polar patterns 1-by-M vector.
The measuring frequencies lie within the frequency range specified byOperating
frequency vector.

Polar pattern angles (deg)
This parameter appears when Element type is set to Custom Microphone.

Specify N measuring angles, in degrees, of the polar patterns as a 1-by-N. The angles
are measured from the central pickup axis of the microphone, and must be between –
180° and 180°, inclusive.

3 Blocks — Alphabetical List

3-342

Polar pattern (dB)
This parameter appears when Element type is set to Custom Microphone.

Specify the magnitude of the polar patterns, in dB, of the microphone element as
an M-by-N matrix. M is the number of measuring frequencies specified in Polar
pattern frequencies. N is the number of measuring angles specified in Polar
pattern angles. Each row of the matrix represents the magnitude of the polar
pattern measured at the corresponding frequency specified in Polar pattern
frequencies and all angles specified in Polar pattern angles. Assume that the
pattern is measured in the azimuth plane. In the azimuth plane, the elevation angle
is 0° and the central pickup axis is 0° degrees azimuth and 0° degrees elevation.
Assume also that the polar pattern is symmetric around the central axis. You can
construct the microphone’s response pattern in 3-D space from the polar pattern.

Baffle the back of the element
This check box appears only when the Element type parameter is set to Isotropic
Antenna or Omni Microphone.

Select this check box to baffle the back of the antenna element. In this case, the
antenna responses to all azimuth angles beyond ±90° from broadside are set to zero.
Define the broadside direction as 0° azimuth angle and 0° elevation angle.

Ports

Note: The block input and output ports correspond to the input and output parameters
described in the step method of the underlying System object. See link at the bottom of
this page.

Port Supported Data Types

X Double-precision floating point
Ang Double-precision floating point
Dop Double-precision floating point
Idx Double-precision floating point
W Double-precision floating point
Y Double-precision floating point

 SMI Beamformer

3-343

See Also
phased.STAPSMIBeamformer

Introduced in R2014b

3 Blocks — Alphabetical List

3-344

Stepped FM Waveform

Stepped FM pulse waveform

Library

Waveforms

phasedwavlib

Description

The Stepped FM Waveform block generates a stepped FM pulse waveform with a
specified pulse width, pulse repetition frequency (PRF), and number of frequency steps.
The transmitted frequency is incremented in constant steps over the duration of the
pulse. The block outputs an integer number of pulses or samples.

 Stepped FM Waveform

3-345

Dialog Box

3 Blocks — Alphabetical List

3-346

Sample rate
Specify the sample rate, in hertz, as a positive scalar. The ratio of the Sample rate
parameter to the Pulse repetition frequency parameter must be an integer. This
is equivalent to requiring that the pulse repetition interval be an integer multiple of
the sample interval.

Method to specify pulse duration
Specify the method to set the pulse duration as Pulse width or Duty cycle.
When you set this parameter to Pulse width, the pulse duration is set using the
PulseWidth parameter. When you set this parameter to Duty cycle, the pulse
duration is computed from the values of the Pulse repetition frequency (Hz) and
Duty Cycle paremeters.

Pulse width (s)
Specify the duration of each pulse, in seconds, as a positive scalar. The product of
Pulse width and Pulse repetition frequency must be less than or equal to one.

Duty Cycle
Specify the waveform duty cycle as a scalar between 0 and 1, inclusive. This
parameter appears when you set the Method to specify pulse duration parameter
to Duty cycle

Pulse repetition frequency (Hz)
Specify pulse repetition frequency (PRF) as a scalar or a row vector. Units for PRF
are hertz.

To implement a constant PRF, specify Pulse repetition frequency as a positive
scalar.

To implement a staggered PRF, specify Pulse repetition frequency as a row
vector with all strictly positive values. When PRF is staggered, the time between
successive output pulses is determined sequentially by the successive values of
the PRF vector. If the waveform reaches the last element of the vector, the process
continues cyclically with the first element of the vector. When the value of the Pulse
repetition frequency (Hz) parameter is a row vector, the value of Output signal
format must be set to Samples.

The value of this parameter must satisfy these constraints

• The product of Pulse width and Pulse repetition frequency parameter must
be less than or equal to one.

 Stepped FM Waveform

3-347

• The ratio of sample rate to each element of Pulse repetition frequency be an
integer. Sample rate is specified in any of the waveform library blocks.

Enable PRF selection input
Check this box to select which predefined PRF to use during the simulation via input.
Uncheck this box to use the Pulse repetition frequency parameter to define the
PRF sequence used in the simulation.

Frequency step
Specify the linear frequency step size, in hertz, as a positive scalar.

Number of frequency steps
Specify the number of frequency steps as a positive integer. When the Number of
frequency steps is 1, the stepped FM waveform reduces to a rectangular waveform.

Output signal format
Specify the format of the output signal as Pulses or Samples.

If you set the this parameter to Samples, the output of the block is in the form of
multiple samples. The number of samples is the value of the Number of samples in
output parameter.

If you set the this parameter to Pulses, the output of the block is in the form of
multiple pulses. The number of pulses is the value of the Number of pulses in
output parameter.

The value of Output signal format must be set to Samples when the Pulse
repetition frequency (Hz) parameter is a row vector.

Number of samples in output
Number of samples in the block output, specified as a positive integer. This
parameter appears only when you set Output signal format to Samples.

Number of pulses in output
Specify the number of pulses in the block output as a positive integer. This
parameter appears only when you set Output signal format to Pulses.

Simulate using
Block simulation, specified as Interpreted Execution or Code Generation.
If you want your block to use the MATLAB interpreter, choose Interpreted
Execution. If you want your block to run as compiled code, choose Code
Generation. Compiled code requires time to compile but usually runs faster.

3 Blocks — Alphabetical List

3-348

Interpreted execution is useful when you are developing and tuning a model. The
block runs the underlying System object in MATLAB. You can change and execute
your model quickly. When you are satisfied with your results, you can then run the
block using Code Generation. Long simulations run faster than in interpreted
execution. You can run repeated executions without recompiling. However, if you
change any block parameters, then the block automatically recompiles before
execution.

When setting this parameter, you must take into account the overall model
simulation mode. The table shows how the Simulate using parameter interacts with
the overall simulation mode.

When the Simulink model is in Accelerator mode, the block mode specified using
Simulate using overrides the simulation mode.

Acceleration Modes

When you use this simulation mode ...If you want to
simulate using ... Normal Accelerator Rapid

Accelerator

Interpreted

Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Code Generation The block is
compiled.

All blocks in the
model are compiled.

Creates a
standalone
executable from the
model.

For more information, see “Choosing a Simulation Mode” from the Simulink
documentation.

Ports

Note: The block input and output ports correspond to the input and output parameters
described in the step method of the underlying System object. See link at the bottom of
this page.

Port Supported Data Types

Out Double-precision floating point

 Stepped FM Waveform

3-349

See Also
phased.SteppedFMWaveform

Introduced in R2014b

3 Blocks — Alphabetical List

3-350

Stretch Processor

Stretch processor for linear FM waveforms

Library

Detection

phaseddetectlib

Description

The Stretch Processor block applies stretch processing on a linear FM waveform.
Also known as dechirping, stretch processing is an alternative to matched filtering for
linear FM waveforms.

 Stretch Processor

3-351

Dialog Box

Pulse width (s)
Specify the duration of each pulse, in seconds, as a positive scalar. The product of
Pulse width and Pulse repetition frequency must be less than or equal to one.

Pulse repetition frequency (Hz)
Specify pulse repetition frequency (PRF) as a scalar or a row vector. Units for PRF
are hertz.

3 Blocks — Alphabetical List

3-352

To implement a constant PRF, specify Pulse repetition frequency as a positive
scalar.

To implement a staggered PRF, specify Pulse repetition frequency as a row
vector with all strictly positive values. When PRF is staggered, the time between
successive output pulses is determined sequentially by the successive values of
the PRF vector. If the waveform reaches the last element of the vector, the process
continues cyclically with the first element of the vector. When the value of the Pulse
repetition frequency (Hz) parameter is a row vector, the value of Output signal
format must be set to Samples.

The value of this parameter must satisfy these constraints

• The product of Pulse width and Pulse repetition frequency parameter must
be less than or equal to one.

• The ratio of sample rate to each element of Pulse repetition frequency be an
integer. Sample rate is specified in any of the waveform library blocks.

FM sweep slope (Hz/s)
Specify the slope of the linear FM sweeping, in hertz per second, as a scalar.

FM sweep interval
Specify the FM sweep interval as Positive or Symmetric. If you set this parameter
value to Positive, the waveform sweeps in the interval between 0 and B, where B is
the value set in Sweep bandwidth. If you set this parameter value to Symmetric,
the waveform sweeps in the interval between –B/2 and B/2.

Propagation speed (m/s)
Specify the propagation speed of the signal, in meters per second, as a positive scalar.
You can use the function physconst to specify the speed of light.

Reference range (m)
Specify the center of ranges of interest, in meters, as a positive scalar. The reference
range must be within the unambiguous range of one pulse.

Range span (m)
Specify the length of the interval of ranges of interest, in meters, as a positive scalar.
The range span is centered at the range value specified in Reference range.

Simulate using
Block simulation, specified as Interpreted Execution or Code Generation.
If you want your block to use the MATLAB interpreter, choose Interpreted

 Stretch Processor

3-353

Execution. If you want your block to run as compiled code, choose Code
Generation. Compiled code requires time to compile but usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The
block runs the underlying System object in MATLAB. You can change and execute
your model quickly. When you are satisfied with your results, you can then run the
block using Code Generation. Long simulations run faster than in interpreted
execution. You can run repeated executions without recompiling. However, if you
change any block parameters, then the block automatically recompiles before
execution.

When setting this parameter, you must take into account the overall model
simulation mode. The table shows how the Simulate using parameter interacts with
the overall simulation mode.

When the Simulink model is in Accelerator mode, the block mode specified using
Simulate using overrides the simulation mode.

Acceleration Modes

When you use this simulation mode ...If you want to
simulate using ... Normal Accelerator Rapid

Accelerator

Interpreted

Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Code Generation The block is
compiled.

All blocks in the
model are compiled.

Creates a
standalone
executable from the
model.

For more information, see “Choosing a Simulation Mode” from the Simulink
documentation.

Ports

Note: The block input and output ports correspond to the input and output parameters
described in the step method of the underlying System object. See link at the bottom of
this page.

3 Blocks — Alphabetical List

3-354

Port Supported Data Types

In Double-precision floating point
Out Double-precision floating point

See Also
phased.StretchProcessor

Introduced in R2014b

 Subband MVDR Beamformer

3-355

Subband MVDR Beamformer

Subband MVDR (Capon) beamformer

Library

Beamforming

phasedbflib

Description

The Subband MVDR Beamformer block performs minimum variance distortionless
response (MVDR) beamforming on wideband signals. Signals are decomposed into
frequency subbands and narrowband MVDR beamforming is performed in each
band. The resulting subband signals are summed to form the output signal. MVDR
beamforming preserves signal power in a given direction while suppressing interference
and noise from other directions. The MVDR beamformer is also called the Capon
beamformer.

3 Blocks — Alphabetical List

3-356

Dialog Box

 Subband MVDR Beamformer

3-357

Signal propagation speed (m/s)
Specify the propagation speed of the signal, in meters per second, as a positive scalar.
You can use the function physconst to specify the speed of light.

Operating frequency (Hz)
Specify the operating frequency of the system, in hertz, as a positive scalar.

Number of subbands
The number of subbands used for subband processing, specified as a positive integer.

Diagonal loading factor
Specify the diagonal loading factor as a positive scalar. Diagonal loading is a
technique used to achieve robust beamforming performance, especially when the
sample support is small.

Enable training data input
Select this check box to specify additional training data via the input port XT. To use
the input signal as the training data, clear the check box which removes the port.

Enable subband center frequencies output
Select this check box to obtain the subband center frequencies from the output port
Freq.

Source of beamforming direction
Specify whether the beamforming direction comes from the Beamforming
direction parameter or from an input port. Values of this parameter are:

Property Specify the beamforming direction using
Beamforming direction.

Input port Specify the beamforming direction using the Ang
input port.

Beamforming direction (deg)
Specify the beamforming direction of the beamformer, in degrees, as a 1-by-2 vector.
The direction is specified in the format of [AzimuthAngle; ElevationAngle].
The azimuth angle should be between –180° and 180°. The elevation angle should
be between –90° and 90°. This parameter appears only when you set Source of
beamforming direction to Property.

Enable weights output

3 Blocks — Alphabetical List

3-358

Select this check box to obtain the beamformer weights from the output port W.
Simulate using

Block simulation, specified as Interpreted Execution or Code Generation.
If you want your block to use the MATLAB interpreter, choose Interpreted
Execution. If you want your block to run as compiled code, choose Code
Generation. Compiled code requires time to compile but usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The
block runs the underlying System object in MATLAB. You can change and execute
your model quickly. When you are satisfied with your results, you can then run the
block using Code Generation. Long simulations run faster than in interpreted
execution. You can run repeated executions without recompiling. However, if you
change any block parameters, then the block automatically recompiles before
execution.

When setting this parameter, you must take into account the overall model
simulation mode. The table shows how the Simulate using parameter interacts with
the overall simulation mode.

When the Simulink model is in Accelerator mode, the block mode specified using
Simulate using overrides the simulation mode.

Acceleration Modes

When you use this simulation mode ...If you want to
simulate using ... Normal Accelerator Rapid

Accelerator

Interpreted

Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Code Generation The block is
compiled.

All blocks in the
model are compiled.

Creates a
standalone
executable from the
model.

For more information, see “Choosing a Simulation Mode” from the Simulink
documentation.

 Subband MVDR Beamformer

3-359

3 Blocks — Alphabetical List

3-360

Array Parameters

Specify sensor array as
Sensor element or sensor array specified. A sensor array can also contain subarrays
or as a partitioned array. This parameter can also be expressed as a MATLAB
expression.

Types

Array (no subarrays)

Partitioned array

Replicated subarray

MATLAB expression

Geometry
Specify the array geometry as one of the following

• ULA — Uniform Line Array
• URA — Uniform Rectangular Array
• UCA — Uniform Circular Array
• Conformal Array

Number of elements
Specifies the number of elements in the array as an integer.

This parameter appears when the Geometry is set to ULA or UCA. When Sensor
Array is set to Replicated subarray, this parameter applies to the sub-array.

Array size
This parameter appears when Geometry is set to URA. When Sensor Array is set to
Replicated subarray, this parameter applies to the subarrays.

Specify the size of the array as a 1-by-2 integer vector or a single integer containing.

• If Array size is a 1-by-2 vector, the vector has the form
[NumberOfRows,NumberOfColumns] where NumberOfRows and
NumberOfColumns specify the number of rows and columns of the array,
respectively.

• If Array size is an integer, the array has the same number of rows and columns.

 Subband MVDR Beamformer

3-361

For a URA, elements are indexed from top to bottom along a column and continuing
to the next columns from left to right. In this figure, an Array size of [3,2]
produces an array of three rows and two columns.

Size and Element Indexing Order

for Uniform Rectangular Arrays

Example: Size = [3,2]

1

2

3

4

6

5

Z

Y

Element spacing
This parameter appears when Geometry is set to ULA or URA. When Sensor Array
is set to Replicated subarray, this parameter applies to the subarrays.

• For a ULA, specify the spacing, in meters, between two adjacent elements in the
array as a scalar.

• For a URA, specify the element spacing of the array, in meters, as a 1-by-2 vector
or a scalar. If Element spacing is a 1-by-2 vector, the vector has the form
[SpacingBetweenRows,SpacingBetweenColumns]. For a discussion of
these quantities, see phased.URA. If Element spacing is a scalar, the spacings
between rows and columns are equal.

Array axis
This parameter appears when the Geometry parameter is set to ULA or when the
block supports only a ULA array geometry. You can specify this parameters as 'x',
'y', or 'z'. Then, all ULA array elements are uniformly spaced along this axis in
the local array coordinate system.

3 Blocks — Alphabetical List

3-362

Array normal
This parameter appears when the Geometry parameter is set to URA or UCA. You
can specify the Array normal parameter as 'x', 'y', or 'z'. Then, all URA and
UCA array elements are placed in the yz-, zx-, or xy- planes, respectively, of the array
coordinate system.

Radius of UCA (m)
Radius of a uniform circular array specified as a positive scalar. Units are meters.

This parameter appears when the Geometry is set to UCA.
Taper

Tapers, also known as element weights, are applied to sensor elements in the array.
Tapers are used to modify both the amplitude and phase of the transmitted or
received data.

This parameter appears when Geometry is set to ULA, URA, UCA, or Conformal
Array. When Sensor Array is set to Replicated subarray, this parameter
applies to subarrays.

• For a ULA or UCA, specify element tapering as a complex-valued scalar or a
complex-valued 1-by-N row vector. In this vector, N represents the number
of elements in the array. If Taper is a scalar, the same weight is applied to
each element. If Taper is a vector, a weight from the vector is applied to the
corresponding sensor element. A weight must be applied to each element in the
sensor array.

• For a URA, specify element tapering as a complex-valued scalar or complex-valued
M-by-N matrix. In this matrix, M is the number of elements along the z-axis, and
N is the number of elements along the y-axis. M and N correspond to the values
of [NumberofRows, NumberOfColumns] in the Array size matrix. If Taper
is a scalar, the same weight is applied to each element. If the value of Taper is a
matrix, a weight from the matrix is applied to the corresponding sensor element.
A weight must be applied to each element in the sensor array.

• For a Conformal Array, specify element taper as a complex-valued scalar or
complex-valued 1-by-N vector. In this vector, N is the number of elements in the
array as determined by the size of the Element positions vector. If the Taper
parameter is a scalar, the same weight is applied to each element. If the value of
Taper is a vector, a weight from the vector is applied to the corresponding sensor
element. A weight must be applied to each element in the sensor array.

Element lattice

 Subband MVDR Beamformer

3-363

This parameter appears when Geometry is set to URA. When Sensor Array is set to
Replicated subarray, this parameter applies to the sub-array.

Specify the element lattice as one of Rectangular or Triangular

• Rectangular — Aligns all the elements in both row and column directions.
• Triangular — Shifts the even row elements toward the positive row axis

direction. The elements are shifted a distance of half the element spacing along
the row.

Element positions
This parameter appears when Geometry is set to Conformal Array. When Sensor
Array is set to Replicated subarray, this parameter applies to subarrays.

Specify the positions of the elements, in meters, in the conformal array as a 3-by-N
matrix, where N indicates the number of elements in the conformal array. Each
column of Element positions represents the position of a single element, in the
form [x; y; z], in the array’s local coordinate system. The local coordinate system
has its origin at an arbitrary point.

Element normals (deg)
This parameter appears when Geometry is set to Conformal Array. When Sensor
Array is set to Replicated subarray, this parameter applies to subarrays.

Specify the normal directions of the elements in a conformal array as a 2-by-N
matrix or a 2-by-1 column vector in degrees. The variable N indicates the number of
elements in the array. If Element normals is a matrix, each column specifies the
normal direction of the corresponding element in the form [azimuth;elevation],
with respect to the local coordinate system. The local coordinate system aligns
the positive x-axis with the direction normal to the conformal array. If Element
normals is a 2-by-1 column vector, the vector specifies the same pointing direction
for all elements in the array.

You can use the Element positions and Element normals parameters to represent
any arrangement in which pairs of elements differ by certain transformations. You
can combine translation, azimuth rotation, and elevation rotation transformations.
However, you cannot use transformations that require rotation about the normal.

Subarray definition matrix
This parameter appears when Sensor array is set to Partitioned array.

3 Blocks — Alphabetical List

3-364

Specify the subarray selection as an M-by-N matrix. M is the number of subarrays
and N is the total number of elements in the array. Each row of the matrix indicates
which elements belong to the corresponding subarray. Each entry in the matrix is 1
or 0, where 1 indicates that the element appears in the subarray and 0 indicates the
opposite. Each row must contain at least one 1.

The phase center of each subarray is its geometric center. Subarray definition
matrix and Geometry determine the geometric center.

Subarray steering method
This parameter appears when Sensor array is set to Partitioned array or
Replicated subarray.

Specify the subarray steering method as

• None

• Phase

• Time

When using the Narrowband Receive Array, Narrowband Transmit Array,
or Wideband Receive Array blocks, select Phase or Time to create the input port
Steer on each block.

Phase shifter frequency
This parameter appears when you set Sensor array to Partitioned array or
Replicated subarray and you set Subarray steering method to Phase.

Specify the operating frequency, in hertz, of phase shifters to perform subarray
steering as a positive scalar.

Number of bits in phase shifters
This parameter appears when you set Sensor array to Partitioned array or
Replicated subarray and you set Subarray steering method to Phase.

The number of bits used to quantize the phase shift component of beamformer or
steering vector weights. Specify the number of bits as a non-negative integer. A value
of zero indicates that no quantization is performed.

Subarrays layout
This parameter appears when you set Sensor array to Replicated subarray.

Specify the layout of the replicated subarrays as Rectangular or Custom.
Grid size

 Subband MVDR Beamformer

3-365

This parameter appears when you set Sensor array to Replicated subarray and
Subarrays layout to Rectangular.

Specify the size of the rectangular grid as a single positive integer or an positive
integer-valued 1-by-2 positive row vector.

If Grid size is a scalar, the array has an equal number of subarrays in each
row and column. If Grid size is a 1-by-2 vector of the form [NumberOfRows,
NumberOfColumns], the first entry is the number of subarrays along each column.
The second entry is the number of subarrays in each row. A row is along the local y-
axis, and a column is along the local z-axis. This figure shows how you can replicate a
3-by-2 URA subarray using a Grid size of [1,2].

3 x 2 Element URA

Replicated on a 1 x 2 Grid

1

2

3

4

6

5

Z

Y

7

8

9

10

12

11

Grid spacing
This parameter appears when you set Sensor array to Replicated subarray and
Subarrays layout to Rectangular.

Specify the rectangular grid spacing of subarrays as a real-valued positive scalar, a 1-
by-2 row vector, or Auto. Grid spacing units are expressed in meters.

• If Grid spacing is a scalar, the spacing along the row and the spacing along the
column is the same.

• If Grid spacing is a 1-by-2 row vector, the vector has the form
[SpacingBetweenRows,SpacingBetweenColumn]. The first entry specifies
the spacing between rows along a column. The second entry specifies the spacing
between columns along a row.

3 Blocks — Alphabetical List

3-366

• If Grid spacing is set to Auto, replication preserves the element spacing of the
subarray for both rows and columns while building the full array. This option is
available only when you specify Geometry as ULA or URA.

Subarray positions (m)
This parameter appears when you set Sensor array to Replicated subarray and
Subarrays layout to Custom.

Specify the positions of the subarrays in the custom grid as a 3-by-N matrix, where
N is the number of subarrays in the array. Each column of the matrix represents the
position of a single subarray, in meters, in the array’s local coordinate system. The
coordinates are expressed in the form [x; y; z].

Subarray normals
This parameter appears when you set the Sensor array parameter to Replicated
subarray and the Subarrays layout to Custom.

Specify the normal directions of the subarrays in the array. This parameter value
is a 2-by-N matrix, where N is the number of subarrays in the array. Each column
of the matrix specifies the normal direction of the corresponding subarray, in the
form [azimuth; elevation]. Each angle is in degrees and is defined in the local
coordinate system.

You can use the Subarray positions and Subarray normals parameters
to represent any arrangement in which pairs of subarrays differ by certain
transformations. The transformations can combine translation, azimuth rotation, and
elevation rotation. However, you cannot use transformations that require rotation
about the normal.

Expression
A valid MATLAB expression containing an array constructor, for example,
phased.URA.

Sensor Array Tab: Element Parameters

Element type
Specify antenna or microphone type as

• Isotropic Antenna

• Cosine Antenna

• Custom Antenna

 Subband MVDR Beamformer

3-367

• Omni Microphone

• Custom Microphone

Exponent of cosine pattern
This parameter appears when you set Element type to Cosine Antenna.

Specify the exponent of the cosine pattern as a scalar or a 1-by-2 vector. You
must specify all values as real numbers greater than or equal to 1. When you set
Exponent of cosine pattern to a scalar, both the azimuth direction cosine pattern
and the elevation direction cosine pattern are raised to the specified value. When you
set Exponent of cosine pattern to a 1-by-2 vector, the first element is the exponent
for the azimuth direction cosine pattern and the second element is the exponent for
the elevation direction cosine pattern.

Operating frequency range (Hz)
This parameter appears when Element type is set to Isotropic Antenna, Cosine
Antenna, or Omni Microphone.

Specify the operating frequency range, in hertz, of the antenna element as a 1-by-2
row vector in the form [LowerBound,UpperBound]. The antenna element has no
response outside the specified frequency range.

Operating frequency vector (Hz)
This parameter appears when Element type is set to Custom Antenna or Custom
Microphone.

Specify L frequencies, in hertz, at which to set the antenna and microphone
frequency responses. Specify Operating frequency vector (Hz) as a 1-by-L
row vector of increasing value. Use Frequency responses to set the frequency
responses. The antenna or microphone element has no response outside the
frequency range specified by the minimum and maximum elements of Operating
frequency vector.

Frequency responses (dB)
This parameter appears when Element type is set to Custom Antenna or Custom
Microphone.

Specify this parameter as the frequency response of an antenna or microphone,
in decibels, for the frequencies defined by Operating frequency vector. Specify
Frequency responses (dB) as a 1-by-L vector matching the dimensions of the
vector specified in Operating frequency vector.

3 Blocks — Alphabetical List

3-368

Azimuth angles (deg)
This parameter appears when Element type is set to Custom Antenna.

Specify P azimuth angles, in degrees, at which to calculate the antenna radiation
pattern as a 1-by-P row vector. P must be greater than 2. The azimuth angles must
lie between –180° and 180° and be in strictly increasing order.

Elevation angles (deg)
This parameter appears when the Element type is set to Custom Antenna.

Specify the Q elevation angles, in degrees, at which to compute the radiation pattern
as a 1-by-Q vector. Q must be greater than 2. The elevation angles must lie between –
90° and 90° and be in strictly increasing order.

Radiation pattern (dB)
This parameter appears when the Element type is set to Custom Antenna.

The magnitude in db of the combined polarized antenna radiation pattern specified
as a Q-by-P matrix or a Q-by-P-by-L array. The value of Q must match the value of Q
specified by Elevation angles. The value of P must match the value of P specified by
Azimuth angles. The value of L must match the value of L specified by Operating
frequency vector (Hz).

Polar pattern frequencies (Hz)
This parameter appears when the Element type is set to Custom Microphone.

Specify the Mmeasuring frequencies in hertz of the polar patterns 1-by-M vector.
The measuring frequencies lie within the frequency range specified byOperating
frequency vector.

Polar pattern angles (deg)
This parameter appears when Element type is set to Custom Microphone.

Specify N measuring angles, in degrees, of the polar patterns as a 1-by-N. The angles
are measured from the central pickup axis of the microphone, and must be between –
180° and 180°, inclusive.

Polar pattern (dB)
This parameter appears when Element type is set to Custom Microphone.

Specify the magnitude of the polar patterns, in dB, of the microphone element as
an M-by-N matrix. M is the number of measuring frequencies specified in Polar

 Subband MVDR Beamformer

3-369

pattern frequencies. N is the number of measuring angles specified in Polar
pattern angles. Each row of the matrix represents the magnitude of the polar
pattern measured at the corresponding frequency specified in Polar pattern
frequencies and all angles specified in Polar pattern angles. Assume that the
pattern is measured in the azimuth plane. In the azimuth plane, the elevation angle
is 0° and the central pickup axis is 0° degrees azimuth and 0° degrees elevation.
Assume also that the polar pattern is symmetric around the central axis. You can
construct the microphone’s response pattern in 3-D space from the polar pattern.

Baffle the back of the element
This check box appears only when the Element type parameter is set to Isotropic
Antenna or Omni Microphone.

Select this check box to baffle the back of the antenna element. In this case, the
antenna responses to all azimuth angles beyond ±90° from broadside are set to zero.
Define the broadside direction as 0° azimuth angle and 0° elevation angle.

Ports

Note: The block input and output ports correspond to the input and output parameters
described in the step method of the underlying System object. See link at the bottom of
this page.

Port Supported Data Types

X Double-precision floating point
XT Double-precision floating point
Y Double-precision floating point
W Double-precision floating point
Freq Double-precision floating point

See Also
phased.SubbandMVDRBeamformer | phased.MVDRBeamformer

Introduced in R2015b

3 Blocks — Alphabetical List

3-370

Subband Phase Shift Beamformer

Subband phase shift beamformer

Library

Beamforming

phasedbflib

Description

The Subband Phase Shift Beamformer block performs delay-and-sum beamforming
in the frequency domain. The signal is divided into subbands. In each subbands, a phase
shift is applied in the frequency domain to approximate the delay. The resulting subband
signals are then added to form the output signal.

 Subband Phase Shift Beamformer

3-371

Dialog Box

3 Blocks — Alphabetical List

3-372

Signal propagation speed (m/s)
Specify the propagation speed of the signal, in meters per second, as a positive scalar.
You can use the function physconst to specify the speed of light.

Operating frequency (Hz)
Specify the operating frequency of the system, in hertz, as a positive scalar.

Number of subbands
The number of subbands used for subband processing, specified as a positive integer.

Source of beamforming direction
Specify whether the beamforming direction comes from the Beamforming
direction parameter or from an input port. Values of this parameter are:

Property Specify the beamforming direction using
Beamforming direction.

Input port Specify the beamforming direction using the Ang
input port.

Beamforming direction (deg)
Specify the beamforming direction of the beamformer, in degrees, as a 1-by-2 vector.
The direction is specified in the format of [AzimuthAngle; ElevationAngle].
The azimuth angle should be between –180° and 180°. The elevation angle should
be between –90° and 90°. This parameter appears only when you set Source of
beamforming direction to Property.

Enable weights output
Select this check box to obtain the beamformer weights from the output port W.

Enable subband center frequencies output
Select this check box to obtain the center frequencies of each subband via the output
port Freq.

Simulate using
Block simulation, specified as Interpreted Execution or Code Generation.
If you want your block to use the MATLAB interpreter, choose Interpreted
Execution. If you want your block to run as compiled code, choose Code
Generation. Compiled code requires time to compile but usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The
block runs the underlying System object in MATLAB. You can change and execute

 Subband Phase Shift Beamformer

3-373

your model quickly. When you are satisfied with your results, you can then run the
block using Code Generation. Long simulations run faster than in interpreted
execution. You can run repeated executions without recompiling. However, if you
change any block parameters, then the block automatically recompiles before
execution.

When setting this parameter, you must take into account the overall model
simulation mode. The table shows how the Simulate using parameter interacts with
the overall simulation mode.

When the Simulink model is in Accelerator mode, the block mode specified using
Simulate using overrides the simulation mode.

Acceleration Modes

When you use this simulation mode ...If you want to
simulate using ... Normal Accelerator Rapid

Accelerator

Interpreted

Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Code Generation The block is
compiled.

All blocks in the
model are compiled.

Creates a
standalone
executable from the
model.

For more information, see “Choosing a Simulation Mode” from the Simulink
documentation.

3 Blocks — Alphabetical List

3-374

 Subband Phase Shift Beamformer

3-375

Array Parameters

Specify sensor array as
Sensor element or sensor array specified. A sensor array can also contain subarrays
or as a partitioned array. This parameter can also be expressed as a MATLAB
expression.

Types

Array (no subarrays)

Partitioned array

Replicated subarray

MATLAB expression

Geometry
Specify the array geometry as one of the following

• ULA — Uniform Line Array
• URA — Uniform Rectangular Array
• UCA — Uniform Circular Array
• Conformal Array

Number of elements
Specifies the number of elements in the array as an integer.

This parameter appears when the Geometry is set to ULA or UCA. When Sensor
Array is set to Replicated subarray, this parameter applies to the sub-array.

Array size
This parameter appears when Geometry is set to URA. When Sensor Array is set to
Replicated subarray, this parameter applies to the subarrays.

Specify the size of the array as a 1-by-2 integer vector or a single integer containing.

• If Array size is a 1-by-2 vector, the vector has the form
[NumberOfRows,NumberOfColumns] where NumberOfRows and
NumberOfColumns specify the number of rows and columns of the array,
respectively.

• If Array size is an integer, the array has the same number of rows and columns.

3 Blocks — Alphabetical List

3-376

For a URA, elements are indexed from top to bottom along a column and continuing
to the next columns from left to right. In this figure, an Array size of [3,2]
produces an array of three rows and two columns.

Size and Element Indexing Order

for Uniform Rectangular Arrays

Example: Size = [3,2]

1

2

3

4

6

5

Z

Y

Element spacing
This parameter appears when Geometry is set to ULA or URA. When Sensor Array
is set to Replicated subarray, this parameter applies to the subarrays.

• For a ULA, specify the spacing, in meters, between two adjacent elements in the
array as a scalar.

• For a URA, specify the element spacing of the array, in meters, as a 1-by-2 vector
or a scalar. If Element spacing is a 1-by-2 vector, the vector has the form
[SpacingBetweenRows,SpacingBetweenColumns]. For a discussion of
these quantities, see phased.URA. If Element spacing is a scalar, the spacings
between rows and columns are equal.

Array axis
This parameter appears when the Geometry parameter is set to ULA or when the
block supports only a ULA array geometry. You can specify this parameters as 'x',
'y', or 'z'. Then, all ULA array elements are uniformly spaced along this axis in
the local array coordinate system.

 Subband Phase Shift Beamformer

3-377

Array normal
This parameter appears when the Geometry parameter is set to URA or UCA. You
can specify the Array normal parameter as 'x', 'y', or 'z'. Then, all URA and
UCA array elements are placed in the yz-, zx-, or xy- planes, respectively, of the array
coordinate system.

Radius of UCA (m)
Radius of a uniform circular array specified as a positive scalar. Units are meters.

This parameter appears when the Geometry is set to UCA.
Taper

Tapers, also known as element weights, are applied to sensor elements in the array.
Tapers are used to modify both the amplitude and phase of the transmitted or
received data.

This parameter appears when Geometry is set to ULA, URA, UCA, or Conformal
Array. When Sensor Array is set to Replicated subarray, this parameter
applies to subarrays.

• For a ULA or UCA, specify element tapering as a complex-valued scalar or a
complex-valued 1-by-N row vector. In this vector, N represents the number
of elements in the array. If Taper is a scalar, the same weight is applied to
each element. If Taper is a vector, a weight from the vector is applied to the
corresponding sensor element. A weight must be applied to each element in the
sensor array.

• For a URA, specify element tapering as a complex-valued scalar or complex-valued
M-by-N matrix. In this matrix, M is the number of elements along the z-axis, and
N is the number of elements along the y-axis. M and N correspond to the values
of [NumberofRows, NumberOfColumns] in the Array size matrix. If Taper
is a scalar, the same weight is applied to each element. If the value of Taper is a
matrix, a weight from the matrix is applied to the corresponding sensor element.
A weight must be applied to each element in the sensor array.

• For a Conformal Array, specify element taper as a complex-valued scalar or
complex-valued 1-by-N vector. In this vector, N is the number of elements in the
array as determined by the size of the Element positions vector. If the Taper
parameter is a scalar, the same weight is applied to each element. If the value of
Taper is a vector, a weight from the vector is applied to the corresponding sensor
element. A weight must be applied to each element in the sensor array.

Element lattice

3 Blocks — Alphabetical List

3-378

This parameter appears when Geometry is set to URA. When Sensor Array is set to
Replicated subarray, this parameter applies to the sub-array.

Specify the element lattice as one of Rectangular or Triangular

• Rectangular — Aligns all the elements in both row and column directions.
• Triangular — Shifts the even row elements toward the positive row axis

direction. The elements are shifted a distance of half the element spacing along
the row.

Element positions
This parameter appears when Geometry is set to Conformal Array. When Sensor
Array is set to Replicated subarray, this parameter applies to subarrays.

Specify the positions of the elements, in meters, in the conformal array as a 3-by-N
matrix, where N indicates the number of elements in the conformal array. Each
column of Element positions represents the position of a single element, in the
form [x; y; z], in the array’s local coordinate system. The local coordinate system
has its origin at an arbitrary point.

Element normals (deg)
This parameter appears when Geometry is set to Conformal Array. When Sensor
Array is set to Replicated subarray, this parameter applies to subarrays.

Specify the normal directions of the elements in a conformal array as a 2-by-N
matrix or a 2-by-1 column vector in degrees. The variable N indicates the number of
elements in the array. If Element normals is a matrix, each column specifies the
normal direction of the corresponding element in the form [azimuth;elevation],
with respect to the local coordinate system. The local coordinate system aligns
the positive x-axis with the direction normal to the conformal array. If Element
normals is a 2-by-1 column vector, the vector specifies the same pointing direction
for all elements in the array.

You can use the Element positions and Element normals parameters to represent
any arrangement in which pairs of elements differ by certain transformations. You
can combine translation, azimuth rotation, and elevation rotation transformations.
However, you cannot use transformations that require rotation about the normal.

Subarray definition matrix
This parameter appears when Sensor array is set to Partitioned array.

 Subband Phase Shift Beamformer

3-379

Specify the subarray selection as an M-by-N matrix. M is the number of subarrays
and N is the total number of elements in the array. Each row of the matrix indicates
which elements belong to the corresponding subarray. Each entry in the matrix is 1
or 0, where 1 indicates that the element appears in the subarray and 0 indicates the
opposite. Each row must contain at least one 1.

The phase center of each subarray is its geometric center. Subarray definition
matrix and Geometry determine the geometric center.

Subarray steering method
This parameter appears when Sensor array is set to Partitioned array or
Replicated subarray.

Specify the subarray steering method as

• None

• Phase

• Time

When using the Narrowband Receive Array, Narrowband Transmit Array,
or Wideband Receive Array blocks, select Phase or Time to create the input port
Steer on each block.

Phase shifter frequency
This parameter appears when you set Sensor array to Partitioned array or
Replicated subarray and you set Subarray steering method to Phase.

Specify the operating frequency, in hertz, of phase shifters to perform subarray
steering as a positive scalar.

Number of bits in phase shifters
This parameter appears when you set Sensor array to Partitioned array or
Replicated subarray and you set Subarray steering method to Phase.

The number of bits used to quantize the phase shift component of beamformer or
steering vector weights. Specify the number of bits as a non-negative integer. A value
of zero indicates that no quantization is performed.

Subarrays layout
This parameter appears when you set Sensor array to Replicated subarray.

Specify the layout of the replicated subarrays as Rectangular or Custom.
Grid size

3 Blocks — Alphabetical List

3-380

This parameter appears when you set Sensor array to Replicated subarray and
Subarrays layout to Rectangular.

Specify the size of the rectangular grid as a single positive integer or an positive
integer-valued 1-by-2 positive row vector.

If Grid size is a scalar, the array has an equal number of subarrays in each
row and column. If Grid size is a 1-by-2 vector of the form [NumberOfRows,
NumberOfColumns], the first entry is the number of subarrays along each column.
The second entry is the number of subarrays in each row. A row is along the local y-
axis, and a column is along the local z-axis. This figure shows how you can replicate a
3-by-2 URA subarray using a Grid size of [1,2].

3 x 2 Element URA

Replicated on a 1 x 2 Grid

1

2

3

4

6

5

Z

Y

7

8

9

10

12

11

Grid spacing
This parameter appears when you set Sensor array to Replicated subarray and
Subarrays layout to Rectangular.

Specify the rectangular grid spacing of subarrays as a real-valued positive scalar, a 1-
by-2 row vector, or Auto. Grid spacing units are expressed in meters.

• If Grid spacing is a scalar, the spacing along the row and the spacing along the
column is the same.

• If Grid spacing is a 1-by-2 row vector, the vector has the form
[SpacingBetweenRows,SpacingBetweenColumn]. The first entry specifies
the spacing between rows along a column. The second entry specifies the spacing
between columns along a row.

 Subband Phase Shift Beamformer

3-381

• If Grid spacing is set to Auto, replication preserves the element spacing of the
subarray for both rows and columns while building the full array. This option is
available only when you specify Geometry as ULA or URA.

Subarray positions (m)
This parameter appears when you set Sensor array to Replicated subarray and
Subarrays layout to Custom.

Specify the positions of the subarrays in the custom grid as a 3-by-N matrix, where
N is the number of subarrays in the array. Each column of the matrix represents the
position of a single subarray, in meters, in the array’s local coordinate system. The
coordinates are expressed in the form [x; y; z].

Subarray normals
This parameter appears when you set the Sensor array parameter to Replicated
subarray and the Subarrays layout to Custom.

Specify the normal directions of the subarrays in the array. This parameter value
is a 2-by-N matrix, where N is the number of subarrays in the array. Each column
of the matrix specifies the normal direction of the corresponding subarray, in the
form [azimuth; elevation]. Each angle is in degrees and is defined in the local
coordinate system.

You can use the Subarray positions and Subarray normals parameters
to represent any arrangement in which pairs of subarrays differ by certain
transformations. The transformations can combine translation, azimuth rotation, and
elevation rotation. However, you cannot use transformations that require rotation
about the normal.

Expression
A valid MATLAB expression containing an array constructor, for example,
phased.URA.

Sensor Array Tab: Element Parameters

Element type
Specify antenna or microphone type as

• Isotropic Antenna

• Cosine Antenna

• Custom Antenna

3 Blocks — Alphabetical List

3-382

• Omni Microphone

• Custom Microphone

Exponent of cosine pattern
This parameter appears when you set Element type to Cosine Antenna.

Specify the exponent of the cosine pattern as a scalar or a 1-by-2 vector. You
must specify all values as real numbers greater than or equal to 1. When you set
Exponent of cosine pattern to a scalar, both the azimuth direction cosine pattern
and the elevation direction cosine pattern are raised to the specified value. When you
set Exponent of cosine pattern to a 1-by-2 vector, the first element is the exponent
for the azimuth direction cosine pattern and the second element is the exponent for
the elevation direction cosine pattern.

Operating frequency range (Hz)
This parameter appears when Element type is set to Isotropic Antenna, Cosine
Antenna, or Omni Microphone.

Specify the operating frequency range, in hertz, of the antenna element as a 1-by-2
row vector in the form [LowerBound,UpperBound]. The antenna element has no
response outside the specified frequency range.

Operating frequency vector (Hz)
This parameter appears when Element type is set to Custom Antenna or Custom
Microphone.

Specify L frequencies, in hertz, at which to set the antenna and microphone
frequency responses. Specify Operating frequency vector (Hz) as a 1-by-L
row vector of increasing value. Use Frequency responses to set the frequency
responses. The antenna or microphone element has no response outside the
frequency range specified by the minimum and maximum elements of Operating
frequency vector.

Frequency responses (dB)
This parameter appears when Element type is set to Custom Antenna or Custom
Microphone.

Specify this parameter as the frequency response of an antenna or microphone,
in decibels, for the frequencies defined by Operating frequency vector. Specify
Frequency responses (dB) as a 1-by-L vector matching the dimensions of the
vector specified in Operating frequency vector.

 Subband Phase Shift Beamformer

3-383

Azimuth angles (deg)
This parameter appears when Element type is set to Custom Antenna.

Specify P azimuth angles, in degrees, at which to calculate the antenna radiation
pattern as a 1-by-P row vector. P must be greater than 2. The azimuth angles must
lie between –180° and 180° and be in strictly increasing order.

Elevation angles (deg)
This parameter appears when the Element type is set to Custom Antenna.

Specify the Q elevation angles, in degrees, at which to compute the radiation pattern
as a 1-by-Q vector. Q must be greater than 2. The elevation angles must lie between –
90° and 90° and be in strictly increasing order.

Radiation pattern (dB)
This parameter appears when the Element type is set to Custom Antenna.

The magnitude in db of the combined polarized antenna radiation pattern specified
as a Q-by-P matrix or a Q-by-P-by-L array. The value of Q must match the value of Q
specified by Elevation angles. The value of P must match the value of P specified by
Azimuth angles. The value of L must match the value of L specified by Operating
frequency vector (Hz).

Polar pattern frequencies (Hz)
This parameter appears when the Element type is set to Custom Microphone.

Specify the Mmeasuring frequencies in hertz of the polar patterns 1-by-M vector.
The measuring frequencies lie within the frequency range specified byOperating
frequency vector.

Polar pattern angles (deg)
This parameter appears when Element type is set to Custom Microphone.

Specify N measuring angles, in degrees, of the polar patterns as a 1-by-N. The angles
are measured from the central pickup axis of the microphone, and must be between –
180° and 180°, inclusive.

Polar pattern (dB)
This parameter appears when Element type is set to Custom Microphone.

Specify the magnitude of the polar patterns, in dB, of the microphone element as
an M-by-N matrix. M is the number of measuring frequencies specified in Polar

3 Blocks — Alphabetical List

3-384

pattern frequencies. N is the number of measuring angles specified in Polar
pattern angles. Each row of the matrix represents the magnitude of the polar
pattern measured at the corresponding frequency specified in Polar pattern
frequencies and all angles specified in Polar pattern angles. Assume that the
pattern is measured in the azimuth plane. In the azimuth plane, the elevation angle
is 0° and the central pickup axis is 0° degrees azimuth and 0° degrees elevation.
Assume also that the polar pattern is symmetric around the central axis. You can
construct the microphone’s response pattern in 3-D space from the polar pattern.

Baffle the back of the element
This check box appears only when the Element type parameter is set to Isotropic
Antenna or Omni Microphone.

Select this check box to baffle the back of the antenna element. In this case, the
antenna responses to all azimuth angles beyond ±90° from broadside are set to zero.
Define the broadside direction as 0° azimuth angle and 0° elevation angle.

Ports

Note: The block input and output ports correspond to the input and output parameters
described in the step method of the underlying System object. See link at the bottom of
this page.

Port Supported Data Types

X Double-precision floating point
Ang Double-precision floating point
Y Double-precision floating point
Freq Double-precision floating point
W Double-precision floating point

See Also
phased.SubbandPhaseShiftBeamformer

Introduced in R2014b

 Time Delay Beamformer

3-385

Time Delay Beamformer

Time delay beamformer

Library

Beamforming

phasedbflib

Description

The Time Delay Beamformer block performs delay-and-sum beamforming in the
time domain. The time delay is approximated by dividing the signal into subbands and
applying a corresponding phase shift in each subband.

3 Blocks — Alphabetical List

3-386

Dialog Box

 Time Delay Beamformer

3-387

Signal propagation speed (m/s)
Specify the propagation speed of the signal, in meters per second, as a positive scalar.
You can use the function physconst to specify the speed of light.

Source of beamforming direction
Specify whether the beamforming direction comes from the Beamforming
direction parameter or from an input port. Values of this parameter are:

Property Specify the beamforming direction using
Beamforming direction.

Input port Specify the beamforming direction using the Ang
input port.

Beamforming direction (deg)
Specify the beamforming direction of the beamformer, in degrees, as a 1-by-2 vector.
The direction is specified in the format of [AzimuthAngle; ElevationAngle].
The azimuth angle should be between –180° and 180°. The elevation angle should
be between –90° and 90°. This parameter appears only when you set Source of
beamforming direction to Property.

Enable weights output
Select this check box to obtain the beamformer weights from the output port W.

Simulate using
Block simulation, specified as Interpreted Execution or Code Generation.
If you want your block to use the MATLAB interpreter, choose Interpreted
Execution. If you want your block to run as compiled code, choose Code
Generation. Compiled code requires time to compile but usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The
block runs the underlying System object in MATLAB. You can change and execute
your model quickly. When you are satisfied with your results, you can then run the
block using Code Generation. Long simulations run faster than in interpreted
execution. You can run repeated executions without recompiling. However, if you
change any block parameters, then the block automatically recompiles before
execution.

When setting this parameter, you must take into account the overall model
simulation mode. The table shows how the Simulate using parameter interacts with
the overall simulation mode.

3 Blocks — Alphabetical List

3-388

When the Simulink model is in Accelerator mode, the block mode specified using
Simulate using overrides the simulation mode.

Acceleration Modes

When you use this simulation mode ...If you want to
simulate using ... Normal Accelerator Rapid

Accelerator

Interpreted

Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Code Generation The block is
compiled.

All blocks in the
model are compiled.

Creates a
standalone
executable from the
model.

For more information, see “Choosing a Simulation Mode” from the Simulink
documentation.

 Time Delay Beamformer

3-389

3 Blocks — Alphabetical List

3-390

Array Parameters

Specify sensor array as
Specify a sensor array directly or by using a MATLAB expression.

Types

Array (no subarrays)

MATLAB expression

Geometry
Specify the array geometry as one of the following

• ULA — Uniform Line Array
• URA — Uniform Rectangular Array
• UCA — Uniform Circular Array
• Conformal Array

Number of elements
Specifies the number of elements in the array as an integer.

This parameter appears when the Geometry is set to ULA or UCA. When Sensor
Array is set to Replicated subarray, this parameter applies to the sub-array.

Array size
This parameter appears when Geometry is set to URA. When Sensor Array is set to
Replicated subarray, this parameter applies to the subarrays.

Specify the size of the array as a 1-by-2 integer vector or a single integer containing.

• If Array size is a 1-by-2 vector, the vector has the form
[NumberOfRows,NumberOfColumns] where NumberOfRows and
NumberOfColumns specify the number of rows and columns of the array,
respectively.

• If Array size is an integer, the array has the same number of rows and columns.

For a URA, elements are indexed from top to bottom along a column and continuing
to the next columns from left to right. In this figure, an Array size of [3,2]
produces an array of three rows and two columns.

 Time Delay Beamformer

3-391

Size and Element Indexing Order

for Uniform Rectangular Arrays

Example: Size = [3,2]

1

2

3

4

6

5

Z

Y

Element spacing
This parameter appears when Geometry is set to ULA or URA. When Sensor Array
is set to Replicated subarray, this parameter applies to the subarrays.

• For a ULA, specify the spacing, in meters, between two adjacent elements in the
array as a scalar.

• For a URA, specify the element spacing of the array, in meters, as a 1-by-2 vector
or a scalar. If Element spacing is a 1-by-2 vector, the vector has the form
[SpacingBetweenRows,SpacingBetweenColumns]. For a discussion of
these quantities, see phased.URA. If Element spacing is a scalar, the spacings
between rows and columns are equal.

Array axis
This parameter appears when the Geometry parameter is set to ULA or when the
block supports only a ULA array geometry. You can specify this parameters as 'x',
'y', or 'z'. Then, all ULA array elements are uniformly spaced along this axis in
the local array coordinate system.

Array normal
This parameter appears when the Geometry parameter is set to URA or UCA. You
can specify the Array normal parameter as 'x', 'y', or 'z'. Then, all URA and

3 Blocks — Alphabetical List

3-392

UCA array elements are placed in the yz-, zx-, or xy- planes, respectively, of the array
coordinate system.

Radius of UCA (m)
Radius of a uniform circular array specified as a positive scalar. Units are meters.

This parameter appears when the Geometry is set to UCA.
Taper

Tapers, also known as element weights, are applied to sensor elements in the array.
Tapers are used to modify both the amplitude and phase of the transmitted or
received data.

This parameter appears when Geometry is set to ULA, URA, UCA, or Conformal
Array. When Sensor Array is set to Replicated subarray, this parameter
applies to subarrays.

• For a ULA or UCA, specify element tapering as a complex-valued scalar or a
complex-valued 1-by-N row vector. In this vector, N represents the number
of elements in the array. If Taper is a scalar, the same weight is applied to
each element. If Taper is a vector, a weight from the vector is applied to the
corresponding sensor element. A weight must be applied to each element in the
sensor array.

• For a URA, specify element tapering as a complex-valued scalar or complex-valued
M-by-N matrix. In this matrix, M is the number of elements along the z-axis, and
N is the number of elements along the y-axis. M and N correspond to the values
of [NumberofRows, NumberOfColumns] in the Array size matrix. If Taper
is a scalar, the same weight is applied to each element. If the value of Taper is a
matrix, a weight from the matrix is applied to the corresponding sensor element.
A weight must be applied to each element in the sensor array.

• For a Conformal Array, specify element taper as a complex-valued scalar or
complex-valued 1-by-N vector. In this vector, N is the number of elements in the
array as determined by the size of the Element positions vector. If the Taper
parameter is a scalar, the same weight is applied to each element. If the value of
Taper is a vector, a weight from the vector is applied to the corresponding sensor
element. A weight must be applied to each element in the sensor array.

Element lattice
This parameter appears when Geometry is set to URA. When Sensor Array is set to
Replicated subarray, this parameter applies to the sub-array.

 Time Delay Beamformer

3-393

Specify the element lattice as one of Rectangular or Triangular

• Rectangular — Aligns all the elements in both row and column directions.
• Triangular — Shifts the even row elements toward the positive row axis

direction. The elements are shifted a distance of half the element spacing along
the row.

Element positions
This parameter appears when Geometry is set to Conformal Array. When Sensor
Array is set to Replicated subarray, this parameter applies to subarrays.

Specify the positions of the elements, in meters, in the conformal array as a 3-by-N
matrix, where N indicates the number of elements in the conformal array. Each
column of Element positions represents the position of a single element, in the
form [x; y; z], in the array’s local coordinate system. The local coordinate system
has its origin at an arbitrary point.

Element normals (deg)
This parameter appears when Geometry is set to Conformal Array. When Sensor
Array is set to Replicated subarray, this parameter applies to subarrays.

Specify the normal directions of the elements in a conformal array as a 2-by-N
matrix or a 2-by-1 column vector in degrees. The variable N indicates the number of
elements in the array. If Element normals is a matrix, each column specifies the
normal direction of the corresponding element in the form [azimuth;elevation],
with respect to the local coordinate system. The local coordinate system aligns
the positive x-axis with the direction normal to the conformal array. If Element
normals is a 2-by-1 column vector, the vector specifies the same pointing direction
for all elements in the array.

You can use the Element positions and Element normals parameters to represent
any arrangement in which pairs of elements differ by certain transformations. You
can combine translation, azimuth rotation, and elevation rotation transformations.
However, you cannot use transformations that require rotation about the normal.

Expression
A valid MATLAB expression containing an array constructor, for example,
phased.URA.

Sensor Array Tab: Element Parameters

Element type

3 Blocks — Alphabetical List

3-394

Specify antenna or microphone type as

• Isotropic Antenna

• Cosine Antenna

• Custom Antenna

• Omni Microphone

• Custom Microphone

Exponent of cosine pattern
This parameter appears when you set Element type to Cosine Antenna.

Specify the exponent of the cosine pattern as a scalar or a 1-by-2 vector. You
must specify all values as real numbers greater than or equal to 1. When you set
Exponent of cosine pattern to a scalar, both the azimuth direction cosine pattern
and the elevation direction cosine pattern are raised to the specified value. When you
set Exponent of cosine pattern to a 1-by-2 vector, the first element is the exponent
for the azimuth direction cosine pattern and the second element is the exponent for
the elevation direction cosine pattern.

Operating frequency range (Hz)
This parameter appears when Element type is set to Isotropic Antenna, Cosine
Antenna, or Omni Microphone.

Specify the operating frequency range, in hertz, of the antenna element as a 1-by-2
row vector in the form [LowerBound,UpperBound]. The antenna element has no
response outside the specified frequency range.

Operating frequency vector (Hz)
This parameter appears when Element type is set to Custom Antenna or Custom
Microphone.

Specify L frequencies, in hertz, at which to set the antenna and microphone
frequency responses. Specify Operating frequency vector (Hz) as a 1-by-L
row vector of increasing value. Use Frequency responses to set the frequency
responses. The antenna or microphone element has no response outside the
frequency range specified by the minimum and maximum elements of Operating
frequency vector.

Frequency responses (dB)
This parameter appears when Element type is set to Custom Antenna or Custom
Microphone.

 Time Delay Beamformer

3-395

Specify this parameter as the frequency response of an antenna or microphone,
in decibels, for the frequencies defined by Operating frequency vector. Specify
Frequency responses (dB) as a 1-by-L vector matching the dimensions of the
vector specified in Operating frequency vector.

Azimuth angles (deg)
This parameter appears when Element type is set to Custom Antenna.

Specify P azimuth angles, in degrees, at which to calculate the antenna radiation
pattern as a 1-by-P row vector. P must be greater than 2. The azimuth angles must
lie between –180° and 180° and be in strictly increasing order.

Elevation angles (deg)
This parameter appears when the Element type is set to Custom Antenna.

Specify the Q elevation angles, in degrees, at which to compute the radiation pattern
as a 1-by-Q vector. Q must be greater than 2. The elevation angles must lie between –
90° and 90° and be in strictly increasing order.

Radiation pattern (dB)
This parameter appears when the Element type is set to Custom Antenna.

The magnitude in db of the combined polarized antenna radiation pattern specified
as a Q-by-P matrix or a Q-by-P-by-L array. The value of Q must match the value of Q
specified by Elevation angles. The value of P must match the value of P specified by
Azimuth angles. The value of L must match the value of L specified by Operating
frequency vector (Hz).

Polar pattern frequencies (Hz)
This parameter appears when the Element type is set to Custom Microphone.

Specify the Mmeasuring frequencies in hertz of the polar patterns 1-by-M vector.
The measuring frequencies lie within the frequency range specified byOperating
frequency vector.

Polar pattern angles (deg)
This parameter appears when Element type is set to Custom Microphone.

Specify N measuring angles, in degrees, of the polar patterns as a 1-by-N. The angles
are measured from the central pickup axis of the microphone, and must be between –
180° and 180°, inclusive.

Polar pattern (dB)

3 Blocks — Alphabetical List

3-396

This parameter appears when Element type is set to Custom Microphone.

Specify the magnitude of the polar patterns, in dB, of the microphone element as
an M-by-N matrix. M is the number of measuring frequencies specified in Polar
pattern frequencies. N is the number of measuring angles specified in Polar
pattern angles. Each row of the matrix represents the magnitude of the polar
pattern measured at the corresponding frequency specified in Polar pattern
frequencies and all angles specified in Polar pattern angles. Assume that the
pattern is measured in the azimuth plane. In the azimuth plane, the elevation angle
is 0° and the central pickup axis is 0° degrees azimuth and 0° degrees elevation.
Assume also that the polar pattern is symmetric around the central axis. You can
construct the microphone’s response pattern in 3-D space from the polar pattern.

Baffle the back of the element
This check box appears only when the Element type parameter is set to Isotropic
Antenna or Omni Microphone.

Select this check box to baffle the back of the antenna element. In this case, the
antenna responses to all azimuth angles beyond ±90° from broadside are set to zero.
Define the broadside direction as 0° azimuth angle and 0° elevation angle.

Ports

Note: The block input and output ports correspond to the input and output parameters
described in the step method of the underlying System object. See link at the bottom of
this page.

Port Supported Data Types

X Double-precision floating point
Ang Double-precision floating point
Y Double-precision floating point
W Double-precision floating point

See Also
phased.TimeDelayBeamformer

 Time Delay Beamformer

3-397

Introduced in R2014b

3 Blocks — Alphabetical List

3-398

Time Delay LCMV Beamformer

Time delay linear constraint minimum variance (LCMV) beamformer

Library

Beamforming

phasedbflib

Description

The Time Delay LCMV Beamformer block performs linear constraint minimum
variance (LCMV) beamforming in the time domain. The beamformer first steers the
beam towards the given direction and then applies the constraints through a bank of FIR
filters.

 Time Delay LCMV Beamformer

3-399

Dialog Box

3 Blocks — Alphabetical List

3-400

Signal propagation speed (m/s)
Specify the propagation speed of the signal, in meters per second, as a positive scalar.
You can use the function physconst to specify the speed of light.

FIR filter length
Specify the length of FIR filter behind each sensor element in the array as a positive
integer.

Constraint matrix
Specify the constraint matrix used for time delay LCMV beamformer as an M-by-K
matrix. Each column of the matrix is a constraint and M is the degrees of freedom
of the beamformer. For a time delay LCMV beamformer, M is given by the product
of the number of elements of the array and the value of the FIR filter length
parameter.

Desired response vector
Specify the desired response used for time delay LCMV beamformer as a column
vector of length K, where K is the number of constraints in the Constraint matrix
parameter. Each element in the vector defines the desired response of the constraint
specified in the corresponding column of the Constraint matrix parameter matrix.

Diagonal loading factor
Specify the diagonal loading factor as a positive scalar. Diagonal loading is a
technique used to achieve robust beamforming performance, especially when the
sample support is small.

Enable training data input
Select this check box to specify additional training data via the input port XT. To use
the input signal as the training data, clear the check box which removes the port.

Source of beamforming direction
Specify whether the beamforming direction comes from the Beamforming
direction parameter or from an input port. Values of this parameter are:

Property Specify the beamforming direction using
Beamforming direction.

Input port Specify the beamforming direction using the Ang
input port.

Beamforming direction (deg)

 Time Delay LCMV Beamformer

3-401

Specify the beamforming direction of the beamformer, in degrees, as a 1-by-2 vector.
The direction is specified in the format of [AzimuthAngle; ElevationAngle].
The azimuth angle should be between –180° and 180°. The elevation angle should
be between –90° and 90°. This parameter appears only when you set Source of
beamforming direction to Property.

Enable weights output
Select this check box to obtain the beamformer weights from the output port W.

Simulate using
Block simulation, specified as Interpreted Execution or Code Generation.
If you want your block to use the MATLAB interpreter, choose Interpreted
Execution. If you want your block to run as compiled code, choose Code
Generation. Compiled code requires time to compile but usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The
block runs the underlying System object in MATLAB. You can change and execute
your model quickly. When you are satisfied with your results, you can then run the
block using Code Generation. Long simulations run faster than in interpreted
execution. You can run repeated executions without recompiling. However, if you
change any block parameters, then the block automatically recompiles before
execution.

When setting this parameter, you must take into account the overall model
simulation mode. The table shows how the Simulate using parameter interacts with
the overall simulation mode.

When the Simulink model is in Accelerator mode, the block mode specified using
Simulate using overrides the simulation mode.

Acceleration Modes

When you use this simulation mode ...If you want to
simulate using ... Normal Accelerator Rapid

Accelerator

Interpreted

Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Code Generation The block is
compiled.

All blocks in the
model are compiled.

Creates a
standalone
executable from the
model.

3 Blocks — Alphabetical List

3-402

For more information, see “Choosing a Simulation Mode” from the Simulink
documentation.

 Time Delay LCMV Beamformer

3-403

3 Blocks — Alphabetical List

3-404

Array Parameters

Specify sensor array as
Specify a sensor array directly or by using a MATLAB expression.

Types

Array (no subarrays)

MATLAB expression

Geometry
Specify the array geometry as one of the following

• ULA — Uniform Line Array
• URA — Uniform Rectangular Array
• UCA — Uniform Circular Array
• Conformal Array

Number of elements
Specifies the number of elements in the array as an integer.

This parameter appears when the Geometry is set to ULA or UCA. When Sensor
Array is set to Replicated subarray, this parameter applies to the sub-array.

Array size
This parameter appears when Geometry is set to URA. When Sensor Array is set to
Replicated subarray, this parameter applies to the subarrays.

Specify the size of the array as a 1-by-2 integer vector or a single integer containing.

• If Array size is a 1-by-2 vector, the vector has the form
[NumberOfRows,NumberOfColumns] where NumberOfRows and
NumberOfColumns specify the number of rows and columns of the array,
respectively.

• If Array size is an integer, the array has the same number of rows and columns.

For a URA, elements are indexed from top to bottom along a column and continuing
to the next columns from left to right. In this figure, an Array size of [3,2]
produces an array of three rows and two columns.

 Time Delay LCMV Beamformer

3-405

Size and Element Indexing Order

for Uniform Rectangular Arrays

Example: Size = [3,2]

1

2

3

4

6

5

Z

Y

Element spacing
This parameter appears when Geometry is set to ULA or URA. When Sensor Array
is set to Replicated subarray, this parameter applies to the subarrays.

• For a ULA, specify the spacing, in meters, between two adjacent elements in the
array as a scalar.

• For a URA, specify the element spacing of the array, in meters, as a 1-by-2 vector
or a scalar. If Element spacing is a 1-by-2 vector, the vector has the form
[SpacingBetweenRows,SpacingBetweenColumns]. For a discussion of
these quantities, see phased.URA. If Element spacing is a scalar, the spacings
between rows and columns are equal.

Array axis
This parameter appears when the Geometry parameter is set to ULA or when the
block supports only a ULA array geometry. You can specify this parameters as 'x',
'y', or 'z'. Then, all ULA array elements are uniformly spaced along this axis in
the local array coordinate system.

Array normal
This parameter appears when the Geometry parameter is set to URA or UCA. You
can specify the Array normal parameter as 'x', 'y', or 'z'. Then, all URA and

3 Blocks — Alphabetical List

3-406

UCA array elements are placed in the yz-, zx-, or xy- planes, respectively, of the array
coordinate system.

Radius of UCA (m)
Radius of a uniform circular array specified as a positive scalar. Units are meters.

This parameter appears when the Geometry is set to UCA.
Taper

Tapers, also known as element weights, are applied to sensor elements in the array.
Tapers are used to modify both the amplitude and phase of the transmitted or
received data.

This parameter appears when Geometry is set to ULA, URA, UCA, or Conformal
Array. When Sensor Array is set to Replicated subarray, this parameter
applies to subarrays.

• For a ULA or UCA, specify element tapering as a complex-valued scalar or a
complex-valued 1-by-N row vector. In this vector, N represents the number
of elements in the array. If Taper is a scalar, the same weight is applied to
each element. If Taper is a vector, a weight from the vector is applied to the
corresponding sensor element. A weight must be applied to each element in the
sensor array.

• For a URA, specify element tapering as a complex-valued scalar or complex-valued
M-by-N matrix. In this matrix, M is the number of elements along the z-axis, and
N is the number of elements along the y-axis. M and N correspond to the values
of [NumberofRows, NumberOfColumns] in the Array size matrix. If Taper
is a scalar, the same weight is applied to each element. If the value of Taper is a
matrix, a weight from the matrix is applied to the corresponding sensor element.
A weight must be applied to each element in the sensor array.

• For a Conformal Array, specify element taper as a complex-valued scalar or
complex-valued 1-by-N vector. In this vector, N is the number of elements in the
array as determined by the size of the Element positions vector. If the Taper
parameter is a scalar, the same weight is applied to each element. If the value of
Taper is a vector, a weight from the vector is applied to the corresponding sensor
element. A weight must be applied to each element in the sensor array.

Element lattice
This parameter appears when Geometry is set to URA. When Sensor Array is set to
Replicated subarray, this parameter applies to the sub-array.

 Time Delay LCMV Beamformer

3-407

Specify the element lattice as one of Rectangular or Triangular

• Rectangular — Aligns all the elements in both row and column directions.
• Triangular — Shifts the even row elements toward the positive row axis

direction. The elements are shifted a distance of half the element spacing along
the row.

Element positions
This parameter appears when Geometry is set to Conformal Array. When Sensor
Array is set to Replicated subarray, this parameter applies to subarrays.

Specify the positions of the elements, in meters, in the conformal array as a 3-by-N
matrix, where N indicates the number of elements in the conformal array. Each
column of Element positions represents the position of a single element, in the
form [x; y; z], in the array’s local coordinate system. The local coordinate system
has its origin at an arbitrary point.

Element normals (deg)
This parameter appears when Geometry is set to Conformal Array. When Sensor
Array is set to Replicated subarray, this parameter applies to subarrays.

Specify the normal directions of the elements in a conformal array as a 2-by-N
matrix or a 2-by-1 column vector in degrees. The variable N indicates the number of
elements in the array. If Element normals is a matrix, each column specifies the
normal direction of the corresponding element in the form [azimuth;elevation],
with respect to the local coordinate system. The local coordinate system aligns
the positive x-axis with the direction normal to the conformal array. If Element
normals is a 2-by-1 column vector, the vector specifies the same pointing direction
for all elements in the array.

You can use the Element positions and Element normals parameters to represent
any arrangement in which pairs of elements differ by certain transformations. You
can combine translation, azimuth rotation, and elevation rotation transformations.
However, you cannot use transformations that require rotation about the normal.

Expression
A valid MATLAB expression containing an array constructor, for example,
phased.URA.

Sensor Array Tab: Element Parameters

Element type

3 Blocks — Alphabetical List

3-408

Specify antenna or microphone type as

• Isotropic Antenna

• Cosine Antenna

• Custom Antenna

• Omni Microphone

• Custom Microphone

Exponent of cosine pattern
This parameter appears when you set Element type to Cosine Antenna.

Specify the exponent of the cosine pattern as a scalar or a 1-by-2 vector. You
must specify all values as real numbers greater than or equal to 1. When you set
Exponent of cosine pattern to a scalar, both the azimuth direction cosine pattern
and the elevation direction cosine pattern are raised to the specified value. When you
set Exponent of cosine pattern to a 1-by-2 vector, the first element is the exponent
for the azimuth direction cosine pattern and the second element is the exponent for
the elevation direction cosine pattern.

Operating frequency range (Hz)
This parameter appears when Element type is set to Isotropic Antenna, Cosine
Antenna, or Omni Microphone.

Specify the operating frequency range, in hertz, of the antenna element as a 1-by-2
row vector in the form [LowerBound,UpperBound]. The antenna element has no
response outside the specified frequency range.

Operating frequency vector (Hz)
This parameter appears when Element type is set to Custom Antenna or Custom
Microphone.

Specify L frequencies, in hertz, at which to set the antenna and microphone
frequency responses. Specify Operating frequency vector (Hz) as a 1-by-L
row vector of increasing value. Use Frequency responses to set the frequency
responses. The antenna or microphone element has no response outside the
frequency range specified by the minimum and maximum elements of Operating
frequency vector.

Frequency responses (dB)
This parameter appears when Element type is set to Custom Antenna or Custom
Microphone.

 Time Delay LCMV Beamformer

3-409

Specify this parameter as the frequency response of an antenna or microphone,
in decibels, for the frequencies defined by Operating frequency vector. Specify
Frequency responses (dB) as a 1-by-L vector matching the dimensions of the
vector specified in Operating frequency vector.

Azimuth angles (deg)
This parameter appears when Element type is set to Custom Antenna.

Specify P azimuth angles, in degrees, at which to calculate the antenna radiation
pattern as a 1-by-P row vector. P must be greater than 2. The azimuth angles must
lie between –180° and 180° and be in strictly increasing order.

Elevation angles (deg)
This parameter appears when the Element type is set to Custom Antenna.

Specify the Q elevation angles, in degrees, at which to compute the radiation pattern
as a 1-by-Q vector. Q must be greater than 2. The elevation angles must lie between –
90° and 90° and be in strictly increasing order.

Radiation pattern (dB)
This parameter appears when the Element type is set to Custom Antenna.

The magnitude in db of the combined polarized antenna radiation pattern specified
as a Q-by-P matrix or a Q-by-P-by-L array. The value of Q must match the value of Q
specified by Elevation angles. The value of P must match the value of P specified by
Azimuth angles. The value of L must match the value of L specified by Operating
frequency vector (Hz).

Polar pattern frequencies (Hz)
This parameter appears when the Element type is set to Custom Microphone.

Specify the Mmeasuring frequencies in hertz of the polar patterns 1-by-M vector.
The measuring frequencies lie within the frequency range specified byOperating
frequency vector.

Polar pattern angles (deg)
This parameter appears when Element type is set to Custom Microphone.

Specify N measuring angles, in degrees, of the polar patterns as a 1-by-N. The angles
are measured from the central pickup axis of the microphone, and must be between –
180° and 180°, inclusive.

Polar pattern (dB)
This parameter appears when Element type is set to Custom Microphone.

3 Blocks — Alphabetical List

3-410

Specify the magnitude of the polar patterns, in dB, of the microphone element as
an M-by-N matrix. M is the number of measuring frequencies specified in Polar
pattern frequencies. N is the number of measuring angles specified in Polar
pattern angles. Each row of the matrix represents the magnitude of the polar
pattern measured at the corresponding frequency specified in Polar pattern
frequencies and all angles specified in Polar pattern angles. Assume that the
pattern is measured in the azimuth plane. In the azimuth plane, the elevation angle
is 0° and the central pickup axis is 0° degrees azimuth and 0° degrees elevation.
Assume also that the polar pattern is symmetric around the central axis. You can
construct the microphone’s response pattern in 3-D space from the polar pattern.

Baffle the back of the element
This check box appears only when the Element type parameter is set to Isotropic
Antenna or Omni Microphone.

Select this check box to baffle the back of the antenna element. In this case, the
antenna responses to all azimuth angles beyond ±90° from broadside are set to zero.
Define the broadside direction as 0° azimuth angle and 0° elevation angle.

Ports

Note: The block input and output ports correspond to the input and output parameters
described in the step method of the underlying System object. See link at the bottom of
this page.

Port Supported Data Types

X Double-precision floating point
XT Double-precision floating point
Ang Double-precision floating point
Y Double-precision floating point
W Double-precision floating point

See Also
phased.TimeDelayLCMVBeamformer

 Time Delay LCMV Beamformer

3-411

Introduced in R2014b

3 Blocks — Alphabetical List

3-412

Time Varying Gain

Time varying gain (TVG) control

Library

Detection

phaseddetectlib

Description

The Time Varying Gain block applies a time varying gain to input signals to
compensate for range loss at each range gate. Time varying gain (TVG) is sometimes
called automatic gain control (AGC).

 Time Varying Gain

3-413

Dialog Box

Range loss (dB)
Specify the loss, in dB, due to range as a vector for each sample in the input signal.

Reference range loss (dB)
Specify the loss, in dB, at a given reference range as a scalar.

Simulate using
Block simulation, specified as Interpreted Execution or Code Generation.
If you want your block to use the MATLAB interpreter, choose Interpreted
Execution. If you want your block to run as compiled code, choose Code
Generation. Compiled code requires time to compile but usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The
block runs the underlying System object in MATLAB. You can change and execute
your model quickly. When you are satisfied with your results, you can then run the
block using Code Generation. Long simulations run faster than in interpreted
execution. You can run repeated executions without recompiling. However, if you

3 Blocks — Alphabetical List

3-414

change any block parameters, then the block automatically recompiles before
execution.

When setting this parameter, you must take into account the overall model
simulation mode. The table shows how the Simulate using parameter interacts with
the overall simulation mode.

When the Simulink model is in Accelerator mode, the block mode specified using
Simulate using overrides the simulation mode.

Acceleration Modes

When you use this simulation mode ...If you want to
simulate using ... Normal Accelerator Rapid

Accelerator

Interpreted

Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Code Generation The block is
compiled.

All blocks in the
model are compiled.

Creates a
standalone
executable from the
model.

For more information, see “Choosing a Simulation Mode” from the Simulink
documentation.

Ports

Note: The block input and output ports correspond to the input and output parameters
described in the step method of the underlying System object. See link at the bottom of
this page.

Port Supported Data Types

In Double-precision floating point
Out Double-precision floating point

See Also
phased.TimeVaryingGain

 Time Varying Gain

3-415

Introduced in R2014b

3 Blocks — Alphabetical List

3-416

Transmitter

Amplify and transmit a signal

Library

Transmitters and Receivers

phasedtxrxlib

Description

The Transmitter block amplifies and transmits waveform pulses. The transmitter can
either maintain coherence between pulses or insert phase noise.

 Transmitter

3-417

Dialog Box

Peak power (W)
Specify the transmit peak power in watts as a positive scalar.

Gain (dB)
Specify the transmit gain in dB as a real scalar.

3 Blocks — Alphabetical List

3-418

Loss factor (dB)
Specify the transmit loss factor in dB as a nonnegative scalar.

Enable transmitter status output
Select this check box to send the transmitter-in-use status for each output sample
from the output port TR. From the output port, a 1 indicates that the transmitter is
on, and a 0 indicates that the transmitter is off.

Preserve coherence among pulses
Select this check box to preserve coherence among transmitted pulses. When you
select this box, the transmitter does not introduce any random phases to the output
pulses. When you clear this box, the transmitter adds a random phase noise to each
transmitted pulse. The random phase noise is introduced by multiplying the pulse
value by ejϕ where ϕ is a uniform random variable on the interval [0,2π].

Enable pulse phase noise output
This check box appears only when Preserve coherence among pulses is cleared.

Select this check box to create an output port, Ph, with the output sample’s random
phase noise introduced if Preserve coherence among pulses is cleared. The
output port can be directed to a receiver to simulate coherent-on-receive systems.

Simulate using
Block simulation, specified as Interpreted Execution or Code Generation.
If you want your block to use the MATLAB interpreter, choose Interpreted
Execution. If you want your block to run as compiled code, choose Code
Generation. Compiled code requires time to compile but usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The
block runs the underlying System object in MATLAB. You can change and execute
your model quickly. When you are satisfied with your results, you can then run the
block using Code Generation. Long simulations run faster than in interpreted
execution. You can run repeated executions without recompiling. However, if you
change any block parameters, then the block automatically recompiles before
execution.

When setting this parameter, you must take into account the overall model
simulation mode. The table shows how the Simulate using parameter interacts with
the overall simulation mode.

When the Simulink model is in Accelerator mode, the block mode specified using
Simulate using overrides the simulation mode.

 Transmitter

3-419

Acceleration Modes

When you use this simulation mode ...If you want to
simulate using ... Normal Accelerator Rapid

Accelerator

Interpreted

Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Code Generation The block is
compiled.

All blocks in the
model are compiled.

Creates a
standalone
executable from the
model.

For more information, see “Choosing a Simulation Mode” from the Simulink
documentation.

Ports

Note: The block input and output ports correspond to the input and output parameters
described in the step method of the underlying System object. See link at the bottom of
this page.

Port Supported Data Types

In Double-precision floating point
Ph Double-precision floating point
TR Double-precision floating point
Y Double-precision floating point

See Also
phased.Transmitter

Introduced in R2014b

3 Blocks — Alphabetical List

3-420

Two-Ray Channel

Two-ray channel environment

Library

Environment and Targets

phasedenvlib

Description

The Two-Ray Channel block propagates narrowband signals from one point in space to
multiple points or from multiple points back to one point via both the direct path and the
ground reflection path. The block models propagation time, free-space propagation loss,
and Doppler shift. The block assumes that the propagation speed is much greater than
the object's speed in which case the stop-and-hop model is valid.

 Two-Ray Channel

3-421

Dialog Box

Propagation speed (m/s)

3 Blocks — Alphabetical List

3-422

Specify the propagation speed of the signal, in meters per second, as a positive scalar.
You can use the function physconst to specify the speed of light.

Signal carrier frequency (Hz)
Specify the carrier frequency of the signal in hertz of the narrowband signal as a
positive scalar.

Ground reflection coefficient
Fraction of incident signal amplitude reflected towards receiver.

Combine two rays at output
Select this checkbox to coherently sum the direct-path and reflected-path signals at
output. Clear the checkbox to keep the two rays separate.

Maximum one-way propagation distance (m)
The maximum distance, in meters, between the origin and the destination as a
positive scalar. Amplitudes of any signals that propagate beyond this distance will be
set to zero.

Simulate using
Block simulation, specified as Interpreted Execution or Code Generation.
If you want your block to use the MATLAB interpreter, choose Interpreted
Execution. If you want your block to run as compiled code, choose Code
Generation. Compiled code requires time to compile but usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The
block runs the underlying System object in MATLAB. You can change and execute
your model quickly. When you are satisfied with your results, you can then run the
block using Code Generation. Long simulations run faster than in interpreted
execution. You can run repeated executions without recompiling. However, if you
change any block parameters, then the block automatically recompiles before
execution.

When setting this parameter, you must take into account the overall model
simulation mode. The table shows how the Simulate using parameter interacts with
the overall simulation mode.

When the Simulink model is in Accelerator mode, the block mode specified using
Simulate using overrides the simulation mode.

Acceleration Modes

If you want to
simulate using ...

When you use this simulation mode ...

 Two-Ray Channel

3-423

Normal Accelerator Rapid

Accelerator

Interpreted

Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Code Generation The block is
compiled.

All blocks in the
model are compiled.

Creates a
standalone
executable from the
model.

For more information, see “Choosing a Simulation Mode” from the Simulink
documentation.

Ports

Note: The block input and output ports correspond to the input and output parameters
described in the step method of the underlying System object. See link at the bottom of
this page.

Port Supported Data Types

X Double-precision floating point
Pos1 Double-precision floating point
Pos2 Double-precision floating point
Vel1 Double-precision floating point
Vel2 Double-precision floating point
Out Double-precision floating point

Algorithms

When the origin and destination are stationary relative to each other, the block output
can be written as y(t) = x(t – τ)/L. The quantity τ is the delay and L is the propagation
loss. The delay is computed from τ = R/c where R is the propagation distance and c is the
propagation speed. The free space path loss is given by

3 Blocks — Alphabetical List

3-424

L
R

fsp =
()

,
4 2

2

p

l

where λ is the signal wavelength.

This formula assumes that the target is in the far-field of the transmitting element or
array. In the near-field, the free-space path loss formula is not valid and can result in
losses smaller than one, equivalent to a signal gain. For this reason, the loss is set to
unity for range values, R ≤ λ/4π.

When there is relative motion between the origin and destination, the processing also
introduces a frequency shift. This shift corresponds to the Doppler shift between the
origin and destination. The frequency shift is v/λ for one-way propagation and 2v/λ
for two-way propagation. The parameter v is the relative speed of the destination with
respect to the origin.

See Also
phased.FreeSpace | phased.TwoRayChannel

Introduced in R2015b

 ULA Beamscan Spectrum

3-425

ULA Beamscan Spectrum

Beamscan spatial spectrum estimator for ULA

Library

Direction of Arrival (DOA)

phaseddoalib

Description

The ULA Beamscan Spectrum block estimates the spatial spectrum of incoming
narrowband signals by scanning a region of broadside angles using a narrowband
conventional beamformer applied to a uniform linear array. The block optionally
calculates the direction of arrival of a specified number of signals by estimating peaks of
the spectrum.

3 Blocks — Alphabetical List

3-426

Dialog Box

 ULA Beamscan Spectrum

3-427

Propagation speed (m/s)
Specify the propagation speed of the signal, in meters per second, as a positive scalar.
You can use the function physconst to specify the speed of light.

Operating frequency (Hz)
Specify the operating frequency of the system, in hertz, as a positive scalar.

Number of bits in phase shifters
The number of bits used to quantize the phase shift component of beamformer or
steering vector weights. Specify the number of bits as a non-negative integer. A value
of zero indicates that no quantization is performed.

Forward-backward averaging
Select this check box to use forward-backward averaging to estimate the covariance
matrix for sensor arrays with a conjugate symmetric array manifold.

Spatial smoothing
Specify the amount of averaging, L, used by spatial smoothing to estimate the
covariance matrix as a nonnegative integer. Each increase in smoothing handles
one extra coherent source, but reduces the effective number of elements by one. The
maximum value of this parameter is N – 2, where N is the number of sensors.

Scan angles (deg)
Specify the scan angles in degrees as a real vector. The angles are broadside angles
and must be between –90° and 90°, inclusive. You must specify the angles in
increasing order.

Enable DOA output
Select this check box to obtain the signal's direction of arrival (DOA) from the output
port Ang. Selecting this check box also enables the Number of signals parameter in
the dialog box.

Number of signals
Specify the number of signals for DOA estimation as a positive scalar integer. This
parameter appears when you select the Enable DOA output check box.

Simulate using
Block simulation, specified as Interpreted Execution or Code Generation.
If you want your block to use the MATLAB interpreter, choose Interpreted
Execution. If you want your block to run as compiled code, choose Code
Generation. Compiled code requires time to compile but usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The
block runs the underlying System object in MATLAB. You can change and execute

3 Blocks — Alphabetical List

3-428

your model quickly. When you are satisfied with your results, you can then run the
block using Code Generation. Long simulations run faster than in interpreted
execution. You can run repeated executions without recompiling. However, if you
change any block parameters, then the block automatically recompiles before
execution.

When setting this parameter, you must take into account the overall model
simulation mode. The table shows how the Simulate using parameter interacts with
the overall simulation mode.

When the Simulink model is in Accelerator mode, the block mode specified using
Simulate using overrides the simulation mode.

Acceleration Modes

When you use this simulation mode ...If you want to
simulate using ... Normal Accelerator Rapid

Accelerator

Interpreted

Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Code Generation The block is
compiled.

All blocks in the
model are compiled.

Creates a
standalone
executable from the
model.

For more information, see “Choosing a Simulation Mode” from the Simulink
documentation.

 ULA Beamscan Spectrum

3-429

3 Blocks — Alphabetical List

3-430

Array Parameters

Specify sensor array as
Specify a ULA sensor array directly or by using a MATLAB expression.

Types

Array (no subarrays)

MATLAB expression

Number of elements
Specifies the number of elements in the array as an integer.

Element spacing
Specify the spacing, in meters, between two adjacent elements in the array.

Array axis
This parameter appears when the Geometry parameter is set to ULA or when the
block supports only a ULA array geometry. You can specify this parameters as 'x',
'y', or 'z'. Then, all ULA array elements are uniformly spaced along this axis in
the local array coordinate system.

Taper
Tapers, also known as element weights, are applied to sensor elements in the array.
Tapers are used to modify both the amplitude and phase of the transmitted or
received data.

Specify element tapering as a complex-valued scalar or a complex-valued 1-by-N row
vector. In this vector, N represents the number of elements in the array. If Taper is
a scalar, the same weight is applied to each element. If Taper is a vector, a weight
from the vector is applied to the corresponding sensor element. A weight must be
applied to each element in the sensor array.

Expression
A valid MATLAB expression containing a constructor for a uniform linear array, for
example, phased.ULA.

Sensor Array Tab: Element Parameters

Element type

 ULA Beamscan Spectrum

3-431

Specify antenna or microphone type as

• Isotropic Antenna

• Cosine Antenna

• Custom Antenna

• Omni Microphone

• Custom Microphone

Exponent of cosine pattern
This parameter appears when you set Element type to Cosine Antenna.

Specify the exponent of the cosine pattern as a scalar or a 1-by-2 vector. You
must specify all values as real numbers greater than or equal to 1. When you set
Exponent of cosine pattern to a scalar, both the azimuth direction cosine pattern
and the elevation direction cosine pattern are raised to the specified value. When you
set Exponent of cosine pattern to a 1-by-2 vector, the first element is the exponent
for the azimuth direction cosine pattern and the second element is the exponent for
the elevation direction cosine pattern.

Operating frequency range (Hz)
This parameter appears when Element type is set to Isotropic Antenna, Cosine
Antenna, or Omni Microphone.

Specify the operating frequency range, in hertz, of the antenna element as a 1-by-2
row vector in the form [LowerBound,UpperBound]. The antenna element has no
response outside the specified frequency range.

Operating frequency vector (Hz)
This parameter appears when Element type is set to Custom Antenna or Custom
Microphone.

Specify L frequencies, in hertz, at which to set the antenna and microphone
frequency responses. Specify Operating frequency vector (Hz) as a 1-by-L
row vector of increasing value. Use Frequency responses to set the frequency
responses. The antenna or microphone element has no response outside the
frequency range specified by the minimum and maximum elements of Operating
frequency vector.

Frequency responses (dB)
This parameter appears when Element type is set to Custom Antenna or Custom
Microphone.

3 Blocks — Alphabetical List

3-432

Specify this parameter as the frequency response of an antenna or microphone,
in decibels, for the frequencies defined by Operating frequency vector. Specify
Frequency responses (dB) as a 1-by-L vector matching the dimensions of the
vector specified in Operating frequency vector.

Azimuth angles (deg)
This parameter appears when Element type is set to Custom Antenna.

Specify P azimuth angles, in degrees, at which to calculate the antenna radiation
pattern as a 1-by-P row vector. P must be greater than 2. The azimuth angles must
lie between –180° and 180° and be in strictly increasing order.

Elevation angles (deg)
This parameter appears when the Element type is set to Custom Antenna.

Specify the Q elevation angles, in degrees, at which to compute the radiation pattern
as a 1-by-Q vector. Q must be greater than 2. The elevation angles must lie between –
90° and 90° and be in strictly increasing order.

Radiation pattern (dB)
This parameter appears when the Element type is set to Custom Antenna.

The magnitude in db of the combined polarized antenna radiation pattern specified
as a Q-by-P matrix or a Q-by-P-by-L array. The value of Q must match the value of Q
specified by Elevation angles. The value of P must match the value of P specified by
Azimuth angles. The value of L must match the value of L specified by Operating
frequency vector (Hz).

Polar pattern frequencies (Hz)
This parameter appears when the Element type is set to Custom Microphone.

Specify the Mmeasuring frequencies in hertz of the polar patterns 1-by-M vector.
The measuring frequencies lie within the frequency range specified byOperating
frequency vector.

Polar pattern angles (deg)
This parameter appears when Element type is set to Custom Microphone.

Specify N measuring angles, in degrees, of the polar patterns as a 1-by-N. The angles
are measured from the central pickup axis of the microphone, and must be between –
180° and 180°, inclusive.

 ULA Beamscan Spectrum

3-433

Polar pattern (dB)
This parameter appears when Element type is set to Custom Microphone.

Specify the magnitude of the polar patterns, in dB, of the microphone element as
an M-by-N matrix. M is the number of measuring frequencies specified in Polar
pattern frequencies. N is the number of measuring angles specified in Polar
pattern angles. Each row of the matrix represents the magnitude of the polar
pattern measured at the corresponding frequency specified in Polar pattern
frequencies and all angles specified in Polar pattern angles. Assume that the
pattern is measured in the azimuth plane. In the azimuth plane, the elevation angle
is 0° and the central pickup axis is 0° degrees azimuth and 0° degrees elevation.
Assume also that the polar pattern is symmetric around the central axis. You can
construct the microphone’s response pattern in 3-D space from the polar pattern.

Baffle the back of the element
This check box appears only when the Element type parameter is set to Isotropic
Antenna or Omni Microphone.

Select this check box to baffle the back of the antenna element. In this case, the
antenna responses to all azimuth angles beyond ±90° from broadside are set to zero.
Define the broadside direction as 0° azimuth angle and 0° elevation angle.

Ports

Note: The block input and output ports correspond to the input and output parameters
described in the step method of the underlying System object. See link at the bottom of
this page.

Port Supported Data Types

In Double-precision floating point
Ang Double-precision floating point
Y Double-precision floating point

See Also
phased.BeamscanEstimator

3 Blocks — Alphabetical List

3-434

Introduced in R2014b

 ULA MVDR Spectrum

3-435

ULA MVDR Spectrum

MVDR spatial spectrum estimator for ULA

Library

Direction of Arrival (DOA)

phaseddoalib

Description

The ULA MVDR Spectrum block estimates the spatial spectrum of incoming narrowband
signals by scanning a region of broadside angles using a narrowband minimum variance
distortionless response (MVDR) beamformer for a uniform linear array. The block
optionally calculates the direction of arrival (DOA) of a specified number of signals by
estimating peaks of the spectrum. The MVDR DOA estimator is also called the Capon
DOA estimator.

3 Blocks — Alphabetical List

3-436

Dialog Box

 ULA MVDR Spectrum

3-437

Propagation speed (m/s)
Specify the propagation speed of the signal, in meters per second, as a positive scalar.
You can use the function physconst to specify the speed of light.

Operating frequency (Hz)
Specify the operating frequency of the system, in hertz, as a positive scalar.

Number of bits in phase shifters
The number of bits used to quantize the phase shift component of beamformer or
steering vector weights. Specify the number of bits as a non-negative integer. A value
of zero indicates that no quantization is performed.

Forward-backward averaging
Select this check box to use forward-backward averaging to estimate the covariance
matrix for sensor arrays with a conjugate symmetric array manifold.

Spatial smoothing
Specify the amount of averaging, L, used by spatial smoothing to estimate the
covariance matrix as a nonnegative integer. Each increase in smoothing handles
one extra coherent source, but reduces the effective number of elements by one. The
maximum value of this parameter is N – 2, where N is the number of sensors.

Scan angles (deg)
Specify the scan angles in degrees as a real vector. The angles are broadside angles
and must be between –90° and 90°, inclusive. You must specify the angles in
increasing order.

Enable DOA output
Select this check box to obtain the signal's direction of arrival (DOA) from the output
port Ang. Selecting this check box also enables the Number of signals parameter in
the dialog box.

Number of signals
Specify the number of signals for DOA estimation as a positive scalar integer. This
parameter appears when you select the Enable DOA output check box.

Simulate using
Block simulation, specified as Interpreted Execution or Code Generation.
If you want your block to use the MATLAB interpreter, choose Interpreted
Execution. If you want your block to run as compiled code, choose Code
Generation. Compiled code requires time to compile but usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The
block runs the underlying System object in MATLAB. You can change and execute

3 Blocks — Alphabetical List

3-438

your model quickly. When you are satisfied with your results, you can then run the
block using Code Generation. Long simulations run faster than in interpreted
execution. You can run repeated executions without recompiling. However, if you
change any block parameters, then the block automatically recompiles before
execution.

When setting this parameter, you must take into account the overall model
simulation mode. The table shows how the Simulate using parameter interacts with
the overall simulation mode.

When the Simulink model is in Accelerator mode, the block mode specified using
Simulate using overrides the simulation mode.

Acceleration Modes

When you use this simulation mode ...If you want to
simulate using ... Normal Accelerator Rapid

Accelerator

Interpreted

Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Code Generation The block is
compiled.

All blocks in the
model are compiled.

Creates a
standalone
executable from the
model.

For more information, see “Choosing a Simulation Mode” from the Simulink
documentation.

 ULA MVDR Spectrum

3-439

3 Blocks — Alphabetical List

3-440

Array Parameters

Specify sensor array as
Specify a ULA sensor array directly or by using a MATLAB expression.

Types

Array (no subarrays)

MATLAB expression

Number of elements
Specifies the number of elements in the array as an integer.

Element spacing
Specify the spacing, in meters, between two adjacent elements in the array.

Array axis
This parameter appears when the Geometry parameter is set to ULA or when the
block supports only a ULA array geometry. You can specify this parameters as 'x',
'y', or 'z'. Then, all ULA array elements are uniformly spaced along this axis in
the local array coordinate system.

Taper
Tapers, also known as element weights, are applied to sensor elements in the array.
Tapers are used to modify both the amplitude and phase of the transmitted or
received data.

Specify element tapering as a complex-valued scalar or a complex-valued 1-by-N row
vector. In this vector, N represents the number of elements in the array. If Taper is
a scalar, the same weight is applied to each element. If Taper is a vector, a weight
from the vector is applied to the corresponding sensor element. A weight must be
applied to each element in the sensor array.

Expression
A valid MATLAB expression containing a constructor for a uniform linear array, for
example, phased.ULA.

Sensor Array Tab: Element Parameters

Element type

 ULA MVDR Spectrum

3-441

Specify antenna or microphone type as

• Isotropic Antenna

• Cosine Antenna

• Custom Antenna

• Omni Microphone

• Custom Microphone

Exponent of cosine pattern
This parameter appears when you set Element type to Cosine Antenna.

Specify the exponent of the cosine pattern as a scalar or a 1-by-2 vector. You
must specify all values as real numbers greater than or equal to 1. When you set
Exponent of cosine pattern to a scalar, both the azimuth direction cosine pattern
and the elevation direction cosine pattern are raised to the specified value. When you
set Exponent of cosine pattern to a 1-by-2 vector, the first element is the exponent
for the azimuth direction cosine pattern and the second element is the exponent for
the elevation direction cosine pattern.

Operating frequency range (Hz)
This parameter appears when Element type is set to Isotropic Antenna, Cosine
Antenna, or Omni Microphone.

Specify the operating frequency range, in hertz, of the antenna element as a 1-by-2
row vector in the form [LowerBound,UpperBound]. The antenna element has no
response outside the specified frequency range.

Operating frequency vector (Hz)
This parameter appears when Element type is set to Custom Antenna or Custom
Microphone.

Specify L frequencies, in hertz, at which to set the antenna and microphone
frequency responses. Specify Operating frequency vector (Hz) as a 1-by-L
row vector of increasing value. Use Frequency responses to set the frequency
responses. The antenna or microphone element has no response outside the
frequency range specified by the minimum and maximum elements of Operating
frequency vector.

Frequency responses (dB)
This parameter appears when Element type is set to Custom Antenna or Custom
Microphone.

3 Blocks — Alphabetical List

3-442

Specify this parameter as the frequency response of an antenna or microphone,
in decibels, for the frequencies defined by Operating frequency vector. Specify
Frequency responses (dB) as a 1-by-L vector matching the dimensions of the
vector specified in Operating frequency vector.

Azimuth angles (deg)
This parameter appears when Element type is set to Custom Antenna.

Specify P azimuth angles, in degrees, at which to calculate the antenna radiation
pattern as a 1-by-P row vector. P must be greater than 2. The azimuth angles must
lie between –180° and 180° and be in strictly increasing order.

Elevation angles (deg)
This parameter appears when the Element type is set to Custom Antenna.

Specify the Q elevation angles, in degrees, at which to compute the radiation pattern
as a 1-by-Q vector. Q must be greater than 2. The elevation angles must lie between –
90° and 90° and be in strictly increasing order.

Radiation pattern (dB)
This parameter appears when the Element type is set to Custom Antenna.

The magnitude in db of the combined polarized antenna radiation pattern specified
as a Q-by-P matrix or a Q-by-P-by-L array. The value of Q must match the value of Q
specified by Elevation angles. The value of P must match the value of P specified by
Azimuth angles. The value of L must match the value of L specified by Operating
frequency vector (Hz).

Polar pattern frequencies (Hz)
This parameter appears when the Element type is set to Custom Microphone.

Specify the Mmeasuring frequencies in hertz of the polar patterns 1-by-M vector.
The measuring frequencies lie within the frequency range specified byOperating
frequency vector.

Polar pattern angles (deg)
This parameter appears when Element type is set to Custom Microphone.

Specify N measuring angles, in degrees, of the polar patterns as a 1-by-N. The angles
are measured from the central pickup axis of the microphone, and must be between –
180° and 180°, inclusive.

 ULA MVDR Spectrum

3-443

Polar pattern (dB)
This parameter appears when Element type is set to Custom Microphone.

Specify the magnitude of the polar patterns, in dB, of the microphone element as
an M-by-N matrix. M is the number of measuring frequencies specified in Polar
pattern frequencies. N is the number of measuring angles specified in Polar
pattern angles. Each row of the matrix represents the magnitude of the polar
pattern measured at the corresponding frequency specified in Polar pattern
frequencies and all angles specified in Polar pattern angles. Assume that the
pattern is measured in the azimuth plane. In the azimuth plane, the elevation angle
is 0° and the central pickup axis is 0° degrees azimuth and 0° degrees elevation.
Assume also that the polar pattern is symmetric around the central axis. You can
construct the microphone’s response pattern in 3-D space from the polar pattern.

Baffle the back of the element
This check box appears only when the Element type parameter is set to Isotropic
Antenna or Omni Microphone.

Select this check box to baffle the back of the antenna element. In this case, the
antenna responses to all azimuth angles beyond ±90° from broadside are set to zero.
Define the broadside direction as 0° azimuth angle and 0° elevation angle.

Ports

Note: The block input and output ports correspond to the input and output parameters
described in the step method of the underlying System object. See link at the bottom of
this page.

Port Supported Data Types

In Double-precision floating point
Ang Double-precision floating point
Y Double-precision floating point

See Also
phased.MVDREstimator

3 Blocks — Alphabetical List

3-444

Introduced in R2014b

 ULA Sum and Difference Monopulse

3-445

ULA Sum and Difference Monopulse

Sum-and-difference monopulse tracker for ULA

Library

Direction of Arrival (DOA)

phaseddoalib

Description

The ULA Sum-and-Difference Monopulse block estimates the direction of arrival of
a narrowband signal on a uniform linear array based on an initial guess using a sum-
and-difference monopulse algorithm. The block obtains the difference steering vector by
phase-reversing the latter half of the sum steering vector.

3 Blocks — Alphabetical List

3-446

Dialog Box

 ULA Sum and Difference Monopulse

3-447

Propagation speed (m/s)
Specify the propagation speed of the signal, in meters per second, as a positive scalar.
You can use the function physconst to specify the speed of light.

Operating frequency (Hz)
Specify the operating frequency of the system, in hertz, as a positive scalar.

Number of bits in phase shifters
The number of bits used to quantize the phase shift component of beamformer or
steering vector weights. Specify the number of bits as a non-negative integer. A value
of zero indicates that no quantization is performed.

Simulate using
Block simulation, specified as Interpreted Execution or Code Generation.
If you want your block to use the MATLAB interpreter, choose Interpreted
Execution. If you want your block to run as compiled code, choose Code
Generation. Compiled code requires time to compile but usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The
block runs the underlying System object in MATLAB. You can change and execute
your model quickly. When you are satisfied with your results, you can then run the
block using Code Generation. Long simulations run faster than in interpreted
execution. You can run repeated executions without recompiling. However, if you
change any block parameters, then the block automatically recompiles before
execution.

When setting this parameter, you must take into account the overall model
simulation mode. The table shows how the Simulate using parameter interacts with
the overall simulation mode.

When the Simulink model is in Accelerator mode, the block mode specified using
Simulate using overrides the simulation mode.

Acceleration Modes

When you use this simulation mode ...If you want to
simulate using ... Normal Accelerator Rapid

Accelerator

Interpreted

Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Creates a
standalone

3 Blocks — Alphabetical List

3-448

Code Generation The block is
compiled.

All blocks in the
model are compiled.

executable from the
model.

For more information, see “Choosing a Simulation Mode” from the Simulink
documentation.

 ULA Sum and Difference Monopulse

3-449

3 Blocks — Alphabetical List

3-450

Array Parameters

Specify sensor array as
Specify a ULA sensor array directly or by using a MATLAB expression.

Types

Array (no subarrays)

MATLAB expression

Number of elements
Specifies the number of elements in the array as an integer.

Element spacing
Specify the spacing, in meters, between two adjacent elements in the array.

Array axis
This parameter appears when the Geometry parameter is set to ULA or when the
block supports only a ULA array geometry. You can specify this parameters as 'x',
'y', or 'z'. Then, all ULA array elements are uniformly spaced along this axis in
the local array coordinate system.

Taper
Tapers, also known as element weights, are applied to sensor elements in the array.
Tapers are used to modify both the amplitude and phase of the transmitted or
received data.

Specify element tapering as a complex-valued scalar or a complex-valued 1-by-N row
vector. In this vector, N represents the number of elements in the array. If Taper is
a scalar, the same weight is applied to each element. If Taper is a vector, a weight
from the vector is applied to the corresponding sensor element. A weight must be
applied to each element in the sensor array.

Expression
A valid MATLAB expression containing a constructor for a uniform linear array, for
example, phased.ULA.

Sensor Array Tab: Element Parameters

Element type

 ULA Sum and Difference Monopulse

3-451

Specify antenna or microphone type as

• Isotropic Antenna

• Cosine Antenna

• Custom Antenna

• Omni Microphone

• Custom Microphone

Exponent of cosine pattern
This parameter appears when you set Element type to Cosine Antenna.

Specify the exponent of the cosine pattern as a scalar or a 1-by-2 vector. You
must specify all values as real numbers greater than or equal to 1. When you set
Exponent of cosine pattern to a scalar, both the azimuth direction cosine pattern
and the elevation direction cosine pattern are raised to the specified value. When you
set Exponent of cosine pattern to a 1-by-2 vector, the first element is the exponent
for the azimuth direction cosine pattern and the second element is the exponent for
the elevation direction cosine pattern.

Operating frequency range (Hz)
This parameter appears when Element type is set to Isotropic Antenna, Cosine
Antenna, or Omni Microphone.

Specify the operating frequency range, in hertz, of the antenna element as a 1-by-2
row vector in the form [LowerBound,UpperBound]. The antenna element has no
response outside the specified frequency range.

Operating frequency vector (Hz)
This parameter appears when Element type is set to Custom Antenna or Custom
Microphone.

Specify L frequencies, in hertz, at which to set the antenna and microphone
frequency responses. Specify Operating frequency vector (Hz) as a 1-by-L
row vector of increasing value. Use Frequency responses to set the frequency
responses. The antenna or microphone element has no response outside the
frequency range specified by the minimum and maximum elements of Operating
frequency vector.

Frequency responses (dB)
This parameter appears when Element type is set to Custom Antenna or Custom
Microphone.

3 Blocks — Alphabetical List

3-452

Specify this parameter as the frequency response of an antenna or microphone,
in decibels, for the frequencies defined by Operating frequency vector. Specify
Frequency responses (dB) as a 1-by-L vector matching the dimensions of the
vector specified in Operating frequency vector.

Azimuth angles (deg)
This parameter appears when Element type is set to Custom Antenna.

Specify P azimuth angles, in degrees, at which to calculate the antenna radiation
pattern as a 1-by-P row vector. P must be greater than 2. The azimuth angles must
lie between –180° and 180° and be in strictly increasing order.

Elevation angles (deg)
This parameter appears when the Element type is set to Custom Antenna.

Specify the Q elevation angles, in degrees, at which to compute the radiation pattern
as a 1-by-Q vector. Q must be greater than 2. The elevation angles must lie between –
90° and 90° and be in strictly increasing order.

Radiation pattern (dB)
This parameter appears when the Element type is set to Custom Antenna.

The magnitude in db of the combined polarized antenna radiation pattern specified
as a Q-by-P matrix or a Q-by-P-by-L array. The value of Q must match the value of Q
specified by Elevation angles. The value of P must match the value of P specified by
Azimuth angles. The value of L must match the value of L specified by Operating
frequency vector (Hz).

Polar pattern frequencies (Hz)
This parameter appears when the Element type is set to Custom Microphone.

Specify the Mmeasuring frequencies in hertz of the polar patterns 1-by-M vector.
The measuring frequencies lie within the frequency range specified byOperating
frequency vector.

Polar pattern angles (deg)
This parameter appears when Element type is set to Custom Microphone.

Specify N measuring angles, in degrees, of the polar patterns as a 1-by-N. The angles
are measured from the central pickup axis of the microphone, and must be between –
180° and 180°, inclusive.

 ULA Sum and Difference Monopulse

3-453

Polar pattern (dB)
This parameter appears when Element type is set to Custom Microphone.

Specify the magnitude of the polar patterns, in dB, of the microphone element as
an M-by-N matrix. M is the number of measuring frequencies specified in Polar
pattern frequencies. N is the number of measuring angles specified in Polar
pattern angles. Each row of the matrix represents the magnitude of the polar
pattern measured at the corresponding frequency specified in Polar pattern
frequencies and all angles specified in Polar pattern angles. Assume that the
pattern is measured in the azimuth plane. In the azimuth plane, the elevation angle
is 0° and the central pickup axis is 0° degrees azimuth and 0° degrees elevation.
Assume also that the polar pattern is symmetric around the central axis. You can
construct the microphone’s response pattern in 3-D space from the polar pattern.

Baffle the back of the element
This check box appears only when the Element type parameter is set to Isotropic
Antenna or Omni Microphone.

Select this check box to baffle the back of the antenna element. In this case, the
antenna responses to all azimuth angles beyond ±90° from broadside are set to zero.
Define the broadside direction as 0° azimuth angle and 0° elevation angle.

Ports

Note: The block input and output ports correspond to the input and output parameters
described in the step method of the underlying System object. See link at the bottom of
this page.

Port Supported Data Types

X Double-precision floating point
Steer Double-precision floating point
Ang Double-precision floating point

See Also
phased.SumDifferenceMonopulseTracker

3 Blocks — Alphabetical List

3-454

Introduced in R2014b

 URA Sum and Difference Monopulse

3-455

URA Sum and Difference Monopulse

Sum-and-difference monopulse for URA

Library

Direction of Arrival (DOA)

phaseddoalib

Description

The URA Sum-and-Difference Monopulse block estimates the direction of arrival of a
narrowband signal on a uniform rectangular array (URA) based on an initial guess using
a sum-and-difference monopulse algorithm. The block obtains the difference steering
vector by phase-reversing the latter half of the sum steering vector.

3 Blocks — Alphabetical List

3-456

Dialog Box

 URA Sum and Difference Monopulse

3-457

Propagation speed (m/s)
Specify the propagation speed of the signal, in meters per second, as a positive scalar.
You can use the function physconst to specify the speed of light.

Operating frequency (Hz)
Specify the operating frequency of the system, in hertz, as a positive scalar.

Number of bits in phase shifters
The number of bits used to quantize the phase shift component of beamformer or
steering vector weights. Specify the number of bits as a non-negative integer. A value
of zero indicates that no quantization is performed.

Simulate using
Block simulation, specified as Interpreted Execution or Code Generation.
If you want your block to use the MATLAB interpreter, choose Interpreted
Execution. If you want your block to run as compiled code, choose Code
Generation. Compiled code requires time to compile but usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The
block runs the underlying System object in MATLAB. You can change and execute
your model quickly. When you are satisfied with your results, you can then run the
block using Code Generation. Long simulations run faster than in interpreted
execution. You can run repeated executions without recompiling. However, if you
change any block parameters, then the block automatically recompiles before
execution.

When setting this parameter, you must take into account the overall model
simulation mode. The table shows how the Simulate using parameter interacts with
the overall simulation mode.

When the Simulink model is in Accelerator mode, the block mode specified using
Simulate using overrides the simulation mode.

Acceleration Modes

When you use this simulation mode ...If you want to
simulate using ... Normal Accelerator Rapid

Accelerator

Interpreted

Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Creates a
standalone

3 Blocks — Alphabetical List

3-458

Code Generation The block is
compiled.

All blocks in the
model are compiled.

executable from the
model.

For more information, see “Choosing a Simulation Mode” from the Simulink
documentation.

 URA Sum and Difference Monopulse

3-459

3 Blocks — Alphabetical List

3-460

Array Parameters

Specify sensor array as
Specify a ULA sensor array directly or by using a MATLAB expression.

Types

Array (no subarrays)

MATLAB expression

Array size
Specify the size of the array as a 1-by-2 integer vector or a single integer containing.

• If Array size is a 1-by-2 vector, the vector has the form
[NumberOfRows,NumberOfColumns] where NumberOfRows and
NumberOfColumns specify the number of rows and columns of the array,
respectively.

• If Array size is an integer, the array has the same number of rows and columns.

Elements are indexed from top to bottom along a column and continuing to the next
columns from left to right. In this figure, an Array size of [3,2] produces an array
has three rows and two columns.

 URA Sum and Difference Monopulse

3-461

Size and Element Indexing Order

for Uniform Rectangular Arrays

Example: Size = [3,2]

1

2

3

4

6

5

Z

Y

Element spacing
Specify the element spacing of the array, in meters, as a 1-by-2 vector or
a scalar. If Element spacing is a 1-by-2 vector, the vector has the form
[SpacingBetweenRows,SpacingBetweenColumns]. For a discussion of these
quantities, see phased.URA. If Element spacing is a scalar, the spacings between
rows and columns are equal.

Element lattice
Specify the element lattice as one of Rectangular or Triangular.

• Rectangular — Aligns all the elements in both row and column directions.
• Triangular — Shifts the even row elements toward the positive row axis

direction. The elements are shifted a distance of half the element spacing along
the row.

Array normal
This parameter appears when the Geometry parameter is set to URA or UCA. You
can specify the Array normal parameter as 'x', 'y', or 'z'. Then, all URA and
UCA array elements are placed in the yz-, zx-, or xy- planes, respectively, of the array
coordinate system.

3 Blocks — Alphabetical List

3-462

Taper
Tapers, also known as element weights, are applied to sensor elements in the array.
Tapers are used to modify both the amplitude and phase of the transmitted or
received data.

Specify element tapering as a complex-valued scalar or complex-valued M-by-N
matrix. In this matrix, M is the number of elements along the z-axis, and N is
the number of elements along the y-axis. M and N correspond to the values of
[NumberofRows, NumberOfColumns] in the Array size matrix. If Taper is a
scalar, the same weight is applied to each element. If the value of Taper is a matrix,
a weight from the matrix is applied to the corresponding sensor element. A weight
must be applied to each element in the sensor array.

Expression
A valid MATLAB expression containing a constructor for a uniform rectangular
array, for example, phased.URA.

Sensor Array Tab: Element Parameters

Element type
Specify antenna or microphone type as

• Isotropic Antenna

• Cosine Antenna

• Custom Antenna

• Omni Microphone

• Custom Microphone

Exponent of cosine pattern
This parameter appears when you set Element type to Cosine Antenna.

Specify the exponent of the cosine pattern as a scalar or a 1-by-2 vector. You
must specify all values as real numbers greater than or equal to 1. When you set
Exponent of cosine pattern to a scalar, both the azimuth direction cosine pattern
and the elevation direction cosine pattern are raised to the specified value. When you
set Exponent of cosine pattern to a 1-by-2 vector, the first element is the exponent
for the azimuth direction cosine pattern and the second element is the exponent for
the elevation direction cosine pattern.

Operating frequency range (Hz)

 URA Sum and Difference Monopulse

3-463

This parameter appears when Element type is set to Isotropic Antenna, Cosine
Antenna, or Omni Microphone.

Specify the operating frequency range, in hertz, of the antenna element as a 1-by-2
row vector in the form [LowerBound,UpperBound]. The antenna element has no
response outside the specified frequency range.

Operating frequency vector (Hz)
This parameter appears when Element type is set to Custom Antenna or Custom
Microphone.

Specify L frequencies, in hertz, at which to set the antenna and microphone
frequency responses. Specify Operating frequency vector (Hz) as a 1-by-L
row vector of increasing value. Use Frequency responses to set the frequency
responses. The antenna or microphone element has no response outside the
frequency range specified by the minimum and maximum elements of Operating
frequency vector.

Frequency responses (dB)
This parameter appears when Element type is set to Custom Antenna or Custom
Microphone.

Specify this parameter as the frequency response of an antenna or microphone,
in decibels, for the frequencies defined by Operating frequency vector. Specify
Frequency responses (dB) as a 1-by-L vector matching the dimensions of the
vector specified in Operating frequency vector.

Azimuth angles (deg)
This parameter appears when Element type is set to Custom Antenna.

Specify P azimuth angles, in degrees, at which to calculate the antenna radiation
pattern as a 1-by-P row vector. P must be greater than 2. The azimuth angles must
lie between –180° and 180° and be in strictly increasing order.

Elevation angles (deg)
This parameter appears when the Element type is set to Custom Antenna.

Specify the Q elevation angles, in degrees, at which to compute the radiation pattern
as a 1-by-Q vector. Q must be greater than 2. The elevation angles must lie between –
90° and 90° and be in strictly increasing order.

Radiation pattern (dB)
This parameter appears when the Element type is set to Custom Antenna.

3 Blocks — Alphabetical List

3-464

The magnitude in db of the combined polarized antenna radiation pattern specified
as a Q-by-P matrix or a Q-by-P-by-L array. The value of Q must match the value of Q
specified by Elevation angles. The value of P must match the value of P specified by
Azimuth angles. The value of L must match the value of L specified by Operating
frequency vector (Hz).

Polar pattern frequencies (Hz)
This parameter appears when the Element type is set to Custom Microphone.

Specify the Mmeasuring frequencies in hertz of the polar patterns 1-by-M vector.
The measuring frequencies lie within the frequency range specified byOperating
frequency vector.

Polar pattern angles (deg)
This parameter appears when Element type is set to Custom Microphone.

Specify N measuring angles, in degrees, of the polar patterns as a 1-by-N. The angles
are measured from the central pickup axis of the microphone, and must be between –
180° and 180°, inclusive.

Polar pattern (dB)
This parameter appears when Element type is set to Custom Microphone.

Specify the magnitude of the polar patterns, in dB, of the microphone element as
an M-by-N matrix. M is the number of measuring frequencies specified in Polar
pattern frequencies. N is the number of measuring angles specified in Polar
pattern angles. Each row of the matrix represents the magnitude of the polar
pattern measured at the corresponding frequency specified in Polar pattern
frequencies and all angles specified in Polar pattern angles. Assume that the
pattern is measured in the azimuth plane. In the azimuth plane, the elevation angle
is 0° and the central pickup axis is 0° degrees azimuth and 0° degrees elevation.
Assume also that the polar pattern is symmetric around the central axis. You can
construct the microphone’s response pattern in 3-D space from the polar pattern.

Baffle the back of the element
This check box appears only when the Element type parameter is set to Isotropic
Antenna or Omni Microphone.

Select this check box to baffle the back of the antenna element. In this case, the
antenna responses to all azimuth angles beyond ±90° from broadside are set to zero.
Define the broadside direction as 0° azimuth angle and 0° elevation angle.

 URA Sum and Difference Monopulse

3-465

Ports

Note: The block input and output ports correspond to the input and output parameters
described in the step method of the underlying System object. See link at the bottom of
this page.

Port Supported Data Types

X Double-precision floating point
Steer Double-precision floating point
Ang Double-precision floating point

See Also
phased.SumDifferenceMonopulseTracker2D

Introduced in R2014b

3 Blocks — Alphabetical List

3-466

Wideband Free Space

Free space environment

Library

Environment and Targets

phasedenvlib

Description

The Wideband Free Space Channel block propagates the signal from one point to
another in space. The block models propagation time, free space propagation loss and
Doppler shift. The block assumes that the propagation speed is much greater than the
target or array speed in which case the stop-and-hop model is valid.

When propagating a signal in free-space to an object and back, you have the choice of
either using a single block to compute a two-way free space propagation delay or two
blocks to perform one-way propagation delays in each direction. Because the free-space
propagation delay is not necessarily an integer multiple of the sampling interval, it may
turn out that the total round trip delay in samples when you use a two-way propagation
block differs from the delay in samples when you use two one-way propagation blocks.
For this reason, it is recommended that, when possible, you use a single two-way
propagation block.

 Wideband Free Space

3-467

Dialog Box

Propagation speed (m/s)

3 Blocks — Alphabetical List

3-468

Specify the propagation speed of the signal, in meters per second, as a positive scalar.
You can use the function physconst to specify the speed of light.

Signal carrier frequency (Hz)
Specify the carrier frequency of the signal in hertz of the narrowband signal as a
positive scalar.

Number of subbands
The number of subbands used for subband processing, specified as a positive integer.

Perform two-way propagation
Select this check box to perform round-trip propagation between the origin and
destination. Otherwise the block performs one-way propagation from the origin to the
destination.

Maximum one-way propagation distance (m)
The maximum distance , in meters, between the origin and the destination as a
positive scalar. Amplitudes of any signals that propagate beyond this distance will be
set to zero.

Simulate using
Block simulation, specified as Interpreted Execution or Code Generation.
If you want your block to use the MATLAB interpreter, choose Interpreted
Execution. If you want your block to run as compiled code, choose Code
Generation. Compiled code requires time to compile but usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The
block runs the underlying System object in MATLAB. You can change and execute
your model quickly. When you are satisfied with your results, you can then run the
block using Code Generation. Long simulations run faster than in interpreted
execution. You can run repeated executions without recompiling. However, if you
change any block parameters, then the block automatically recompiles before
execution.

When setting this parameter, you must take into account the overall model
simulation mode. The table shows how the Simulate using parameter interacts with
the overall simulation mode.

When the Simulink model is in Accelerator mode, the block mode specified using
Simulate using overrides the simulation mode.

Acceleration Modes

 Wideband Free Space

3-469

When you use this simulation mode ...If you want to
simulate using ... Normal Accelerator Rapid

Accelerator

Interpreted

Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Code Generation The block is
compiled.

All blocks in the
model are compiled.

Creates a
standalone
executable from the
model.

For more information, see “Choosing a Simulation Mode” from the Simulink
documentation.

Ports

Note: The block input and output ports correspond to the input and output parameters
described in the step method of the underlying System object. See link at the bottom of
this page.

Port Supported Data Types

X Double-precision floating point
Pos1 Double-precision floating point
Pos2 Double-precision floating point
Vel1 Double-precision floating point
Vel2 Double-precision floating point
Out Double-precision floating point

Algorithms

When the origin and destination are stationary relative to each other, the block output
can be written as y(t) = x(t – τ)/L. The quantity τ is the delay and L is the propagation
loss. The delay is computed from τ = R/c where R is the propagation distance and c is the
propagation speed. The free space path loss is given by

3 Blocks — Alphabetical List

3-470

L
R

fsp =
()

,
4 2

2

p

l

where λ is the signal wavelength.

This formula assumes that the target is in the far-field of the transmitting element or
array. In the near-field, the free-space path loss formula is not valid and can result in
losses smaller than one, equivalent to a signal gain. For this reason, the loss is set to
unity for range values, R ≤ λ/4π.

When there is relative motion between the origin and destination, the processing also
introduces a frequency shift. This shift corresponds to the Doppler shift between the
origin and destination. The frequency shift is v/λ for one-way propagation and 2v/λ
for two-way propagation. The parameter v is the relative speed of the destination with
respect to the origin.

See Also
phased.WidebandFreeSpace

Introduced in R2015b

 Wideband LOS Channel

3-471

Wideband LOS Channel

Wideband line-of-sight propagation channel

Library

Environment and Targets

phasedenvlib

Description

The LOS Channel block propagates signals from one point in space to multiple points or
from multiple points back to one point via line-of-sight (LOS) channels. The block models
propagation time, free-space propagation loss, Doppler shift, and atmospheric as well as
weather loss. The block assumes that the propagation speed is much greater than the
object's speed in which case the stop-and-hop model is valid.

When propagating a signal in an LOS channel to an object and back, you have the
choice of either using a single block to compute two-way LOS channel propagation delay
or two blocks to perform one-way propagation delays in each direction. Because the
LOS channel propagation delay is not necessarily an integer multiple of the sampling
interval, it may turn out that the total round trip delay in samples when you use a two-
way propagation block differs from the delay in samples when you use two one-way
propagation blocks. For this reason, it is recommended that, when possible, you use a
single two-way propagation block.

3 Blocks — Alphabetical List

3-472

Dialog Box

 Wideband LOS Channel

3-473

Propagation speed (m/s)
Specify the propagation speed of the signal, in meters per second, as a positive scalar.
You can use the function physconst to specify the speed of light.

Signal carrier frequency (Hz)
Specify the carrier frequency of the signal in hertz of the narrowband signal as a
positive scalar.

Number of subbands
The number of subbands used for subband processing, specified as a positive integer.

Specify atmospheric parameters
Select this check box to enable atmospheric attenuation modeling.

Temperature (degrees Celsius)
Ambient atmospheric temperature, specified as a real-valued scalar. Units are
degrees Celsius. This parameter appears when you select the Specify atmospheric
parameters check box. Units are degrees Celsius.

Dry air pressure (Pa)
Atmospheric dry air pressure, specified as a positive real-valued scalar. Units
are Pascals (Pa). The value 101325 for this property corresponds to one standard
atmosphere. This parameter appears when you select the Specify atmospheric
parameters check box.

Water vapour density (g/m^3)
Atmospheric water vapor density, specified as a positive real-valued scalar. Units
are gm/m3. This parameter appears when you select the Specify atmospheric
parameters check box.

Liquid water density (g/m^3)
Liquid water density of fog or clouds, specified as a non-negative real-valued scalar.
Units are gm/m3. Typical values for liquid water density are 0.05 for medium fog and
0.5 for thick fog. This parameter appears when you select the Specify atmospheric
parameters check box.

Rain rate (mm/hr)
Rainfall rate, specified as a non-negative real-valued scalar. Units are in mm/hour.
This parameter appears when you select the Specify atmospheric parameters
check box.

Perform two-way propagation

3 Blocks — Alphabetical List

3-474

Select this check box to perform round-trip propagation between the origin and
destination. Otherwise the block performs one-way propagation from the origin to the
destination.

Maximum one-way propagation distance (m)
The maximum distance, in meters, between the signal origin and the destination,
specified as a positive scalar. Amplitudes of any signals that propagate beyond this
distance will be set to zero.

Simulate using
Block simulation, specified as Interpreted Execution or Code Generation.
If you want your block to use the MATLAB interpreter, choose Interpreted
Execution. If you want your block to run as compiled code, choose Code
Generation. Compiled code requires time to compile but usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The
block runs the underlying System object in MATLAB. You can change and execute
your model quickly. When you are satisfied with your results, you can then run the
block using Code Generation. Long simulations run faster than in interpreted
execution. You can run repeated executions without recompiling. However, if you
change any block parameters, then the block automatically recompiles before
execution.

When setting this parameter, you must take into account the overall model
simulation mode. The table shows how the Simulate using parameter interacts with
the overall simulation mode.

When the Simulink model is in Accelerator mode, the block mode specified using
Simulate using overrides the simulation mode.

Acceleration Modes

When you use this simulation mode ...If you want to
simulate using ... Normal Accelerator Rapid

Accelerator

Interpreted

Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Code Generation The block is
compiled.

All blocks in the
model are compiled.

Creates a
standalone
executable from the
model.

 Wideband LOS Channel

3-475

For more information, see “Choosing a Simulation Mode” from the Simulink
documentation.

Ports

Note: The block input and output ports correspond to the input and output parameters
described in the step method of the underlying System object. See link at the bottom of
this page.

Port Supported Data Types

X Double-precision floating point
Pos1 Double-precision floating point
Pos2 Double-precision floating point
Vel1 Double-precision floating point
Vel2 Double-precision floating point
Out Double-precision floating point

Definitions

When the origin and destination are stationary relative to each other, the block output
can be written as y(t) = x(t – τ)/L. The quantity τ is the delay and L is the propagation
loss. The delay is computed from τ = R/c where R is the propagation distance and c is the
propagation speed. The free space path loss is given by

L
R

fsp =
()

,
4 2

2

p

l

where λ is the signal wavelength.

This formula assumes that the target is in the far-field of the transmitting element or
array. In the near-field, the free-space path loss formula is not valid and can result in
losses smaller than one, equivalent to a signal gain. For this reason, the loss is set to
unity for range values, R ≤ λ/4π.

3 Blocks — Alphabetical List

3-476

When there is relative motion between the origin and destination, the processing also
introduces a frequency shift. This shift corresponds to the Doppler shift between the
origin and destination. The frequency shift is v/λ for one-way propagation and 2v/λ
for two-way propagation. The parameter v is the relative speed of the destination with
respect to the origin.

See Also
phased.LOSChannel

Introduced in R2016a

 Wideband Receive Array

3-477

Wideband Receive Array

Wideband receive array

Library

Transmitters and Receivers

phasedtxrxlib

Description

The Wideband Receive Array block receives wideband plane waves incident on the
elements of a sensor array. The block divides the input signal into subbands and then
applies a phase shift in each subband according to the incident direction. The resulting
subband signals are then combined to form the output.

3 Blocks — Alphabetical List

3-478

Dialog Box

 Wideband Receive Array

3-479

Propagation speed (m/s)
Specify the propagation speed of the signal, in meters per second, as a positive scalar.
You can use the function physconst to specify the speed of light.

Assume modulated input
Select this check this box to indicate that the input signal is demodulated at a carrier
frequency.

Carrier frequency
This parameter appears when the Assume modulated input check box is selected.
The parameter specifies the carrier frequency, in hertz, as a positive scalar.

Number of subbands
Number of processing subbands, specified as a positive integer.

Enable weights input
Select this check box to specify array weights using the input port W. The input port
appears only when this box is checked.

Simulate using
Block simulation, specified as Interpreted Execution or Code Generation.
If you want your block to use the MATLAB interpreter, choose Interpreted
Execution. If you want your block to run as compiled code, choose Code
Generation. Compiled code requires time to compile but usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The
block runs the underlying System object in MATLAB. You can change and execute
your model quickly. When you are satisfied with your results, you can then run the
block using Code Generation. Long simulations run faster than in interpreted
execution. You can run repeated executions without recompiling. However, if you
change any block parameters, then the block automatically recompiles before
execution.

When setting this parameter, you must take into account the overall model
simulation mode. The table shows how the Simulate using parameter interacts with
the overall simulation mode.

When the Simulink model is in Accelerator mode, the block mode specified using
Simulate using overrides the simulation mode.

Acceleration Modes

3 Blocks — Alphabetical List

3-480

When you use this simulation mode ...If you want to
simulate using ... Normal Accelerator Rapid

Accelerator

Interpreted

Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Code Generation The block is
compiled.

All blocks in the
model are compiled.

Creates a
standalone
executable from the
model.

For more information, see “Choosing a Simulation Mode” from the Simulink
documentation.

 Wideband Receive Array

3-481

3 Blocks — Alphabetical List

3-482

Array Parameters

Specify sensor array as
Sensor element or sensor array specified. A sensor array can also contain subarrays
or as a partitioned array. This parameter can also be expressed as a MATLAB
expression.

Types

Single element

Array (no subarrays)

Partitioned array

Replicated subarray

MATLAB expression

Geometry
Specify the array geometry as one of the following

• ULA — Uniform Line Array
• URA — Uniform Rectangular Array
• UCA — Uniform Circular Array
• Conformal Array

Number of elements
Specifies the number of elements in the array as an integer.

This parameter appears when the Geometry is set to ULA or UCA. When Sensor
Array is set to Replicated subarray, this parameter applies to the sub-array.

Array size
This parameter appears when Geometry is set to URA. When Sensor Array is set to
Replicated subarray, this parameter applies to the subarrays.

Specify the size of the array as a 1-by-2 integer vector or a single integer containing.

• If Array size is a 1-by-2 vector, the vector has the form
[NumberOfRows,NumberOfColumns] where NumberOfRows and
NumberOfColumns specify the number of rows and columns of the array,
respectively.

 Wideband Receive Array

3-483

• If Array size is an integer, the array has the same number of rows and columns.

For a URA, elements are indexed from top to bottom along a column and continuing
to the next columns from left to right. In this figure, an Array size of [3,2]
produces an array of three rows and two columns.

Size and Element Indexing Order

for Uniform Rectangular Arrays

Example: Size = [3,2]

1

2

3

4

6

5

Z

Y

Element spacing
This parameter appears when Geometry is set to ULA or URA. When Sensor Array
is set to Replicated subarray, this parameter applies to the subarrays.

• For a ULA, specify the spacing, in meters, between two adjacent elements in the
array as a scalar.

• For a URA, specify the element spacing of the array, in meters, as a 1-by-2 vector
or a scalar. If Element spacing is a 1-by-2 vector, the vector has the form
[SpacingBetweenRows,SpacingBetweenColumns]. For a discussion of
these quantities, see phased.URA. If Element spacing is a scalar, the spacings
between rows and columns are equal.

Array axis
This parameter appears when the Geometry parameter is set to ULA or when the
block supports only a ULA array geometry. You can specify this parameters as 'x',

3 Blocks — Alphabetical List

3-484

'y', or 'z'. Then, all ULA array elements are uniformly spaced along this axis in
the local array coordinate system.

Array normal
This parameter appears when the Geometry parameter is set to URA or UCA. You
can specify the Array normal parameter as 'x', 'y', or 'z'. Then, all URA and
UCA array elements are placed in the yz-, zx-, or xy- planes, respectively, of the array
coordinate system.

Radius of UCA (m)
Radius of a uniform circular array specified as a positive scalar. Units are meters.

This parameter appears when the Geometry is set to UCA.
Taper

Tapers, also known as element weights, are applied to sensor elements in the array.
Tapers are used to modify both the amplitude and phase of the transmitted or
received data.

This parameter appears when Geometry is set to ULA, URA, UCA, or Conformal
Array. When Sensor Array is set to Replicated subarray, this parameter
applies to subarrays.

• For a ULA or UCA, specify element tapering as a complex-valued scalar or a
complex-valued 1-by-N row vector. In this vector, N represents the number
of elements in the array. If Taper is a scalar, the same weight is applied to
each element. If Taper is a vector, a weight from the vector is applied to the
corresponding sensor element. A weight must be applied to each element in the
sensor array.

• For a URA, specify element tapering as a complex-valued scalar or complex-valued
M-by-N matrix. In this matrix, M is the number of elements along the z-axis, and
N is the number of elements along the y-axis. M and N correspond to the values
of [NumberofRows, NumberOfColumns] in the Array size matrix. If Taper
is a scalar, the same weight is applied to each element. If the value of Taper is a
matrix, a weight from the matrix is applied to the corresponding sensor element.
A weight must be applied to each element in the sensor array.

• For a Conformal Array, specify element taper as a complex-valued scalar or
complex-valued 1-by-N vector. In this vector, N is the number of elements in the
array as determined by the size of the Element positions vector. If the Taper
parameter is a scalar, the same weight is applied to each element. If the value of
Taper is a vector, a weight from the vector is applied to the corresponding sensor
element. A weight must be applied to each element in the sensor array.

 Wideband Receive Array

3-485

Element lattice
This parameter appears when Geometry is set to URA. When Sensor Array is set to
Replicated subarray, this parameter applies to the sub-array.

Specify the element lattice as one of Rectangular or Triangular

• Rectangular — Aligns all the elements in both row and column directions.
• Triangular — Shifts the even row elements toward the positive row axis

direction. The elements are shifted a distance of half the element spacing along
the row.

Element positions
This parameter appears when Geometry is set to Conformal Array. When Sensor
Array is set to Replicated subarray, this parameter applies to subarrays.

Specify the positions of the elements, in meters, in the conformal array as a 3-by-N
matrix, where N indicates the number of elements in the conformal array. Each
column of Element positions represents the position of a single element, in the
form [x; y; z], in the array’s local coordinate system. The local coordinate system
has its origin at an arbitrary point.

Element normals (deg)
This parameter appears when Geometry is set to Conformal Array. When Sensor
Array is set to Replicated subarray, this parameter applies to subarrays.

Specify the normal directions of the elements in a conformal array as a 2-by-N
matrix or a 2-by-1 column vector in degrees. The variable N indicates the number of
elements in the array. If Element normals is a matrix, each column specifies the
normal direction of the corresponding element in the form [azimuth;elevation],
with respect to the local coordinate system. The local coordinate system aligns
the positive x-axis with the direction normal to the conformal array. If Element
normals is a 2-by-1 column vector, the vector specifies the same pointing direction
for all elements in the array.

You can use the Element positions and Element normals parameters to represent
any arrangement in which pairs of elements differ by certain transformations. You
can combine translation, azimuth rotation, and elevation rotation transformations.
However, you cannot use transformations that require rotation about the normal.

Subarray definition matrix
This parameter appears when Sensor array is set to Partitioned array.

3 Blocks — Alphabetical List

3-486

Specify the subarray selection as an M-by-N matrix. M is the number of subarrays
and N is the total number of elements in the array. Each row of the matrix indicates
which elements belong to the corresponding subarray. Each entry in the matrix is 1
or 0, where 1 indicates that the element appears in the subarray and 0 indicates the
opposite. Each row must contain at least one 1.

The phase center of each subarray is its geometric center. Subarray definition
matrix and Geometry determine the geometric center.

Subarray steering method
This parameter appears when Sensor array is set to Partitioned array or
Replicated subarray.

Specify the subarray steering method as

• None

• Phase

• Time

When using the Narrowband Receive Array, Narrowband Transmit Array,
or Wideband Receive Array blocks, select Phase or Time to create the input port
Steer on each block.

Phase shifter frequency
This parameter appears when you set Sensor array to Partitioned array or
Replicated subarray and you set Subarray steering method to Phase.

Specify the operating frequency, in hertz, of phase shifters to perform subarray
steering as a positive scalar.

Number of bits in phase shifters
This parameter appears when you set Sensor array to Partitioned array or
Replicated subarray and you set Subarray steering method to Phase.

The number of bits used to quantize the phase shift component of beamformer or
steering vector weights. Specify the number of bits as a non-negative integer. A value
of zero indicates that no quantization is performed.

Subarrays layout
This parameter appears when you set Sensor array to Replicated subarray.

Specify the layout of the replicated subarrays as Rectangular or Custom.
Grid size

 Wideband Receive Array

3-487

This parameter appears when you set Sensor array to Replicated subarray and
Subarrays layout to Rectangular.

Specify the size of the rectangular grid as a single positive integer or an positive
integer-valued 1-by-2 positive row vector.

If Grid size is a scalar, the array has an equal number of subarrays in each
row and column. If Grid size is a 1-by-2 vector of the form [NumberOfRows,
NumberOfColumns], the first entry is the number of subarrays along each column.
The second entry is the number of subarrays in each row. A row is along the local y-
axis, and a column is along the local z-axis. This figure shows how you can replicate a
3-by-2 URA subarray using a Grid size of [1,2].

3 x 2 Element URA

Replicated on a 1 x 2 Grid

1

2

3

4

6

5

Z

Y

7

8

9

10

12

11

Grid spacing
This parameter appears when you set Sensor array to Replicated subarray and
Subarrays layout to Rectangular.

Specify the rectangular grid spacing of subarrays as a real-valued positive scalar, a 1-
by-2 row vector, or Auto. Grid spacing units are expressed in meters.

• If Grid spacing is a scalar, the spacing along the row and the spacing along the
column is the same.

• If Grid spacing is a 1-by-2 row vector, the vector has the form
[SpacingBetweenRows,SpacingBetweenColumn]. The first entry specifies
the spacing between rows along a column. The second entry specifies the spacing
between columns along a row.

3 Blocks — Alphabetical List

3-488

• If Grid spacing is set to Auto, replication preserves the element spacing of the
subarray for both rows and columns while building the full array. This option is
available only when you specify Geometry as ULA or URA.

Subarray positions (m)
This parameter appears when you set Sensor array to Replicated subarray and
Subarrays layout to Custom.

Specify the positions of the subarrays in the custom grid as a 3-by-N matrix, where
N is the number of subarrays in the array. Each column of the matrix represents the
position of a single subarray, in meters, in the array’s local coordinate system. The
coordinates are expressed in the form [x; y; z].

Subarray normals
This parameter appears when you set the Sensor array parameter to Replicated
subarray and the Subarrays layout to Custom.

Specify the normal directions of the subarrays in the array. This parameter value
is a 2-by-N matrix, where N is the number of subarrays in the array. Each column
of the matrix specifies the normal direction of the corresponding subarray, in the
form [azimuth; elevation]. Each angle is in degrees and is defined in the local
coordinate system.

You can use the Subarray positions and Subarray normals parameters
to represent any arrangement in which pairs of subarrays differ by certain
transformations. The transformations can combine translation, azimuth rotation, and
elevation rotation. However, you cannot use transformations that require rotation
about the normal.

Expression
A valid MATLAB expression containing an array constructor, for example,
phased.URA.

Sensor Array Tab: Element Parameters

Element type
Specify antenna or microphone type as

• Isotropic Antenna

• Cosine Antenna

• Custom Antenna

 Wideband Receive Array

3-489

• Omni Microphone

• Custom Microphone

Exponent of cosine pattern
This parameter appears when you set Element type to Cosine Antenna.

Specify the exponent of the cosine pattern as a scalar or a 1-by-2 vector. You
must specify all values as real numbers greater than or equal to 1. When you set
Exponent of cosine pattern to a scalar, both the azimuth direction cosine pattern
and the elevation direction cosine pattern are raised to the specified value. When you
set Exponent of cosine pattern to a 1-by-2 vector, the first element is the exponent
for the azimuth direction cosine pattern and the second element is the exponent for
the elevation direction cosine pattern.

Operating frequency range (Hz)
This parameter appears when Element type is set to Isotropic Antenna, Cosine
Antenna, or Omni Microphone.

Specify the operating frequency range, in hertz, of the antenna element as a 1-by-2
row vector in the form [LowerBound,UpperBound]. The antenna element has no
response outside the specified frequency range.

Operating frequency vector (Hz)
This parameter appears when Element type is set to Custom Antenna or Custom
Microphone.

Specify L frequencies, in hertz, at which to set the antenna and microphone
frequency responses. Specify Operating frequency vector (Hz) as a 1-by-L
row vector of increasing value. Use Frequency responses to set the frequency
responses. The antenna or microphone element has no response outside the
frequency range specified by the minimum and maximum elements of Operating
frequency vector.

Frequency responses (dB)
This parameter appears when Element type is set to Custom Antenna or Custom
Microphone.

Specify this parameter as the frequency response of an antenna or microphone,
in decibels, for the frequencies defined by Operating frequency vector. Specify
Frequency responses (dB) as a 1-by-L vector matching the dimensions of the
vector specified in Operating frequency vector.

3 Blocks — Alphabetical List

3-490

Azimuth angles (deg)
This parameter appears when Element type is set to Custom Antenna.

Specify P azimuth angles, in degrees, at which to calculate the antenna radiation
pattern as a 1-by-P row vector. P must be greater than 2. The azimuth angles must
lie between –180° and 180° and be in strictly increasing order.

Elevation angles (deg)
This parameter appears when the Element type is set to Custom Antenna.

Specify the Q elevation angles, in degrees, at which to compute the radiation pattern
as a 1-by-Q vector. Q must be greater than 2. The elevation angles must lie between –
90° and 90° and be in strictly increasing order.

Radiation pattern (dB)
This parameter appears when the Element type is set to Custom Antenna.

The magnitude in db of the combined polarized antenna radiation pattern specified
as a Q-by-P matrix or a Q-by-P-by-L array. The value of Q must match the value of Q
specified by Elevation angles. The value of P must match the value of P specified by
Azimuth angles. The value of L must match the value of L specified by Operating
frequency vector (Hz).

Polar pattern frequencies (Hz)
This parameter appears when the Element type is set to Custom Microphone.

Specify the Mmeasuring frequencies in hertz of the polar patterns 1-by-M vector.
The measuring frequencies lie within the frequency range specified byOperating
frequency vector.

Polar pattern angles (deg)
This parameter appears when Element type is set to Custom Microphone.

Specify N measuring angles, in degrees, of the polar patterns as a 1-by-N. The angles
are measured from the central pickup axis of the microphone, and must be between –
180° and 180°, inclusive.

Polar pattern (dB)
This parameter appears when Element type is set to Custom Microphone.

Specify the magnitude of the polar patterns, in dB, of the microphone element as
an M-by-N matrix. M is the number of measuring frequencies specified in Polar

 Wideband Receive Array

3-491

pattern frequencies. N is the number of measuring angles specified in Polar
pattern angles. Each row of the matrix represents the magnitude of the polar
pattern measured at the corresponding frequency specified in Polar pattern
frequencies and all angles specified in Polar pattern angles. Assume that the
pattern is measured in the azimuth plane. In the azimuth plane, the elevation angle
is 0° and the central pickup axis is 0° degrees azimuth and 0° degrees elevation.
Assume also that the polar pattern is symmetric around the central axis. You can
construct the microphone’s response pattern in 3-D space from the polar pattern.

Baffle the back of the element
This check box appears only when the Element type parameter is set to Isotropic
Antenna or Omni Microphone.

Select this check box to baffle the back of the antenna element. In this case, the
antenna responses to all azimuth angles beyond ±90° from broadside are set to zero.
Define the broadside direction as 0° azimuth angle and 0° elevation angle.

Ports

Note: The block input and output ports correspond to the input and output parameters
described in the step method of the underlying System object. See link at the bottom of
this page.

Port Supported Data Types

X Double-precision floating point
Ang Double-precision floating point
W Double-precision floating point
Steer Double-precision floating point
Out Double-precision floating point

See Also
phased.WidebandCollector

Introduced in R2014b

3 Blocks — Alphabetical List

3-492

Wideband Transmit Array

Wideband transmit array

Library

Transmitters and Receivers

phasedtxrxlib

Description

The Wideband Transmit Array block transmits wideband plane waves from the
elements of a sensor array. The block divides the transmitted signals into subbands and
then applies a phase shift for each subband according to the radiating direction. The
resulting subband signals are then combined to form the output.

 Wideband Transmit Array

3-493

Dialog Box

3 Blocks — Alphabetical List

3-494

Propagation speed (m/s)
Specify the propagation speed of the signal, in meters per second, as a positive scalar.
You can use the function physconst to specify the speed of light.

Assume modulated input
Select this check this box to indicate that the input signal is demodulated at a carrier
frequency.

Carrier frequency
This parameter appears when the Assume modulated input check box is selected.
The parameter specifies the carrier frequency, in hertz, as a positive scalar.

Number of subbands
The number of subbands used for subband processing, specified as a positive integer.

Enable weights input
Select this check box to specify array weights using the input port W. The input port
appears only when this box is checked.

Simulate using
Block simulation, specified as Interpreted Execution or Code Generation.
If you want your block to use the MATLAB interpreter, choose Interpreted
Execution. If you want your block to run as compiled code, choose Code
Generation. Compiled code requires time to compile but usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The
block runs the underlying System object in MATLAB. You can change and execute
your model quickly. When you are satisfied with your results, you can then run the
block using Code Generation. Long simulations run faster than in interpreted
execution. You can run repeated executions without recompiling. However, if you
change any block parameters, then the block automatically recompiles before
execution.

When setting this parameter, you must take into account the overall model
simulation mode. The table shows how the Simulate using parameter interacts with
the overall simulation mode.

When the Simulink model is in Accelerator mode, the block mode specified using
Simulate using overrides the simulation mode.

Acceleration Modes

 Wideband Transmit Array

3-495

When you use this simulation mode ...If you want to
simulate using ... Normal Accelerator Rapid

Accelerator

Interpreted

Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Code Generation The block is
compiled.

All blocks in the
model are compiled.

Creates a
standalone
executable from the
model.

For more information, see “Choosing a Simulation Mode” from the Simulink
documentation.

3 Blocks — Alphabetical List

3-496

 Wideband Transmit Array

3-497

Array Parameters

Specify sensor array as
Sensor element or sensor array specified. A sensor array can also contain subarrays
or as a partitioned array. This parameter can also be expressed as a MATLAB
expression.

Types

Single element

Array (no subarrays)

Partitioned array

Replicated subarray

MATLAB expression

Geometry
Specify the array geometry as one of the following

• ULA — Uniform Line Array
• URA — Uniform Rectangular Array
• UCA — Uniform Circular Array
• Conformal Array

Number of elements
Specifies the number of elements in the array as an integer.

This parameter appears when the Geometry is set to ULA or UCA. When Sensor
Array is set to Replicated subarray, this parameter applies to the sub-array.

Array size
This parameter appears when Geometry is set to URA. When Sensor Array is set to
Replicated subarray, this parameter applies to the subarrays.

Specify the size of the array as a 1-by-2 integer vector or a single integer containing.

• If Array size is a 1-by-2 vector, the vector has the form
[NumberOfRows,NumberOfColumns] where NumberOfRows and
NumberOfColumns specify the number of rows and columns of the array,
respectively.

3 Blocks — Alphabetical List

3-498

• If Array size is an integer, the array has the same number of rows and columns.

For a URA, elements are indexed from top to bottom along a column and continuing
to the next columns from left to right. In this figure, an Array size of [3,2]
produces an array of three rows and two columns.

Size and Element Indexing Order

for Uniform Rectangular Arrays

Example: Size = [3,2]

1

2

3

4

6

5

Z

Y

Element spacing
This parameter appears when Geometry is set to ULA or URA. When Sensor Array
is set to Replicated subarray, this parameter applies to the subarrays.

• For a ULA, specify the spacing, in meters, between two adjacent elements in the
array as a scalar.

• For a URA, specify the element spacing of the array, in meters, as a 1-by-2 vector
or a scalar. If Element spacing is a 1-by-2 vector, the vector has the form
[SpacingBetweenRows,SpacingBetweenColumns]. For a discussion of
these quantities, see phased.URA. If Element spacing is a scalar, the spacings
between rows and columns are equal.

Array axis
This parameter appears when the Geometry parameter is set to ULA or when the
block supports only a ULA array geometry. You can specify this parameters as 'x',

 Wideband Transmit Array

3-499

'y', or 'z'. Then, all ULA array elements are uniformly spaced along this axis in
the local array coordinate system.

Array normal
This parameter appears when the Geometry parameter is set to URA or UCA. You
can specify the Array normal parameter as 'x', 'y', or 'z'. Then, all URA and
UCA array elements are placed in the yz-, zx-, or xy- planes, respectively, of the array
coordinate system.

Radius of UCA (m)
Radius of a uniform circular array specified as a positive scalar. Units are meters.

This parameter appears when the Geometry is set to UCA.
Taper

Tapers, also known as element weights, are applied to sensor elements in the array.
Tapers are used to modify both the amplitude and phase of the transmitted or
received data.

This parameter appears when Geometry is set to ULA, URA, UCA, or Conformal
Array. When Sensor Array is set to Replicated subarray, this parameter
applies to subarrays.

• For a ULA or UCA, specify element tapering as a complex-valued scalar or a
complex-valued 1-by-N row vector. In this vector, N represents the number
of elements in the array. If Taper is a scalar, the same weight is applied to
each element. If Taper is a vector, a weight from the vector is applied to the
corresponding sensor element. A weight must be applied to each element in the
sensor array.

• For a URA, specify element tapering as a complex-valued scalar or complex-valued
M-by-N matrix. In this matrix, M is the number of elements along the z-axis, and
N is the number of elements along the y-axis. M and N correspond to the values
of [NumberofRows, NumberOfColumns] in the Array size matrix. If Taper
is a scalar, the same weight is applied to each element. If the value of Taper is a
matrix, a weight from the matrix is applied to the corresponding sensor element.
A weight must be applied to each element in the sensor array.

• For a Conformal Array, specify element taper as a complex-valued scalar or
complex-valued 1-by-N vector. In this vector, N is the number of elements in the
array as determined by the size of the Element positions vector. If the Taper
parameter is a scalar, the same weight is applied to each element. If the value of

3 Blocks — Alphabetical List

3-500

Taper is a vector, a weight from the vector is applied to the corresponding sensor
element. A weight must be applied to each element in the sensor array.

Element lattice
This parameter appears when Geometry is set to URA. When Sensor Array is set to
Replicated subarray, this parameter applies to the sub-array.

Specify the element lattice as one of Rectangular or Triangular

• Rectangular — Aligns all the elements in both row and column directions.
• Triangular — Shifts the even row elements toward the positive row axis

direction. The elements are shifted a distance of half the element spacing along
the row.

Element positions
This parameter appears when Geometry is set to Conformal Array. When Sensor
Array is set to Replicated subarray, this parameter applies to subarrays.

Specify the positions of the elements, in meters, in the conformal array as a 3-by-N
matrix, where N indicates the number of elements in the conformal array. Each
column of Element positions represents the position of a single element, in the
form [x; y; z], in the array’s local coordinate system. The local coordinate system
has its origin at an arbitrary point.

Element normals (deg)
This parameter appears when Geometry is set to Conformal Array. When Sensor
Array is set to Replicated subarray, this parameter applies to subarrays.

Specify the normal directions of the elements in a conformal array as a 2-by-N
matrix or a 2-by-1 column vector in degrees. The variable N indicates the number of
elements in the array. If Element normals is a matrix, each column specifies the
normal direction of the corresponding element in the form [azimuth;elevation],
with respect to the local coordinate system. The local coordinate system aligns
the positive x-axis with the direction normal to the conformal array. If Element
normals is a 2-by-1 column vector, the vector specifies the same pointing direction
for all elements in the array.

You can use the Element positions and Element normals parameters to represent
any arrangement in which pairs of elements differ by certain transformations. You
can combine translation, azimuth rotation, and elevation rotation transformations.
However, you cannot use transformations that require rotation about the normal.

 Wideband Transmit Array

3-501

Subarray definition matrix
This parameter appears when Sensor array is set to Partitioned array.

Specify the subarray selection as an M-by-N matrix. M is the number of subarrays
and N is the total number of elements in the array. Each row of the matrix indicates
which elements belong to the corresponding subarray. Each entry in the matrix is 1
or 0, where 1 indicates that the element appears in the subarray and 0 indicates the
opposite. Each row must contain at least one 1.

The phase center of each subarray is its geometric center. Subarray definition
matrix and Geometry determine the geometric center.

Subarray steering method
This parameter appears when Sensor array is set to Partitioned array or
Replicated subarray.

Specify the subarray steering method as

• None

• Phase

• Time

When using the Narrowband Receive Array, Narrowband Transmit Array,
or Wideband Receive Array blocks, select Phase or Time to create the input port
Steer on each block.

Phase shifter frequency
This parameter appears when you set Sensor array to Partitioned array or
Replicated subarray and you set Subarray steering method to Phase.

Specify the operating frequency, in hertz, of phase shifters to perform subarray
steering as a positive scalar.

Number of bits in phase shifters
This parameter appears when you set Sensor array to Partitioned array or
Replicated subarray and you set Subarray steering method to Phase.

The number of bits used to quantize the phase shift component of beamformer or
steering vector weights. Specify the number of bits as a non-negative integer. A value
of zero indicates that no quantization is performed.

Subarrays layout

3 Blocks — Alphabetical List

3-502

This parameter appears when you set Sensor array to Replicated subarray.

Specify the layout of the replicated subarrays as Rectangular or Custom.
Grid size

This parameter appears when you set Sensor array to Replicated subarray and
Subarrays layout to Rectangular.

Specify the size of the rectangular grid as a single positive integer or an positive
integer-valued 1-by-2 positive row vector.

If Grid size is a scalar, the array has an equal number of subarrays in each
row and column. If Grid size is a 1-by-2 vector of the form [NumberOfRows,
NumberOfColumns], the first entry is the number of subarrays along each column.
The second entry is the number of subarrays in each row. A row is along the local y-
axis, and a column is along the local z-axis. This figure shows how you can replicate a
3-by-2 URA subarray using a Grid size of [1,2].

3 x 2 Element URA

Replicated on a 1 x 2 Grid

1

2

3

4

6

5

Z

Y

7

8

9

10

12

11

Grid spacing
This parameter appears when you set Sensor array to Replicated subarray and
Subarrays layout to Rectangular.

Specify the rectangular grid spacing of subarrays as a real-valued positive scalar, a 1-
by-2 row vector, or Auto. Grid spacing units are expressed in meters.

• If Grid spacing is a scalar, the spacing along the row and the spacing along the
column is the same.

 Wideband Transmit Array

3-503

• If Grid spacing is a 1-by-2 row vector, the vector has the form
[SpacingBetweenRows,SpacingBetweenColumn]. The first entry specifies
the spacing between rows along a column. The second entry specifies the spacing
between columns along a row.

• If Grid spacing is set to Auto, replication preserves the element spacing of the
subarray for both rows and columns while building the full array. This option is
available only when you specify Geometry as ULA or URA.

Subarray positions (m)
This parameter appears when you set Sensor array to Replicated subarray and
Subarrays layout to Custom.

Specify the positions of the subarrays in the custom grid as a 3-by-N matrix, where
N is the number of subarrays in the array. Each column of the matrix represents the
position of a single subarray, in meters, in the array’s local coordinate system. The
coordinates are expressed in the form [x; y; z].

Subarray normals
This parameter appears when you set the Sensor array parameter to Replicated
subarray and the Subarrays layout to Custom.

Specify the normal directions of the subarrays in the array. This parameter value
is a 2-by-N matrix, where N is the number of subarrays in the array. Each column
of the matrix specifies the normal direction of the corresponding subarray, in the
form [azimuth; elevation]. Each angle is in degrees and is defined in the local
coordinate system.

You can use the Subarray positions and Subarray normals parameters
to represent any arrangement in which pairs of subarrays differ by certain
transformations. The transformations can combine translation, azimuth rotation, and
elevation rotation. However, you cannot use transformations that require rotation
about the normal.

Expression
A valid MATLAB expression containing an array constructor, for example,
phased.URA.

Sensor Array Tab: Element Parameters

Element type

3 Blocks — Alphabetical List

3-504

Specify antenna or microphone type as

• Isotropic Antenna

• Cosine Antenna

• Custom Antenna

• Omni Microphone

• Custom Microphone

Exponent of cosine pattern
This parameter appears when you set Element type to Cosine Antenna.

Specify the exponent of the cosine pattern as a scalar or a 1-by-2 vector. You
must specify all values as real numbers greater than or equal to 1. When you set
Exponent of cosine pattern to a scalar, both the azimuth direction cosine pattern
and the elevation direction cosine pattern are raised to the specified value. When you
set Exponent of cosine pattern to a 1-by-2 vector, the first element is the exponent
for the azimuth direction cosine pattern and the second element is the exponent for
the elevation direction cosine pattern.

Operating frequency range (Hz)
This parameter appears when Element type is set to Isotropic Antenna, Cosine
Antenna, or Omni Microphone.

Specify the operating frequency range, in hertz, of the antenna element as a 1-by-2
row vector in the form [LowerBound,UpperBound]. The antenna element has no
response outside the specified frequency range.

Operating frequency vector (Hz)
This parameter appears when Element type is set to Custom Antenna or Custom
Microphone.

Specify L frequencies, in hertz, at which to set the antenna and microphone
frequency responses. Specify Operating frequency vector (Hz) as a 1-by-L
row vector of increasing value. Use Frequency responses to set the frequency
responses. The antenna or microphone element has no response outside the
frequency range specified by the minimum and maximum elements of Operating
frequency vector.

Frequency responses (dB)
This parameter appears when Element type is set to Custom Antenna or Custom
Microphone.

 Wideband Transmit Array

3-505

Specify this parameter as the frequency response of an antenna or microphone,
in decibels, for the frequencies defined by Operating frequency vector. Specify
Frequency responses (dB) as a 1-by-L vector matching the dimensions of the
vector specified in Operating frequency vector.

Azimuth angles (deg)
This parameter appears when Element type is set to Custom Antenna.

Specify P azimuth angles, in degrees, at which to calculate the antenna radiation
pattern as a 1-by-P row vector. P must be greater than 2. The azimuth angles must
lie between –180° and 180° and be in strictly increasing order.

Elevation angles (deg)
This parameter appears when the Element type is set to Custom Antenna.

Specify the Q elevation angles, in degrees, at which to compute the radiation pattern
as a 1-by-Q vector. Q must be greater than 2. The elevation angles must lie between –
90° and 90° and be in strictly increasing order.

Radiation pattern (dB)
This parameter appears when the Element type is set to Custom Antenna.

The magnitude in db of the combined polarized antenna radiation pattern specified
as a Q-by-P matrix or a Q-by-P-by-L array. The value of Q must match the value of Q
specified by Elevation angles. The value of P must match the value of P specified by
Azimuth angles. The value of L must match the value of L specified by Operating
frequency vector (Hz).

Polar pattern frequencies (Hz)
This parameter appears when the Element type is set to Custom Microphone.

Specify the Mmeasuring frequencies in hertz of the polar patterns 1-by-M vector.
The measuring frequencies lie within the frequency range specified byOperating
frequency vector.

Polar pattern angles (deg)
This parameter appears when Element type is set to Custom Microphone.

Specify N measuring angles, in degrees, of the polar patterns as a 1-by-N. The angles
are measured from the central pickup axis of the microphone, and must be between –
180° and 180°, inclusive.

Polar pattern (dB)

3 Blocks — Alphabetical List

3-506

This parameter appears when Element type is set to Custom Microphone.

Specify the magnitude of the polar patterns, in dB, of the microphone element as
an M-by-N matrix. M is the number of measuring frequencies specified in Polar
pattern frequencies. N is the number of measuring angles specified in Polar
pattern angles. Each row of the matrix represents the magnitude of the polar
pattern measured at the corresponding frequency specified in Polar pattern
frequencies and all angles specified in Polar pattern angles. Assume that the
pattern is measured in the azimuth plane. In the azimuth plane, the elevation angle
is 0° and the central pickup axis is 0° degrees azimuth and 0° degrees elevation.
Assume also that the polar pattern is symmetric around the central axis. You can
construct the microphone’s response pattern in 3-D space from the polar pattern.

Baffle the back of the element
This check box appears only when the Element type parameter is set to Isotropic
Antenna or Omni Microphone.

Select this check box to baffle the back of the antenna element. In this case, the
antenna responses to all azimuth angles beyond ±90° from broadside are set to zero.
Define the broadside direction as 0° azimuth angle and 0° elevation angle.

Ports

Note: The block input and output ports correspond to the input and output parameters
described in the step method of the underlying System object. See link at the bottom of
this page.

Port Supported Data Types

X Double-precision floating point
Ang Double-precision floating point
W Double-precision floating point
Out Double-precision floating point

See Also
phased.WidebandRadiator

 Wideband Transmit Array

3-507

Introduced in R2015b

4

App Reference

4 App Reference

4-2

Radar Equation Calculator
Estimate maximum range, peak power, and SNR of a radar system

Description
The Radar Equation Calculator app solves the basic radar equation for monostatic or
bistatic radar systems. The radar equation relates target range, transmitted power, and
received signal SNR. Using this app, you can:

• Solve for maximum target range based on the transmit power of the radar and
specified received SNR

• Calculate required transmit power based on known target range and specified
received SNR

• Calculate the received SNR value based on known range and transmit power

Open the Radar Equation Calculator App

• MATLAB Toolstrip: On the Apps tab, under Signal Processing and
Communications, click the app icon.

• MATLAB command prompt: Enter radarEquationCalculator.

Examples

Maximum Detection Range of a Monostatic Radar

This example shows how to compute the maximum detection range of a 10 GHz, 1 kW,
monostatic radar with a 40 dB antenna gain and a detection threshold of 10 dB.

From the Calculation Type drop-down list, choose Target Range as the solution.

Choose Configuration as monostatic.

Enter 40 dB for the antenna Gain.

Set the Wavelength to 3 cm.

 Radar Equation Calculator

4-3

Set the SNR detection threshold parameter to 10 dB.

Assuming the target is a large airplane, set the Target Radar Cross Section value to
100 m2.

Specify the Peak Transmit Power as 1 kW

Specify the Pulse Width as 2 µs.

Assume a total of 5 dB System Losses.

4 App Reference

4-4

 Radar Equation Calculator

4-5

The maximum target detection range is 92 km.

Maximum Detection Range of a Monostatic Radar Using Multiple Pulses

This example shows how to use multiple pulses to reduce the transmitted power while
maintaining the same maximum target range.

Continue with the results from the previous example.

Click the arrows to the right of the SNR label.

The Detection Specifications for SNR menu opens.

Set Probability of Detection to 0.95.

Set Probability of False Alarm to 10–6.

Set Number of Pulses to 4.

Reduce Peak Transmit Power to 0.75 kW.

Assume a nonfluctuating target model, and set the Swerling Case Number is 0.

4 App Reference

4-6

 Radar Equation Calculator

4-7

The maximum detection range is approximately the same as in the previous example, but
the transmitted power is reduced by 25%.

Maximum Detection Range of Bistatic Radar System

This example shows how to solve for the geometric mean range of a target for a bistatic
radar system.

Specify the Calculation Type as Target Range.

Specify the Configuration as bistatic.

Provide a Transmitter Gain and a Receiver Gain parameter, instead of the single
gain needed in the monostatic case.

4 App Reference

4-8

Alternatively, to achieve a particular probability of detection and probability of false
alarm, open the Detection Specifications for SNR menu.

Enter values for Probability of Detection and Probability of False Alarm, Number
of Pulses, and Swerling Case Number.

 Radar Equation Calculator

4-9
Required Transmit Power for a Bistatic Radar

This example shows how to compute the required peak transmit power of a 10 GHz,
bistatic X-band radar for a 80 km total bistatic range, and 10 dB received SNR.

4 App Reference

4-10

The system has a 40 dB transmitter gain and a 20 dB receiver gain. The required
receiver SNR is 10 dB.

From the Calculation Type drop-down list, choose Peak Transmit Power as the
solution type.

Choose Configuration as bistatic.

From the system specifications, set Transmitter Gain to 40 dB and Receiver Gain to
20 dB.

Set the SNR detection threshold to 10 dB and the Wavelength to 0.3 m.

Assume the target is a fighter aircraft having a Target Radar Cross Section value of 2
m2.

Choose Range from Transmitter as 50 km, and Range from Receiver as 30 km.

Set the Pulse Width to 2 µs and the System Losses to 0 dB.

 Radar Equation Calculator

4-11

4 App Reference

4-12

The required Peak Transmit Power is about 0.5 kW.

Receiver SNR for a Monostatic Radar

This example shows how to compute the received SNR for a monostatic radar with 1 kW
peak transmit power with a target at a range of 2 km.

Assume a 2 GHz radar frequency and 20 dB antenna gain.

From the Calculation Type drop-down list, choose SNR as the solution type and set the
Configuration as monostatic.

Set the Gain to 20, the Peak Transmit Power to 1 kW, and the Target Range to 2000
m.

Set the Wavelength to 15 cm.

Find the received SNR of a small boat having a Target Radar Cross Section value of
0.5 m2.

The Pulse Width is 1 µs and System Losses are 0 dB.

 Radar Equation Calculator

4-13

• “Detection, Range and Doppler Estimation”

4 App Reference

4-14

Parameters

Calculation Type — Type of calculation to perform
Target Range (default) | Peak Transmit Power | SNR

Target Range – solves for maximum target range based on transmit power of the radar
and desired received SNR.

Peak Transmit – Power computes power needed to transmit based on known target
range and desired received SNR.

SNR – calculates the received SNR value based on known range and transmit power.

Wavelength — Wavelength of radar operating frequency
0.3 m (default) | m | cm | mm

Specify the wavelength of radar operating frequency in m, cm, or mm.

The wavelength is the ratio of the wave propagation speed to frequency. For
electromagnetic waves, the speed of propagation is the speed of light.

Denoting the speed of light by c and the frequency (in hertz) of the wave by f, the
equation for wavelength is:

l =
c

f

Pulse Width — Single pulse duration
1 µs (default) | µs | ms | s

Specify the single pulse duration in µs, ms, or s.

System Losses — System loss in decibels (dB)
0 dB (default)

System Losses represents a general loss factor that comprises losses incurred in the
system components and in the propagation to and from the target.

Noise Temperature — System noise temperature in kelvins
290 K (default)

 Radar Equation Calculator

4-15

The system noise temperature is the product of the system temperature and the noise
figure.

Target Radar Cross Section — Radar cross section (RCS)
1 m² (default) | m² | dBsm

Specify the target radar cross section in m², or dBsm.

The target radar cross section is nonfluctuating.

Configuration — Type of radar system
Monostatic (default) | Bistatic

Monostatic – Transmitter and receiver are colocated (monostatic radar).

Bistatic – Transmitter and receiver are not colocated (bistatic radar).

Gain — Transmitter and receiver gain in decibels (dB)
20 dB (default)

When the transmitter and receiver are colocated (monostatic radar), the transmit and
receive gains are equal.

This parameter is enabled only if the Configuration is set to Monostatic.

Peak Transmit Power — Transmitter peak power
1 kw (default) | kW | mW | W | dBW

Specify the transmitter peak power in kW, mW, W, or dBW.

This parameter is enabled only if the Calculation Type is set to Target Range or SNR.

SNR — Minimum output signal-to-noise ratio at the receiver in decibels
10 dB (default)

Specify an SNR value, or calculate an SNR value using Detection Specifications for SNR.

You can calculate the SNR required to achieve a particular probability of detection and
probability of false alarm using Shnidman's equation. To calculate the SNR value:

1 Click the arrows to the right of the SNR label to open the Detection Specifications
for SNR menu.

4 App Reference

4-16

2 Enter values for Probability of Detection, Probability of False Alarm, Number of
Pulses, and Swerling Case Number.

This parameter is enabled only if the Calculation Type is set to Target Range or
Peak Transmit Power.

Probability of Detection — Detection probability used to estimate SNR
0.81029 (default)

Specify the detection probability used to estimate SNR using Shnidman's equation.

This parameter is enabled only when the Calculation Type is set to Peak Transmit
Power or Target Range, and you select the Detection Specifications for SNR button for
the SNR parameter.

Probability of False Alarm — False alarm probability used to estimate SNR
0.001 (default)

Specify the false-alarm probability used to estimate SNR using Shnidman's equation.

This parameter is enabled only when the Calculation Type is set to Peak Transmit
Power or Target Range, and you select the Detection Specifications for SNR button for
the SNR parameter.

Number of Pulses — Number of pulses used to estimate SNR
1 (default)

Specify a single pulse, or the number of pulses used for noncoherent integration in
Shnidman's equation.

Use multiple pulses to reduce the transmitted power while maintaining the same
maximum target range.

This parameter is enabled only when the Calculation Type is set to Peak Transmit
Power or Target Range, and you select the Detection Specifications for SNR button for
the SNR parameter.

Swerling Case Number — Swerling case number used to estimate SNR
0 (default) | 1 | 2 | 3 | 4

Specify the Swerling case number used to estimate SNR using Shnidman's equation:

 Radar Equation Calculator

4-17

• 0 – Nonfluctuating pulses.
• 1 – Scan-to-scan decorrelation. Rayleigh/exponential PDF–A number of randomly

distributed scatterers with no dominant scatterer.
• 2 – Pulse-to-pulse decorrelation. Rayleigh/exponential PDF– A number of randomly

distributed scatterers with no dominant scatterer.
• 3 – Scan-to-scan decorrelation. Chi-square PDF with 4 degrees of freedom. A number

of scatterers with one dominant.
• 4 – Pulse-to-pulse decorrelation. Chi-square PDF with 4 degrees of freedom. A

number of scatterers with one dominant.

Swerling case numbers characterize the detection problem for fluctuating pulses in terms
of:

• A decorrelation model for the received pulses.
• The distribution of scatterers affecting the probability density function (PDF) of the

target radar cross section (RCS).

The Swerling case numbers consider all combinations of two decorrelation models
(scan-to-scan; pulse-to-pulse) and two RCS PDFs (based on the presence or absence of a
dominant scatterer).

This parameter is enabled only when the Calculation Type is set to Peak Transmit
Power or Target Range, and you select the Detection Specifications for SNR button for
the SNR parameter.

Target Range — Range to target
10 km (default) | km | m | mi | nmi

Specify target range in m, km, mi, or nmi.

This parameter is enabled only when the Calculation Type is set to Peak Transmit
Power or SNR, and the Configuration is set to Monostatic.

Transmitter Gain — Transmitter gain in decibels (dB)
20 dB (default)

When the transmitter and receiver are not colocated (bistatic radar), specify the
transmitter gain separately from the receiver gain.

This parameter is enabled only if the Configuration is set to Bistatic.

4 App Reference

4-18

Range from Transmitter — Range from the transmitter to the target
10 km (default) | km | m | mi | nmi

When the transmitter and receiver are not colocated (bistatic radar), specify the
transmitter range separately from the receiver range.

You can specify range in m, km, mi, or nmi.

This parameter is enabled only when the Calculation Type is set to Peak Transmit
Power or SNR, and the Configuration is set to Bistatic.

Receiver Gain — Receiver gain in decibels (dB)
20 dB (default)

When the transmitter and receiver are not colocated (bistatic radar), specify the receiver
gain separately from the transmitter gain.

This parameter is enabled only if the Configuration is set to Bistatic.

Range from Receiver — Range from the target to the receiver
10 km (default) | km | m | mi | nmi

When the transmitter and receiver are not colocated (bistatic radar), specify the receiver
range separately from the transmitter range.

You can specify range in m, km, mi, or nmi.

This parameter is enabled only when the Calculation Type is set to Peak Transmit
Power or SNR, and the Configuration is set to Bistatic.

See Also

Apps
Radar Waveform Analyzer | Sensor Array Analyzer

Functions
radareqpow | radareqrng | radareqsnr | shnidman

Introduced in R2014b

 Radar Waveform Analyzer

4-19

Radar Waveform Analyzer
Analyze performance characteristics of pulsed, frequency modulated, and phase-coded
waveforms

Description
The Radar Waveform Analyzer app lets you explore the properties of signals that are
commonly used in radar and sonar systems, and to produce plots and images to visualize
waveforms.

The app lets you determine the basic characteristics of these waveforms

• Rectangular
• Linear frequency modulation (LFM)
• Stepped FM
• Phase-coded waveforms
• Frequency modulation constant waveform (FMCW)

You can quickly modify parameters for each waveform, such as pulse repetition
frequency (PRF), sample rate, pulse duration, and bandwidth. You can also set the
propagation speed to represent electromagnetic waves, or sound waves in air or water.

After you configure parameters, the app displays basic waveform characteristics such as
range resolution, Doppler resolution, and maximum range. It also can generate a variety
of plots and images to visualize the waveform, including:

• Real and imaginary components
• Magnitude and phase
• Spectrum
• Ambiguity function (AF) representations, including contour, surface, delay cut, and

Doppler cut
• Autocorrelation function

Open the Radar Waveform Analyzer App
• MATLAB Toolstrip: On the Apps tab, under Signal Processing and

Communications, click the app icon.

4 App Reference

4-20

• MATLAB command prompt: Enter radarWaveformAnalyzer.

Examples

Rectangular Waveform

This example shows how to analyze a rectangular waveform.

In the Waveform Settings panel, set the Waveform to Rectangular.

An ideal rectangular waveform jumps instantaneously to a finite value and stays there
for some duration.

Assume the radar is designed for a maximum range of 50 km.

For this range, the time for a signal to propagate to that range and return is 333 μs.
Therefore, you must allow 333 μs between pulses, equivalent to a maximum pulse
repetition frequency (PRF)) of 3000 Hz.

Set the Pulse Width to 50 μs.

With these values, the app displays a 7.5 km range resolution.

The resolution of a rectangular pulse is roughly 1/2 the pulse-width multiplied by the
speed of light, which is entered here in the Propagation Speed field as 300e6 m/s. The
Doppler resolution is approximately the width of the Fourier transform of the pulse.

The same analysis can be used for sonar if you assume a much smaller speed of
propagation, 1500 m/s.

The following figure shows the real and imaginary parts of the waveform. This is the
default view on the View drop-down list.

 Radar Waveform Analyzer

4-21

Next, you can view the signal spectrum. To do so, select Spectrum from the View drop-
down menu.

4 App Reference

4-22

Finally, you can display the joint range-Doppler resolution by selecting Ambigity-
Function Surface from the View pull-down menu in the Visualization Settings panel.

 Radar Waveform Analyzer

4-23

Linear FM Waveform

This example shows how to improve range resolution using a linear FM waveform.

In the previous example, the range resolution of the rectangular pulse was poor, at 7.5
km. You can improve the range resolution by choosing a signal with a larger bandwidth.
A good choice is a linear FM pulse.

Set the Waveform to Linear FM.

4 App Reference

4-24

This pulse has a variable frequency which can either increase or decrease as a linear
function of time.

Choose the Sweep Direction as Up, and the Sweep Bandwidth as 1 MHz.

You can see that keeping the same pulse width as before improves the range resolution to
150 m, as shown in the following figure.

Examine the ambiguity function which shows a trade-off.

 Radar Waveform Analyzer

4-25

While the range resolution is better, the Doppler resolution is worse than that of a
rectangular waveform.

Linear FM Waveform Spectrogram

This example shows how to display the spectrogram of a linear FM waveform with and
without frequency reassignment.

Use the same signal parameters as in the previous example.

4 App Reference

4-26

Select Spectrogram from the View drop-down menu in the Visualization Settings
panel. Then, click the Reassigned checkbox to show the frequency reassigned
spectrogram (reassignment is turned on by default). Frequency reassignment is a
technique for sharpening the magnitude spectrogram of a signal using information from
its phase spectrum. For more information on frequency reassignment, see Fulop and
Kelly (2006).

 Radar Waveform Analyzer

4-27

You can vary the Threshold Value setting to show or hide weaker spectrum
components.

To view the conventional spectrogram, click the Reassigned checkbox again.

Again, you can vary the Threshold Value setting to show or hide weaker spectrum
components.

• “Waveform Design and Analysis”

4 App Reference

4-28

References

[1] Fulop, Sean A., and Kelly Fitz. "Algorithms for computing the time-corrected
instantaneous frequency (reassigned) spectrogram, with applications." Journal of
the Acoustical Society of America. Vol. 119, January 2006, pp. 360–371.

See Also

Apps
Radar Equation Calculator | Sensor Array Analyzer

Introduced in R2014b

 Sensor Array Analyzer

4-29

Sensor Array Analyzer

Analyze beam pattern of linear, planar, and conformal sensor arrays

Description
The Sensor Array Analyzer app enables you to construct and analyze common sensor
array configurations. These configurations range from 1-D to 3-D arrays of antennas and
microphones.

After you specify array parameters, the app displays basic performance characteristics
such as array directivity and array dimensions. You can then create a variety of plots and
images.

You can use this app to generate the directivity of the following arrays:

• Uniform Linear Array (ULA)
• Uniform Rectangular Array (URA)
• Uniform Circular Array
• Uniform Hexagonal Array
• Circular Plane Array
• Concentric Array
• Spherical Array
• Cylindrical Array
• Arbitrary Geometry

Available Elements

The following elements are available to populate an array:

• Isotropic Antenna
• Cosine Antenna
• Omnidirectional Microphone
• Cardioid Microphone

4 App Reference

4-30

• Custom Antenna

Available Plots

The Sensor Array Analyzer app can create the following plots:

• Array Geometry
• 2D Array Directivity
• 3D Array Directivity
• Grating Lobes

Open the Sensor Array Analyzer App

• MATLAB Toolstrip: On the Apps tab, under Signal Processing and
Communications, click the app icon.

• MATLAB command prompt: Enter sensorArrayAnalyzer.

Examples

Uniform Linear Array

This example shows how to analyze a 10-element uniform linear array (ULA) in a sonar
application with omnidirectional microphones.

A uniform linear array has sensor elements that are equally-spaced along a line.

Set the Array Type to Uniform Linear and the Element Type to Omnidirectional
Microphone.

Design the array to find the arrival direction of a 10 kHz signal by setting Signal
Frequencies to 10000 and the Element Spacing to 0.5 wavelengths.

Set the signal Propagation Speed to equal the speed of sound in water, 1500 m/s.

In the View dropdown menu, choose the Array Geometry option to draw the shape of
the array.

 Sensor Array Analyzer

4-31

Next, examine the directivity of the array. To do so, select 2D Array Directivity in
the View drop-down list. The 2-D array directivity is shown below.

4 App Reference

4-32

You can see the mainlobe of the array directivity function (also called the main beam)
at 0° and another mainlobe at ±180°. Two mainlobes appear because of the cylindrical
symmetry of the ULA array.

A beamscanner works by successively pointing the array mainlobe in different directions.
Setting the Steering option to On lets you steer the mainlobe in the direction specified by
the Steering Angles option.

 Sensor Array Analyzer

4-33

In this case, set the steering angle to [30;0] to point the mainlobe to 30° in azimuth and
0° elevation. In the next figure, you can see two mainlobes, one at 30° as expected, and
another at 150°. Again, two mainlobes appear because of the cylindrical symmetry of the
array.

A disadvantage of the ULA is its large side lobes. An examination of the array directivity
shows two side lobes close to each mainlobe, each down by about only 13 dB. A strong

4 App Reference

4-34

sidelobe inhibits the ability of the array to detect a weaker signal in the presence of a
larger nearby signal. By using array tapering, you can reduce the side lobes.

Use the Taper option to specify the array taper as a Taylor window with Sidelobe
Attenuation set to 30 dB. The next figure shows how the Taylor window reduces all side
lobes to –30 dB—but at the expense of broadening the mainlobe.

 Sensor Array Analyzer

4-35

Uniform Rectangular Array

This example shows how to construct a 6-by-6 uniform rectangular array (URA) designed
to detect and localize a 100 MHz signal.

Set the Array Type to Uniform Rectangular, the Element Type to Isotropic
Antenna, and the Size to [6 6].

4 App Reference

4-36

Design the array to find the arrival direction of a 100 MHz signal by setting Signal
Frequencies to 100e+6 and the row and column Element Spacing to 0.5 wavelength.

Set both the Row Taper and Column Taper to a Taylor window.

The shape of the array is shown in the figure below.

Finally, display the 3-D array directivity by setting the View option to 3D Array
Directivity, as shown in the following figure:

 Sensor Array Analyzer

4-37

A significant performance criterion for any array is its array directivity. You can use the
app to examine the effects of tapering on array directivity. Without tapering, the array

4 App Reference

4-38

directivity for this URA is 17.2 dB. With tapering, the array directivity loses 1 dB to yield
16.0 dB.

Grating Lobes for a Rectangular Array

This example shows the grating lobe diagram of a 4-by-4 uniform rectangular array
(URA) designed to detect and localize a 300 MHz signal.

Set the Array Type to Uniform Rectangular, the Element Type to Isotropic
Antenna, and the array Size to [4 4].

Set the Signal Frequencies to 300e+6.

By setting the row and column Element Spacing to 0.7 wavelengths, you create a
spatially undersampled array.

This figure shows the grating lobe diagram produced when you beamform the array
towards the angle [20,0]. The mainlobe is designated by the small black-filled circle. The
multiple grating lobes are designated by the small unfilled black circles. The larger black
circle is called the physical region, for which u2+ v2 ≤ 1. The mainlobe always lies in the
physical region. The grating lobes may or may not lie in the physical region. Any grating
lobe in the physical region leads to an ambiguity in the direction of the incoming wave.
The green region shows where the mainlobe can be pointed without any grating lobes
appearing in the physical region. If the mainlobe is set to point outside the green region,
a grating lobe moves into the physical region.

 Sensor Array Analyzer

4-39

The next figure shows what happens when the pointing direction lies outside the green
region. In this case, one grating lobe moves into the physical region.

4 App Reference

4-40

Specify Arbitrary Array Geometry

This example shows how to construct a triangular array of three isotropic antenna
elements.

You can specify an array which has an arbitrary placement of sensors. In this example,
the elements are placed at [0,0,0]', [0,1,0.5]', and [0,0,0.866]'. All elements
have the same normal direction [0,20], pointing to 0° in azimuth and 20° in elevation.

 Sensor Array Analyzer

4-41

Plot the 3-D array directivity in polar coordinates.

4 App Reference

4-42

Specify Arbitrary Array Geometry Using Variables

This example shows how to specify an array which has an arbitrary placement of sensors,
but in this case, create MATLAB variables or arrays at the command line and use them
in the appropriate sensorArrayAnalyzer fields

At the MATLAB command line, create an element position array, pos, an element
normal array, nrm, and a taper value array, tpr.

 Sensor Array Analyzer

4-43

pos = [0,0,0;0,1,0.5;0,0,0.866];

nrm = [0,0,0;20,20,20];

tpr = [1,1,1];

Enter these variables in the appropriate sensorArrayAnalyzer fields.

• “Array Geometries and Analysis”

4 App Reference

4-44

See Also

Apps
Radar Equation Calculator | Radar Waveform Analyzer

Introduced in R2014b

